Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iommu / amd / iommu.c
blobf0adbc48fd17954085033bec1e53c740c3040066
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/iova.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
43 #include "amd_iommu.h"
44 #include "../irq_remapping.h"
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48 #define LOOP_TIMEOUT 100000
50 /* IO virtual address start page frame number */
51 #define IOVA_START_PFN (1)
52 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
54 /* Reserved IOVA ranges */
55 #define MSI_RANGE_START (0xfee00000)
56 #define MSI_RANGE_END (0xfeefffff)
57 #define HT_RANGE_START (0xfd00000000ULL)
58 #define HT_RANGE_END (0xffffffffffULL)
61 * This bitmap is used to advertise the page sizes our hardware support
62 * to the IOMMU core, which will then use this information to split
63 * physically contiguous memory regions it is mapping into page sizes
64 * that we support.
66 * 512GB Pages are not supported due to a hardware bug
68 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
70 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
72 static DEFINE_SPINLOCK(pd_bitmap_lock);
74 /* List of all available dev_data structures */
75 static LLIST_HEAD(dev_data_list);
77 LIST_HEAD(ioapic_map);
78 LIST_HEAD(hpet_map);
79 LIST_HEAD(acpihid_map);
82 * Domain for untranslated devices - only allocated
83 * if iommu=pt passed on kernel cmd line.
85 const struct iommu_ops amd_iommu_ops;
87 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
88 int amd_iommu_max_glx_val = -1;
91 * general struct to manage commands send to an IOMMU
93 struct iommu_cmd {
94 u32 data[4];
97 struct kmem_cache *amd_iommu_irq_cache;
99 static void update_domain(struct protection_domain *domain);
100 static void detach_device(struct device *dev);
101 static void update_and_flush_device_table(struct protection_domain *domain,
102 struct domain_pgtable *pgtable);
104 /****************************************************************************
106 * Helper functions
108 ****************************************************************************/
110 static inline u16 get_pci_device_id(struct device *dev)
112 struct pci_dev *pdev = to_pci_dev(dev);
114 return pci_dev_id(pdev);
117 static inline int get_acpihid_device_id(struct device *dev,
118 struct acpihid_map_entry **entry)
120 struct acpi_device *adev = ACPI_COMPANION(dev);
121 struct acpihid_map_entry *p;
123 if (!adev)
124 return -ENODEV;
126 list_for_each_entry(p, &acpihid_map, list) {
127 if (acpi_dev_hid_uid_match(adev, p->hid,
128 p->uid[0] ? p->uid : NULL)) {
129 if (entry)
130 *entry = p;
131 return p->devid;
134 return -EINVAL;
137 static inline int get_device_id(struct device *dev)
139 int devid;
141 if (dev_is_pci(dev))
142 devid = get_pci_device_id(dev);
143 else
144 devid = get_acpihid_device_id(dev, NULL);
146 return devid;
149 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
151 return container_of(dom, struct protection_domain, domain);
154 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
155 struct domain_pgtable *pgtable)
157 u64 pt_root = atomic64_read(&domain->pt_root);
159 pgtable->root = (u64 *)(pt_root & PAGE_MASK);
160 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
163 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
165 atomic64_set(&domain->pt_root, root);
168 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
170 amd_iommu_domain_set_pt_root(domain, 0);
173 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
174 u64 *root, int mode)
176 u64 pt_root;
178 /* lowest 3 bits encode pgtable mode */
179 pt_root = mode & 7;
180 pt_root |= (u64)root;
182 amd_iommu_domain_set_pt_root(domain, pt_root);
185 static struct iommu_dev_data *alloc_dev_data(u16 devid)
187 struct iommu_dev_data *dev_data;
189 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
190 if (!dev_data)
191 return NULL;
193 spin_lock_init(&dev_data->lock);
194 dev_data->devid = devid;
195 ratelimit_default_init(&dev_data->rs);
197 llist_add(&dev_data->dev_data_list, &dev_data_list);
198 return dev_data;
201 static struct iommu_dev_data *search_dev_data(u16 devid)
203 struct iommu_dev_data *dev_data;
204 struct llist_node *node;
206 if (llist_empty(&dev_data_list))
207 return NULL;
209 node = dev_data_list.first;
210 llist_for_each_entry(dev_data, node, dev_data_list) {
211 if (dev_data->devid == devid)
212 return dev_data;
215 return NULL;
218 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
220 u16 devid = pci_dev_id(pdev);
222 if (devid == alias)
223 return 0;
225 amd_iommu_rlookup_table[alias] =
226 amd_iommu_rlookup_table[devid];
227 memcpy(amd_iommu_dev_table[alias].data,
228 amd_iommu_dev_table[devid].data,
229 sizeof(amd_iommu_dev_table[alias].data));
231 return 0;
234 static void clone_aliases(struct pci_dev *pdev)
236 if (!pdev)
237 return;
240 * The IVRS alias stored in the alias table may not be
241 * part of the PCI DMA aliases if it's bus differs
242 * from the original device.
244 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
246 pci_for_each_dma_alias(pdev, clone_alias, NULL);
249 static struct pci_dev *setup_aliases(struct device *dev)
251 struct pci_dev *pdev = to_pci_dev(dev);
252 u16 ivrs_alias;
254 /* For ACPI HID devices, there are no aliases */
255 if (!dev_is_pci(dev))
256 return NULL;
259 * Add the IVRS alias to the pci aliases if it is on the same
260 * bus. The IVRS table may know about a quirk that we don't.
262 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
263 if (ivrs_alias != pci_dev_id(pdev) &&
264 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
265 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
267 clone_aliases(pdev);
269 return pdev;
272 static struct iommu_dev_data *find_dev_data(u16 devid)
274 struct iommu_dev_data *dev_data;
275 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
277 dev_data = search_dev_data(devid);
279 if (dev_data == NULL) {
280 dev_data = alloc_dev_data(devid);
281 if (!dev_data)
282 return NULL;
284 if (translation_pre_enabled(iommu))
285 dev_data->defer_attach = true;
288 return dev_data;
292 * Find or create an IOMMU group for a acpihid device.
294 static struct iommu_group *acpihid_device_group(struct device *dev)
296 struct acpihid_map_entry *p, *entry = NULL;
297 int devid;
299 devid = get_acpihid_device_id(dev, &entry);
300 if (devid < 0)
301 return ERR_PTR(devid);
303 list_for_each_entry(p, &acpihid_map, list) {
304 if ((devid == p->devid) && p->group)
305 entry->group = p->group;
308 if (!entry->group)
309 entry->group = generic_device_group(dev);
310 else
311 iommu_group_ref_get(entry->group);
313 return entry->group;
316 static bool pci_iommuv2_capable(struct pci_dev *pdev)
318 static const int caps[] = {
319 PCI_EXT_CAP_ID_PRI,
320 PCI_EXT_CAP_ID_PASID,
322 int i, pos;
324 if (!pci_ats_supported(pdev))
325 return false;
327 for (i = 0; i < 2; ++i) {
328 pos = pci_find_ext_capability(pdev, caps[i]);
329 if (pos == 0)
330 return false;
333 return true;
336 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
338 struct iommu_dev_data *dev_data;
340 dev_data = dev_iommu_priv_get(&pdev->dev);
342 return dev_data->errata & (1 << erratum) ? true : false;
346 * This function checks if the driver got a valid device from the caller to
347 * avoid dereferencing invalid pointers.
349 static bool check_device(struct device *dev)
351 int devid;
353 if (!dev)
354 return false;
356 devid = get_device_id(dev);
357 if (devid < 0)
358 return false;
360 /* Out of our scope? */
361 if (devid > amd_iommu_last_bdf)
362 return false;
364 if (amd_iommu_rlookup_table[devid] == NULL)
365 return false;
367 return true;
370 static int iommu_init_device(struct device *dev)
372 struct iommu_dev_data *dev_data;
373 int devid;
375 if (dev_iommu_priv_get(dev))
376 return 0;
378 devid = get_device_id(dev);
379 if (devid < 0)
380 return devid;
382 dev_data = find_dev_data(devid);
383 if (!dev_data)
384 return -ENOMEM;
386 dev_data->pdev = setup_aliases(dev);
389 * By default we use passthrough mode for IOMMUv2 capable device.
390 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
391 * invalid address), we ignore the capability for the device so
392 * it'll be forced to go into translation mode.
394 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
395 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
396 struct amd_iommu *iommu;
398 iommu = amd_iommu_rlookup_table[dev_data->devid];
399 dev_data->iommu_v2 = iommu->is_iommu_v2;
402 dev_iommu_priv_set(dev, dev_data);
404 return 0;
407 static void iommu_ignore_device(struct device *dev)
409 int devid;
411 devid = get_device_id(dev);
412 if (devid < 0)
413 return;
415 amd_iommu_rlookup_table[devid] = NULL;
416 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
418 setup_aliases(dev);
421 static void amd_iommu_uninit_device(struct device *dev)
423 struct iommu_dev_data *dev_data;
425 dev_data = dev_iommu_priv_get(dev);
426 if (!dev_data)
427 return;
429 if (dev_data->domain)
430 detach_device(dev);
432 dev_iommu_priv_set(dev, NULL);
435 * We keep dev_data around for unplugged devices and reuse it when the
436 * device is re-plugged - not doing so would introduce a ton of races.
441 * Helper function to get the first pte of a large mapping
443 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
444 unsigned long *count)
446 unsigned long pte_mask, pg_size, cnt;
447 u64 *fpte;
449 pg_size = PTE_PAGE_SIZE(*pte);
450 cnt = PAGE_SIZE_PTE_COUNT(pg_size);
451 pte_mask = ~((cnt << 3) - 1);
452 fpte = (u64 *)(((unsigned long)pte) & pte_mask);
454 if (page_size)
455 *page_size = pg_size;
457 if (count)
458 *count = cnt;
460 return fpte;
463 /****************************************************************************
465 * Interrupt handling functions
467 ****************************************************************************/
469 static void dump_dte_entry(u16 devid)
471 int i;
473 for (i = 0; i < 4; ++i)
474 pr_err("DTE[%d]: %016llx\n", i,
475 amd_iommu_dev_table[devid].data[i]);
478 static void dump_command(unsigned long phys_addr)
480 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
481 int i;
483 for (i = 0; i < 4; ++i)
484 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
487 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
489 struct iommu_dev_data *dev_data = NULL;
490 int devid, vmg_tag, flags;
491 struct pci_dev *pdev;
492 u64 spa;
494 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
495 vmg_tag = (event[1]) & 0xFFFF;
496 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
497 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
499 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
500 devid & 0xff);
501 if (pdev)
502 dev_data = dev_iommu_priv_get(&pdev->dev);
504 if (dev_data && __ratelimit(&dev_data->rs)) {
505 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
506 vmg_tag, spa, flags);
507 } else {
508 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
509 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
510 vmg_tag, spa, flags);
513 if (pdev)
514 pci_dev_put(pdev);
517 static void amd_iommu_report_rmp_fault(volatile u32 *event)
519 struct iommu_dev_data *dev_data = NULL;
520 int devid, flags_rmp, vmg_tag, flags;
521 struct pci_dev *pdev;
522 u64 gpa;
524 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
525 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
526 vmg_tag = (event[1]) & 0xFFFF;
527 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
528 gpa = ((u64)event[3] << 32) | event[2];
530 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
531 devid & 0xff);
532 if (pdev)
533 dev_data = dev_iommu_priv_get(&pdev->dev);
535 if (dev_data && __ratelimit(&dev_data->rs)) {
536 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
537 vmg_tag, gpa, flags_rmp, flags);
538 } else {
539 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
540 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
541 vmg_tag, gpa, flags_rmp, flags);
544 if (pdev)
545 pci_dev_put(pdev);
548 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
549 u64 address, int flags)
551 struct iommu_dev_data *dev_data = NULL;
552 struct pci_dev *pdev;
554 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
555 devid & 0xff);
556 if (pdev)
557 dev_data = dev_iommu_priv_get(&pdev->dev);
559 if (dev_data && __ratelimit(&dev_data->rs)) {
560 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
561 domain_id, address, flags);
562 } else if (printk_ratelimit()) {
563 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
564 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
565 domain_id, address, flags);
568 if (pdev)
569 pci_dev_put(pdev);
572 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
574 struct device *dev = iommu->iommu.dev;
575 int type, devid, flags, tag;
576 volatile u32 *event = __evt;
577 int count = 0;
578 u64 address;
579 u32 pasid;
581 retry:
582 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
583 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
584 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
585 (event[1] & EVENT_DOMID_MASK_LO);
586 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
587 address = (u64)(((u64)event[3]) << 32) | event[2];
589 if (type == 0) {
590 /* Did we hit the erratum? */
591 if (++count == LOOP_TIMEOUT) {
592 pr_err("No event written to event log\n");
593 return;
595 udelay(1);
596 goto retry;
599 if (type == EVENT_TYPE_IO_FAULT) {
600 amd_iommu_report_page_fault(devid, pasid, address, flags);
601 return;
604 switch (type) {
605 case EVENT_TYPE_ILL_DEV:
606 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 pasid, address, flags);
609 dump_dte_entry(devid);
610 break;
611 case EVENT_TYPE_DEV_TAB_ERR:
612 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
613 "address=0x%llx flags=0x%04x]\n",
614 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
615 address, flags);
616 break;
617 case EVENT_TYPE_PAGE_TAB_ERR:
618 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
619 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 pasid, address, flags);
621 break;
622 case EVENT_TYPE_ILL_CMD:
623 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
624 dump_command(address);
625 break;
626 case EVENT_TYPE_CMD_HARD_ERR:
627 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
628 address, flags);
629 break;
630 case EVENT_TYPE_IOTLB_INV_TO:
631 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
632 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
633 address);
634 break;
635 case EVENT_TYPE_INV_DEV_REQ:
636 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
637 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
638 pasid, address, flags);
639 break;
640 case EVENT_TYPE_RMP_FAULT:
641 amd_iommu_report_rmp_fault(event);
642 break;
643 case EVENT_TYPE_RMP_HW_ERR:
644 amd_iommu_report_rmp_hw_error(event);
645 break;
646 case EVENT_TYPE_INV_PPR_REQ:
647 pasid = PPR_PASID(*((u64 *)__evt));
648 tag = event[1] & 0x03FF;
649 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
650 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
651 pasid, address, flags, tag);
652 break;
653 default:
654 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
655 event[0], event[1], event[2], event[3]);
658 memset(__evt, 0, 4 * sizeof(u32));
661 static void iommu_poll_events(struct amd_iommu *iommu)
663 u32 head, tail;
665 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
666 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
668 while (head != tail) {
669 iommu_print_event(iommu, iommu->evt_buf + head);
670 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
673 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
676 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
678 struct amd_iommu_fault fault;
680 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
681 pr_err_ratelimited("Unknown PPR request received\n");
682 return;
685 fault.address = raw[1];
686 fault.pasid = PPR_PASID(raw[0]);
687 fault.device_id = PPR_DEVID(raw[0]);
688 fault.tag = PPR_TAG(raw[0]);
689 fault.flags = PPR_FLAGS(raw[0]);
691 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
694 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
696 u32 head, tail;
698 if (iommu->ppr_log == NULL)
699 return;
701 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
702 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
704 while (head != tail) {
705 volatile u64 *raw;
706 u64 entry[2];
707 int i;
709 raw = (u64 *)(iommu->ppr_log + head);
712 * Hardware bug: Interrupt may arrive before the entry is
713 * written to memory. If this happens we need to wait for the
714 * entry to arrive.
716 for (i = 0; i < LOOP_TIMEOUT; ++i) {
717 if (PPR_REQ_TYPE(raw[0]) != 0)
718 break;
719 udelay(1);
722 /* Avoid memcpy function-call overhead */
723 entry[0] = raw[0];
724 entry[1] = raw[1];
727 * To detect the hardware bug we need to clear the entry
728 * back to zero.
730 raw[0] = raw[1] = 0UL;
732 /* Update head pointer of hardware ring-buffer */
733 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
734 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
736 /* Handle PPR entry */
737 iommu_handle_ppr_entry(iommu, entry);
739 /* Refresh ring-buffer information */
740 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
741 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
745 #ifdef CONFIG_IRQ_REMAP
746 static int (*iommu_ga_log_notifier)(u32);
748 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
750 iommu_ga_log_notifier = notifier;
752 return 0;
754 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
756 static void iommu_poll_ga_log(struct amd_iommu *iommu)
758 u32 head, tail, cnt = 0;
760 if (iommu->ga_log == NULL)
761 return;
763 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
764 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
766 while (head != tail) {
767 volatile u64 *raw;
768 u64 log_entry;
770 raw = (u64 *)(iommu->ga_log + head);
771 cnt++;
773 /* Avoid memcpy function-call overhead */
774 log_entry = *raw;
776 /* Update head pointer of hardware ring-buffer */
777 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
778 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
780 /* Handle GA entry */
781 switch (GA_REQ_TYPE(log_entry)) {
782 case GA_GUEST_NR:
783 if (!iommu_ga_log_notifier)
784 break;
786 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
787 __func__, GA_DEVID(log_entry),
788 GA_TAG(log_entry));
790 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
791 pr_err("GA log notifier failed.\n");
792 break;
793 default:
794 break;
799 static void
800 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
802 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
803 pci_dev_has_special_msi_domain(to_pci_dev(dev)))
804 return;
806 dev_set_msi_domain(dev, iommu->msi_domain);
809 #else /* CONFIG_IRQ_REMAP */
810 static inline void
811 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
812 #endif /* !CONFIG_IRQ_REMAP */
814 #define AMD_IOMMU_INT_MASK \
815 (MMIO_STATUS_EVT_INT_MASK | \
816 MMIO_STATUS_PPR_INT_MASK | \
817 MMIO_STATUS_GALOG_INT_MASK)
819 irqreturn_t amd_iommu_int_thread(int irq, void *data)
821 struct amd_iommu *iommu = (struct amd_iommu *) data;
822 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
824 while (status & AMD_IOMMU_INT_MASK) {
825 /* Enable EVT and PPR and GA interrupts again */
826 writel(AMD_IOMMU_INT_MASK,
827 iommu->mmio_base + MMIO_STATUS_OFFSET);
829 if (status & MMIO_STATUS_EVT_INT_MASK) {
830 pr_devel("Processing IOMMU Event Log\n");
831 iommu_poll_events(iommu);
834 if (status & MMIO_STATUS_PPR_INT_MASK) {
835 pr_devel("Processing IOMMU PPR Log\n");
836 iommu_poll_ppr_log(iommu);
839 #ifdef CONFIG_IRQ_REMAP
840 if (status & MMIO_STATUS_GALOG_INT_MASK) {
841 pr_devel("Processing IOMMU GA Log\n");
842 iommu_poll_ga_log(iommu);
844 #endif
847 * Hardware bug: ERBT1312
848 * When re-enabling interrupt (by writing 1
849 * to clear the bit), the hardware might also try to set
850 * the interrupt bit in the event status register.
851 * In this scenario, the bit will be set, and disable
852 * subsequent interrupts.
854 * Workaround: The IOMMU driver should read back the
855 * status register and check if the interrupt bits are cleared.
856 * If not, driver will need to go through the interrupt handler
857 * again and re-clear the bits
859 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
861 return IRQ_HANDLED;
864 irqreturn_t amd_iommu_int_handler(int irq, void *data)
866 return IRQ_WAKE_THREAD;
869 /****************************************************************************
871 * IOMMU command queuing functions
873 ****************************************************************************/
875 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
877 int i = 0;
879 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
880 udelay(1);
881 i += 1;
884 if (i == LOOP_TIMEOUT) {
885 pr_alert("Completion-Wait loop timed out\n");
886 return -EIO;
889 return 0;
892 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
893 struct iommu_cmd *cmd)
895 u8 *target;
896 u32 tail;
898 /* Copy command to buffer */
899 tail = iommu->cmd_buf_tail;
900 target = iommu->cmd_buf + tail;
901 memcpy(target, cmd, sizeof(*cmd));
903 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
904 iommu->cmd_buf_tail = tail;
906 /* Tell the IOMMU about it */
907 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
910 static void build_completion_wait(struct iommu_cmd *cmd,
911 struct amd_iommu *iommu,
912 u64 data)
914 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
916 memset(cmd, 0, sizeof(*cmd));
917 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
918 cmd->data[1] = upper_32_bits(paddr);
919 cmd->data[2] = data;
920 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
923 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
925 memset(cmd, 0, sizeof(*cmd));
926 cmd->data[0] = devid;
927 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
930 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
931 size_t size, u16 domid, int pde)
933 u64 pages;
934 bool s;
936 pages = iommu_num_pages(address, size, PAGE_SIZE);
937 s = false;
939 if (pages > 1) {
941 * If we have to flush more than one page, flush all
942 * TLB entries for this domain
944 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
945 s = true;
948 address &= PAGE_MASK;
950 memset(cmd, 0, sizeof(*cmd));
951 cmd->data[1] |= domid;
952 cmd->data[2] = lower_32_bits(address);
953 cmd->data[3] = upper_32_bits(address);
954 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
955 if (s) /* size bit - we flush more than one 4kb page */
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
957 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
958 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
961 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
962 u64 address, size_t size)
964 u64 pages;
965 bool s;
967 pages = iommu_num_pages(address, size, PAGE_SIZE);
968 s = false;
970 if (pages > 1) {
972 * If we have to flush more than one page, flush all
973 * TLB entries for this domain
975 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
976 s = true;
979 address &= PAGE_MASK;
981 memset(cmd, 0, sizeof(*cmd));
982 cmd->data[0] = devid;
983 cmd->data[0] |= (qdep & 0xff) << 24;
984 cmd->data[1] = devid;
985 cmd->data[2] = lower_32_bits(address);
986 cmd->data[3] = upper_32_bits(address);
987 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
988 if (s)
989 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
992 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
993 u64 address, bool size)
995 memset(cmd, 0, sizeof(*cmd));
997 address &= ~(0xfffULL);
999 cmd->data[0] = pasid;
1000 cmd->data[1] = domid;
1001 cmd->data[2] = lower_32_bits(address);
1002 cmd->data[3] = upper_32_bits(address);
1003 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1004 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1005 if (size)
1006 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1007 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1010 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1011 int qdep, u64 address, bool size)
1013 memset(cmd, 0, sizeof(*cmd));
1015 address &= ~(0xfffULL);
1017 cmd->data[0] = devid;
1018 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1019 cmd->data[0] |= (qdep & 0xff) << 24;
1020 cmd->data[1] = devid;
1021 cmd->data[1] |= (pasid & 0xff) << 16;
1022 cmd->data[2] = lower_32_bits(address);
1023 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1024 cmd->data[3] = upper_32_bits(address);
1025 if (size)
1026 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1027 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1030 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1031 int status, int tag, bool gn)
1033 memset(cmd, 0, sizeof(*cmd));
1035 cmd->data[0] = devid;
1036 if (gn) {
1037 cmd->data[1] = pasid;
1038 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1040 cmd->data[3] = tag & 0x1ff;
1041 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1043 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1046 static void build_inv_all(struct iommu_cmd *cmd)
1048 memset(cmd, 0, sizeof(*cmd));
1049 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1052 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1054 memset(cmd, 0, sizeof(*cmd));
1055 cmd->data[0] = devid;
1056 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1060 * Writes the command to the IOMMUs command buffer and informs the
1061 * hardware about the new command.
1063 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1064 struct iommu_cmd *cmd,
1065 bool sync)
1067 unsigned int count = 0;
1068 u32 left, next_tail;
1070 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1071 again:
1072 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1074 if (left <= 0x20) {
1075 /* Skip udelay() the first time around */
1076 if (count++) {
1077 if (count == LOOP_TIMEOUT) {
1078 pr_err("Command buffer timeout\n");
1079 return -EIO;
1082 udelay(1);
1085 /* Update head and recheck remaining space */
1086 iommu->cmd_buf_head = readl(iommu->mmio_base +
1087 MMIO_CMD_HEAD_OFFSET);
1089 goto again;
1092 copy_cmd_to_buffer(iommu, cmd);
1094 /* Do we need to make sure all commands are processed? */
1095 iommu->need_sync = sync;
1097 return 0;
1100 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1101 struct iommu_cmd *cmd,
1102 bool sync)
1104 unsigned long flags;
1105 int ret;
1107 raw_spin_lock_irqsave(&iommu->lock, flags);
1108 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1109 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1111 return ret;
1114 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1116 return iommu_queue_command_sync(iommu, cmd, true);
1120 * This function queues a completion wait command into the command
1121 * buffer of an IOMMU
1123 static int iommu_completion_wait(struct amd_iommu *iommu)
1125 struct iommu_cmd cmd;
1126 unsigned long flags;
1127 int ret;
1128 u64 data;
1130 if (!iommu->need_sync)
1131 return 0;
1133 raw_spin_lock_irqsave(&iommu->lock, flags);
1135 data = ++iommu->cmd_sem_val;
1136 build_completion_wait(&cmd, iommu, data);
1138 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1139 if (ret)
1140 goto out_unlock;
1142 ret = wait_on_sem(iommu, data);
1144 out_unlock:
1145 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1147 return ret;
1150 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1152 struct iommu_cmd cmd;
1154 build_inv_dte(&cmd, devid);
1156 return iommu_queue_command(iommu, &cmd);
1159 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1161 u32 devid;
1163 for (devid = 0; devid <= 0xffff; ++devid)
1164 iommu_flush_dte(iommu, devid);
1166 iommu_completion_wait(iommu);
1170 * This function uses heavy locking and may disable irqs for some time. But
1171 * this is no issue because it is only called during resume.
1173 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1175 u32 dom_id;
1177 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1178 struct iommu_cmd cmd;
1179 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1180 dom_id, 1);
1181 iommu_queue_command(iommu, &cmd);
1184 iommu_completion_wait(iommu);
1187 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1189 struct iommu_cmd cmd;
1191 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1192 dom_id, 1);
1193 iommu_queue_command(iommu, &cmd);
1195 iommu_completion_wait(iommu);
1198 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1200 struct iommu_cmd cmd;
1202 build_inv_all(&cmd);
1204 iommu_queue_command(iommu, &cmd);
1205 iommu_completion_wait(iommu);
1208 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1210 struct iommu_cmd cmd;
1212 build_inv_irt(&cmd, devid);
1214 iommu_queue_command(iommu, &cmd);
1217 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1219 u32 devid;
1221 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1222 iommu_flush_irt(iommu, devid);
1224 iommu_completion_wait(iommu);
1227 void iommu_flush_all_caches(struct amd_iommu *iommu)
1229 if (iommu_feature(iommu, FEATURE_IA)) {
1230 amd_iommu_flush_all(iommu);
1231 } else {
1232 amd_iommu_flush_dte_all(iommu);
1233 amd_iommu_flush_irt_all(iommu);
1234 amd_iommu_flush_tlb_all(iommu);
1239 * Command send function for flushing on-device TLB
1241 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1242 u64 address, size_t size)
1244 struct amd_iommu *iommu;
1245 struct iommu_cmd cmd;
1246 int qdep;
1248 qdep = dev_data->ats.qdep;
1249 iommu = amd_iommu_rlookup_table[dev_data->devid];
1251 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1253 return iommu_queue_command(iommu, &cmd);
1256 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1258 struct amd_iommu *iommu = data;
1260 return iommu_flush_dte(iommu, alias);
1264 * Command send function for invalidating a device table entry
1266 static int device_flush_dte(struct iommu_dev_data *dev_data)
1268 struct amd_iommu *iommu;
1269 u16 alias;
1270 int ret;
1272 iommu = amd_iommu_rlookup_table[dev_data->devid];
1274 if (dev_data->pdev)
1275 ret = pci_for_each_dma_alias(dev_data->pdev,
1276 device_flush_dte_alias, iommu);
1277 else
1278 ret = iommu_flush_dte(iommu, dev_data->devid);
1279 if (ret)
1280 return ret;
1282 alias = amd_iommu_alias_table[dev_data->devid];
1283 if (alias != dev_data->devid) {
1284 ret = iommu_flush_dte(iommu, alias);
1285 if (ret)
1286 return ret;
1289 if (dev_data->ats.enabled)
1290 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1292 return ret;
1296 * TLB invalidation function which is called from the mapping functions.
1297 * It invalidates a single PTE if the range to flush is within a single
1298 * page. Otherwise it flushes the whole TLB of the IOMMU.
1300 static void __domain_flush_pages(struct protection_domain *domain,
1301 u64 address, size_t size, int pde)
1303 struct iommu_dev_data *dev_data;
1304 struct iommu_cmd cmd;
1305 int ret = 0, i;
1307 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1309 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1310 if (!domain->dev_iommu[i])
1311 continue;
1314 * Devices of this domain are behind this IOMMU
1315 * We need a TLB flush
1317 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1320 list_for_each_entry(dev_data, &domain->dev_list, list) {
1322 if (!dev_data->ats.enabled)
1323 continue;
1325 ret |= device_flush_iotlb(dev_data, address, size);
1328 WARN_ON(ret);
1331 static void domain_flush_pages(struct protection_domain *domain,
1332 u64 address, size_t size)
1334 __domain_flush_pages(domain, address, size, 0);
1337 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1338 static void domain_flush_tlb_pde(struct protection_domain *domain)
1340 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1343 static void domain_flush_complete(struct protection_domain *domain)
1345 int i;
1347 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1348 if (domain && !domain->dev_iommu[i])
1349 continue;
1352 * Devices of this domain are behind this IOMMU
1353 * We need to wait for completion of all commands.
1355 iommu_completion_wait(amd_iommus[i]);
1359 /* Flush the not present cache if it exists */
1360 static void domain_flush_np_cache(struct protection_domain *domain,
1361 dma_addr_t iova, size_t size)
1363 if (unlikely(amd_iommu_np_cache)) {
1364 unsigned long flags;
1366 spin_lock_irqsave(&domain->lock, flags);
1367 domain_flush_pages(domain, iova, size);
1368 domain_flush_complete(domain);
1369 spin_unlock_irqrestore(&domain->lock, flags);
1375 * This function flushes the DTEs for all devices in domain
1377 static void domain_flush_devices(struct protection_domain *domain)
1379 struct iommu_dev_data *dev_data;
1381 list_for_each_entry(dev_data, &domain->dev_list, list)
1382 device_flush_dte(dev_data);
1385 /****************************************************************************
1387 * The functions below are used the create the page table mappings for
1388 * unity mapped regions.
1390 ****************************************************************************/
1392 static void free_page_list(struct page *freelist)
1394 while (freelist != NULL) {
1395 unsigned long p = (unsigned long)page_address(freelist);
1396 freelist = freelist->freelist;
1397 free_page(p);
1401 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1403 struct page *p = virt_to_page((void *)pt);
1405 p->freelist = freelist;
1407 return p;
1410 #define DEFINE_FREE_PT_FN(LVL, FN) \
1411 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1413 unsigned long p; \
1414 u64 *pt; \
1415 int i; \
1417 pt = (u64 *)__pt; \
1419 for (i = 0; i < 512; ++i) { \
1420 /* PTE present? */ \
1421 if (!IOMMU_PTE_PRESENT(pt[i])) \
1422 continue; \
1424 /* Large PTE? */ \
1425 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1426 PM_PTE_LEVEL(pt[i]) == 7) \
1427 continue; \
1429 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1430 freelist = FN(p, freelist); \
1433 return free_pt_page((unsigned long)pt, freelist); \
1436 DEFINE_FREE_PT_FN(l2, free_pt_page)
1437 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1438 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1439 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1440 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1442 static struct page *free_sub_pt(unsigned long root, int mode,
1443 struct page *freelist)
1445 switch (mode) {
1446 case PAGE_MODE_NONE:
1447 case PAGE_MODE_7_LEVEL:
1448 break;
1449 case PAGE_MODE_1_LEVEL:
1450 freelist = free_pt_page(root, freelist);
1451 break;
1452 case PAGE_MODE_2_LEVEL:
1453 freelist = free_pt_l2(root, freelist);
1454 break;
1455 case PAGE_MODE_3_LEVEL:
1456 freelist = free_pt_l3(root, freelist);
1457 break;
1458 case PAGE_MODE_4_LEVEL:
1459 freelist = free_pt_l4(root, freelist);
1460 break;
1461 case PAGE_MODE_5_LEVEL:
1462 freelist = free_pt_l5(root, freelist);
1463 break;
1464 case PAGE_MODE_6_LEVEL:
1465 freelist = free_pt_l6(root, freelist);
1466 break;
1467 default:
1468 BUG();
1471 return freelist;
1474 static void free_pagetable(struct domain_pgtable *pgtable)
1476 struct page *freelist = NULL;
1477 unsigned long root;
1479 if (pgtable->mode == PAGE_MODE_NONE)
1480 return;
1482 BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1483 pgtable->mode > PAGE_MODE_6_LEVEL);
1485 root = (unsigned long)pgtable->root;
1486 freelist = free_sub_pt(root, pgtable->mode, freelist);
1488 free_page_list(freelist);
1492 * This function is used to add another level to an IO page table. Adding
1493 * another level increases the size of the address space by 9 bits to a size up
1494 * to 64 bits.
1496 static bool increase_address_space(struct protection_domain *domain,
1497 unsigned long address,
1498 gfp_t gfp)
1500 struct domain_pgtable pgtable;
1501 unsigned long flags;
1502 bool ret = true;
1503 u64 *pte;
1505 spin_lock_irqsave(&domain->lock, flags);
1507 amd_iommu_domain_get_pgtable(domain, &pgtable);
1509 if (address <= PM_LEVEL_SIZE(pgtable.mode))
1510 goto out;
1512 ret = false;
1513 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1514 goto out;
1516 pte = (void *)get_zeroed_page(gfp);
1517 if (!pte)
1518 goto out;
1520 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1522 pgtable.root = pte;
1523 pgtable.mode += 1;
1524 update_and_flush_device_table(domain, &pgtable);
1525 domain_flush_complete(domain);
1528 * Device Table needs to be updated and flushed before the new root can
1529 * be published.
1531 amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1533 ret = true;
1535 out:
1536 spin_unlock_irqrestore(&domain->lock, flags);
1538 return ret;
1541 static u64 *alloc_pte(struct protection_domain *domain,
1542 unsigned long address,
1543 unsigned long page_size,
1544 u64 **pte_page,
1545 gfp_t gfp,
1546 bool *updated)
1548 struct domain_pgtable pgtable;
1549 int level, end_lvl;
1550 u64 *pte, *page;
1552 BUG_ON(!is_power_of_2(page_size));
1554 amd_iommu_domain_get_pgtable(domain, &pgtable);
1556 while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1558 * Return an error if there is no memory to update the
1559 * page-table.
1561 if (!increase_address_space(domain, address, gfp))
1562 return NULL;
1564 /* Read new values to check if update was successful */
1565 amd_iommu_domain_get_pgtable(domain, &pgtable);
1569 level = pgtable.mode - 1;
1570 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1571 address = PAGE_SIZE_ALIGN(address, page_size);
1572 end_lvl = PAGE_SIZE_LEVEL(page_size);
1574 while (level > end_lvl) {
1575 u64 __pte, __npte;
1576 int pte_level;
1578 __pte = *pte;
1579 pte_level = PM_PTE_LEVEL(__pte);
1582 * If we replace a series of large PTEs, we need
1583 * to tear down all of them.
1585 if (IOMMU_PTE_PRESENT(__pte) &&
1586 pte_level == PAGE_MODE_7_LEVEL) {
1587 unsigned long count, i;
1588 u64 *lpte;
1590 lpte = first_pte_l7(pte, NULL, &count);
1593 * Unmap the replicated PTEs that still match the
1594 * original large mapping
1596 for (i = 0; i < count; ++i)
1597 cmpxchg64(&lpte[i], __pte, 0ULL);
1599 *updated = true;
1600 continue;
1603 if (!IOMMU_PTE_PRESENT(__pte) ||
1604 pte_level == PAGE_MODE_NONE) {
1605 page = (u64 *)get_zeroed_page(gfp);
1607 if (!page)
1608 return NULL;
1610 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1612 /* pte could have been changed somewhere. */
1613 if (cmpxchg64(pte, __pte, __npte) != __pte)
1614 free_page((unsigned long)page);
1615 else if (IOMMU_PTE_PRESENT(__pte))
1616 *updated = true;
1618 continue;
1621 /* No level skipping support yet */
1622 if (pte_level != level)
1623 return NULL;
1625 level -= 1;
1627 pte = IOMMU_PTE_PAGE(__pte);
1629 if (pte_page && level == end_lvl)
1630 *pte_page = pte;
1632 pte = &pte[PM_LEVEL_INDEX(level, address)];
1635 return pte;
1639 * This function checks if there is a PTE for a given dma address. If
1640 * there is one, it returns the pointer to it.
1642 static u64 *fetch_pte(struct protection_domain *domain,
1643 unsigned long address,
1644 unsigned long *page_size)
1646 struct domain_pgtable pgtable;
1647 int level;
1648 u64 *pte;
1650 *page_size = 0;
1652 amd_iommu_domain_get_pgtable(domain, &pgtable);
1654 if (address > PM_LEVEL_SIZE(pgtable.mode))
1655 return NULL;
1657 level = pgtable.mode - 1;
1658 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1659 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1661 while (level > 0) {
1663 /* Not Present */
1664 if (!IOMMU_PTE_PRESENT(*pte))
1665 return NULL;
1667 /* Large PTE */
1668 if (PM_PTE_LEVEL(*pte) == 7 ||
1669 PM_PTE_LEVEL(*pte) == 0)
1670 break;
1672 /* No level skipping support yet */
1673 if (PM_PTE_LEVEL(*pte) != level)
1674 return NULL;
1676 level -= 1;
1678 /* Walk to the next level */
1679 pte = IOMMU_PTE_PAGE(*pte);
1680 pte = &pte[PM_LEVEL_INDEX(level, address)];
1681 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1685 * If we have a series of large PTEs, make
1686 * sure to return a pointer to the first one.
1688 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1689 pte = first_pte_l7(pte, page_size, NULL);
1691 return pte;
1694 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1696 unsigned long pt;
1697 int mode;
1699 while (cmpxchg64(pte, pteval, 0) != pteval) {
1700 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1701 pteval = *pte;
1704 if (!IOMMU_PTE_PRESENT(pteval))
1705 return freelist;
1707 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1708 mode = IOMMU_PTE_MODE(pteval);
1710 return free_sub_pt(pt, mode, freelist);
1714 * Generic mapping functions. It maps a physical address into a DMA
1715 * address space. It allocates the page table pages if necessary.
1716 * In the future it can be extended to a generic mapping function
1717 * supporting all features of AMD IOMMU page tables like level skipping
1718 * and full 64 bit address spaces.
1720 static int iommu_map_page(struct protection_domain *dom,
1721 unsigned long bus_addr,
1722 unsigned long phys_addr,
1723 unsigned long page_size,
1724 int prot,
1725 gfp_t gfp)
1727 struct page *freelist = NULL;
1728 bool updated = false;
1729 u64 __pte, *pte;
1730 int ret, i, count;
1732 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1733 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1735 ret = -EINVAL;
1736 if (!(prot & IOMMU_PROT_MASK))
1737 goto out;
1739 count = PAGE_SIZE_PTE_COUNT(page_size);
1740 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1742 ret = -ENOMEM;
1743 if (!pte)
1744 goto out;
1746 for (i = 0; i < count; ++i)
1747 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1749 if (freelist != NULL)
1750 updated = true;
1752 if (count > 1) {
1753 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1754 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1755 } else
1756 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1758 if (prot & IOMMU_PROT_IR)
1759 __pte |= IOMMU_PTE_IR;
1760 if (prot & IOMMU_PROT_IW)
1761 __pte |= IOMMU_PTE_IW;
1763 for (i = 0; i < count; ++i)
1764 pte[i] = __pte;
1766 ret = 0;
1768 out:
1769 if (updated) {
1770 unsigned long flags;
1772 spin_lock_irqsave(&dom->lock, flags);
1774 * Flush domain TLB(s) and wait for completion. Any Device-Table
1775 * Updates and flushing already happened in
1776 * increase_address_space().
1778 domain_flush_tlb_pde(dom);
1779 domain_flush_complete(dom);
1780 spin_unlock_irqrestore(&dom->lock, flags);
1783 /* Everything flushed out, free pages now */
1784 free_page_list(freelist);
1786 return ret;
1789 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1790 unsigned long bus_addr,
1791 unsigned long page_size)
1793 unsigned long long unmapped;
1794 unsigned long unmap_size;
1795 u64 *pte;
1797 BUG_ON(!is_power_of_2(page_size));
1799 unmapped = 0;
1801 while (unmapped < page_size) {
1803 pte = fetch_pte(dom, bus_addr, &unmap_size);
1805 if (pte) {
1806 int i, count;
1808 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1809 for (i = 0; i < count; i++)
1810 pte[i] = 0ULL;
1813 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1814 unmapped += unmap_size;
1817 BUG_ON(unmapped && !is_power_of_2(unmapped));
1819 return unmapped;
1822 /****************************************************************************
1824 * The next functions belong to the domain allocation. A domain is
1825 * allocated for every IOMMU as the default domain. If device isolation
1826 * is enabled, every device get its own domain. The most important thing
1827 * about domains is the page table mapping the DMA address space they
1828 * contain.
1830 ****************************************************************************/
1832 static u16 domain_id_alloc(void)
1834 int id;
1836 spin_lock(&pd_bitmap_lock);
1837 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1838 BUG_ON(id == 0);
1839 if (id > 0 && id < MAX_DOMAIN_ID)
1840 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1841 else
1842 id = 0;
1843 spin_unlock(&pd_bitmap_lock);
1845 return id;
1848 static void domain_id_free(int id)
1850 spin_lock(&pd_bitmap_lock);
1851 if (id > 0 && id < MAX_DOMAIN_ID)
1852 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1853 spin_unlock(&pd_bitmap_lock);
1856 static void free_gcr3_tbl_level1(u64 *tbl)
1858 u64 *ptr;
1859 int i;
1861 for (i = 0; i < 512; ++i) {
1862 if (!(tbl[i] & GCR3_VALID))
1863 continue;
1865 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1867 free_page((unsigned long)ptr);
1871 static void free_gcr3_tbl_level2(u64 *tbl)
1873 u64 *ptr;
1874 int i;
1876 for (i = 0; i < 512; ++i) {
1877 if (!(tbl[i] & GCR3_VALID))
1878 continue;
1880 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1882 free_gcr3_tbl_level1(ptr);
1886 static void free_gcr3_table(struct protection_domain *domain)
1888 if (domain->glx == 2)
1889 free_gcr3_tbl_level2(domain->gcr3_tbl);
1890 else if (domain->glx == 1)
1891 free_gcr3_tbl_level1(domain->gcr3_tbl);
1892 else
1893 BUG_ON(domain->glx != 0);
1895 free_page((unsigned long)domain->gcr3_tbl);
1898 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1899 struct domain_pgtable *pgtable,
1900 bool ats, bool ppr)
1902 u64 pte_root = 0;
1903 u64 flags = 0;
1904 u32 old_domid;
1906 if (pgtable->mode != PAGE_MODE_NONE)
1907 pte_root = iommu_virt_to_phys(pgtable->root);
1909 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1910 << DEV_ENTRY_MODE_SHIFT;
1911 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1913 flags = amd_iommu_dev_table[devid].data[1];
1915 if (ats)
1916 flags |= DTE_FLAG_IOTLB;
1918 if (ppr) {
1919 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1921 if (iommu_feature(iommu, FEATURE_EPHSUP))
1922 pte_root |= 1ULL << DEV_ENTRY_PPR;
1925 if (domain->flags & PD_IOMMUV2_MASK) {
1926 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1927 u64 glx = domain->glx;
1928 u64 tmp;
1930 pte_root |= DTE_FLAG_GV;
1931 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1933 /* First mask out possible old values for GCR3 table */
1934 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1935 flags &= ~tmp;
1937 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1938 flags &= ~tmp;
1940 /* Encode GCR3 table into DTE */
1941 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1942 pte_root |= tmp;
1944 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1945 flags |= tmp;
1947 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1948 flags |= tmp;
1951 flags &= ~DEV_DOMID_MASK;
1952 flags |= domain->id;
1954 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1955 amd_iommu_dev_table[devid].data[1] = flags;
1956 amd_iommu_dev_table[devid].data[0] = pte_root;
1959 * A kdump kernel might be replacing a domain ID that was copied from
1960 * the previous kernel--if so, it needs to flush the translation cache
1961 * entries for the old domain ID that is being overwritten
1963 if (old_domid) {
1964 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1966 amd_iommu_flush_tlb_domid(iommu, old_domid);
1970 static void clear_dte_entry(u16 devid)
1972 /* remove entry from the device table seen by the hardware */
1973 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1974 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1976 amd_iommu_apply_erratum_63(devid);
1979 static void do_attach(struct iommu_dev_data *dev_data,
1980 struct protection_domain *domain)
1982 struct domain_pgtable pgtable;
1983 struct amd_iommu *iommu;
1984 bool ats;
1986 iommu = amd_iommu_rlookup_table[dev_data->devid];
1987 ats = dev_data->ats.enabled;
1989 /* Update data structures */
1990 dev_data->domain = domain;
1991 list_add(&dev_data->list, &domain->dev_list);
1993 /* Do reference counting */
1994 domain->dev_iommu[iommu->index] += 1;
1995 domain->dev_cnt += 1;
1997 /* Update device table */
1998 amd_iommu_domain_get_pgtable(domain, &pgtable);
1999 set_dte_entry(dev_data->devid, domain, &pgtable,
2000 ats, dev_data->iommu_v2);
2001 clone_aliases(dev_data->pdev);
2003 device_flush_dte(dev_data);
2006 static void do_detach(struct iommu_dev_data *dev_data)
2008 struct protection_domain *domain = dev_data->domain;
2009 struct amd_iommu *iommu;
2011 iommu = amd_iommu_rlookup_table[dev_data->devid];
2013 /* Update data structures */
2014 dev_data->domain = NULL;
2015 list_del(&dev_data->list);
2016 clear_dte_entry(dev_data->devid);
2017 clone_aliases(dev_data->pdev);
2019 /* Flush the DTE entry */
2020 device_flush_dte(dev_data);
2022 /* Flush IOTLB */
2023 domain_flush_tlb_pde(domain);
2025 /* Wait for the flushes to finish */
2026 domain_flush_complete(domain);
2028 /* decrease reference counters - needs to happen after the flushes */
2029 domain->dev_iommu[iommu->index] -= 1;
2030 domain->dev_cnt -= 1;
2033 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2035 pci_disable_ats(pdev);
2036 pci_disable_pri(pdev);
2037 pci_disable_pasid(pdev);
2040 /* FIXME: Change generic reset-function to do the same */
2041 static int pri_reset_while_enabled(struct pci_dev *pdev)
2043 u16 control;
2044 int pos;
2046 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2047 if (!pos)
2048 return -EINVAL;
2050 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2051 control |= PCI_PRI_CTRL_RESET;
2052 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2054 return 0;
2057 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2059 bool reset_enable;
2060 int reqs, ret;
2062 /* FIXME: Hardcode number of outstanding requests for now */
2063 reqs = 32;
2064 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2065 reqs = 1;
2066 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2068 /* Only allow access to user-accessible pages */
2069 ret = pci_enable_pasid(pdev, 0);
2070 if (ret)
2071 goto out_err;
2073 /* First reset the PRI state of the device */
2074 ret = pci_reset_pri(pdev);
2075 if (ret)
2076 goto out_err;
2078 /* Enable PRI */
2079 ret = pci_enable_pri(pdev, reqs);
2080 if (ret)
2081 goto out_err;
2083 if (reset_enable) {
2084 ret = pri_reset_while_enabled(pdev);
2085 if (ret)
2086 goto out_err;
2089 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2090 if (ret)
2091 goto out_err;
2093 return 0;
2095 out_err:
2096 pci_disable_pri(pdev);
2097 pci_disable_pasid(pdev);
2099 return ret;
2103 * If a device is not yet associated with a domain, this function makes the
2104 * device visible in the domain
2106 static int attach_device(struct device *dev,
2107 struct protection_domain *domain)
2109 struct iommu_dev_data *dev_data;
2110 struct pci_dev *pdev;
2111 unsigned long flags;
2112 int ret;
2114 spin_lock_irqsave(&domain->lock, flags);
2116 dev_data = dev_iommu_priv_get(dev);
2118 spin_lock(&dev_data->lock);
2120 ret = -EBUSY;
2121 if (dev_data->domain != NULL)
2122 goto out;
2124 if (!dev_is_pci(dev))
2125 goto skip_ats_check;
2127 pdev = to_pci_dev(dev);
2128 if (domain->flags & PD_IOMMUV2_MASK) {
2129 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2131 ret = -EINVAL;
2132 if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2133 goto out;
2135 if (dev_data->iommu_v2) {
2136 if (pdev_iommuv2_enable(pdev) != 0)
2137 goto out;
2139 dev_data->ats.enabled = true;
2140 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2141 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
2143 } else if (amd_iommu_iotlb_sup &&
2144 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2145 dev_data->ats.enabled = true;
2146 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2149 skip_ats_check:
2150 ret = 0;
2152 do_attach(dev_data, domain);
2155 * We might boot into a crash-kernel here. The crashed kernel
2156 * left the caches in the IOMMU dirty. So we have to flush
2157 * here to evict all dirty stuff.
2159 domain_flush_tlb_pde(domain);
2161 domain_flush_complete(domain);
2163 out:
2164 spin_unlock(&dev_data->lock);
2166 spin_unlock_irqrestore(&domain->lock, flags);
2168 return ret;
2172 * Removes a device from a protection domain (with devtable_lock held)
2174 static void detach_device(struct device *dev)
2176 struct protection_domain *domain;
2177 struct iommu_dev_data *dev_data;
2178 unsigned long flags;
2180 dev_data = dev_iommu_priv_get(dev);
2181 domain = dev_data->domain;
2183 spin_lock_irqsave(&domain->lock, flags);
2185 spin_lock(&dev_data->lock);
2188 * First check if the device is still attached. It might already
2189 * be detached from its domain because the generic
2190 * iommu_detach_group code detached it and we try again here in
2191 * our alias handling.
2193 if (WARN_ON(!dev_data->domain))
2194 goto out;
2196 do_detach(dev_data);
2198 if (!dev_is_pci(dev))
2199 goto out;
2201 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2202 pdev_iommuv2_disable(to_pci_dev(dev));
2203 else if (dev_data->ats.enabled)
2204 pci_disable_ats(to_pci_dev(dev));
2206 dev_data->ats.enabled = false;
2208 out:
2209 spin_unlock(&dev_data->lock);
2211 spin_unlock_irqrestore(&domain->lock, flags);
2214 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2216 struct iommu_device *iommu_dev;
2217 struct amd_iommu *iommu;
2218 int ret, devid;
2220 if (!check_device(dev))
2221 return ERR_PTR(-ENODEV);
2223 devid = get_device_id(dev);
2224 if (devid < 0)
2225 return ERR_PTR(devid);
2227 iommu = amd_iommu_rlookup_table[devid];
2229 if (dev_iommu_priv_get(dev))
2230 return &iommu->iommu;
2232 ret = iommu_init_device(dev);
2233 if (ret) {
2234 if (ret != -ENOTSUPP)
2235 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2236 iommu_dev = ERR_PTR(ret);
2237 iommu_ignore_device(dev);
2238 } else {
2239 amd_iommu_set_pci_msi_domain(dev, iommu);
2240 iommu_dev = &iommu->iommu;
2243 iommu_completion_wait(iommu);
2245 return iommu_dev;
2248 static void amd_iommu_probe_finalize(struct device *dev)
2250 struct iommu_domain *domain;
2252 /* Domains are initialized for this device - have a look what we ended up with */
2253 domain = iommu_get_domain_for_dev(dev);
2254 if (domain->type == IOMMU_DOMAIN_DMA)
2255 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2258 static void amd_iommu_release_device(struct device *dev)
2260 int devid = get_device_id(dev);
2261 struct amd_iommu *iommu;
2263 if (!check_device(dev))
2264 return;
2266 iommu = amd_iommu_rlookup_table[devid];
2268 amd_iommu_uninit_device(dev);
2269 iommu_completion_wait(iommu);
2272 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2274 if (dev_is_pci(dev))
2275 return pci_device_group(dev);
2277 return acpihid_device_group(dev);
2280 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2281 enum iommu_attr attr, void *data)
2283 switch (domain->type) {
2284 case IOMMU_DOMAIN_UNMANAGED:
2285 return -ENODEV;
2286 case IOMMU_DOMAIN_DMA:
2287 switch (attr) {
2288 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2289 *(int *)data = !amd_iommu_unmap_flush;
2290 return 0;
2291 default:
2292 return -ENODEV;
2294 break;
2295 default:
2296 return -EINVAL;
2300 /*****************************************************************************
2302 * The next functions belong to the dma_ops mapping/unmapping code.
2304 *****************************************************************************/
2306 static void update_device_table(struct protection_domain *domain,
2307 struct domain_pgtable *pgtable)
2309 struct iommu_dev_data *dev_data;
2311 list_for_each_entry(dev_data, &domain->dev_list, list) {
2312 set_dte_entry(dev_data->devid, domain, pgtable,
2313 dev_data->ats.enabled, dev_data->iommu_v2);
2314 clone_aliases(dev_data->pdev);
2318 static void update_and_flush_device_table(struct protection_domain *domain,
2319 struct domain_pgtable *pgtable)
2321 update_device_table(domain, pgtable);
2322 domain_flush_devices(domain);
2325 static void update_domain(struct protection_domain *domain)
2327 struct domain_pgtable pgtable;
2329 /* Update device table */
2330 amd_iommu_domain_get_pgtable(domain, &pgtable);
2331 update_and_flush_device_table(domain, &pgtable);
2333 /* Flush domain TLB(s) and wait for completion */
2334 domain_flush_tlb_pde(domain);
2335 domain_flush_complete(domain);
2338 int __init amd_iommu_init_api(void)
2340 int ret, err = 0;
2342 ret = iova_cache_get();
2343 if (ret)
2344 return ret;
2346 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2347 if (err)
2348 return err;
2349 #ifdef CONFIG_ARM_AMBA
2350 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2351 if (err)
2352 return err;
2353 #endif
2354 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2355 if (err)
2356 return err;
2358 return 0;
2361 int __init amd_iommu_init_dma_ops(void)
2363 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2365 if (amd_iommu_unmap_flush)
2366 pr_info("IO/TLB flush on unmap enabled\n");
2367 else
2368 pr_info("Lazy IO/TLB flushing enabled\n");
2370 return 0;
2374 /*****************************************************************************
2376 * The following functions belong to the exported interface of AMD IOMMU
2378 * This interface allows access to lower level functions of the IOMMU
2379 * like protection domain handling and assignement of devices to domains
2380 * which is not possible with the dma_ops interface.
2382 *****************************************************************************/
2384 static void cleanup_domain(struct protection_domain *domain)
2386 struct iommu_dev_data *entry;
2387 unsigned long flags;
2389 spin_lock_irqsave(&domain->lock, flags);
2391 while (!list_empty(&domain->dev_list)) {
2392 entry = list_first_entry(&domain->dev_list,
2393 struct iommu_dev_data, list);
2394 BUG_ON(!entry->domain);
2395 do_detach(entry);
2398 spin_unlock_irqrestore(&domain->lock, flags);
2401 static void protection_domain_free(struct protection_domain *domain)
2403 struct domain_pgtable pgtable;
2405 if (!domain)
2406 return;
2408 if (domain->id)
2409 domain_id_free(domain->id);
2411 amd_iommu_domain_get_pgtable(domain, &pgtable);
2412 amd_iommu_domain_clr_pt_root(domain);
2413 free_pagetable(&pgtable);
2415 kfree(domain);
2418 static int protection_domain_init(struct protection_domain *domain, int mode)
2420 u64 *pt_root = NULL;
2422 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2424 spin_lock_init(&domain->lock);
2425 domain->id = domain_id_alloc();
2426 if (!domain->id)
2427 return -ENOMEM;
2428 INIT_LIST_HEAD(&domain->dev_list);
2430 if (mode != PAGE_MODE_NONE) {
2431 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2432 if (!pt_root)
2433 return -ENOMEM;
2436 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2438 return 0;
2441 static struct protection_domain *protection_domain_alloc(int mode)
2443 struct protection_domain *domain;
2445 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2446 if (!domain)
2447 return NULL;
2449 if (protection_domain_init(domain, mode))
2450 goto out_err;
2452 return domain;
2454 out_err:
2455 kfree(domain);
2457 return NULL;
2460 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2462 struct protection_domain *domain;
2463 int mode = DEFAULT_PGTABLE_LEVEL;
2465 if (type == IOMMU_DOMAIN_IDENTITY)
2466 mode = PAGE_MODE_NONE;
2468 domain = protection_domain_alloc(mode);
2469 if (!domain)
2470 return NULL;
2472 domain->domain.geometry.aperture_start = 0;
2473 domain->domain.geometry.aperture_end = ~0ULL;
2474 domain->domain.geometry.force_aperture = true;
2476 if (type == IOMMU_DOMAIN_DMA &&
2477 iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2478 goto free_domain;
2480 return &domain->domain;
2482 free_domain:
2483 protection_domain_free(domain);
2485 return NULL;
2488 static void amd_iommu_domain_free(struct iommu_domain *dom)
2490 struct protection_domain *domain;
2492 domain = to_pdomain(dom);
2494 if (domain->dev_cnt > 0)
2495 cleanup_domain(domain);
2497 BUG_ON(domain->dev_cnt != 0);
2499 if (!dom)
2500 return;
2502 if (dom->type == IOMMU_DOMAIN_DMA)
2503 iommu_put_dma_cookie(&domain->domain);
2505 if (domain->flags & PD_IOMMUV2_MASK)
2506 free_gcr3_table(domain);
2508 protection_domain_free(domain);
2511 static void amd_iommu_detach_device(struct iommu_domain *dom,
2512 struct device *dev)
2514 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2515 struct amd_iommu *iommu;
2516 int devid;
2518 if (!check_device(dev))
2519 return;
2521 devid = get_device_id(dev);
2522 if (devid < 0)
2523 return;
2525 if (dev_data->domain != NULL)
2526 detach_device(dev);
2528 iommu = amd_iommu_rlookup_table[devid];
2529 if (!iommu)
2530 return;
2532 #ifdef CONFIG_IRQ_REMAP
2533 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2534 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2535 dev_data->use_vapic = 0;
2536 #endif
2538 iommu_completion_wait(iommu);
2541 static int amd_iommu_attach_device(struct iommu_domain *dom,
2542 struct device *dev)
2544 struct protection_domain *domain = to_pdomain(dom);
2545 struct iommu_dev_data *dev_data;
2546 struct amd_iommu *iommu;
2547 int ret;
2549 if (!check_device(dev))
2550 return -EINVAL;
2552 dev_data = dev_iommu_priv_get(dev);
2553 dev_data->defer_attach = false;
2555 iommu = amd_iommu_rlookup_table[dev_data->devid];
2556 if (!iommu)
2557 return -EINVAL;
2559 if (dev_data->domain)
2560 detach_device(dev);
2562 ret = attach_device(dev, domain);
2564 #ifdef CONFIG_IRQ_REMAP
2565 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2566 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2567 dev_data->use_vapic = 1;
2568 else
2569 dev_data->use_vapic = 0;
2571 #endif
2573 iommu_completion_wait(iommu);
2575 return ret;
2578 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2579 phys_addr_t paddr, size_t page_size, int iommu_prot,
2580 gfp_t gfp)
2582 struct protection_domain *domain = to_pdomain(dom);
2583 struct domain_pgtable pgtable;
2584 int prot = 0;
2585 int ret;
2587 amd_iommu_domain_get_pgtable(domain, &pgtable);
2588 if (pgtable.mode == PAGE_MODE_NONE)
2589 return -EINVAL;
2591 if (iommu_prot & IOMMU_READ)
2592 prot |= IOMMU_PROT_IR;
2593 if (iommu_prot & IOMMU_WRITE)
2594 prot |= IOMMU_PROT_IW;
2596 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2598 domain_flush_np_cache(domain, iova, page_size);
2600 return ret;
2603 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2604 size_t page_size,
2605 struct iommu_iotlb_gather *gather)
2607 struct protection_domain *domain = to_pdomain(dom);
2608 struct domain_pgtable pgtable;
2610 amd_iommu_domain_get_pgtable(domain, &pgtable);
2611 if (pgtable.mode == PAGE_MODE_NONE)
2612 return 0;
2614 return iommu_unmap_page(domain, iova, page_size);
2617 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2618 dma_addr_t iova)
2620 struct protection_domain *domain = to_pdomain(dom);
2621 unsigned long offset_mask, pte_pgsize;
2622 struct domain_pgtable pgtable;
2623 u64 *pte, __pte;
2625 amd_iommu_domain_get_pgtable(domain, &pgtable);
2626 if (pgtable.mode == PAGE_MODE_NONE)
2627 return iova;
2629 pte = fetch_pte(domain, iova, &pte_pgsize);
2631 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2632 return 0;
2634 offset_mask = pte_pgsize - 1;
2635 __pte = __sme_clr(*pte & PM_ADDR_MASK);
2637 return (__pte & ~offset_mask) | (iova & offset_mask);
2640 static bool amd_iommu_capable(enum iommu_cap cap)
2642 switch (cap) {
2643 case IOMMU_CAP_CACHE_COHERENCY:
2644 return true;
2645 case IOMMU_CAP_INTR_REMAP:
2646 return (irq_remapping_enabled == 1);
2647 case IOMMU_CAP_NOEXEC:
2648 return false;
2649 default:
2650 break;
2653 return false;
2656 static void amd_iommu_get_resv_regions(struct device *dev,
2657 struct list_head *head)
2659 struct iommu_resv_region *region;
2660 struct unity_map_entry *entry;
2661 int devid;
2663 devid = get_device_id(dev);
2664 if (devid < 0)
2665 return;
2667 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2668 int type, prot = 0;
2669 size_t length;
2671 if (devid < entry->devid_start || devid > entry->devid_end)
2672 continue;
2674 type = IOMMU_RESV_DIRECT;
2675 length = entry->address_end - entry->address_start;
2676 if (entry->prot & IOMMU_PROT_IR)
2677 prot |= IOMMU_READ;
2678 if (entry->prot & IOMMU_PROT_IW)
2679 prot |= IOMMU_WRITE;
2680 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2681 /* Exclusion range */
2682 type = IOMMU_RESV_RESERVED;
2684 region = iommu_alloc_resv_region(entry->address_start,
2685 length, prot, type);
2686 if (!region) {
2687 dev_err(dev, "Out of memory allocating dm-regions\n");
2688 return;
2690 list_add_tail(&region->list, head);
2693 region = iommu_alloc_resv_region(MSI_RANGE_START,
2694 MSI_RANGE_END - MSI_RANGE_START + 1,
2695 0, IOMMU_RESV_MSI);
2696 if (!region)
2697 return;
2698 list_add_tail(&region->list, head);
2700 region = iommu_alloc_resv_region(HT_RANGE_START,
2701 HT_RANGE_END - HT_RANGE_START + 1,
2702 0, IOMMU_RESV_RESERVED);
2703 if (!region)
2704 return;
2705 list_add_tail(&region->list, head);
2708 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2709 struct device *dev)
2711 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2713 return dev_data->defer_attach;
2715 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2717 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2719 struct protection_domain *dom = to_pdomain(domain);
2720 unsigned long flags;
2722 spin_lock_irqsave(&dom->lock, flags);
2723 domain_flush_tlb_pde(dom);
2724 domain_flush_complete(dom);
2725 spin_unlock_irqrestore(&dom->lock, flags);
2728 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2729 struct iommu_iotlb_gather *gather)
2731 amd_iommu_flush_iotlb_all(domain);
2734 static int amd_iommu_def_domain_type(struct device *dev)
2736 struct iommu_dev_data *dev_data;
2738 dev_data = dev_iommu_priv_get(dev);
2739 if (!dev_data)
2740 return 0;
2743 * Do not identity map IOMMUv2 capable devices when memory encryption is
2744 * active, because some of those devices (AMD GPUs) don't have the
2745 * encryption bit in their DMA-mask and require remapping.
2747 if (!mem_encrypt_active() && dev_data->iommu_v2)
2748 return IOMMU_DOMAIN_IDENTITY;
2750 return 0;
2753 const struct iommu_ops amd_iommu_ops = {
2754 .capable = amd_iommu_capable,
2755 .domain_alloc = amd_iommu_domain_alloc,
2756 .domain_free = amd_iommu_domain_free,
2757 .attach_dev = amd_iommu_attach_device,
2758 .detach_dev = amd_iommu_detach_device,
2759 .map = amd_iommu_map,
2760 .unmap = amd_iommu_unmap,
2761 .iova_to_phys = amd_iommu_iova_to_phys,
2762 .probe_device = amd_iommu_probe_device,
2763 .release_device = amd_iommu_release_device,
2764 .probe_finalize = amd_iommu_probe_finalize,
2765 .device_group = amd_iommu_device_group,
2766 .domain_get_attr = amd_iommu_domain_get_attr,
2767 .get_resv_regions = amd_iommu_get_resv_regions,
2768 .put_resv_regions = generic_iommu_put_resv_regions,
2769 .is_attach_deferred = amd_iommu_is_attach_deferred,
2770 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2771 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2772 .iotlb_sync = amd_iommu_iotlb_sync,
2773 .def_domain_type = amd_iommu_def_domain_type,
2776 /*****************************************************************************
2778 * The next functions do a basic initialization of IOMMU for pass through
2779 * mode
2781 * In passthrough mode the IOMMU is initialized and enabled but not used for
2782 * DMA-API translation.
2784 *****************************************************************************/
2786 /* IOMMUv2 specific functions */
2787 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2789 return atomic_notifier_chain_register(&ppr_notifier, nb);
2791 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2793 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2795 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2797 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2799 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2801 struct protection_domain *domain = to_pdomain(dom);
2802 struct domain_pgtable pgtable;
2803 unsigned long flags;
2805 spin_lock_irqsave(&domain->lock, flags);
2807 /* First save pgtable configuration*/
2808 amd_iommu_domain_get_pgtable(domain, &pgtable);
2810 /* Remove page-table from domain */
2811 amd_iommu_domain_clr_pt_root(domain);
2813 /* Make changes visible to IOMMUs */
2814 update_domain(domain);
2816 /* Page-table is not visible to IOMMU anymore, so free it */
2817 free_pagetable(&pgtable);
2819 spin_unlock_irqrestore(&domain->lock, flags);
2821 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2823 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2825 struct protection_domain *domain = to_pdomain(dom);
2826 unsigned long flags;
2827 int levels, ret;
2829 if (pasids <= 0 || pasids > (PASID_MASK + 1))
2830 return -EINVAL;
2832 /* Number of GCR3 table levels required */
2833 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2834 levels += 1;
2836 if (levels > amd_iommu_max_glx_val)
2837 return -EINVAL;
2839 spin_lock_irqsave(&domain->lock, flags);
2842 * Save us all sanity checks whether devices already in the
2843 * domain support IOMMUv2. Just force that the domain has no
2844 * devices attached when it is switched into IOMMUv2 mode.
2846 ret = -EBUSY;
2847 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2848 goto out;
2850 ret = -ENOMEM;
2851 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2852 if (domain->gcr3_tbl == NULL)
2853 goto out;
2855 domain->glx = levels;
2856 domain->flags |= PD_IOMMUV2_MASK;
2858 update_domain(domain);
2860 ret = 0;
2862 out:
2863 spin_unlock_irqrestore(&domain->lock, flags);
2865 return ret;
2867 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2869 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2870 u64 address, bool size)
2872 struct iommu_dev_data *dev_data;
2873 struct iommu_cmd cmd;
2874 int i, ret;
2876 if (!(domain->flags & PD_IOMMUV2_MASK))
2877 return -EINVAL;
2879 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2882 * IOMMU TLB needs to be flushed before Device TLB to
2883 * prevent device TLB refill from IOMMU TLB
2885 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2886 if (domain->dev_iommu[i] == 0)
2887 continue;
2889 ret = iommu_queue_command(amd_iommus[i], &cmd);
2890 if (ret != 0)
2891 goto out;
2894 /* Wait until IOMMU TLB flushes are complete */
2895 domain_flush_complete(domain);
2897 /* Now flush device TLBs */
2898 list_for_each_entry(dev_data, &domain->dev_list, list) {
2899 struct amd_iommu *iommu;
2900 int qdep;
2903 There might be non-IOMMUv2 capable devices in an IOMMUv2
2904 * domain.
2906 if (!dev_data->ats.enabled)
2907 continue;
2909 qdep = dev_data->ats.qdep;
2910 iommu = amd_iommu_rlookup_table[dev_data->devid];
2912 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2913 qdep, address, size);
2915 ret = iommu_queue_command(iommu, &cmd);
2916 if (ret != 0)
2917 goto out;
2920 /* Wait until all device TLBs are flushed */
2921 domain_flush_complete(domain);
2923 ret = 0;
2925 out:
2927 return ret;
2930 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2931 u64 address)
2933 return __flush_pasid(domain, pasid, address, false);
2936 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2937 u64 address)
2939 struct protection_domain *domain = to_pdomain(dom);
2940 unsigned long flags;
2941 int ret;
2943 spin_lock_irqsave(&domain->lock, flags);
2944 ret = __amd_iommu_flush_page(domain, pasid, address);
2945 spin_unlock_irqrestore(&domain->lock, flags);
2947 return ret;
2949 EXPORT_SYMBOL(amd_iommu_flush_page);
2951 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2953 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2954 true);
2957 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2959 struct protection_domain *domain = to_pdomain(dom);
2960 unsigned long flags;
2961 int ret;
2963 spin_lock_irqsave(&domain->lock, flags);
2964 ret = __amd_iommu_flush_tlb(domain, pasid);
2965 spin_unlock_irqrestore(&domain->lock, flags);
2967 return ret;
2969 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2971 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2973 int index;
2974 u64 *pte;
2976 while (true) {
2978 index = (pasid >> (9 * level)) & 0x1ff;
2979 pte = &root[index];
2981 if (level == 0)
2982 break;
2984 if (!(*pte & GCR3_VALID)) {
2985 if (!alloc)
2986 return NULL;
2988 root = (void *)get_zeroed_page(GFP_ATOMIC);
2989 if (root == NULL)
2990 return NULL;
2992 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2995 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2997 level -= 1;
3000 return pte;
3003 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
3004 unsigned long cr3)
3006 struct domain_pgtable pgtable;
3007 u64 *pte;
3009 amd_iommu_domain_get_pgtable(domain, &pgtable);
3010 if (pgtable.mode != PAGE_MODE_NONE)
3011 return -EINVAL;
3013 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3014 if (pte == NULL)
3015 return -ENOMEM;
3017 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3019 return __amd_iommu_flush_tlb(domain, pasid);
3022 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
3024 struct domain_pgtable pgtable;
3025 u64 *pte;
3027 amd_iommu_domain_get_pgtable(domain, &pgtable);
3028 if (pgtable.mode != PAGE_MODE_NONE)
3029 return -EINVAL;
3031 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3032 if (pte == NULL)
3033 return 0;
3035 *pte = 0;
3037 return __amd_iommu_flush_tlb(domain, pasid);
3040 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
3041 unsigned long cr3)
3043 struct protection_domain *domain = to_pdomain(dom);
3044 unsigned long flags;
3045 int ret;
3047 spin_lock_irqsave(&domain->lock, flags);
3048 ret = __set_gcr3(domain, pasid, cr3);
3049 spin_unlock_irqrestore(&domain->lock, flags);
3051 return ret;
3053 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3055 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
3057 struct protection_domain *domain = to_pdomain(dom);
3058 unsigned long flags;
3059 int ret;
3061 spin_lock_irqsave(&domain->lock, flags);
3062 ret = __clear_gcr3(domain, pasid);
3063 spin_unlock_irqrestore(&domain->lock, flags);
3065 return ret;
3067 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3069 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
3070 int status, int tag)
3072 struct iommu_dev_data *dev_data;
3073 struct amd_iommu *iommu;
3074 struct iommu_cmd cmd;
3076 dev_data = dev_iommu_priv_get(&pdev->dev);
3077 iommu = amd_iommu_rlookup_table[dev_data->devid];
3079 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3080 tag, dev_data->pri_tlp);
3082 return iommu_queue_command(iommu, &cmd);
3084 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3086 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3088 struct protection_domain *pdomain;
3089 struct iommu_dev_data *dev_data;
3090 struct device *dev = &pdev->dev;
3091 struct iommu_domain *io_domain;
3093 if (!check_device(dev))
3094 return NULL;
3096 dev_data = dev_iommu_priv_get(&pdev->dev);
3097 pdomain = dev_data->domain;
3098 io_domain = iommu_get_domain_for_dev(dev);
3100 if (pdomain == NULL && dev_data->defer_attach) {
3101 dev_data->defer_attach = false;
3102 pdomain = to_pdomain(io_domain);
3103 attach_device(dev, pdomain);
3106 if (pdomain == NULL)
3107 return NULL;
3109 if (io_domain->type != IOMMU_DOMAIN_DMA)
3110 return NULL;
3112 /* Only return IOMMUv2 domains */
3113 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3114 return NULL;
3116 return &pdomain->domain;
3118 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3120 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3122 struct iommu_dev_data *dev_data;
3124 if (!amd_iommu_v2_supported())
3125 return;
3127 dev_data = dev_iommu_priv_get(&pdev->dev);
3128 dev_data->errata |= (1 << erratum);
3130 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3132 int amd_iommu_device_info(struct pci_dev *pdev,
3133 struct amd_iommu_device_info *info)
3135 int max_pasids;
3136 int pos;
3138 if (pdev == NULL || info == NULL)
3139 return -EINVAL;
3141 if (!amd_iommu_v2_supported())
3142 return -EINVAL;
3144 memset(info, 0, sizeof(*info));
3146 if (pci_ats_supported(pdev))
3147 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3149 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3150 if (pos)
3151 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3153 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3154 if (pos) {
3155 int features;
3157 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3158 max_pasids = min(max_pasids, (1 << 20));
3160 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3161 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3163 features = pci_pasid_features(pdev);
3164 if (features & PCI_PASID_CAP_EXEC)
3165 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3166 if (features & PCI_PASID_CAP_PRIV)
3167 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3170 return 0;
3172 EXPORT_SYMBOL(amd_iommu_device_info);
3174 #ifdef CONFIG_IRQ_REMAP
3176 /*****************************************************************************
3178 * Interrupt Remapping Implementation
3180 *****************************************************************************/
3182 static struct irq_chip amd_ir_chip;
3183 static DEFINE_SPINLOCK(iommu_table_lock);
3185 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3187 u64 dte;
3189 dte = amd_iommu_dev_table[devid].data[2];
3190 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3191 dte |= iommu_virt_to_phys(table->table);
3192 dte |= DTE_IRQ_REMAP_INTCTL;
3193 dte |= DTE_INTTABLEN;
3194 dte |= DTE_IRQ_REMAP_ENABLE;
3196 amd_iommu_dev_table[devid].data[2] = dte;
3199 static struct irq_remap_table *get_irq_table(u16 devid)
3201 struct irq_remap_table *table;
3203 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3204 "%s: no iommu for devid %x\n", __func__, devid))
3205 return NULL;
3207 table = irq_lookup_table[devid];
3208 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3209 return NULL;
3211 return table;
3214 static struct irq_remap_table *__alloc_irq_table(void)
3216 struct irq_remap_table *table;
3218 table = kzalloc(sizeof(*table), GFP_KERNEL);
3219 if (!table)
3220 return NULL;
3222 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3223 if (!table->table) {
3224 kfree(table);
3225 return NULL;
3227 raw_spin_lock_init(&table->lock);
3229 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3230 memset(table->table, 0,
3231 MAX_IRQS_PER_TABLE * sizeof(u32));
3232 else
3233 memset(table->table, 0,
3234 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3235 return table;
3238 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3239 struct irq_remap_table *table)
3241 irq_lookup_table[devid] = table;
3242 set_dte_irq_entry(devid, table);
3243 iommu_flush_dte(iommu, devid);
3246 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3247 void *data)
3249 struct irq_remap_table *table = data;
3251 irq_lookup_table[alias] = table;
3252 set_dte_irq_entry(alias, table);
3254 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3256 return 0;
3259 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3261 struct irq_remap_table *table = NULL;
3262 struct irq_remap_table *new_table = NULL;
3263 struct amd_iommu *iommu;
3264 unsigned long flags;
3265 u16 alias;
3267 spin_lock_irqsave(&iommu_table_lock, flags);
3269 iommu = amd_iommu_rlookup_table[devid];
3270 if (!iommu)
3271 goto out_unlock;
3273 table = irq_lookup_table[devid];
3274 if (table)
3275 goto out_unlock;
3277 alias = amd_iommu_alias_table[devid];
3278 table = irq_lookup_table[alias];
3279 if (table) {
3280 set_remap_table_entry(iommu, devid, table);
3281 goto out_wait;
3283 spin_unlock_irqrestore(&iommu_table_lock, flags);
3285 /* Nothing there yet, allocate new irq remapping table */
3286 new_table = __alloc_irq_table();
3287 if (!new_table)
3288 return NULL;
3290 spin_lock_irqsave(&iommu_table_lock, flags);
3292 table = irq_lookup_table[devid];
3293 if (table)
3294 goto out_unlock;
3296 table = irq_lookup_table[alias];
3297 if (table) {
3298 set_remap_table_entry(iommu, devid, table);
3299 goto out_wait;
3302 table = new_table;
3303 new_table = NULL;
3305 if (pdev)
3306 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3307 table);
3308 else
3309 set_remap_table_entry(iommu, devid, table);
3311 if (devid != alias)
3312 set_remap_table_entry(iommu, alias, table);
3314 out_wait:
3315 iommu_completion_wait(iommu);
3317 out_unlock:
3318 spin_unlock_irqrestore(&iommu_table_lock, flags);
3320 if (new_table) {
3321 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3322 kfree(new_table);
3324 return table;
3327 static int alloc_irq_index(u16 devid, int count, bool align,
3328 struct pci_dev *pdev)
3330 struct irq_remap_table *table;
3331 int index, c, alignment = 1;
3332 unsigned long flags;
3333 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3335 if (!iommu)
3336 return -ENODEV;
3338 table = alloc_irq_table(devid, pdev);
3339 if (!table)
3340 return -ENODEV;
3342 if (align)
3343 alignment = roundup_pow_of_two(count);
3345 raw_spin_lock_irqsave(&table->lock, flags);
3347 /* Scan table for free entries */
3348 for (index = ALIGN(table->min_index, alignment), c = 0;
3349 index < MAX_IRQS_PER_TABLE;) {
3350 if (!iommu->irte_ops->is_allocated(table, index)) {
3351 c += 1;
3352 } else {
3353 c = 0;
3354 index = ALIGN(index + 1, alignment);
3355 continue;
3358 if (c == count) {
3359 for (; c != 0; --c)
3360 iommu->irte_ops->set_allocated(table, index - c + 1);
3362 index -= count - 1;
3363 goto out;
3366 index++;
3369 index = -ENOSPC;
3371 out:
3372 raw_spin_unlock_irqrestore(&table->lock, flags);
3374 return index;
3377 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3378 struct amd_ir_data *data)
3380 bool ret;
3381 struct irq_remap_table *table;
3382 struct amd_iommu *iommu;
3383 unsigned long flags;
3384 struct irte_ga *entry;
3386 iommu = amd_iommu_rlookup_table[devid];
3387 if (iommu == NULL)
3388 return -EINVAL;
3390 table = get_irq_table(devid);
3391 if (!table)
3392 return -ENOMEM;
3394 raw_spin_lock_irqsave(&table->lock, flags);
3396 entry = (struct irte_ga *)table->table;
3397 entry = &entry[index];
3399 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3400 entry->lo.val, entry->hi.val,
3401 irte->lo.val, irte->hi.val);
3403 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3404 * and it cannot be updated by the hardware or other processors
3405 * behind us, so the return value of cmpxchg16 should be the
3406 * same as the old value.
3408 WARN_ON(!ret);
3410 if (data)
3411 data->ref = entry;
3413 raw_spin_unlock_irqrestore(&table->lock, flags);
3415 iommu_flush_irt(iommu, devid);
3416 iommu_completion_wait(iommu);
3418 return 0;
3421 static int modify_irte(u16 devid, int index, union irte *irte)
3423 struct irq_remap_table *table;
3424 struct amd_iommu *iommu;
3425 unsigned long flags;
3427 iommu = amd_iommu_rlookup_table[devid];
3428 if (iommu == NULL)
3429 return -EINVAL;
3431 table = get_irq_table(devid);
3432 if (!table)
3433 return -ENOMEM;
3435 raw_spin_lock_irqsave(&table->lock, flags);
3436 table->table[index] = irte->val;
3437 raw_spin_unlock_irqrestore(&table->lock, flags);
3439 iommu_flush_irt(iommu, devid);
3440 iommu_completion_wait(iommu);
3442 return 0;
3445 static void free_irte(u16 devid, int index)
3447 struct irq_remap_table *table;
3448 struct amd_iommu *iommu;
3449 unsigned long flags;
3451 iommu = amd_iommu_rlookup_table[devid];
3452 if (iommu == NULL)
3453 return;
3455 table = get_irq_table(devid);
3456 if (!table)
3457 return;
3459 raw_spin_lock_irqsave(&table->lock, flags);
3460 iommu->irte_ops->clear_allocated(table, index);
3461 raw_spin_unlock_irqrestore(&table->lock, flags);
3463 iommu_flush_irt(iommu, devid);
3464 iommu_completion_wait(iommu);
3467 static void irte_prepare(void *entry,
3468 u32 delivery_mode, bool dest_mode,
3469 u8 vector, u32 dest_apicid, int devid)
3471 union irte *irte = (union irte *) entry;
3473 irte->val = 0;
3474 irte->fields.vector = vector;
3475 irte->fields.int_type = delivery_mode;
3476 irte->fields.destination = dest_apicid;
3477 irte->fields.dm = dest_mode;
3478 irte->fields.valid = 1;
3481 static void irte_ga_prepare(void *entry,
3482 u32 delivery_mode, bool dest_mode,
3483 u8 vector, u32 dest_apicid, int devid)
3485 struct irte_ga *irte = (struct irte_ga *) entry;
3487 irte->lo.val = 0;
3488 irte->hi.val = 0;
3489 irte->lo.fields_remap.int_type = delivery_mode;
3490 irte->lo.fields_remap.dm = dest_mode;
3491 irte->hi.fields.vector = vector;
3492 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3493 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3494 irte->lo.fields_remap.valid = 1;
3497 static void irte_activate(void *entry, u16 devid, u16 index)
3499 union irte *irte = (union irte *) entry;
3501 irte->fields.valid = 1;
3502 modify_irte(devid, index, irte);
3505 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3507 struct irte_ga *irte = (struct irte_ga *) entry;
3509 irte->lo.fields_remap.valid = 1;
3510 modify_irte_ga(devid, index, irte, NULL);
3513 static void irte_deactivate(void *entry, u16 devid, u16 index)
3515 union irte *irte = (union irte *) entry;
3517 irte->fields.valid = 0;
3518 modify_irte(devid, index, irte);
3521 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3523 struct irte_ga *irte = (struct irte_ga *) entry;
3525 irte->lo.fields_remap.valid = 0;
3526 modify_irte_ga(devid, index, irte, NULL);
3529 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3530 u8 vector, u32 dest_apicid)
3532 union irte *irte = (union irte *) entry;
3534 irte->fields.vector = vector;
3535 irte->fields.destination = dest_apicid;
3536 modify_irte(devid, index, irte);
3539 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3540 u8 vector, u32 dest_apicid)
3542 struct irte_ga *irte = (struct irte_ga *) entry;
3544 if (!irte->lo.fields_remap.guest_mode) {
3545 irte->hi.fields.vector = vector;
3546 irte->lo.fields_remap.destination =
3547 APICID_TO_IRTE_DEST_LO(dest_apicid);
3548 irte->hi.fields.destination =
3549 APICID_TO_IRTE_DEST_HI(dest_apicid);
3550 modify_irte_ga(devid, index, irte, NULL);
3554 #define IRTE_ALLOCATED (~1U)
3555 static void irte_set_allocated(struct irq_remap_table *table, int index)
3557 table->table[index] = IRTE_ALLOCATED;
3560 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3562 struct irte_ga *ptr = (struct irte_ga *)table->table;
3563 struct irte_ga *irte = &ptr[index];
3565 memset(&irte->lo.val, 0, sizeof(u64));
3566 memset(&irte->hi.val, 0, sizeof(u64));
3567 irte->hi.fields.vector = 0xff;
3570 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3572 union irte *ptr = (union irte *)table->table;
3573 union irte *irte = &ptr[index];
3575 return irte->val != 0;
3578 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3580 struct irte_ga *ptr = (struct irte_ga *)table->table;
3581 struct irte_ga *irte = &ptr[index];
3583 return irte->hi.fields.vector != 0;
3586 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3588 table->table[index] = 0;
3591 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3593 struct irte_ga *ptr = (struct irte_ga *)table->table;
3594 struct irte_ga *irte = &ptr[index];
3596 memset(&irte->lo.val, 0, sizeof(u64));
3597 memset(&irte->hi.val, 0, sizeof(u64));
3600 static int get_devid(struct irq_alloc_info *info)
3602 switch (info->type) {
3603 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3604 return get_ioapic_devid(info->devid);
3605 case X86_IRQ_ALLOC_TYPE_HPET:
3606 return get_hpet_devid(info->devid);
3607 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3608 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3609 return get_device_id(msi_desc_to_dev(info->desc));
3610 default:
3611 WARN_ON_ONCE(1);
3612 return -1;
3616 struct irq_remap_ops amd_iommu_irq_ops = {
3617 .prepare = amd_iommu_prepare,
3618 .enable = amd_iommu_enable,
3619 .disable = amd_iommu_disable,
3620 .reenable = amd_iommu_reenable,
3621 .enable_faulting = amd_iommu_enable_faulting,
3624 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3626 msg->data = index;
3627 msg->address_lo = 0;
3628 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3629 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3632 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3633 struct irq_cfg *irq_cfg,
3634 struct irq_alloc_info *info,
3635 int devid, int index, int sub_handle)
3637 struct irq_2_irte *irte_info = &data->irq_2_irte;
3638 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3640 if (!iommu)
3641 return;
3643 data->irq_2_irte.devid = devid;
3644 data->irq_2_irte.index = index + sub_handle;
3645 iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3646 apic->dest_mode_logical, irq_cfg->vector,
3647 irq_cfg->dest_apicid, devid);
3649 switch (info->type) {
3650 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3651 case X86_IRQ_ALLOC_TYPE_HPET:
3652 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3653 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3654 fill_msi_msg(&data->msi_entry, irte_info->index);
3655 break;
3657 default:
3658 BUG_ON(1);
3659 break;
3663 struct amd_irte_ops irte_32_ops = {
3664 .prepare = irte_prepare,
3665 .activate = irte_activate,
3666 .deactivate = irte_deactivate,
3667 .set_affinity = irte_set_affinity,
3668 .set_allocated = irte_set_allocated,
3669 .is_allocated = irte_is_allocated,
3670 .clear_allocated = irte_clear_allocated,
3673 struct amd_irte_ops irte_128_ops = {
3674 .prepare = irte_ga_prepare,
3675 .activate = irte_ga_activate,
3676 .deactivate = irte_ga_deactivate,
3677 .set_affinity = irte_ga_set_affinity,
3678 .set_allocated = irte_ga_set_allocated,
3679 .is_allocated = irte_ga_is_allocated,
3680 .clear_allocated = irte_ga_clear_allocated,
3683 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3684 unsigned int nr_irqs, void *arg)
3686 struct irq_alloc_info *info = arg;
3687 struct irq_data *irq_data;
3688 struct amd_ir_data *data = NULL;
3689 struct irq_cfg *cfg;
3690 int i, ret, devid;
3691 int index;
3693 if (!info)
3694 return -EINVAL;
3695 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3696 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3697 return -EINVAL;
3700 * With IRQ remapping enabled, don't need contiguous CPU vectors
3701 * to support multiple MSI interrupts.
3703 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3704 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3706 devid = get_devid(info);
3707 if (devid < 0)
3708 return -EINVAL;
3710 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3711 if (ret < 0)
3712 return ret;
3714 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3715 struct irq_remap_table *table;
3716 struct amd_iommu *iommu;
3718 table = alloc_irq_table(devid, NULL);
3719 if (table) {
3720 if (!table->min_index) {
3722 * Keep the first 32 indexes free for IOAPIC
3723 * interrupts.
3725 table->min_index = 32;
3726 iommu = amd_iommu_rlookup_table[devid];
3727 for (i = 0; i < 32; ++i)
3728 iommu->irte_ops->set_allocated(table, i);
3730 WARN_ON(table->min_index != 32);
3731 index = info->ioapic.pin;
3732 } else {
3733 index = -ENOMEM;
3735 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3736 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3737 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3739 index = alloc_irq_index(devid, nr_irqs, align,
3740 msi_desc_to_pci_dev(info->desc));
3741 } else {
3742 index = alloc_irq_index(devid, nr_irqs, false, NULL);
3745 if (index < 0) {
3746 pr_warn("Failed to allocate IRTE\n");
3747 ret = index;
3748 goto out_free_parent;
3751 for (i = 0; i < nr_irqs; i++) {
3752 irq_data = irq_domain_get_irq_data(domain, virq + i);
3753 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3754 if (!cfg) {
3755 ret = -EINVAL;
3756 goto out_free_data;
3759 ret = -ENOMEM;
3760 data = kzalloc(sizeof(*data), GFP_KERNEL);
3761 if (!data)
3762 goto out_free_data;
3764 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3765 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3766 else
3767 data->entry = kzalloc(sizeof(struct irte_ga),
3768 GFP_KERNEL);
3769 if (!data->entry) {
3770 kfree(data);
3771 goto out_free_data;
3774 irq_data->hwirq = (devid << 16) + i;
3775 irq_data->chip_data = data;
3776 irq_data->chip = &amd_ir_chip;
3777 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3778 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3781 return 0;
3783 out_free_data:
3784 for (i--; i >= 0; i--) {
3785 irq_data = irq_domain_get_irq_data(domain, virq + i);
3786 if (irq_data)
3787 kfree(irq_data->chip_data);
3789 for (i = 0; i < nr_irqs; i++)
3790 free_irte(devid, index + i);
3791 out_free_parent:
3792 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3793 return ret;
3796 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3797 unsigned int nr_irqs)
3799 struct irq_2_irte *irte_info;
3800 struct irq_data *irq_data;
3801 struct amd_ir_data *data;
3802 int i;
3804 for (i = 0; i < nr_irqs; i++) {
3805 irq_data = irq_domain_get_irq_data(domain, virq + i);
3806 if (irq_data && irq_data->chip_data) {
3807 data = irq_data->chip_data;
3808 irte_info = &data->irq_2_irte;
3809 free_irte(irte_info->devid, irte_info->index);
3810 kfree(data->entry);
3811 kfree(data);
3814 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3817 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3818 struct amd_ir_data *ir_data,
3819 struct irq_2_irte *irte_info,
3820 struct irq_cfg *cfg);
3822 static int irq_remapping_activate(struct irq_domain *domain,
3823 struct irq_data *irq_data, bool reserve)
3825 struct amd_ir_data *data = irq_data->chip_data;
3826 struct irq_2_irte *irte_info = &data->irq_2_irte;
3827 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3828 struct irq_cfg *cfg = irqd_cfg(irq_data);
3830 if (!iommu)
3831 return 0;
3833 iommu->irte_ops->activate(data->entry, irte_info->devid,
3834 irte_info->index);
3835 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3836 return 0;
3839 static void irq_remapping_deactivate(struct irq_domain *domain,
3840 struct irq_data *irq_data)
3842 struct amd_ir_data *data = irq_data->chip_data;
3843 struct irq_2_irte *irte_info = &data->irq_2_irte;
3844 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3846 if (iommu)
3847 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3848 irte_info->index);
3851 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3852 enum irq_domain_bus_token bus_token)
3854 struct amd_iommu *iommu;
3855 int devid = -1;
3857 if (!amd_iommu_irq_remap)
3858 return 0;
3860 if (x86_fwspec_is_ioapic(fwspec))
3861 devid = get_ioapic_devid(fwspec->param[0]);
3862 else if (x86_fwspec_is_hpet(fwspec))
3863 devid = get_hpet_devid(fwspec->param[0]);
3865 if (devid < 0)
3866 return 0;
3868 iommu = amd_iommu_rlookup_table[devid];
3869 return iommu && iommu->ir_domain == d;
3872 static const struct irq_domain_ops amd_ir_domain_ops = {
3873 .select = irq_remapping_select,
3874 .alloc = irq_remapping_alloc,
3875 .free = irq_remapping_free,
3876 .activate = irq_remapping_activate,
3877 .deactivate = irq_remapping_deactivate,
3880 int amd_iommu_activate_guest_mode(void *data)
3882 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3883 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3884 u64 valid;
3886 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3887 !entry || entry->lo.fields_vapic.guest_mode)
3888 return 0;
3890 valid = entry->lo.fields_vapic.valid;
3892 entry->lo.val = 0;
3893 entry->hi.val = 0;
3895 entry->lo.fields_vapic.valid = valid;
3896 entry->lo.fields_vapic.guest_mode = 1;
3897 entry->lo.fields_vapic.ga_log_intr = 1;
3898 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3899 entry->hi.fields.vector = ir_data->ga_vector;
3900 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3902 return modify_irte_ga(ir_data->irq_2_irte.devid,
3903 ir_data->irq_2_irte.index, entry, ir_data);
3905 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3907 int amd_iommu_deactivate_guest_mode(void *data)
3909 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3910 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3911 struct irq_cfg *cfg = ir_data->cfg;
3912 u64 valid;
3914 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3915 !entry || !entry->lo.fields_vapic.guest_mode)
3916 return 0;
3918 valid = entry->lo.fields_remap.valid;
3920 entry->lo.val = 0;
3921 entry->hi.val = 0;
3923 entry->lo.fields_remap.valid = valid;
3924 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3925 entry->lo.fields_remap.int_type = apic->delivery_mode;
3926 entry->hi.fields.vector = cfg->vector;
3927 entry->lo.fields_remap.destination =
3928 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3929 entry->hi.fields.destination =
3930 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3932 return modify_irte_ga(ir_data->irq_2_irte.devid,
3933 ir_data->irq_2_irte.index, entry, ir_data);
3935 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3937 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3939 int ret;
3940 struct amd_iommu *iommu;
3941 struct amd_iommu_pi_data *pi_data = vcpu_info;
3942 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3943 struct amd_ir_data *ir_data = data->chip_data;
3944 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3945 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3947 /* Note:
3948 * This device has never been set up for guest mode.
3949 * we should not modify the IRTE
3951 if (!dev_data || !dev_data->use_vapic)
3952 return 0;
3954 ir_data->cfg = irqd_cfg(data);
3955 pi_data->ir_data = ir_data;
3957 /* Note:
3958 * SVM tries to set up for VAPIC mode, but we are in
3959 * legacy mode. So, we force legacy mode instead.
3961 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3962 pr_debug("%s: Fall back to using intr legacy remap\n",
3963 __func__);
3964 pi_data->is_guest_mode = false;
3967 iommu = amd_iommu_rlookup_table[irte_info->devid];
3968 if (iommu == NULL)
3969 return -EINVAL;
3971 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3972 if (pi_data->is_guest_mode) {
3973 ir_data->ga_root_ptr = (pi_data->base >> 12);
3974 ir_data->ga_vector = vcpu_pi_info->vector;
3975 ir_data->ga_tag = pi_data->ga_tag;
3976 ret = amd_iommu_activate_guest_mode(ir_data);
3977 if (!ret)
3978 ir_data->cached_ga_tag = pi_data->ga_tag;
3979 } else {
3980 ret = amd_iommu_deactivate_guest_mode(ir_data);
3983 * This communicates the ga_tag back to the caller
3984 * so that it can do all the necessary clean up.
3986 if (!ret)
3987 ir_data->cached_ga_tag = 0;
3990 return ret;
3994 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3995 struct amd_ir_data *ir_data,
3996 struct irq_2_irte *irte_info,
3997 struct irq_cfg *cfg)
4001 * Atomically updates the IRTE with the new destination, vector
4002 * and flushes the interrupt entry cache.
4004 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4005 irte_info->index, cfg->vector,
4006 cfg->dest_apicid);
4009 static int amd_ir_set_affinity(struct irq_data *data,
4010 const struct cpumask *mask, bool force)
4012 struct amd_ir_data *ir_data = data->chip_data;
4013 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4014 struct irq_cfg *cfg = irqd_cfg(data);
4015 struct irq_data *parent = data->parent_data;
4016 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4017 int ret;
4019 if (!iommu)
4020 return -ENODEV;
4022 ret = parent->chip->irq_set_affinity(parent, mask, force);
4023 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4024 return ret;
4026 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4028 * After this point, all the interrupts will start arriving
4029 * at the new destination. So, time to cleanup the previous
4030 * vector allocation.
4032 send_cleanup_vector(cfg);
4034 return IRQ_SET_MASK_OK_DONE;
4037 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4039 struct amd_ir_data *ir_data = irq_data->chip_data;
4041 *msg = ir_data->msi_entry;
4044 static struct irq_chip amd_ir_chip = {
4045 .name = "AMD-IR",
4046 .irq_ack = apic_ack_irq,
4047 .irq_set_affinity = amd_ir_set_affinity,
4048 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4049 .irq_compose_msi_msg = ir_compose_msi_msg,
4052 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4054 struct fwnode_handle *fn;
4056 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4057 if (!fn)
4058 return -ENOMEM;
4059 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4060 if (!iommu->ir_domain) {
4061 irq_domain_free_fwnode(fn);
4062 return -ENOMEM;
4065 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4066 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4067 "AMD-IR-MSI",
4068 iommu->index);
4069 return 0;
4072 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4074 unsigned long flags;
4075 struct amd_iommu *iommu;
4076 struct irq_remap_table *table;
4077 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4078 int devid = ir_data->irq_2_irte.devid;
4079 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4080 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4082 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4083 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4084 return 0;
4086 iommu = amd_iommu_rlookup_table[devid];
4087 if (!iommu)
4088 return -ENODEV;
4090 table = get_irq_table(devid);
4091 if (!table)
4092 return -ENODEV;
4094 raw_spin_lock_irqsave(&table->lock, flags);
4096 if (ref->lo.fields_vapic.guest_mode) {
4097 if (cpu >= 0) {
4098 ref->lo.fields_vapic.destination =
4099 APICID_TO_IRTE_DEST_LO(cpu);
4100 ref->hi.fields.destination =
4101 APICID_TO_IRTE_DEST_HI(cpu);
4103 ref->lo.fields_vapic.is_run = is_run;
4104 barrier();
4107 raw_spin_unlock_irqrestore(&table->lock, flags);
4109 iommu_flush_irt(iommu, devid);
4110 iommu_completion_wait(iommu);
4111 return 0;
4113 EXPORT_SYMBOL(amd_iommu_update_ga);
4114 #endif