Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / media / i2c / adv7604.c
blob09004d928d11f9cd0c66861a12414b4e85a1d890
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * adv7604 - Analog Devices ADV7604 video decoder driver
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
7 */
9 /*
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 * Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 * the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
52 #define ADV76XX_RGB_OUT (1 << 1)
54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
74 #define ADV76XX_MAX_ADDRS (3)
76 enum adv76xx_type {
77 ADV7604,
78 ADV7611,
79 ADV7612,
82 struct adv76xx_reg_seq {
83 unsigned int reg;
84 u8 val;
87 struct adv76xx_format_info {
88 u32 code;
89 u8 op_ch_sel;
90 bool rgb_out;
91 bool swap_cb_cr;
92 u8 op_format_sel;
95 struct adv76xx_cfg_read_infoframe {
96 const char *desc;
97 u8 present_mask;
98 u8 head_addr;
99 u8 payload_addr;
102 struct adv76xx_chip_info {
103 enum adv76xx_type type;
105 bool has_afe;
106 unsigned int max_port;
107 unsigned int num_dv_ports;
109 unsigned int edid_enable_reg;
110 unsigned int edid_status_reg;
111 unsigned int lcf_reg;
113 unsigned int cable_det_mask;
114 unsigned int tdms_lock_mask;
115 unsigned int fmt_change_digital_mask;
116 unsigned int cp_csc;
118 unsigned int cec_irq_status;
119 unsigned int cec_rx_enable;
120 unsigned int cec_rx_enable_mask;
121 bool cec_irq_swap;
123 const struct adv76xx_format_info *formats;
124 unsigned int nformats;
126 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127 void (*setup_irqs)(struct v4l2_subdev *sd);
128 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
131 /* 0 = AFE, 1 = HDMI */
132 const struct adv76xx_reg_seq *recommended_settings[2];
133 unsigned int num_recommended_settings[2];
135 unsigned long page_mask;
137 /* Masks for timings */
138 unsigned int linewidth_mask;
139 unsigned int field0_height_mask;
140 unsigned int field1_height_mask;
141 unsigned int hfrontporch_mask;
142 unsigned int hsync_mask;
143 unsigned int hbackporch_mask;
144 unsigned int field0_vfrontporch_mask;
145 unsigned int field1_vfrontporch_mask;
146 unsigned int field0_vsync_mask;
147 unsigned int field1_vsync_mask;
148 unsigned int field0_vbackporch_mask;
149 unsigned int field1_vbackporch_mask;
153 **********************************************************************
155 * Arrays with configuration parameters for the ADV7604
157 **********************************************************************
160 struct adv76xx_state {
161 const struct adv76xx_chip_info *info;
162 struct adv76xx_platform_data pdata;
164 struct gpio_desc *hpd_gpio[4];
165 struct gpio_desc *reset_gpio;
167 struct v4l2_subdev sd;
168 struct media_pad pads[ADV76XX_PAD_MAX];
169 unsigned int source_pad;
171 struct v4l2_ctrl_handler hdl;
173 enum adv76xx_pad selected_input;
175 struct v4l2_dv_timings timings;
176 const struct adv76xx_format_info *format;
178 struct {
179 u8 edid[256];
180 u32 present;
181 unsigned blocks;
182 } edid;
183 u16 spa_port_a[2];
184 struct v4l2_fract aspect_ratio;
185 u32 rgb_quantization_range;
186 struct delayed_work delayed_work_enable_hotplug;
187 bool restart_stdi_once;
189 /* CEC */
190 struct cec_adapter *cec_adap;
191 u8 cec_addr[ADV76XX_MAX_ADDRS];
192 u8 cec_valid_addrs;
193 bool cec_enabled_adap;
195 /* i2c clients */
196 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
198 /* Regmaps */
199 struct regmap *regmap[ADV76XX_PAGE_MAX];
201 /* controls */
202 struct v4l2_ctrl *detect_tx_5v_ctrl;
203 struct v4l2_ctrl *analog_sampling_phase_ctrl;
204 struct v4l2_ctrl *free_run_color_manual_ctrl;
205 struct v4l2_ctrl *free_run_color_ctrl;
206 struct v4l2_ctrl *rgb_quantization_range_ctrl;
209 static bool adv76xx_has_afe(struct adv76xx_state *state)
211 return state->info->has_afe;
214 /* Unsupported timings. This device cannot support 720p30. */
215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216 V4L2_DV_BT_CEA_1280X720P30,
220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
222 int i;
224 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226 return false;
227 return true;
230 struct adv76xx_video_standards {
231 struct v4l2_dv_timings timings;
232 u8 vid_std;
233 u8 v_freq;
236 /* sorted by number of lines */
237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247 /* TODO add 1920x1080P60_RB (CVT timing) */
248 { },
251 /* sorted by number of lines */
252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273 /* TODO add 1600X1200P60_RB (not a DMT timing) */
274 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276 { },
279 /* sorted by number of lines */
280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290 { },
293 /* sorted by number of lines */
294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310 { },
313 static const struct v4l2_event adv76xx_ev_fmt = {
314 .type = V4L2_EVENT_SOURCE_CHANGE,
315 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
318 /* ----------------------------------------------------------------------- */
320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
322 return container_of(sd, struct adv76xx_state, sd);
325 static inline unsigned htotal(const struct v4l2_bt_timings *t)
327 return V4L2_DV_BT_FRAME_WIDTH(t);
330 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
332 return V4L2_DV_BT_FRAME_HEIGHT(t);
335 /* ----------------------------------------------------------------------- */
337 static int adv76xx_read_check(struct adv76xx_state *state,
338 int client_page, u8 reg)
340 struct i2c_client *client = state->i2c_clients[client_page];
341 int err;
342 unsigned int val;
344 err = regmap_read(state->regmap[client_page], reg, &val);
346 if (err) {
347 v4l_err(client, "error reading %02x, %02x\n",
348 client->addr, reg);
349 return err;
351 return val;
354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355 * size to one or more registers.
357 * A value of zero will be returned on success, a negative errno will
358 * be returned in error cases.
360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361 unsigned int init_reg, const void *val,
362 size_t val_len)
364 struct regmap *regmap = state->regmap[client_page];
366 if (val_len > I2C_SMBUS_BLOCK_MAX)
367 val_len = I2C_SMBUS_BLOCK_MAX;
369 return regmap_raw_write(regmap, init_reg, val, val_len);
372 /* ----------------------------------------------------------------------- */
374 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
376 struct adv76xx_state *state = to_state(sd);
378 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
383 struct adv76xx_state *state = to_state(sd);
385 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389 u8 val)
391 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
396 struct adv76xx_state *state = to_state(sd);
398 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
403 struct adv76xx_state *state = to_state(sd);
405 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
410 struct adv76xx_state *state = to_state(sd);
412 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
417 struct adv76xx_state *state = to_state(sd);
419 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423 u8 val)
425 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
430 struct adv76xx_state *state = to_state(sd);
432 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
437 struct adv76xx_state *state = to_state(sd);
439 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
444 struct adv76xx_state *state = to_state(sd);
446 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
451 struct adv76xx_state *state = to_state(sd);
453 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
458 struct adv76xx_state *state = to_state(sd);
460 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
465 struct adv76xx_state *state = to_state(sd);
467 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
472 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
477 struct adv76xx_state *state = to_state(sd);
479 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
484 struct adv76xx_state *state = to_state(sd);
486 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
489 static inline int edid_write_block(struct v4l2_subdev *sd,
490 unsigned int total_len, const u8 *val)
492 struct adv76xx_state *state = to_state(sd);
493 int err = 0;
494 int i = 0;
495 int len = 0;
497 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498 __func__, total_len);
500 while (!err && i < total_len) {
501 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502 I2C_SMBUS_BLOCK_MAX :
503 (total_len - i);
505 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506 i, val + i, len);
507 i += len;
510 return err;
513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
515 unsigned int i;
517 for (i = 0; i < state->info->num_dv_ports; ++i)
518 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
520 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
523 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
525 struct delayed_work *dwork = to_delayed_work(work);
526 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
527 delayed_work_enable_hotplug);
528 struct v4l2_subdev *sd = &state->sd;
530 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
532 adv76xx_set_hpd(state, state->edid.present);
535 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
537 struct adv76xx_state *state = to_state(sd);
539 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
542 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
544 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
547 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
549 struct adv76xx_state *state = to_state(sd);
551 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
554 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
556 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
559 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
561 struct adv76xx_state *state = to_state(sd);
563 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
566 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
568 struct adv76xx_state *state = to_state(sd);
570 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
573 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
575 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
578 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
580 struct adv76xx_state *state = to_state(sd);
582 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
585 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
587 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
590 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
592 struct adv76xx_state *state = to_state(sd);
594 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
597 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
599 struct adv76xx_state *state = to_state(sd);
601 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
604 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
605 #define ADV76XX_REG_SEQ_TERM 0xffff
607 #ifdef CONFIG_VIDEO_ADV_DEBUG
608 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
610 struct adv76xx_state *state = to_state(sd);
611 unsigned int page = reg >> 8;
612 unsigned int val;
613 int err;
615 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
616 return -EINVAL;
618 reg &= 0xff;
619 err = regmap_read(state->regmap[page], reg, &val);
621 return err ? err : val;
623 #endif
625 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
627 struct adv76xx_state *state = to_state(sd);
628 unsigned int page = reg >> 8;
630 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
631 return -EINVAL;
633 reg &= 0xff;
635 return regmap_write(state->regmap[page], reg, val);
638 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
639 const struct adv76xx_reg_seq *reg_seq)
641 unsigned int i;
643 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
644 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
647 /* -----------------------------------------------------------------------------
648 * Format helpers
651 static const struct adv76xx_format_info adv7604_formats[] = {
652 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
653 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
654 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
655 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
656 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
657 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
658 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
659 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
660 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
661 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
662 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
663 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
664 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
665 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
666 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
667 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
669 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
670 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
671 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
672 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
673 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
675 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
677 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
678 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
679 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
680 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
685 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
686 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
687 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
688 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
689 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
692 static const struct adv76xx_format_info adv7611_formats[] = {
693 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
694 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
695 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
696 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
697 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
698 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
699 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
700 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
701 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
702 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
703 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
707 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
708 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
709 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
712 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
714 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
716 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
717 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
721 static const struct adv76xx_format_info adv7612_formats[] = {
722 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
723 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
724 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
725 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
726 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
727 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
728 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
734 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
738 static const struct adv76xx_format_info *
739 adv76xx_format_info(struct adv76xx_state *state, u32 code)
741 unsigned int i;
743 for (i = 0; i < state->info->nformats; ++i) {
744 if (state->info->formats[i].code == code)
745 return &state->info->formats[i];
748 return NULL;
751 /* ----------------------------------------------------------------------- */
753 static inline bool is_analog_input(struct v4l2_subdev *sd)
755 struct adv76xx_state *state = to_state(sd);
757 return state->selected_input == ADV7604_PAD_VGA_RGB ||
758 state->selected_input == ADV7604_PAD_VGA_COMP;
761 static inline bool is_digital_input(struct v4l2_subdev *sd)
763 struct adv76xx_state *state = to_state(sd);
765 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
766 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
767 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
768 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
771 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
772 .type = V4L2_DV_BT_656_1120,
773 /* keep this initialization for compatibility with GCC < 4.4.6 */
774 .reserved = { 0 },
775 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
776 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 V4L2_DV_BT_CAP_CUSTOM)
782 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
783 .type = V4L2_DV_BT_656_1120,
784 /* keep this initialization for compatibility with GCC < 4.4.6 */
785 .reserved = { 0 },
786 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
787 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
788 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
789 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
790 V4L2_DV_BT_CAP_CUSTOM)
794 * Return the DV timings capabilities for the requested sink pad. As a special
795 * case, pad value -1 returns the capabilities for the currently selected input.
797 static const struct v4l2_dv_timings_cap *
798 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
800 if (pad == -1) {
801 struct adv76xx_state *state = to_state(sd);
803 pad = state->selected_input;
806 switch (pad) {
807 case ADV76XX_PAD_HDMI_PORT_A:
808 case ADV7604_PAD_HDMI_PORT_B:
809 case ADV7604_PAD_HDMI_PORT_C:
810 case ADV7604_PAD_HDMI_PORT_D:
811 return &adv76xx_timings_cap_digital;
813 case ADV7604_PAD_VGA_RGB:
814 case ADV7604_PAD_VGA_COMP:
815 default:
816 return &adv7604_timings_cap_analog;
821 /* ----------------------------------------------------------------------- */
823 #ifdef CONFIG_VIDEO_ADV_DEBUG
824 static void adv76xx_inv_register(struct v4l2_subdev *sd)
826 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
827 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
828 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
829 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
830 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
831 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
832 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
833 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
834 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
835 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
836 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
837 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
838 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
841 static int adv76xx_g_register(struct v4l2_subdev *sd,
842 struct v4l2_dbg_register *reg)
844 int ret;
846 ret = adv76xx_read_reg(sd, reg->reg);
847 if (ret < 0) {
848 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
849 adv76xx_inv_register(sd);
850 return ret;
853 reg->size = 1;
854 reg->val = ret;
856 return 0;
859 static int adv76xx_s_register(struct v4l2_subdev *sd,
860 const struct v4l2_dbg_register *reg)
862 int ret;
864 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
865 if (ret < 0) {
866 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
867 adv76xx_inv_register(sd);
868 return ret;
871 return 0;
873 #endif
875 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
877 u8 value = io_read(sd, 0x6f);
879 return ((value & 0x10) >> 4)
880 | ((value & 0x08) >> 2)
881 | ((value & 0x04) << 0)
882 | ((value & 0x02) << 2);
885 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
887 u8 value = io_read(sd, 0x6f);
889 return value & 1;
892 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
894 /* Reads CABLE_DET_A_RAW. For input B support, need to
895 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
897 u8 value = io_read(sd, 0x6f);
899 return value & 1;
902 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
904 struct adv76xx_state *state = to_state(sd);
905 const struct adv76xx_chip_info *info = state->info;
906 u16 cable_det = info->read_cable_det(sd);
908 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
911 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
912 u8 prim_mode,
913 const struct adv76xx_video_standards *predef_vid_timings,
914 const struct v4l2_dv_timings *timings)
916 int i;
918 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
919 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
920 is_digital_input(sd) ? 250000 : 1000000, false))
921 continue;
922 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
923 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
924 prim_mode); /* v_freq and prim mode */
925 return 0;
928 return -1;
931 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
932 struct v4l2_dv_timings *timings)
934 struct adv76xx_state *state = to_state(sd);
935 int err;
937 v4l2_dbg(1, debug, sd, "%s", __func__);
939 if (adv76xx_has_afe(state)) {
940 /* reset to default values */
941 io_write(sd, 0x16, 0x43);
942 io_write(sd, 0x17, 0x5a);
944 /* disable embedded syncs for auto graphics mode */
945 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
946 cp_write(sd, 0x8f, 0x00);
947 cp_write(sd, 0x90, 0x00);
948 cp_write(sd, 0xa2, 0x00);
949 cp_write(sd, 0xa3, 0x00);
950 cp_write(sd, 0xa4, 0x00);
951 cp_write(sd, 0xa5, 0x00);
952 cp_write(sd, 0xa6, 0x00);
953 cp_write(sd, 0xa7, 0x00);
954 cp_write(sd, 0xab, 0x00);
955 cp_write(sd, 0xac, 0x00);
957 if (is_analog_input(sd)) {
958 err = find_and_set_predefined_video_timings(sd,
959 0x01, adv7604_prim_mode_comp, timings);
960 if (err)
961 err = find_and_set_predefined_video_timings(sd,
962 0x02, adv7604_prim_mode_gr, timings);
963 } else if (is_digital_input(sd)) {
964 err = find_and_set_predefined_video_timings(sd,
965 0x05, adv76xx_prim_mode_hdmi_comp, timings);
966 if (err)
967 err = find_and_set_predefined_video_timings(sd,
968 0x06, adv76xx_prim_mode_hdmi_gr, timings);
969 } else {
970 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
971 __func__, state->selected_input);
972 err = -1;
976 return err;
979 static void configure_custom_video_timings(struct v4l2_subdev *sd,
980 const struct v4l2_bt_timings *bt)
982 struct adv76xx_state *state = to_state(sd);
983 u32 width = htotal(bt);
984 u32 height = vtotal(bt);
985 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
986 u16 cp_start_eav = width - bt->hfrontporch;
987 u16 cp_start_vbi = height - bt->vfrontporch;
988 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
989 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
990 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
991 const u8 pll[2] = {
992 0xc0 | ((width >> 8) & 0x1f),
993 width & 0xff
996 v4l2_dbg(2, debug, sd, "%s\n", __func__);
998 if (is_analog_input(sd)) {
999 /* auto graphics */
1000 io_write(sd, 0x00, 0x07); /* video std */
1001 io_write(sd, 0x01, 0x02); /* prim mode */
1002 /* enable embedded syncs for auto graphics mode */
1003 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1005 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1006 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1007 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1008 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1009 0x16, pll, 2))
1010 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1012 /* active video - horizontal timing */
1013 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1014 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1015 ((cp_start_eav >> 8) & 0x0f));
1016 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1018 /* active video - vertical timing */
1019 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1020 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1021 ((cp_end_vbi >> 8) & 0xf));
1022 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1023 } else if (is_digital_input(sd)) {
1024 /* set default prim_mode/vid_std for HDMI
1025 according to [REF_03, c. 4.2] */
1026 io_write(sd, 0x00, 0x02); /* video std */
1027 io_write(sd, 0x01, 0x06); /* prim mode */
1028 } else {
1029 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1030 __func__, state->selected_input);
1033 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1034 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1035 cp_write(sd, 0xab, (height >> 4) & 0xff);
1036 cp_write(sd, 0xac, (height & 0x0f) << 4);
1039 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1041 struct adv76xx_state *state = to_state(sd);
1042 u8 offset_buf[4];
1044 if (auto_offset) {
1045 offset_a = 0x3ff;
1046 offset_b = 0x3ff;
1047 offset_c = 0x3ff;
1050 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1051 __func__, auto_offset ? "Auto" : "Manual",
1052 offset_a, offset_b, offset_c);
1054 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1055 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1056 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1057 offset_buf[3] = offset_c & 0x0ff;
1059 /* Registers must be written in this order with no i2c access in between */
1060 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1061 0x77, offset_buf, 4))
1062 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1065 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1067 struct adv76xx_state *state = to_state(sd);
1068 u8 gain_buf[4];
1069 u8 gain_man = 1;
1070 u8 agc_mode_man = 1;
1072 if (auto_gain) {
1073 gain_man = 0;
1074 agc_mode_man = 0;
1075 gain_a = 0x100;
1076 gain_b = 0x100;
1077 gain_c = 0x100;
1080 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1081 __func__, auto_gain ? "Auto" : "Manual",
1082 gain_a, gain_b, gain_c);
1084 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1085 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1086 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1087 gain_buf[3] = ((gain_c & 0x0ff));
1089 /* Registers must be written in this order with no i2c access in between */
1090 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1091 0x73, gain_buf, 4))
1092 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1095 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1097 struct adv76xx_state *state = to_state(sd);
1098 bool rgb_output = io_read(sd, 0x02) & 0x02;
1099 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1100 u8 y = HDMI_COLORSPACE_RGB;
1102 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1103 y = infoframe_read(sd, 0x01) >> 5;
1105 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1106 __func__, state->rgb_quantization_range,
1107 rgb_output, hdmi_signal);
1109 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1110 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1111 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1113 switch (state->rgb_quantization_range) {
1114 case V4L2_DV_RGB_RANGE_AUTO:
1115 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1116 /* Receiving analog RGB signal
1117 * Set RGB full range (0-255) */
1118 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1119 break;
1122 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1123 /* Receiving analog YPbPr signal
1124 * Set automode */
1125 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1126 break;
1129 if (hdmi_signal) {
1130 /* Receiving HDMI signal
1131 * Set automode */
1132 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133 break;
1136 /* Receiving DVI-D signal
1137 * ADV7604 selects RGB limited range regardless of
1138 * input format (CE/IT) in automatic mode */
1139 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1140 /* RGB limited range (16-235) */
1141 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1142 } else {
1143 /* RGB full range (0-255) */
1144 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1146 if (is_digital_input(sd) && rgb_output) {
1147 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1148 } else {
1149 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1150 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1153 break;
1154 case V4L2_DV_RGB_RANGE_LIMITED:
1155 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1156 /* YCrCb limited range (16-235) */
1157 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1158 break;
1161 if (y != HDMI_COLORSPACE_RGB)
1162 break;
1164 /* RGB limited range (16-235) */
1165 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1167 break;
1168 case V4L2_DV_RGB_RANGE_FULL:
1169 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170 /* YCrCb full range (0-255) */
1171 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1172 break;
1175 if (y != HDMI_COLORSPACE_RGB)
1176 break;
1178 /* RGB full range (0-255) */
1179 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1181 if (is_analog_input(sd) || hdmi_signal)
1182 break;
1184 /* Adjust gain/offset for DVI-D signals only */
1185 if (rgb_output) {
1186 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1187 } else {
1188 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1189 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1191 break;
1195 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1197 struct v4l2_subdev *sd =
1198 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1200 struct adv76xx_state *state = to_state(sd);
1202 switch (ctrl->id) {
1203 case V4L2_CID_BRIGHTNESS:
1204 cp_write(sd, 0x3c, ctrl->val);
1205 return 0;
1206 case V4L2_CID_CONTRAST:
1207 cp_write(sd, 0x3a, ctrl->val);
1208 return 0;
1209 case V4L2_CID_SATURATION:
1210 cp_write(sd, 0x3b, ctrl->val);
1211 return 0;
1212 case V4L2_CID_HUE:
1213 cp_write(sd, 0x3d, ctrl->val);
1214 return 0;
1215 case V4L2_CID_DV_RX_RGB_RANGE:
1216 state->rgb_quantization_range = ctrl->val;
1217 set_rgb_quantization_range(sd);
1218 return 0;
1219 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1220 if (!adv76xx_has_afe(state))
1221 return -EINVAL;
1222 /* Set the analog sampling phase. This is needed to find the
1223 best sampling phase for analog video: an application or
1224 driver has to try a number of phases and analyze the picture
1225 quality before settling on the best performing phase. */
1226 afe_write(sd, 0xc8, ctrl->val);
1227 return 0;
1228 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1229 /* Use the default blue color for free running mode,
1230 or supply your own. */
1231 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1232 return 0;
1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1234 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1235 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1236 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1237 return 0;
1239 return -EINVAL;
1242 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1244 struct v4l2_subdev *sd =
1245 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1247 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1248 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1249 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1250 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1251 return 0;
1253 return -EINVAL;
1256 /* ----------------------------------------------------------------------- */
1258 static inline bool no_power(struct v4l2_subdev *sd)
1260 /* Entire chip or CP powered off */
1261 return io_read(sd, 0x0c) & 0x24;
1264 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1266 struct adv76xx_state *state = to_state(sd);
1268 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1271 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1273 struct adv76xx_state *state = to_state(sd);
1274 const struct adv76xx_chip_info *info = state->info;
1276 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1279 static inline bool is_hdmi(struct v4l2_subdev *sd)
1281 return hdmi_read(sd, 0x05) & 0x80;
1284 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1286 struct adv76xx_state *state = to_state(sd);
1289 * Chips without a AFE don't expose registers for the SSPD, so just assume
1290 * that we have a lock.
1292 if (adv76xx_has_afe(state))
1293 return false;
1295 /* TODO channel 2 */
1296 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1299 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1301 /* TODO channel 2 */
1302 return !(cp_read(sd, 0xb1) & 0x80);
1305 static inline bool no_signal(struct v4l2_subdev *sd)
1307 bool ret;
1309 ret = no_power(sd);
1311 ret |= no_lock_stdi(sd);
1312 ret |= no_lock_sspd(sd);
1314 if (is_digital_input(sd)) {
1315 ret |= no_lock_tmds(sd);
1316 ret |= no_signal_tmds(sd);
1319 return ret;
1322 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1324 struct adv76xx_state *state = to_state(sd);
1326 if (!adv76xx_has_afe(state))
1327 return false;
1329 /* CP has detected a non standard number of lines on the incoming
1330 video compared to what it is configured to receive by s_dv_timings */
1331 return io_read(sd, 0x12) & 0x01;
1334 static inline bool in_free_run(struct v4l2_subdev *sd)
1336 return cp_read(sd, 0xff) & 0x10;
1339 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1341 *status = 0;
1342 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1343 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1344 if (!in_free_run(sd) && no_lock_cp(sd))
1345 *status |= is_digital_input(sd) ?
1346 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1348 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1350 return 0;
1353 /* ----------------------------------------------------------------------- */
1355 struct stdi_readback {
1356 u16 bl, lcf, lcvs;
1357 u8 hs_pol, vs_pol;
1358 bool interlaced;
1361 static int stdi2dv_timings(struct v4l2_subdev *sd,
1362 struct stdi_readback *stdi,
1363 struct v4l2_dv_timings *timings)
1365 struct adv76xx_state *state = to_state(sd);
1366 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1367 u32 pix_clk;
1368 int i;
1370 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1371 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1373 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1374 adv76xx_get_dv_timings_cap(sd, -1),
1375 adv76xx_check_dv_timings, NULL))
1376 continue;
1377 if (vtotal(bt) != stdi->lcf + 1)
1378 continue;
1379 if (bt->vsync != stdi->lcvs)
1380 continue;
1382 pix_clk = hfreq * htotal(bt);
1384 if ((pix_clk < bt->pixelclock + 1000000) &&
1385 (pix_clk > bt->pixelclock - 1000000)) {
1386 *timings = v4l2_dv_timings_presets[i];
1387 return 0;
1391 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1392 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1393 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1394 false, timings))
1395 return 0;
1396 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1397 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 false, state->aspect_ratio, timings))
1400 return 0;
1402 v4l2_dbg(2, debug, sd,
1403 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1404 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1405 stdi->hs_pol, stdi->vs_pol);
1406 return -1;
1410 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1412 struct adv76xx_state *state = to_state(sd);
1413 const struct adv76xx_chip_info *info = state->info;
1414 u8 polarity;
1416 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1417 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1418 return -1;
1421 /* read STDI */
1422 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1423 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1424 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1425 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1427 if (adv76xx_has_afe(state)) {
1428 /* read SSPD */
1429 polarity = cp_read(sd, 0xb5);
1430 if ((polarity & 0x03) == 0x01) {
1431 stdi->hs_pol = polarity & 0x10
1432 ? (polarity & 0x08 ? '+' : '-') : 'x';
1433 stdi->vs_pol = polarity & 0x40
1434 ? (polarity & 0x20 ? '+' : '-') : 'x';
1435 } else {
1436 stdi->hs_pol = 'x';
1437 stdi->vs_pol = 'x';
1439 } else {
1440 polarity = hdmi_read(sd, 0x05);
1441 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1442 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1445 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1446 v4l2_dbg(2, debug, sd,
1447 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1448 return -1;
1451 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1452 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1453 memset(stdi, 0, sizeof(struct stdi_readback));
1454 return -1;
1457 v4l2_dbg(2, debug, sd,
1458 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1459 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1460 stdi->hs_pol, stdi->vs_pol,
1461 stdi->interlaced ? "interlaced" : "progressive");
1463 return 0;
1466 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1467 struct v4l2_enum_dv_timings *timings)
1469 struct adv76xx_state *state = to_state(sd);
1471 if (timings->pad >= state->source_pad)
1472 return -EINVAL;
1474 return v4l2_enum_dv_timings_cap(timings,
1475 adv76xx_get_dv_timings_cap(sd, timings->pad),
1476 adv76xx_check_dv_timings, NULL);
1479 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1480 struct v4l2_dv_timings_cap *cap)
1482 struct adv76xx_state *state = to_state(sd);
1483 unsigned int pad = cap->pad;
1485 if (cap->pad >= state->source_pad)
1486 return -EINVAL;
1488 *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1489 cap->pad = pad;
1491 return 0;
1494 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1495 if the format is listed in adv76xx_timings[] */
1496 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1497 struct v4l2_dv_timings *timings)
1499 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1500 is_digital_input(sd) ? 250000 : 1000000,
1501 adv76xx_check_dv_timings, NULL);
1504 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1506 int a, b;
1508 a = hdmi_read(sd, 0x06);
1509 b = hdmi_read(sd, 0x3b);
1510 if (a < 0 || b < 0)
1511 return 0;
1513 return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1516 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1518 int a, b;
1520 a = hdmi_read(sd, 0x51);
1521 b = hdmi_read(sd, 0x52);
1522 if (a < 0 || b < 0)
1523 return 0;
1525 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1528 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1530 struct adv76xx_state *state = to_state(sd);
1531 const struct adv76xx_chip_info *info = state->info;
1532 unsigned int freq, bits_per_channel, pixelrepetition;
1534 freq = info->read_hdmi_pixelclock(sd);
1535 if (is_hdmi(sd)) {
1536 /* adjust for deep color mode and pixel repetition */
1537 bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1538 pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1540 freq = freq * 8 / bits_per_channel / pixelrepetition;
1543 return freq;
1546 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1547 struct v4l2_dv_timings *timings)
1549 struct adv76xx_state *state = to_state(sd);
1550 const struct adv76xx_chip_info *info = state->info;
1551 struct v4l2_bt_timings *bt = &timings->bt;
1552 struct stdi_readback stdi;
1554 if (!timings)
1555 return -EINVAL;
1557 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1559 if (no_signal(sd)) {
1560 state->restart_stdi_once = true;
1561 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1562 return -ENOLINK;
1565 /* read STDI */
1566 if (read_stdi(sd, &stdi)) {
1567 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1568 return -ENOLINK;
1570 bt->interlaced = stdi.interlaced ?
1571 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1573 if (is_digital_input(sd)) {
1574 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1575 u8 vic = 0;
1576 u32 w, h;
1578 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1579 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1581 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1582 vic = infoframe_read(sd, 0x04);
1584 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1585 bt->width == w && bt->height == h)
1586 goto found;
1588 timings->type = V4L2_DV_BT_656_1120;
1590 bt->width = w;
1591 bt->height = h;
1592 bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1593 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1594 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1595 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1596 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1597 info->field0_vfrontporch_mask) / 2;
1598 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1599 bt->vbackporch = hdmi_read16(sd, 0x32,
1600 info->field0_vbackporch_mask) / 2;
1601 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1602 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1603 if (bt->interlaced == V4L2_DV_INTERLACED) {
1604 bt->height += hdmi_read16(sd, 0x0b,
1605 info->field1_height_mask);
1606 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1607 info->field1_vfrontporch_mask) / 2;
1608 bt->il_vsync = hdmi_read16(sd, 0x30,
1609 info->field1_vsync_mask) / 2;
1610 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1611 info->field1_vbackporch_mask) / 2;
1613 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1614 } else {
1615 /* find format
1616 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1617 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1619 if (!stdi2dv_timings(sd, &stdi, timings))
1620 goto found;
1621 stdi.lcvs += 1;
1622 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1623 if (!stdi2dv_timings(sd, &stdi, timings))
1624 goto found;
1625 stdi.lcvs -= 2;
1626 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1627 if (stdi2dv_timings(sd, &stdi, timings)) {
1629 * The STDI block may measure wrong values, especially
1630 * for lcvs and lcf. If the driver can not find any
1631 * valid timing, the STDI block is restarted to measure
1632 * the video timings again. The function will return an
1633 * error, but the restart of STDI will generate a new
1634 * STDI interrupt and the format detection process will
1635 * restart.
1637 if (state->restart_stdi_once) {
1638 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1639 /* TODO restart STDI for Sync Channel 2 */
1640 /* enter one-shot mode */
1641 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1642 /* trigger STDI restart */
1643 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1644 /* reset to continuous mode */
1645 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1646 state->restart_stdi_once = false;
1647 return -ENOLINK;
1649 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1650 return -ERANGE;
1652 state->restart_stdi_once = true;
1654 found:
1656 if (no_signal(sd)) {
1657 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1658 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1659 return -ENOLINK;
1662 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1663 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1664 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1665 __func__, (u32)bt->pixelclock);
1666 return -ERANGE;
1669 if (debug > 1)
1670 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1671 timings, true);
1673 return 0;
1676 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1677 struct v4l2_dv_timings *timings)
1679 struct adv76xx_state *state = to_state(sd);
1680 struct v4l2_bt_timings *bt;
1681 int err;
1683 if (!timings)
1684 return -EINVAL;
1686 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1687 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1688 return 0;
1691 bt = &timings->bt;
1693 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1694 adv76xx_check_dv_timings, NULL))
1695 return -ERANGE;
1697 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1699 state->timings = *timings;
1701 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1703 /* Use prim_mode and vid_std when available */
1704 err = configure_predefined_video_timings(sd, timings);
1705 if (err) {
1706 /* custom settings when the video format
1707 does not have prim_mode/vid_std */
1708 configure_custom_video_timings(sd, bt);
1711 set_rgb_quantization_range(sd);
1713 if (debug > 1)
1714 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1715 timings, true);
1716 return 0;
1719 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1720 struct v4l2_dv_timings *timings)
1722 struct adv76xx_state *state = to_state(sd);
1724 *timings = state->timings;
1725 return 0;
1728 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1730 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1733 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1735 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1738 static void enable_input(struct v4l2_subdev *sd)
1740 struct adv76xx_state *state = to_state(sd);
1742 if (is_analog_input(sd)) {
1743 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1744 } else if (is_digital_input(sd)) {
1745 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1746 state->info->set_termination(sd, true);
1747 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1748 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1749 } else {
1750 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1751 __func__, state->selected_input);
1755 static void disable_input(struct v4l2_subdev *sd)
1757 struct adv76xx_state *state = to_state(sd);
1759 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1760 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1761 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1762 state->info->set_termination(sd, false);
1765 static void select_input(struct v4l2_subdev *sd)
1767 struct adv76xx_state *state = to_state(sd);
1768 const struct adv76xx_chip_info *info = state->info;
1770 if (is_analog_input(sd)) {
1771 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1773 afe_write(sd, 0x00, 0x08); /* power up ADC */
1774 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1775 afe_write(sd, 0xc8, 0x00); /* phase control */
1776 } else if (is_digital_input(sd)) {
1777 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1779 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1781 if (adv76xx_has_afe(state)) {
1782 afe_write(sd, 0x00, 0xff); /* power down ADC */
1783 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1784 afe_write(sd, 0xc8, 0x40); /* phase control */
1787 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1788 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1789 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1790 } else {
1791 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1792 __func__, state->selected_input);
1796 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1797 u32 input, u32 output, u32 config)
1799 struct adv76xx_state *state = to_state(sd);
1801 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1802 __func__, input, state->selected_input);
1804 if (input == state->selected_input)
1805 return 0;
1807 if (input > state->info->max_port)
1808 return -EINVAL;
1810 state->selected_input = input;
1812 disable_input(sd);
1813 select_input(sd);
1814 enable_input(sd);
1816 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1818 return 0;
1821 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1822 struct v4l2_subdev_pad_config *cfg,
1823 struct v4l2_subdev_mbus_code_enum *code)
1825 struct adv76xx_state *state = to_state(sd);
1827 if (code->index >= state->info->nformats)
1828 return -EINVAL;
1830 code->code = state->info->formats[code->index].code;
1832 return 0;
1835 static void adv76xx_fill_format(struct adv76xx_state *state,
1836 struct v4l2_mbus_framefmt *format)
1838 memset(format, 0, sizeof(*format));
1840 format->width = state->timings.bt.width;
1841 format->height = state->timings.bt.height;
1842 format->field = V4L2_FIELD_NONE;
1843 format->colorspace = V4L2_COLORSPACE_SRGB;
1845 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1846 format->colorspace = (state->timings.bt.height <= 576) ?
1847 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1851 * Compute the op_ch_sel value required to obtain on the bus the component order
1852 * corresponding to the selected format taking into account bus reordering
1853 * applied by the board at the output of the device.
1855 * The following table gives the op_ch_value from the format component order
1856 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1857 * adv76xx_bus_order value in row).
1859 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1860 * ----------+-------------------------------------------------
1861 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1862 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1863 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1864 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1865 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1866 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1868 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1870 #define _SEL(a,b,c,d,e,f) { \
1871 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1872 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1873 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1875 static const unsigned int op_ch_sel[6][6] = {
1876 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1877 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1878 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1879 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1880 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1881 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1884 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1887 static void adv76xx_setup_format(struct adv76xx_state *state)
1889 struct v4l2_subdev *sd = &state->sd;
1891 io_write_clr_set(sd, 0x02, 0x02,
1892 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1893 io_write(sd, 0x03, state->format->op_format_sel |
1894 state->pdata.op_format_mode_sel);
1895 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1896 io_write_clr_set(sd, 0x05, 0x01,
1897 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1898 set_rgb_quantization_range(sd);
1901 static int adv76xx_get_format(struct v4l2_subdev *sd,
1902 struct v4l2_subdev_pad_config *cfg,
1903 struct v4l2_subdev_format *format)
1905 struct adv76xx_state *state = to_state(sd);
1907 if (format->pad != state->source_pad)
1908 return -EINVAL;
1910 adv76xx_fill_format(state, &format->format);
1912 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1913 struct v4l2_mbus_framefmt *fmt;
1915 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1916 format->format.code = fmt->code;
1917 } else {
1918 format->format.code = state->format->code;
1921 return 0;
1924 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1925 struct v4l2_subdev_pad_config *cfg,
1926 struct v4l2_subdev_selection *sel)
1928 struct adv76xx_state *state = to_state(sd);
1930 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1931 return -EINVAL;
1932 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1933 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1934 return -EINVAL;
1936 sel->r.left = 0;
1937 sel->r.top = 0;
1938 sel->r.width = state->timings.bt.width;
1939 sel->r.height = state->timings.bt.height;
1941 return 0;
1944 static int adv76xx_set_format(struct v4l2_subdev *sd,
1945 struct v4l2_subdev_pad_config *cfg,
1946 struct v4l2_subdev_format *format)
1948 struct adv76xx_state *state = to_state(sd);
1949 const struct adv76xx_format_info *info;
1951 if (format->pad != state->source_pad)
1952 return -EINVAL;
1954 info = adv76xx_format_info(state, format->format.code);
1955 if (!info)
1956 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1958 adv76xx_fill_format(state, &format->format);
1959 format->format.code = info->code;
1961 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1962 struct v4l2_mbus_framefmt *fmt;
1964 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1965 fmt->code = format->format.code;
1966 } else {
1967 state->format = info;
1968 adv76xx_setup_format(state);
1971 return 0;
1974 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1975 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1977 struct adv76xx_state *state = to_state(sd);
1979 if ((cec_read(sd, 0x11) & 0x01) == 0) {
1980 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1981 return;
1984 if (tx_raw_status & 0x02) {
1985 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1986 __func__);
1987 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1988 1, 0, 0, 0);
1989 return;
1991 if (tx_raw_status & 0x04) {
1992 u8 status;
1993 u8 nack_cnt;
1994 u8 low_drive_cnt;
1996 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1998 * We set this status bit since this hardware performs
1999 * retransmissions.
2001 status = CEC_TX_STATUS_MAX_RETRIES;
2002 nack_cnt = cec_read(sd, 0x14) & 0xf;
2003 if (nack_cnt)
2004 status |= CEC_TX_STATUS_NACK;
2005 low_drive_cnt = cec_read(sd, 0x14) >> 4;
2006 if (low_drive_cnt)
2007 status |= CEC_TX_STATUS_LOW_DRIVE;
2008 cec_transmit_done(state->cec_adap, status,
2009 0, nack_cnt, low_drive_cnt, 0);
2010 return;
2012 if (tx_raw_status & 0x01) {
2013 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2014 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2015 return;
2019 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2021 struct adv76xx_state *state = to_state(sd);
2022 const struct adv76xx_chip_info *info = state->info;
2023 u8 cec_irq;
2025 /* cec controller */
2026 cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2027 if (!cec_irq)
2028 return;
2030 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2031 adv76xx_cec_tx_raw_status(sd, cec_irq);
2032 if (cec_irq & 0x08) {
2033 struct cec_msg msg;
2035 msg.len = cec_read(sd, 0x25) & 0x1f;
2036 if (msg.len > 16)
2037 msg.len = 16;
2039 if (msg.len) {
2040 u8 i;
2042 for (i = 0; i < msg.len; i++)
2043 msg.msg[i] = cec_read(sd, i + 0x15);
2044 cec_write(sd, info->cec_rx_enable,
2045 info->cec_rx_enable_mask); /* re-enable rx */
2046 cec_received_msg(state->cec_adap, &msg);
2050 if (info->cec_irq_swap) {
2052 * Note: the bit order is swapped between 0x4d and 0x4e
2053 * on adv7604
2055 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2056 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2058 io_write(sd, info->cec_irq_status + 1, cec_irq);
2060 if (handled)
2061 *handled = true;
2064 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2066 struct adv76xx_state *state = cec_get_drvdata(adap);
2067 const struct adv76xx_chip_info *info = state->info;
2068 struct v4l2_subdev *sd = &state->sd;
2070 if (!state->cec_enabled_adap && enable) {
2071 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2072 cec_write(sd, 0x2c, 0x01); /* cec soft reset */
2073 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2074 /* enabled irqs: */
2075 /* tx: ready */
2076 /* tx: arbitration lost */
2077 /* tx: retry timeout */
2078 /* rx: ready */
2079 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2080 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2081 } else if (state->cec_enabled_adap && !enable) {
2082 /* disable cec interrupts */
2083 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2084 /* disable address mask 1-3 */
2085 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2086 /* power down cec section */
2087 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2088 state->cec_valid_addrs = 0;
2090 state->cec_enabled_adap = enable;
2091 adv76xx_s_detect_tx_5v_ctrl(sd);
2092 return 0;
2095 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2097 struct adv76xx_state *state = cec_get_drvdata(adap);
2098 struct v4l2_subdev *sd = &state->sd;
2099 unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2101 if (!state->cec_enabled_adap)
2102 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2104 if (addr == CEC_LOG_ADDR_INVALID) {
2105 cec_write_clr_set(sd, 0x27, 0x70, 0);
2106 state->cec_valid_addrs = 0;
2107 return 0;
2110 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2111 bool is_valid = state->cec_valid_addrs & (1 << i);
2113 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2114 free_idx = i;
2115 if (is_valid && state->cec_addr[i] == addr)
2116 return 0;
2118 if (i == ADV76XX_MAX_ADDRS) {
2119 i = free_idx;
2120 if (i == ADV76XX_MAX_ADDRS)
2121 return -ENXIO;
2123 state->cec_addr[i] = addr;
2124 state->cec_valid_addrs |= 1 << i;
2126 switch (i) {
2127 case 0:
2128 /* enable address mask 0 */
2129 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2130 /* set address for mask 0 */
2131 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2132 break;
2133 case 1:
2134 /* enable address mask 1 */
2135 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2136 /* set address for mask 1 */
2137 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2138 break;
2139 case 2:
2140 /* enable address mask 2 */
2141 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2142 /* set address for mask 1 */
2143 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2144 break;
2146 return 0;
2149 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2150 u32 signal_free_time, struct cec_msg *msg)
2152 struct adv76xx_state *state = cec_get_drvdata(adap);
2153 struct v4l2_subdev *sd = &state->sd;
2154 u8 len = msg->len;
2155 unsigned int i;
2158 * The number of retries is the number of attempts - 1, but retry
2159 * at least once. It's not clear if a value of 0 is allowed, so
2160 * let's do at least one retry.
2162 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2164 if (len > 16) {
2165 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2166 return -EINVAL;
2169 /* write data */
2170 for (i = 0; i < len; i++)
2171 cec_write(sd, i, msg->msg[i]);
2173 /* set length (data + header) */
2174 cec_write(sd, 0x10, len);
2175 /* start transmit, enable tx */
2176 cec_write(sd, 0x11, 0x01);
2177 return 0;
2180 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2181 .adap_enable = adv76xx_cec_adap_enable,
2182 .adap_log_addr = adv76xx_cec_adap_log_addr,
2183 .adap_transmit = adv76xx_cec_adap_transmit,
2185 #endif
2187 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2189 struct adv76xx_state *state = to_state(sd);
2190 const struct adv76xx_chip_info *info = state->info;
2191 const u8 irq_reg_0x43 = io_read(sd, 0x43);
2192 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2193 const u8 irq_reg_0x70 = io_read(sd, 0x70);
2194 u8 fmt_change_digital;
2195 u8 fmt_change;
2196 u8 tx_5v;
2198 if (irq_reg_0x43)
2199 io_write(sd, 0x44, irq_reg_0x43);
2200 if (irq_reg_0x70)
2201 io_write(sd, 0x71, irq_reg_0x70);
2202 if (irq_reg_0x6b)
2203 io_write(sd, 0x6c, irq_reg_0x6b);
2205 v4l2_dbg(2, debug, sd, "%s: ", __func__);
2207 /* format change */
2208 fmt_change = irq_reg_0x43 & 0x98;
2209 fmt_change_digital = is_digital_input(sd)
2210 ? irq_reg_0x6b & info->fmt_change_digital_mask
2211 : 0;
2213 if (fmt_change || fmt_change_digital) {
2214 v4l2_dbg(1, debug, sd,
2215 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2216 __func__, fmt_change, fmt_change_digital);
2218 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2220 if (handled)
2221 *handled = true;
2223 /* HDMI/DVI mode */
2224 if (irq_reg_0x6b & 0x01) {
2225 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2226 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2227 set_rgb_quantization_range(sd);
2228 if (handled)
2229 *handled = true;
2232 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2233 /* cec */
2234 adv76xx_cec_isr(sd, handled);
2235 #endif
2237 /* tx 5v detect */
2238 tx_5v = irq_reg_0x70 & info->cable_det_mask;
2239 if (tx_5v) {
2240 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2241 adv76xx_s_detect_tx_5v_ctrl(sd);
2242 if (handled)
2243 *handled = true;
2245 return 0;
2248 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2250 struct adv76xx_state *state = dev_id;
2251 bool handled = false;
2253 adv76xx_isr(&state->sd, 0, &handled);
2255 return handled ? IRQ_HANDLED : IRQ_NONE;
2258 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2260 struct adv76xx_state *state = to_state(sd);
2261 u8 *data = NULL;
2263 memset(edid->reserved, 0, sizeof(edid->reserved));
2265 switch (edid->pad) {
2266 case ADV76XX_PAD_HDMI_PORT_A:
2267 case ADV7604_PAD_HDMI_PORT_B:
2268 case ADV7604_PAD_HDMI_PORT_C:
2269 case ADV7604_PAD_HDMI_PORT_D:
2270 if (state->edid.present & (1 << edid->pad))
2271 data = state->edid.edid;
2272 break;
2273 default:
2274 return -EINVAL;
2277 if (edid->start_block == 0 && edid->blocks == 0) {
2278 edid->blocks = data ? state->edid.blocks : 0;
2279 return 0;
2282 if (!data)
2283 return -ENODATA;
2285 if (edid->start_block >= state->edid.blocks)
2286 return -EINVAL;
2288 if (edid->start_block + edid->blocks > state->edid.blocks)
2289 edid->blocks = state->edid.blocks - edid->start_block;
2291 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2293 return 0;
2296 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2298 struct adv76xx_state *state = to_state(sd);
2299 const struct adv76xx_chip_info *info = state->info;
2300 unsigned int spa_loc;
2301 u16 pa;
2302 int err;
2303 int i;
2305 memset(edid->reserved, 0, sizeof(edid->reserved));
2307 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2308 return -EINVAL;
2309 if (edid->start_block != 0)
2310 return -EINVAL;
2311 if (edid->blocks == 0) {
2312 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2313 state->edid.present &= ~(1 << edid->pad);
2314 adv76xx_set_hpd(state, state->edid.present);
2315 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2317 /* Fall back to a 16:9 aspect ratio */
2318 state->aspect_ratio.numerator = 16;
2319 state->aspect_ratio.denominator = 9;
2321 if (!state->edid.present) {
2322 state->edid.blocks = 0;
2323 cec_phys_addr_invalidate(state->cec_adap);
2326 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2327 __func__, edid->pad, state->edid.present);
2328 return 0;
2330 if (edid->blocks > 2) {
2331 edid->blocks = 2;
2332 return -E2BIG;
2334 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2335 err = v4l2_phys_addr_validate(pa, &pa, NULL);
2336 if (err)
2337 return err;
2339 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2340 __func__, edid->pad, state->edid.present);
2342 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2343 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2344 adv76xx_set_hpd(state, 0);
2345 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2348 * Return an error if no location of the source physical address
2349 * was found.
2351 if (spa_loc == 0)
2352 return -EINVAL;
2354 switch (edid->pad) {
2355 case ADV76XX_PAD_HDMI_PORT_A:
2356 state->spa_port_a[0] = edid->edid[spa_loc];
2357 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2358 break;
2359 case ADV7604_PAD_HDMI_PORT_B:
2360 rep_write(sd, 0x70, edid->edid[spa_loc]);
2361 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2362 break;
2363 case ADV7604_PAD_HDMI_PORT_C:
2364 rep_write(sd, 0x72, edid->edid[spa_loc]);
2365 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2366 break;
2367 case ADV7604_PAD_HDMI_PORT_D:
2368 rep_write(sd, 0x74, edid->edid[spa_loc]);
2369 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2370 break;
2371 default:
2372 return -EINVAL;
2375 if (info->type == ADV7604) {
2376 rep_write(sd, 0x76, spa_loc & 0xff);
2377 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2378 } else {
2379 /* ADV7612 Software Manual Rev. A, p. 15 */
2380 rep_write(sd, 0x70, spa_loc & 0xff);
2381 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2384 edid->edid[spa_loc] = state->spa_port_a[0];
2385 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2387 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2388 state->edid.blocks = edid->blocks;
2389 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2390 edid->edid[0x16]);
2391 state->edid.present |= 1 << edid->pad;
2393 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2394 if (err < 0) {
2395 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2396 return err;
2399 /* adv76xx calculates the checksums and enables I2C access to internal
2400 EDID RAM from DDC port. */
2401 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2403 for (i = 0; i < 1000; i++) {
2404 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2405 break;
2406 mdelay(1);
2408 if (i == 1000) {
2409 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2410 return -EIO;
2412 cec_s_phys_addr(state->cec_adap, pa, false);
2414 /* enable hotplug after 100 ms */
2415 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2416 return 0;
2419 /*********** avi info frame CEA-861-E **************/
2421 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2422 { "AVI", 0x01, 0xe0, 0x00 },
2423 { "Audio", 0x02, 0xe3, 0x1c },
2424 { "SDP", 0x04, 0xe6, 0x2a },
2425 { "Vendor", 0x10, 0xec, 0x54 }
2428 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2429 union hdmi_infoframe *frame)
2431 uint8_t buffer[32];
2432 u8 len;
2433 int i;
2435 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2436 v4l2_info(sd, "%s infoframe not received\n",
2437 adv76xx_cri[index].desc);
2438 return -ENOENT;
2441 for (i = 0; i < 3; i++)
2442 buffer[i] = infoframe_read(sd,
2443 adv76xx_cri[index].head_addr + i);
2445 len = buffer[2] + 1;
2447 if (len + 3 > sizeof(buffer)) {
2448 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2449 adv76xx_cri[index].desc, len);
2450 return -ENOENT;
2453 for (i = 0; i < len; i++)
2454 buffer[i + 3] = infoframe_read(sd,
2455 adv76xx_cri[index].payload_addr + i);
2457 if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2458 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2459 adv76xx_cri[index].desc);
2460 return -ENOENT;
2462 return 0;
2465 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2467 int i;
2469 if (!is_hdmi(sd)) {
2470 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2471 return;
2474 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2475 union hdmi_infoframe frame;
2476 struct i2c_client *client = v4l2_get_subdevdata(sd);
2478 if (adv76xx_read_infoframe(sd, i, &frame))
2479 return;
2480 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2484 static int adv76xx_log_status(struct v4l2_subdev *sd)
2486 struct adv76xx_state *state = to_state(sd);
2487 const struct adv76xx_chip_info *info = state->info;
2488 struct v4l2_dv_timings timings;
2489 struct stdi_readback stdi;
2490 u8 reg_io_0x02 = io_read(sd, 0x02);
2491 u8 edid_enabled;
2492 u8 cable_det;
2494 static const char * const csc_coeff_sel_rb[16] = {
2495 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2496 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2497 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2498 "reserved", "reserved", "reserved", "reserved", "manual"
2500 static const char * const input_color_space_txt[16] = {
2501 "RGB limited range (16-235)", "RGB full range (0-255)",
2502 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2503 "xvYCC Bt.601", "xvYCC Bt.709",
2504 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2505 "invalid", "invalid", "invalid", "invalid", "invalid",
2506 "invalid", "invalid", "automatic"
2508 static const char * const hdmi_color_space_txt[16] = {
2509 "RGB limited range (16-235)", "RGB full range (0-255)",
2510 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2511 "xvYCC Bt.601", "xvYCC Bt.709",
2512 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2513 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2514 "invalid", "invalid", "invalid"
2516 static const char * const rgb_quantization_range_txt[] = {
2517 "Automatic",
2518 "RGB limited range (16-235)",
2519 "RGB full range (0-255)",
2521 static const char * const deep_color_mode_txt[4] = {
2522 "8-bits per channel",
2523 "10-bits per channel",
2524 "12-bits per channel",
2525 "16-bits per channel (not supported)"
2528 v4l2_info(sd, "-----Chip status-----\n");
2529 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2530 edid_enabled = rep_read(sd, info->edid_status_reg);
2531 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2532 ((edid_enabled & 0x01) ? "Yes" : "No"),
2533 ((edid_enabled & 0x02) ? "Yes" : "No"),
2534 ((edid_enabled & 0x04) ? "Yes" : "No"),
2535 ((edid_enabled & 0x08) ? "Yes" : "No"));
2536 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2537 "enabled" : "disabled");
2538 if (state->cec_enabled_adap) {
2539 int i;
2541 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2542 bool is_valid = state->cec_valid_addrs & (1 << i);
2544 if (is_valid)
2545 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2546 state->cec_addr[i]);
2550 v4l2_info(sd, "-----Signal status-----\n");
2551 cable_det = info->read_cable_det(sd);
2552 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2553 ((cable_det & 0x01) ? "Yes" : "No"),
2554 ((cable_det & 0x02) ? "Yes" : "No"),
2555 ((cable_det & 0x04) ? "Yes" : "No"),
2556 ((cable_det & 0x08) ? "Yes" : "No"));
2557 v4l2_info(sd, "TMDS signal detected: %s\n",
2558 no_signal_tmds(sd) ? "false" : "true");
2559 v4l2_info(sd, "TMDS signal locked: %s\n",
2560 no_lock_tmds(sd) ? "false" : "true");
2561 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2562 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2563 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2564 v4l2_info(sd, "CP free run: %s\n",
2565 (in_free_run(sd)) ? "on" : "off");
2566 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2567 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2568 (io_read(sd, 0x01) & 0x70) >> 4);
2570 v4l2_info(sd, "-----Video Timings-----\n");
2571 if (read_stdi(sd, &stdi))
2572 v4l2_info(sd, "STDI: not locked\n");
2573 else
2574 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2575 stdi.lcf, stdi.bl, stdi.lcvs,
2576 stdi.interlaced ? "interlaced" : "progressive",
2577 stdi.hs_pol, stdi.vs_pol);
2578 if (adv76xx_query_dv_timings(sd, &timings))
2579 v4l2_info(sd, "No video detected\n");
2580 else
2581 v4l2_print_dv_timings(sd->name, "Detected format: ",
2582 &timings, true);
2583 v4l2_print_dv_timings(sd->name, "Configured format: ",
2584 &state->timings, true);
2586 if (no_signal(sd))
2587 return 0;
2589 v4l2_info(sd, "-----Color space-----\n");
2590 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2591 rgb_quantization_range_txt[state->rgb_quantization_range]);
2592 v4l2_info(sd, "Input color space: %s\n",
2593 input_color_space_txt[reg_io_0x02 >> 4]);
2594 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2595 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2596 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2597 "(16-235)" : "(0-255)",
2598 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2599 v4l2_info(sd, "Color space conversion: %s\n",
2600 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2602 if (!is_digital_input(sd))
2603 return 0;
2605 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2606 v4l2_info(sd, "Digital video port selected: %c\n",
2607 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2608 v4l2_info(sd, "HDCP encrypted content: %s\n",
2609 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2610 v4l2_info(sd, "HDCP keys read: %s%s\n",
2611 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2612 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2613 if (is_hdmi(sd)) {
2614 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2615 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2616 bool audio_mute = io_read(sd, 0x65) & 0x40;
2618 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2619 audio_pll_locked ? "locked" : "not locked",
2620 audio_sample_packet_detect ? "detected" : "not detected",
2621 audio_mute ? "muted" : "enabled");
2622 if (audio_pll_locked && audio_sample_packet_detect) {
2623 v4l2_info(sd, "Audio format: %s\n",
2624 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2626 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2627 (hdmi_read(sd, 0x5c) << 8) +
2628 (hdmi_read(sd, 0x5d) & 0xf0));
2629 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2630 (hdmi_read(sd, 0x5e) << 8) +
2631 hdmi_read(sd, 0x5f));
2632 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2634 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2635 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2637 adv76xx_log_infoframes(sd);
2640 return 0;
2643 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2644 struct v4l2_fh *fh,
2645 struct v4l2_event_subscription *sub)
2647 switch (sub->type) {
2648 case V4L2_EVENT_SOURCE_CHANGE:
2649 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2650 case V4L2_EVENT_CTRL:
2651 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2652 default:
2653 return -EINVAL;
2657 static int adv76xx_registered(struct v4l2_subdev *sd)
2659 struct adv76xx_state *state = to_state(sd);
2660 struct i2c_client *client = v4l2_get_subdevdata(sd);
2661 int err;
2663 err = cec_register_adapter(state->cec_adap, &client->dev);
2664 if (err)
2665 cec_delete_adapter(state->cec_adap);
2666 return err;
2669 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2671 struct adv76xx_state *state = to_state(sd);
2673 cec_unregister_adapter(state->cec_adap);
2676 /* ----------------------------------------------------------------------- */
2678 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2679 .s_ctrl = adv76xx_s_ctrl,
2680 .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2683 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2684 .log_status = adv76xx_log_status,
2685 .interrupt_service_routine = adv76xx_isr,
2686 .subscribe_event = adv76xx_subscribe_event,
2687 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2688 #ifdef CONFIG_VIDEO_ADV_DEBUG
2689 .g_register = adv76xx_g_register,
2690 .s_register = adv76xx_s_register,
2691 #endif
2694 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2695 .s_routing = adv76xx_s_routing,
2696 .g_input_status = adv76xx_g_input_status,
2697 .s_dv_timings = adv76xx_s_dv_timings,
2698 .g_dv_timings = adv76xx_g_dv_timings,
2699 .query_dv_timings = adv76xx_query_dv_timings,
2702 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2703 .enum_mbus_code = adv76xx_enum_mbus_code,
2704 .get_selection = adv76xx_get_selection,
2705 .get_fmt = adv76xx_get_format,
2706 .set_fmt = adv76xx_set_format,
2707 .get_edid = adv76xx_get_edid,
2708 .set_edid = adv76xx_set_edid,
2709 .dv_timings_cap = adv76xx_dv_timings_cap,
2710 .enum_dv_timings = adv76xx_enum_dv_timings,
2713 static const struct v4l2_subdev_ops adv76xx_ops = {
2714 .core = &adv76xx_core_ops,
2715 .video = &adv76xx_video_ops,
2716 .pad = &adv76xx_pad_ops,
2719 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2720 .registered = adv76xx_registered,
2721 .unregistered = adv76xx_unregistered,
2724 /* -------------------------- custom ctrls ---------------------------------- */
2726 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2727 .ops = &adv76xx_ctrl_ops,
2728 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2729 .name = "Analog Sampling Phase",
2730 .type = V4L2_CTRL_TYPE_INTEGER,
2731 .min = 0,
2732 .max = 0x1f,
2733 .step = 1,
2734 .def = 0,
2737 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2738 .ops = &adv76xx_ctrl_ops,
2739 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2740 .name = "Free Running Color, Manual",
2741 .type = V4L2_CTRL_TYPE_BOOLEAN,
2742 .min = false,
2743 .max = true,
2744 .step = 1,
2745 .def = false,
2748 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2749 .ops = &adv76xx_ctrl_ops,
2750 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2751 .name = "Free Running Color",
2752 .type = V4L2_CTRL_TYPE_INTEGER,
2753 .min = 0x0,
2754 .max = 0xffffff,
2755 .step = 0x1,
2756 .def = 0x0,
2759 /* ----------------------------------------------------------------------- */
2761 struct adv76xx_register_map {
2762 const char *name;
2763 u8 default_addr;
2766 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2767 [ADV76XX_PAGE_IO] = { "main", 0x4c },
2768 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2769 [ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2770 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2771 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2772 [ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2773 [ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2774 [ADV76XX_PAGE_REP] = { "rep", 0x32 },
2775 [ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2776 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2777 [ADV76XX_PAGE_TEST] = { "test", 0x30 },
2778 [ADV76XX_PAGE_CP] = { "cp", 0x22 },
2779 [ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2782 static int adv76xx_core_init(struct v4l2_subdev *sd)
2784 struct adv76xx_state *state = to_state(sd);
2785 const struct adv76xx_chip_info *info = state->info;
2786 struct adv76xx_platform_data *pdata = &state->pdata;
2788 hdmi_write(sd, 0x48,
2789 (pdata->disable_pwrdnb ? 0x80 : 0) |
2790 (pdata->disable_cable_det_rst ? 0x40 : 0));
2792 disable_input(sd);
2794 if (pdata->default_input >= 0 &&
2795 pdata->default_input < state->source_pad) {
2796 state->selected_input = pdata->default_input;
2797 select_input(sd);
2798 enable_input(sd);
2801 /* power */
2802 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2803 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2804 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2806 /* video format */
2807 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2808 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2809 pdata->insert_av_codes << 2 |
2810 pdata->replicate_av_codes << 1);
2811 adv76xx_setup_format(state);
2813 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2815 /* VS, HS polarities */
2816 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2817 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2819 /* Adjust drive strength */
2820 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2821 pdata->dr_str_clk << 2 |
2822 pdata->dr_str_sync);
2824 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2825 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2826 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2827 ADI recommended setting [REF_01, c. 2.3.3] */
2828 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2829 ADI recommended setting [REF_01, c. 2.3.3] */
2830 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2831 for digital formats */
2833 /* HDMI audio */
2834 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2835 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2836 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2838 /* TODO from platform data */
2839 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2841 if (adv76xx_has_afe(state)) {
2842 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2843 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2846 /* interrupts */
2847 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2848 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2849 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2850 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2851 info->setup_irqs(sd);
2853 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2856 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2858 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2861 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2863 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2866 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2868 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2871 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2873 unsigned int i;
2875 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2876 i2c_unregister_device(state->i2c_clients[i]);
2879 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2880 unsigned int page)
2882 struct i2c_client *client = v4l2_get_subdevdata(sd);
2883 struct adv76xx_state *state = to_state(sd);
2884 struct adv76xx_platform_data *pdata = &state->pdata;
2885 unsigned int io_reg = 0xf2 + page;
2886 struct i2c_client *new_client;
2888 if (pdata && pdata->i2c_addresses[page])
2889 new_client = i2c_new_dummy_device(client->adapter,
2890 pdata->i2c_addresses[page]);
2891 else
2892 new_client = i2c_new_ancillary_device(client,
2893 adv76xx_default_addresses[page].name,
2894 adv76xx_default_addresses[page].default_addr);
2896 if (!IS_ERR(new_client))
2897 io_write(sd, io_reg, new_client->addr << 1);
2899 return new_client;
2902 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2903 /* reset ADI recommended settings for HDMI: */
2904 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2907 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2908 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2909 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2910 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2911 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2912 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2913 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2914 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2915 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2916 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2918 /* set ADI recommended settings for digitizer */
2919 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2920 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2921 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2922 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2923 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2924 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2926 { ADV76XX_REG_SEQ_TERM, 0 },
2929 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2930 /* set ADI recommended settings for HDMI: */
2931 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2932 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2933 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2934 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2935 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2936 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2937 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2938 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2939 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2940 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2941 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2942 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2944 /* reset ADI recommended settings for digitizer */
2945 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2946 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2947 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2949 { ADV76XX_REG_SEQ_TERM, 0 },
2952 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2953 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2954 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2955 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2956 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2957 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2958 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2959 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2960 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2961 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2962 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2963 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2964 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2966 { ADV76XX_REG_SEQ_TERM, 0 },
2969 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2970 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2971 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2972 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2973 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2974 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2975 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2976 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2977 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2978 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2979 { ADV76XX_REG_SEQ_TERM, 0 },
2982 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2983 [ADV7604] = {
2984 .type = ADV7604,
2985 .has_afe = true,
2986 .max_port = ADV7604_PAD_VGA_COMP,
2987 .num_dv_ports = 4,
2988 .edid_enable_reg = 0x77,
2989 .edid_status_reg = 0x7d,
2990 .lcf_reg = 0xb3,
2991 .tdms_lock_mask = 0xe0,
2992 .cable_det_mask = 0x1e,
2993 .fmt_change_digital_mask = 0xc1,
2994 .cp_csc = 0xfc,
2995 .cec_irq_status = 0x4d,
2996 .cec_rx_enable = 0x26,
2997 .cec_rx_enable_mask = 0x01,
2998 .cec_irq_swap = true,
2999 .formats = adv7604_formats,
3000 .nformats = ARRAY_SIZE(adv7604_formats),
3001 .set_termination = adv7604_set_termination,
3002 .setup_irqs = adv7604_setup_irqs,
3003 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3004 .read_cable_det = adv7604_read_cable_det,
3005 .recommended_settings = {
3006 [0] = adv7604_recommended_settings_afe,
3007 [1] = adv7604_recommended_settings_hdmi,
3009 .num_recommended_settings = {
3010 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3011 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3013 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3014 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3015 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3016 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3017 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3018 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3019 BIT(ADV7604_PAGE_VDP),
3020 .linewidth_mask = 0xfff,
3021 .field0_height_mask = 0xfff,
3022 .field1_height_mask = 0xfff,
3023 .hfrontporch_mask = 0x3ff,
3024 .hsync_mask = 0x3ff,
3025 .hbackporch_mask = 0x3ff,
3026 .field0_vfrontporch_mask = 0x1fff,
3027 .field0_vsync_mask = 0x1fff,
3028 .field0_vbackporch_mask = 0x1fff,
3029 .field1_vfrontporch_mask = 0x1fff,
3030 .field1_vsync_mask = 0x1fff,
3031 .field1_vbackporch_mask = 0x1fff,
3033 [ADV7611] = {
3034 .type = ADV7611,
3035 .has_afe = false,
3036 .max_port = ADV76XX_PAD_HDMI_PORT_A,
3037 .num_dv_ports = 1,
3038 .edid_enable_reg = 0x74,
3039 .edid_status_reg = 0x76,
3040 .lcf_reg = 0xa3,
3041 .tdms_lock_mask = 0x43,
3042 .cable_det_mask = 0x01,
3043 .fmt_change_digital_mask = 0x03,
3044 .cp_csc = 0xf4,
3045 .cec_irq_status = 0x93,
3046 .cec_rx_enable = 0x2c,
3047 .cec_rx_enable_mask = 0x02,
3048 .formats = adv7611_formats,
3049 .nformats = ARRAY_SIZE(adv7611_formats),
3050 .set_termination = adv7611_set_termination,
3051 .setup_irqs = adv7611_setup_irqs,
3052 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3053 .read_cable_det = adv7611_read_cable_det,
3054 .recommended_settings = {
3055 [1] = adv7611_recommended_settings_hdmi,
3057 .num_recommended_settings = {
3058 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3060 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3061 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3062 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3063 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3064 .linewidth_mask = 0x1fff,
3065 .field0_height_mask = 0x1fff,
3066 .field1_height_mask = 0x1fff,
3067 .hfrontporch_mask = 0x1fff,
3068 .hsync_mask = 0x1fff,
3069 .hbackporch_mask = 0x1fff,
3070 .field0_vfrontporch_mask = 0x3fff,
3071 .field0_vsync_mask = 0x3fff,
3072 .field0_vbackporch_mask = 0x3fff,
3073 .field1_vfrontporch_mask = 0x3fff,
3074 .field1_vsync_mask = 0x3fff,
3075 .field1_vbackporch_mask = 0x3fff,
3077 [ADV7612] = {
3078 .type = ADV7612,
3079 .has_afe = false,
3080 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
3081 .num_dv_ports = 1, /* normally 2 */
3082 .edid_enable_reg = 0x74,
3083 .edid_status_reg = 0x76,
3084 .lcf_reg = 0xa3,
3085 .tdms_lock_mask = 0x43,
3086 .cable_det_mask = 0x01,
3087 .fmt_change_digital_mask = 0x03,
3088 .cp_csc = 0xf4,
3089 .cec_irq_status = 0x93,
3090 .cec_rx_enable = 0x2c,
3091 .cec_rx_enable_mask = 0x02,
3092 .formats = adv7612_formats,
3093 .nformats = ARRAY_SIZE(adv7612_formats),
3094 .set_termination = adv7611_set_termination,
3095 .setup_irqs = adv7612_setup_irqs,
3096 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3097 .read_cable_det = adv7612_read_cable_det,
3098 .recommended_settings = {
3099 [1] = adv7612_recommended_settings_hdmi,
3101 .num_recommended_settings = {
3102 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3104 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3105 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3106 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3107 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3108 .linewidth_mask = 0x1fff,
3109 .field0_height_mask = 0x1fff,
3110 .field1_height_mask = 0x1fff,
3111 .hfrontporch_mask = 0x1fff,
3112 .hsync_mask = 0x1fff,
3113 .hbackporch_mask = 0x1fff,
3114 .field0_vfrontporch_mask = 0x3fff,
3115 .field0_vsync_mask = 0x3fff,
3116 .field0_vbackporch_mask = 0x3fff,
3117 .field1_vfrontporch_mask = 0x3fff,
3118 .field1_vsync_mask = 0x3fff,
3119 .field1_vbackporch_mask = 0x3fff,
3123 static const struct i2c_device_id adv76xx_i2c_id[] = {
3124 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3125 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3126 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3129 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3131 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3132 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3133 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3136 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3138 static int adv76xx_parse_dt(struct adv76xx_state *state)
3140 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3141 struct device_node *endpoint;
3142 struct device_node *np;
3143 unsigned int flags;
3144 int ret;
3145 u32 v;
3147 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3149 /* Parse the endpoint. */
3150 endpoint = of_graph_get_next_endpoint(np, NULL);
3151 if (!endpoint)
3152 return -EINVAL;
3154 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3155 of_node_put(endpoint);
3156 if (ret)
3157 return ret;
3159 if (!of_property_read_u32(np, "default-input", &v))
3160 state->pdata.default_input = v;
3161 else
3162 state->pdata.default_input = -1;
3164 flags = bus_cfg.bus.parallel.flags;
3166 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3167 state->pdata.inv_hs_pol = 1;
3169 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3170 state->pdata.inv_vs_pol = 1;
3172 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3173 state->pdata.inv_llc_pol = 1;
3175 if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3176 state->pdata.insert_av_codes = 1;
3178 /* Disable the interrupt for now as no DT-based board uses it. */
3179 state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3181 /* Hardcode the remaining platform data fields. */
3182 state->pdata.disable_pwrdnb = 0;
3183 state->pdata.disable_cable_det_rst = 0;
3184 state->pdata.blank_data = 1;
3185 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3186 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3187 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3188 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3189 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3191 return 0;
3194 static const struct regmap_config adv76xx_regmap_cnf[] = {
3196 .name = "io",
3197 .reg_bits = 8,
3198 .val_bits = 8,
3200 .max_register = 0xff,
3201 .cache_type = REGCACHE_NONE,
3204 .name = "avlink",
3205 .reg_bits = 8,
3206 .val_bits = 8,
3208 .max_register = 0xff,
3209 .cache_type = REGCACHE_NONE,
3212 .name = "cec",
3213 .reg_bits = 8,
3214 .val_bits = 8,
3216 .max_register = 0xff,
3217 .cache_type = REGCACHE_NONE,
3220 .name = "infoframe",
3221 .reg_bits = 8,
3222 .val_bits = 8,
3224 .max_register = 0xff,
3225 .cache_type = REGCACHE_NONE,
3228 .name = "esdp",
3229 .reg_bits = 8,
3230 .val_bits = 8,
3232 .max_register = 0xff,
3233 .cache_type = REGCACHE_NONE,
3236 .name = "epp",
3237 .reg_bits = 8,
3238 .val_bits = 8,
3240 .max_register = 0xff,
3241 .cache_type = REGCACHE_NONE,
3244 .name = "afe",
3245 .reg_bits = 8,
3246 .val_bits = 8,
3248 .max_register = 0xff,
3249 .cache_type = REGCACHE_NONE,
3252 .name = "rep",
3253 .reg_bits = 8,
3254 .val_bits = 8,
3256 .max_register = 0xff,
3257 .cache_type = REGCACHE_NONE,
3260 .name = "edid",
3261 .reg_bits = 8,
3262 .val_bits = 8,
3264 .max_register = 0xff,
3265 .cache_type = REGCACHE_NONE,
3269 .name = "hdmi",
3270 .reg_bits = 8,
3271 .val_bits = 8,
3273 .max_register = 0xff,
3274 .cache_type = REGCACHE_NONE,
3277 .name = "test",
3278 .reg_bits = 8,
3279 .val_bits = 8,
3281 .max_register = 0xff,
3282 .cache_type = REGCACHE_NONE,
3285 .name = "cp",
3286 .reg_bits = 8,
3287 .val_bits = 8,
3289 .max_register = 0xff,
3290 .cache_type = REGCACHE_NONE,
3293 .name = "vdp",
3294 .reg_bits = 8,
3295 .val_bits = 8,
3297 .max_register = 0xff,
3298 .cache_type = REGCACHE_NONE,
3302 static int configure_regmap(struct adv76xx_state *state, int region)
3304 int err;
3306 if (!state->i2c_clients[region])
3307 return -ENODEV;
3309 state->regmap[region] =
3310 devm_regmap_init_i2c(state->i2c_clients[region],
3311 &adv76xx_regmap_cnf[region]);
3313 if (IS_ERR(state->regmap[region])) {
3314 err = PTR_ERR(state->regmap[region]);
3315 v4l_err(state->i2c_clients[region],
3316 "Error initializing regmap %d with error %d\n",
3317 region, err);
3318 return -EINVAL;
3321 return 0;
3324 static int configure_regmaps(struct adv76xx_state *state)
3326 int i, err;
3328 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3329 err = configure_regmap(state, i);
3330 if (err && (err != -ENODEV))
3331 return err;
3333 return 0;
3336 static void adv76xx_reset(struct adv76xx_state *state)
3338 if (state->reset_gpio) {
3339 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3340 gpiod_set_value_cansleep(state->reset_gpio, 0);
3341 usleep_range(5000, 10000);
3342 gpiod_set_value_cansleep(state->reset_gpio, 1);
3343 /* It is recommended to wait 5 ms after the low pulse before */
3344 /* an I2C write is performed to the ADV76XX. */
3345 usleep_range(5000, 10000);
3349 static int adv76xx_probe(struct i2c_client *client,
3350 const struct i2c_device_id *id)
3352 static const struct v4l2_dv_timings cea640x480 =
3353 V4L2_DV_BT_CEA_640X480P59_94;
3354 struct adv76xx_state *state;
3355 struct v4l2_ctrl_handler *hdl;
3356 struct v4l2_ctrl *ctrl;
3357 struct v4l2_subdev *sd;
3358 unsigned int i;
3359 unsigned int val, val2;
3360 int err;
3362 /* Check if the adapter supports the needed features */
3363 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3364 return -EIO;
3365 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3366 client->addr << 1);
3368 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3369 if (!state)
3370 return -ENOMEM;
3372 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3374 /* initialize variables */
3375 state->restart_stdi_once = true;
3376 state->selected_input = ~0;
3378 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3379 const struct of_device_id *oid;
3381 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3382 state->info = oid->data;
3384 err = adv76xx_parse_dt(state);
3385 if (err < 0) {
3386 v4l_err(client, "DT parsing error\n");
3387 return err;
3389 } else if (client->dev.platform_data) {
3390 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3392 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3393 state->pdata = *pdata;
3394 } else {
3395 v4l_err(client, "No platform data!\n");
3396 return -ENODEV;
3399 /* Request GPIOs. */
3400 for (i = 0; i < state->info->num_dv_ports; ++i) {
3401 state->hpd_gpio[i] =
3402 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3403 GPIOD_OUT_LOW);
3404 if (IS_ERR(state->hpd_gpio[i]))
3405 return PTR_ERR(state->hpd_gpio[i]);
3407 if (state->hpd_gpio[i])
3408 v4l_info(client, "Handling HPD %u GPIO\n", i);
3410 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3411 GPIOD_OUT_HIGH);
3412 if (IS_ERR(state->reset_gpio))
3413 return PTR_ERR(state->reset_gpio);
3415 adv76xx_reset(state);
3417 state->timings = cea640x480;
3418 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3420 sd = &state->sd;
3421 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3422 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3423 id->name, i2c_adapter_id(client->adapter),
3424 client->addr);
3425 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3426 sd->internal_ops = &adv76xx_int_ops;
3428 /* Configure IO Regmap region */
3429 err = configure_regmap(state, ADV76XX_PAGE_IO);
3431 if (err) {
3432 v4l2_err(sd, "Error configuring IO regmap region\n");
3433 return -ENODEV;
3437 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3438 * identifies the revision, while on ADV7611 it identifies the model as
3439 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3441 switch (state->info->type) {
3442 case ADV7604:
3443 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3444 if (err) {
3445 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3446 return -ENODEV;
3448 if (val != 0x68) {
3449 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3450 client->addr << 1);
3451 return -ENODEV;
3453 break;
3454 case ADV7611:
3455 case ADV7612:
3456 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3457 0xea,
3458 &val);
3459 if (err) {
3460 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3461 return -ENODEV;
3463 val2 = val << 8;
3464 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3465 0xeb,
3466 &val);
3467 if (err) {
3468 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3469 return -ENODEV;
3471 val |= val2;
3472 if ((state->info->type == ADV7611 && val != 0x2051) ||
3473 (state->info->type == ADV7612 && val != 0x2041)) {
3474 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3475 client->addr << 1);
3476 return -ENODEV;
3478 break;
3481 /* control handlers */
3482 hdl = &state->hdl;
3483 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3485 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3486 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3487 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3488 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3489 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3490 V4L2_CID_SATURATION, 0, 255, 1, 128);
3491 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3492 V4L2_CID_HUE, 0, 128, 1, 0);
3493 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3494 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3495 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3496 if (ctrl)
3497 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3499 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3500 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3501 (1 << state->info->num_dv_ports) - 1, 0, 0);
3502 state->rgb_quantization_range_ctrl =
3503 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3504 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3505 0, V4L2_DV_RGB_RANGE_AUTO);
3507 /* custom controls */
3508 if (adv76xx_has_afe(state))
3509 state->analog_sampling_phase_ctrl =
3510 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3511 state->free_run_color_manual_ctrl =
3512 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3513 state->free_run_color_ctrl =
3514 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3516 sd->ctrl_handler = hdl;
3517 if (hdl->error) {
3518 err = hdl->error;
3519 goto err_hdl;
3521 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3522 err = -ENODEV;
3523 goto err_hdl;
3526 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3527 struct i2c_client *dummy_client;
3529 if (!(BIT(i) & state->info->page_mask))
3530 continue;
3532 dummy_client = adv76xx_dummy_client(sd, i);
3533 if (IS_ERR(dummy_client)) {
3534 err = PTR_ERR(dummy_client);
3535 v4l2_err(sd, "failed to create i2c client %u\n", i);
3536 goto err_i2c;
3539 state->i2c_clients[i] = dummy_client;
3542 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3543 adv76xx_delayed_work_enable_hotplug);
3545 state->source_pad = state->info->num_dv_ports
3546 + (state->info->has_afe ? 2 : 0);
3547 for (i = 0; i < state->source_pad; ++i)
3548 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3549 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3550 sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3552 err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3553 state->pads);
3554 if (err)
3555 goto err_work_queues;
3557 /* Configure regmaps */
3558 err = configure_regmaps(state);
3559 if (err)
3560 goto err_entity;
3562 err = adv76xx_core_init(sd);
3563 if (err)
3564 goto err_entity;
3566 if (client->irq) {
3567 err = devm_request_threaded_irq(&client->dev,
3568 client->irq,
3569 NULL, adv76xx_irq_handler,
3570 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3571 client->name, state);
3572 if (err)
3573 goto err_entity;
3576 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3577 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3578 state, dev_name(&client->dev),
3579 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3580 err = PTR_ERR_OR_ZERO(state->cec_adap);
3581 if (err)
3582 goto err_entity;
3583 #endif
3585 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3586 client->addr << 1, client->adapter->name);
3588 err = v4l2_async_register_subdev(sd);
3589 if (err)
3590 goto err_entity;
3592 return 0;
3594 err_entity:
3595 media_entity_cleanup(&sd->entity);
3596 err_work_queues:
3597 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3598 err_i2c:
3599 adv76xx_unregister_clients(state);
3600 err_hdl:
3601 v4l2_ctrl_handler_free(hdl);
3602 return err;
3605 /* ----------------------------------------------------------------------- */
3607 static int adv76xx_remove(struct i2c_client *client)
3609 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3610 struct adv76xx_state *state = to_state(sd);
3612 /* disable interrupts */
3613 io_write(sd, 0x40, 0);
3614 io_write(sd, 0x41, 0);
3615 io_write(sd, 0x46, 0);
3616 io_write(sd, 0x6e, 0);
3617 io_write(sd, 0x73, 0);
3619 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3620 v4l2_async_unregister_subdev(sd);
3621 media_entity_cleanup(&sd->entity);
3622 adv76xx_unregister_clients(to_state(sd));
3623 v4l2_ctrl_handler_free(sd->ctrl_handler);
3624 return 0;
3627 /* ----------------------------------------------------------------------- */
3629 static struct i2c_driver adv76xx_driver = {
3630 .driver = {
3631 .name = "adv7604",
3632 .of_match_table = of_match_ptr(adv76xx_of_id),
3634 .probe = adv76xx_probe,
3635 .remove = adv76xx_remove,
3636 .id_table = adv76xx_i2c_id,
3639 module_i2c_driver(adv76xx_driver);