Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / media / platform / omap / omap_vout_vrfb.c
blob6bd672cbdb6230a7ae03bead8b7944feae75579f
1 /*
2 * omap_vout_vrfb.c
4 * Copyright (C) 2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15 #include <linux/slab.h>
17 #include <media/v4l2-device.h>
19 #include <video/omapvrfb.h>
21 #include "omap_voutdef.h"
22 #include "omap_voutlib.h"
23 #include "omap_vout_vrfb.h"
25 #define OMAP_DMA_NO_DEVICE 0
28 * Function for allocating video buffers
30 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
31 unsigned int *count, int startindex)
33 int i, j;
35 for (i = 0; i < *count; i++) {
36 if (!vout->smsshado_virt_addr[i]) {
37 vout->smsshado_virt_addr[i] =
38 omap_vout_alloc_buffer(vout->smsshado_size,
39 &vout->smsshado_phy_addr[i]);
41 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
42 if (vout->vq.memory == V4L2_MEMORY_MMAP && i >= startindex)
43 break;
45 if (!vout->smsshado_virt_addr[i]) {
46 for (j = 0; j < i; j++) {
47 omap_vout_free_buffer(
48 vout->smsshado_virt_addr[j],
49 vout->smsshado_size);
50 vout->smsshado_virt_addr[j] = 0;
51 vout->smsshado_phy_addr[j] = 0;
53 *count = 0;
54 return -ENOMEM;
56 memset((void *)(long)vout->smsshado_virt_addr[i], 0,
57 vout->smsshado_size);
59 return 0;
63 * Wakes up the application once the DMA transfer to VRFB space is completed.
65 static void omap_vout_vrfb_dma_tx_callback(void *data)
67 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
69 t->tx_status = 1;
70 wake_up_interruptible(&t->wait);
74 * Free VRFB buffers
76 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
78 int j;
80 for (j = 0; j < VRFB_NUM_BUFS; j++) {
81 if (vout->smsshado_virt_addr[j]) {
82 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
83 vout->smsshado_size);
84 vout->smsshado_virt_addr[j] = 0;
85 vout->smsshado_phy_addr[j] = 0;
90 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
91 bool static_vrfb_allocation)
93 int ret = 0, i, j;
94 struct omap_vout_device *vout;
95 struct video_device *vfd;
96 dma_cap_mask_t mask;
97 int image_width, image_height;
98 int vrfb_num_bufs = VRFB_NUM_BUFS;
99 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
100 struct omap2video_device *vid_dev =
101 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
103 vout = vid_dev->vouts[vid_num];
104 vfd = vout->vfd;
106 for (i = 0; i < VRFB_NUM_BUFS; i++) {
107 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
108 dev_info(&pdev->dev, ": VRFB allocation failed\n");
109 for (j = 0; j < i; j++)
110 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
111 return -ENOMEM;
115 /* Calculate VRFB memory size */
116 /* allocate for worst case size */
117 image_width = VID_MAX_WIDTH / TILE_SIZE;
118 if (VID_MAX_WIDTH % TILE_SIZE)
119 image_width++;
121 image_width = image_width * TILE_SIZE;
122 image_height = VID_MAX_HEIGHT / TILE_SIZE;
124 if (VID_MAX_HEIGHT % TILE_SIZE)
125 image_height++;
127 image_height = image_height * TILE_SIZE;
128 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
131 * Request and Initialize DMA, for DMA based VRFB transfer
133 dma_cap_zero(mask);
134 dma_cap_set(DMA_INTERLEAVE, mask);
135 vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
136 if (IS_ERR(vout->vrfb_dma_tx.chan)) {
137 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
138 } else {
139 size_t xt_size = sizeof(struct dma_interleaved_template) +
140 sizeof(struct data_chunk);
142 vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
143 if (!vout->vrfb_dma_tx.xt) {
144 dma_release_channel(vout->vrfb_dma_tx.chan);
145 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
149 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
150 dev_info(&pdev->dev,
151 ": failed to allocate DMA Channel for video%d\n",
152 vfd->minor);
154 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
157 * statically allocated the VRFB buffer is done through
158 * command line arguments
160 if (static_vrfb_allocation) {
161 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
162 ret = -ENOMEM;
163 goto release_vrfb_ctx;
165 vout->vrfb_static_allocation = true;
167 return 0;
169 release_vrfb_ctx:
170 for (j = 0; j < VRFB_NUM_BUFS; j++)
171 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
172 return ret;
176 * Release the VRFB context once the module exits
178 void omap_vout_release_vrfb(struct omap_vout_device *vout)
180 int i;
182 for (i = 0; i < VRFB_NUM_BUFS; i++)
183 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
185 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
186 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
187 kfree(vout->vrfb_dma_tx.xt);
188 dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
189 dma_release_channel(vout->vrfb_dma_tx.chan);
194 * Allocate the buffers for the VRFB space. Data is copied from V4L2
195 * buffers to the VRFB buffers using the DMA engine.
197 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
198 unsigned int *count, unsigned int startindex)
200 int i;
201 bool yuv_mode;
203 if (!is_rotation_enabled(vout))
204 return 0;
206 /* If rotation is enabled, allocate memory for VRFB space also */
207 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
209 /* Allocate the VRFB buffers only if the buffers are not
210 * allocated during init time.
212 if (!vout->vrfb_static_allocation)
213 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
214 return -ENOMEM;
216 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
217 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
218 yuv_mode = true;
219 else
220 yuv_mode = false;
222 for (i = 0; i < *count; i++)
223 omap_vrfb_setup(&vout->vrfb_context[i],
224 vout->smsshado_phy_addr[i], vout->pix.width,
225 vout->pix.height, vout->bpp, yuv_mode);
227 return 0;
230 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
231 struct vb2_buffer *vb)
233 struct dma_async_tx_descriptor *tx;
234 enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
235 struct dma_chan *chan = vout->vrfb_dma_tx.chan;
236 struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
237 dma_cookie_t cookie;
238 dma_addr_t buf_phy_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
239 enum dma_status status;
240 enum dss_rotation rotation;
241 size_t dst_icg;
242 u32 pixsize;
244 if (!is_rotation_enabled(vout))
245 return 0;
247 /* If rotation is enabled, copy input buffer into VRFB
248 * memory space using DMA. We are copying input buffer
249 * into VRFB memory space of desired angle and DSS will
250 * read image VRFB memory for 0 degree angle
253 pixsize = vout->bpp * vout->vrfb_bpp;
254 dst_icg = MAX_PIXELS_PER_LINE * pixsize - vout->pix.width * vout->bpp;
256 xt->src_start = buf_phy_addr;
257 xt->dst_start = vout->vrfb_context[vb->index].paddr[0];
259 xt->numf = vout->pix.height;
260 xt->frame_size = 1;
261 xt->sgl[0].size = vout->pix.width * vout->bpp;
262 xt->sgl[0].icg = dst_icg;
264 xt->dir = DMA_MEM_TO_MEM;
265 xt->src_sgl = false;
266 xt->src_inc = true;
267 xt->dst_sgl = true;
268 xt->dst_inc = true;
270 tx = dmaengine_prep_interleaved_dma(chan, xt, flags);
271 if (tx == NULL) {
272 pr_err("%s: DMA interleaved prep error\n", __func__);
273 return -EINVAL;
276 tx->callback = omap_vout_vrfb_dma_tx_callback;
277 tx->callback_param = &vout->vrfb_dma_tx;
279 cookie = dmaengine_submit(tx);
280 if (dma_submit_error(cookie)) {
281 pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
282 return -EINVAL;
285 vout->vrfb_dma_tx.tx_status = 0;
286 dma_async_issue_pending(chan);
288 wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
289 vout->vrfb_dma_tx.tx_status == 1,
290 VRFB_TX_TIMEOUT);
292 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
294 if (vout->vrfb_dma_tx.tx_status == 0) {
295 pr_err("%s: Timeout while waiting for DMA\n", __func__);
296 dmaengine_terminate_sync(chan);
297 return -EINVAL;
298 } else if (status != DMA_COMPLETE) {
299 pr_err("%s: DMA completion %s status\n", __func__,
300 status == DMA_ERROR ? "error" : "busy");
301 dmaengine_terminate_sync(chan);
302 return -EINVAL;
305 /* Store buffers physical address into an array. Addresses
306 * from this array will be used to configure DSS */
307 rotation = calc_rotation(vout);
308 vout->queued_buf_addr[vb->index] = (u8 *)
309 vout->vrfb_context[vb->index].paddr[rotation];
310 return 0;
314 * Calculate the buffer offsets from which the streaming should
315 * start. This offset calculation is mainly required because of
316 * the VRFB 32 pixels alignment with rotation.
318 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
320 enum dss_rotation rotation;
321 bool mirroring = vout->mirror;
322 struct v4l2_rect *crop = &vout->crop;
323 struct v4l2_pix_format *pix = &vout->pix;
324 int *cropped_offset = &vout->cropped_offset;
325 int vr_ps = 1, ps = 2, temp_ps = 2;
326 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
328 rotation = calc_rotation(vout);
330 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
331 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
332 if (is_rotation_enabled(vout)) {
334 * ps - Actual pixel size for YUYV/UYVY for
335 * VRFB/Mirroring is 4 bytes
336 * vr_ps - Virtually pixel size for YUYV/UYVY is
337 * 2 bytes
339 ps = 4;
340 vr_ps = 2;
341 } else {
342 ps = 2; /* otherwise the pixel size is 2 byte */
344 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
345 ps = 4;
346 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
347 ps = 3;
349 vout->ps = ps;
350 vout->vr_ps = vr_ps;
352 if (is_rotation_enabled(vout)) {
353 line_length = MAX_PIXELS_PER_LINE;
354 ctop = (pix->height - crop->height) - crop->top;
355 cleft = (pix->width - crop->width) - crop->left;
356 } else {
357 line_length = pix->width;
359 vout->line_length = line_length;
360 switch (rotation) {
361 case dss_rotation_90_degree:
362 offset = vout->vrfb_context[0].yoffset *
363 vout->vrfb_context[0].bytespp;
364 temp_ps = ps / vr_ps;
365 if (!mirroring) {
366 *cropped_offset = offset + line_length *
367 temp_ps * cleft + crop->top * temp_ps;
368 } else {
369 *cropped_offset = offset + line_length * temp_ps *
370 cleft + crop->top * temp_ps + (line_length *
371 ((crop->width / (vr_ps)) - 1) * ps);
373 break;
374 case dss_rotation_180_degree:
375 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
376 vout->vrfb_context[0].bytespp) +
377 (vout->vrfb_context[0].xoffset *
378 vout->vrfb_context[0].bytespp));
379 if (!mirroring) {
380 *cropped_offset = offset + (line_length * ps * ctop) +
381 (cleft / vr_ps) * ps;
383 } else {
384 *cropped_offset = offset + (line_length * ps * ctop) +
385 (cleft / vr_ps) * ps + (line_length *
386 (crop->height - 1) * ps);
388 break;
389 case dss_rotation_270_degree:
390 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
391 vout->vrfb_context[0].bytespp;
392 temp_ps = ps / vr_ps;
393 if (!mirroring) {
394 *cropped_offset = offset + line_length *
395 temp_ps * crop->left + ctop * ps;
396 } else {
397 *cropped_offset = offset + line_length *
398 temp_ps * crop->left + ctop * ps +
399 (line_length * ((crop->width / vr_ps) - 1) *
400 ps);
402 break;
403 case dss_rotation_0_degree:
404 if (!mirroring) {
405 *cropped_offset = (line_length * ps) *
406 crop->top + (crop->left / vr_ps) * ps;
407 } else {
408 *cropped_offset = (line_length * ps) *
409 crop->top + (crop->left / vr_ps) * ps +
410 (line_length * (crop->height - 1) * ps);
412 break;
413 default:
414 *cropped_offset = (line_length * ps * crop->top) /
415 vr_ps + (crop->left * ps) / vr_ps +
416 ((crop->width / vr_ps) - 1) * ps;
417 break;