1 // SPDX-License-Identifier: GPL-2.0-only
3 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
5 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
10 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
11 * Pawel Osciak, <pawel@osciak.com>
12 * Marek Szyprowski, <m.szyprowski@samsung.com>
14 * Based on the virtual v4l2-mem2mem example device
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
21 #include <linux/interrupt.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/videodev2.h>
31 #include <linux/log2.h>
32 #include <linux/sizes.h>
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-event.h>
38 #include <media/v4l2-ioctl.h>
39 #include <media/v4l2-mem2mem.h>
40 #include <media/videobuf2-v4l2.h>
41 #include <media/videobuf2-dma-contig.h>
44 #include "vpdma_priv.h"
49 #define VPE_MODULE_NAME "vpe"
51 /* minimum and maximum frame sizes */
57 /* required alignments */
58 #define S_ALIGN 0 /* multiple of 1 */
59 #define H_ALIGN 1 /* multiple of 2 */
61 /* flags that indicate a format can be used for capture/output */
62 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
63 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
65 /* used as plane indices */
66 #define VPE_MAX_PLANES 2
70 /* per m2m context info */
71 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
73 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
76 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
77 * 3 output descriptors, and 10 control descriptors
79 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
80 13 * VPDMA_CFD_CTD_DESC_SIZE)
82 #define vpe_dbg(vpedev, fmt, arg...) \
83 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
84 #define vpe_err(vpedev, fmt, arg...) \
85 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
87 struct vpe_us_coeffs
{
88 unsigned short anchor_fid0_c0
;
89 unsigned short anchor_fid0_c1
;
90 unsigned short anchor_fid0_c2
;
91 unsigned short anchor_fid0_c3
;
92 unsigned short interp_fid0_c0
;
93 unsigned short interp_fid0_c1
;
94 unsigned short interp_fid0_c2
;
95 unsigned short interp_fid0_c3
;
96 unsigned short anchor_fid1_c0
;
97 unsigned short anchor_fid1_c1
;
98 unsigned short anchor_fid1_c2
;
99 unsigned short anchor_fid1_c3
;
100 unsigned short interp_fid1_c0
;
101 unsigned short interp_fid1_c1
;
102 unsigned short interp_fid1_c2
;
103 unsigned short interp_fid1_c3
;
107 * Default upsampler coefficients
109 static const struct vpe_us_coeffs us_coeffs
[] = {
111 /* Coefficients for progressive input */
112 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
113 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
116 /* Coefficients for Top Field Interlaced input */
117 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
118 /* Coefficients for Bottom Field Interlaced input */
119 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
124 * the following registers are for configuring some of the parameters of the
125 * motion and edge detection blocks inside DEI, these generally remain the same,
126 * these could be passed later via userspace if some one needs to tweak these.
128 struct vpe_dei_regs
{
129 unsigned long mdt_spacial_freq_thr_reg
; /* VPE_DEI_REG2 */
130 unsigned long edi_config_reg
; /* VPE_DEI_REG3 */
131 unsigned long edi_lut_reg0
; /* VPE_DEI_REG4 */
132 unsigned long edi_lut_reg1
; /* VPE_DEI_REG5 */
133 unsigned long edi_lut_reg2
; /* VPE_DEI_REG6 */
134 unsigned long edi_lut_reg3
; /* VPE_DEI_REG7 */
138 * default expert DEI register values, unlikely to be modified.
140 static const struct vpe_dei_regs dei_regs
= {
141 .mdt_spacial_freq_thr_reg
= 0x020C0804u
,
142 .edi_config_reg
= 0x0118100Cu
,
143 .edi_lut_reg0
= 0x08040200u
,
144 .edi_lut_reg1
= 0x1010100Cu
,
145 .edi_lut_reg2
= 0x10101010u
,
146 .edi_lut_reg3
= 0x10101010u
,
150 * The port_data structure contains per-port data.
152 struct vpe_port_data
{
153 enum vpdma_channel channel
; /* VPDMA channel */
154 u8 vb_index
; /* input frame f, f-1, f-2 index */
155 u8 vb_part
; /* plane index for co-panar formats */
159 * Define indices into the port_data tables
161 #define VPE_PORT_LUMA1_IN 0
162 #define VPE_PORT_CHROMA1_IN 1
163 #define VPE_PORT_LUMA2_IN 2
164 #define VPE_PORT_CHROMA2_IN 3
165 #define VPE_PORT_LUMA3_IN 4
166 #define VPE_PORT_CHROMA3_IN 5
167 #define VPE_PORT_MV_IN 6
168 #define VPE_PORT_MV_OUT 7
169 #define VPE_PORT_LUMA_OUT 8
170 #define VPE_PORT_CHROMA_OUT 9
171 #define VPE_PORT_RGB_OUT 10
173 static const struct vpe_port_data port_data
[11] = {
174 [VPE_PORT_LUMA1_IN
] = {
175 .channel
= VPE_CHAN_LUMA1_IN
,
179 [VPE_PORT_CHROMA1_IN
] = {
180 .channel
= VPE_CHAN_CHROMA1_IN
,
182 .vb_part
= VPE_CHROMA
,
184 [VPE_PORT_LUMA2_IN
] = {
185 .channel
= VPE_CHAN_LUMA2_IN
,
189 [VPE_PORT_CHROMA2_IN
] = {
190 .channel
= VPE_CHAN_CHROMA2_IN
,
192 .vb_part
= VPE_CHROMA
,
194 [VPE_PORT_LUMA3_IN
] = {
195 .channel
= VPE_CHAN_LUMA3_IN
,
199 [VPE_PORT_CHROMA3_IN
] = {
200 .channel
= VPE_CHAN_CHROMA3_IN
,
202 .vb_part
= VPE_CHROMA
,
205 .channel
= VPE_CHAN_MV_IN
,
207 [VPE_PORT_MV_OUT
] = {
208 .channel
= VPE_CHAN_MV_OUT
,
210 [VPE_PORT_LUMA_OUT
] = {
211 .channel
= VPE_CHAN_LUMA_OUT
,
214 [VPE_PORT_CHROMA_OUT
] = {
215 .channel
= VPE_CHAN_CHROMA_OUT
,
216 .vb_part
= VPE_CHROMA
,
218 [VPE_PORT_RGB_OUT
] = {
219 .channel
= VPE_CHAN_RGB_OUT
,
225 /* driver info for each of the supported video formats */
227 u32 fourcc
; /* standard format identifier */
228 u8 types
; /* CAPTURE and/or OUTPUT */
229 u8 coplanar
; /* set for unpacked Luma and Chroma */
230 /* vpdma format info for each plane */
231 struct vpdma_data_format
const *vpdma_fmt
[VPE_MAX_PLANES
];
234 static struct vpe_fmt vpe_formats
[] = {
236 .fourcc
= V4L2_PIX_FMT_NV16
,
237 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
239 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y444
],
240 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C444
],
244 .fourcc
= V4L2_PIX_FMT_NV12
,
245 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
247 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y420
],
248 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C420
],
252 .fourcc
= V4L2_PIX_FMT_NV21
,
253 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
255 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y420
],
256 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_CB420
],
260 .fourcc
= V4L2_PIX_FMT_YUYV
,
261 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
263 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_YCB422
],
267 .fourcc
= V4L2_PIX_FMT_UYVY
,
268 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
270 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_CBY422
],
274 .fourcc
= V4L2_PIX_FMT_RGB24
,
275 .types
= VPE_FMT_TYPE_CAPTURE
,
277 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGB24
],
281 .fourcc
= V4L2_PIX_FMT_RGB32
,
282 .types
= VPE_FMT_TYPE_CAPTURE
,
284 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ARGB32
],
288 .fourcc
= V4L2_PIX_FMT_BGR24
,
289 .types
= VPE_FMT_TYPE_CAPTURE
,
291 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_BGR24
],
295 .fourcc
= V4L2_PIX_FMT_BGR32
,
296 .types
= VPE_FMT_TYPE_CAPTURE
,
298 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ABGR32
],
302 .fourcc
= V4L2_PIX_FMT_RGB565
,
303 .types
= VPE_FMT_TYPE_CAPTURE
,
305 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGB565
],
309 .fourcc
= V4L2_PIX_FMT_RGB555
,
310 .types
= VPE_FMT_TYPE_CAPTURE
,
312 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGBA16_5551
],
318 * per-queue, driver-specific private data.
319 * there is one source queue and one destination queue for each m2m context.
322 /* current v4l2 format info */
323 struct v4l2_format format
;
325 struct v4l2_rect c_rect
; /* crop/compose rectangle */
326 struct vpe_fmt
*fmt
; /* format info */
329 /* vpe_q_data flag bits */
330 #define Q_DATA_FRAME_1D BIT(0)
331 #define Q_DATA_MODE_TILED BIT(1)
332 #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
333 #define Q_DATA_INTERLACED_SEQ_TB BIT(3)
334 #define Q_DATA_INTERLACED_SEQ_BT BIT(4)
336 #define Q_IS_SEQ_XX (Q_DATA_INTERLACED_SEQ_TB | \
337 Q_DATA_INTERLACED_SEQ_BT)
339 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
340 Q_DATA_INTERLACED_SEQ_TB | \
341 Q_DATA_INTERLACED_SEQ_BT)
348 /* find our format description corresponding to the passed v4l2_format */
349 static struct vpe_fmt
*__find_format(u32 fourcc
)
354 for (k
= 0; k
< ARRAY_SIZE(vpe_formats
); k
++) {
355 fmt
= &vpe_formats
[k
];
356 if (fmt
->fourcc
== fourcc
)
363 static struct vpe_fmt
*find_format(struct v4l2_format
*f
)
365 return __find_format(f
->fmt
.pix
.pixelformat
);
369 * there is one vpe_dev structure in the driver, it is shared by
373 struct v4l2_device v4l2_dev
;
374 struct video_device vfd
;
375 struct v4l2_m2m_dev
*m2m_dev
;
377 atomic_t num_instances
; /* count of driver instances */
378 dma_addr_t loaded_mmrs
; /* shadow mmrs in device */
379 struct mutex dev_mutex
;
384 struct resource
*res
;
386 struct vpdma_data vpdma_data
;
387 struct vpdma_data
*vpdma
; /* vpdma data handle */
388 struct sc_data
*sc
; /* scaler data handle */
389 struct csc_data
*csc
; /* csc data handle */
393 * There is one vpe_ctx structure for each m2m context.
398 struct v4l2_ctrl_handler hdl
;
400 unsigned int field
; /* current field */
401 unsigned int sequence
; /* current frame/field seq */
402 unsigned int aborting
; /* abort after next irq */
404 unsigned int bufs_per_job
; /* input buffers per batch */
405 unsigned int bufs_completed
; /* bufs done in this batch */
407 struct vpe_q_data q_data
[2]; /* src & dst queue data */
408 struct vb2_v4l2_buffer
*src_vbs
[VPE_MAX_SRC_BUFS
];
409 struct vb2_v4l2_buffer
*dst_vb
;
411 dma_addr_t mv_buf_dma
[2]; /* dma addrs of motion vector in/out bufs */
412 void *mv_buf
[2]; /* virtual addrs of motion vector bufs */
413 size_t mv_buf_size
; /* current motion vector buffer size */
414 struct vpdma_buf mmr_adb
; /* shadow reg addr/data block */
415 struct vpdma_buf sc_coeff_h
; /* h coeff buffer */
416 struct vpdma_buf sc_coeff_v
; /* v coeff buffer */
417 struct vpdma_desc_list desc_list
; /* DMA descriptor list */
419 bool deinterlacing
; /* using de-interlacer */
420 bool load_mmrs
; /* have new shadow reg values */
422 unsigned int src_mv_buf_selector
;
427 * M2M devices get 2 queues.
428 * Return the queue given the type.
430 static struct vpe_q_data
*get_q_data(struct vpe_ctx
*ctx
,
431 enum v4l2_buf_type type
)
434 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
:
435 case V4L2_BUF_TYPE_VIDEO_OUTPUT
:
436 return &ctx
->q_data
[Q_DATA_SRC
];
437 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
:
438 case V4L2_BUF_TYPE_VIDEO_CAPTURE
:
439 return &ctx
->q_data
[Q_DATA_DST
];
446 static u32
read_reg(struct vpe_dev
*dev
, int offset
)
448 return ioread32(dev
->base
+ offset
);
451 static void write_reg(struct vpe_dev
*dev
, int offset
, u32 value
)
453 iowrite32(value
, dev
->base
+ offset
);
456 /* register field read/write helpers */
457 static int get_field(u32 value
, u32 mask
, int shift
)
459 return (value
& (mask
<< shift
)) >> shift
;
462 static int read_field_reg(struct vpe_dev
*dev
, int offset
, u32 mask
, int shift
)
464 return get_field(read_reg(dev
, offset
), mask
, shift
);
467 static void write_field(u32
*valp
, u32 field
, u32 mask
, int shift
)
471 val
&= ~(mask
<< shift
);
472 val
|= (field
& mask
) << shift
;
476 static void write_field_reg(struct vpe_dev
*dev
, int offset
, u32 field
,
479 u32 val
= read_reg(dev
, offset
);
481 write_field(&val
, field
, mask
, shift
);
483 write_reg(dev
, offset
, val
);
487 * DMA address/data block for the shadow registers
490 struct vpdma_adb_hdr out_fmt_hdr
;
493 struct vpdma_adb_hdr us1_hdr
;
495 struct vpdma_adb_hdr us2_hdr
;
497 struct vpdma_adb_hdr us3_hdr
;
499 struct vpdma_adb_hdr dei_hdr
;
501 struct vpdma_adb_hdr sc_hdr0
;
504 struct vpdma_adb_hdr sc_hdr8
;
507 struct vpdma_adb_hdr sc_hdr17
;
510 struct vpdma_adb_hdr csc_hdr
;
515 #define GET_OFFSET_TOP(ctx, obj, reg) \
516 ((obj)->res->start - ctx->dev->res->start + reg)
518 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
519 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
521 * Set the headers for all of the address/data block structures.
523 static void init_adb_hdrs(struct vpe_ctx
*ctx
)
525 VPE_SET_MMR_ADB_HDR(ctx
, out_fmt_hdr
, out_fmt_reg
, VPE_CLK_FORMAT_SELECT
);
526 VPE_SET_MMR_ADB_HDR(ctx
, us1_hdr
, us1_regs
, VPE_US1_R0
);
527 VPE_SET_MMR_ADB_HDR(ctx
, us2_hdr
, us2_regs
, VPE_US2_R0
);
528 VPE_SET_MMR_ADB_HDR(ctx
, us3_hdr
, us3_regs
, VPE_US3_R0
);
529 VPE_SET_MMR_ADB_HDR(ctx
, dei_hdr
, dei_regs
, VPE_DEI_FRAME_SIZE
);
530 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr0
, sc_regs0
,
531 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC0
));
532 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr8
, sc_regs8
,
533 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC8
));
534 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr17
, sc_regs17
,
535 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC17
));
536 VPE_SET_MMR_ADB_HDR(ctx
, csc_hdr
, csc_regs
,
537 GET_OFFSET_TOP(ctx
, ctx
->dev
->csc
, CSC_CSC00
));
541 * Allocate or re-allocate the motion vector DMA buffers
542 * There are two buffers, one for input and one for output.
543 * However, the roles are reversed after each field is processed.
544 * In other words, after each field is processed, the previous
545 * output (dst) MV buffer becomes the new input (src) MV buffer.
547 static int realloc_mv_buffers(struct vpe_ctx
*ctx
, size_t size
)
549 struct device
*dev
= ctx
->dev
->v4l2_dev
.dev
;
551 if (ctx
->mv_buf_size
== size
)
555 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[0],
559 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[1],
565 ctx
->mv_buf
[0] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[0],
567 if (!ctx
->mv_buf
[0]) {
568 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
572 ctx
->mv_buf
[1] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[1],
574 if (!ctx
->mv_buf
[1]) {
575 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
576 dma_free_coherent(dev
, size
, ctx
->mv_buf
[0],
582 ctx
->mv_buf_size
= size
;
583 ctx
->src_mv_buf_selector
= 0;
588 static void free_mv_buffers(struct vpe_ctx
*ctx
)
590 realloc_mv_buffers(ctx
, 0);
594 * While de-interlacing, we keep the two most recent input buffers
595 * around. This function frees those two buffers when we have
596 * finished processing the current stream.
598 static void free_vbs(struct vpe_ctx
*ctx
)
600 struct vpe_dev
*dev
= ctx
->dev
;
603 if (ctx
->src_vbs
[2] == NULL
)
606 spin_lock_irqsave(&dev
->lock
, flags
);
607 if (ctx
->src_vbs
[2]) {
608 v4l2_m2m_buf_done(ctx
->src_vbs
[2], VB2_BUF_STATE_DONE
);
609 if (ctx
->src_vbs
[1] && (ctx
->src_vbs
[1] != ctx
->src_vbs
[2]))
610 v4l2_m2m_buf_done(ctx
->src_vbs
[1], VB2_BUF_STATE_DONE
);
611 ctx
->src_vbs
[2] = NULL
;
612 ctx
->src_vbs
[1] = NULL
;
614 spin_unlock_irqrestore(&dev
->lock
, flags
);
618 * Enable or disable the VPE clocks
620 static void vpe_set_clock_enable(struct vpe_dev
*dev
, bool on
)
625 val
= VPE_DATA_PATH_CLK_ENABLE
| VPE_VPEDMA_CLK_ENABLE
;
626 write_reg(dev
, VPE_CLK_ENABLE
, val
);
629 static void vpe_top_reset(struct vpe_dev
*dev
)
632 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_DATA_PATH_CLK_RESET_MASK
,
633 VPE_DATA_PATH_CLK_RESET_SHIFT
);
635 usleep_range(100, 150);
637 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_DATA_PATH_CLK_RESET_MASK
,
638 VPE_DATA_PATH_CLK_RESET_SHIFT
);
641 static void vpe_top_vpdma_reset(struct vpe_dev
*dev
)
643 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_VPDMA_CLK_RESET_MASK
,
644 VPE_VPDMA_CLK_RESET_SHIFT
);
646 usleep_range(100, 150);
648 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_VPDMA_CLK_RESET_MASK
,
649 VPE_VPDMA_CLK_RESET_SHIFT
);
653 * Load the correct of upsampler coefficients into the shadow MMRs
655 static void set_us_coefficients(struct vpe_ctx
*ctx
)
657 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
658 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
659 u32
*us1_reg
= &mmr_adb
->us1_regs
[0];
660 u32
*us2_reg
= &mmr_adb
->us2_regs
[0];
661 u32
*us3_reg
= &mmr_adb
->us3_regs
[0];
662 const unsigned short *cp
, *end_cp
;
664 cp
= &us_coeffs
[0].anchor_fid0_c0
;
666 if (s_q_data
->flags
& Q_IS_INTERLACED
) /* interlaced */
667 cp
+= sizeof(us_coeffs
[0]) / sizeof(*cp
);
669 end_cp
= cp
+ sizeof(us_coeffs
[0]) / sizeof(*cp
);
671 while (cp
< end_cp
) {
672 write_field(us1_reg
, *cp
++, VPE_US_C0_MASK
, VPE_US_C0_SHIFT
);
673 write_field(us1_reg
, *cp
++, VPE_US_C1_MASK
, VPE_US_C1_SHIFT
);
674 *us2_reg
++ = *us1_reg
;
675 *us3_reg
++ = *us1_reg
++;
677 ctx
->load_mmrs
= true;
681 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
683 static void set_cfg_modes(struct vpe_ctx
*ctx
)
685 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_SRC
].fmt
;
686 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
687 u32
*us1_reg0
= &mmr_adb
->us1_regs
[0];
688 u32
*us2_reg0
= &mmr_adb
->us2_regs
[0];
689 u32
*us3_reg0
= &mmr_adb
->us3_regs
[0];
693 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
694 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
697 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
||
698 fmt
->fourcc
== V4L2_PIX_FMT_NV21
)
701 write_field(us1_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
702 write_field(us2_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
703 write_field(us3_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
705 ctx
->load_mmrs
= true;
708 static void set_line_modes(struct vpe_ctx
*ctx
)
710 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_SRC
].fmt
;
713 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
||
714 fmt
->fourcc
== V4L2_PIX_FMT_NV21
)
715 line_mode
= 0; /* double lines to line buffer */
718 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA1_IN
);
719 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA2_IN
);
720 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA3_IN
);
722 /* frame start for input luma */
723 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
725 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
727 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
730 /* frame start for input chroma */
731 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
732 VPE_CHAN_CHROMA1_IN
);
733 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
734 VPE_CHAN_CHROMA2_IN
);
735 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
736 VPE_CHAN_CHROMA3_IN
);
738 /* frame start for MV in client */
739 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
744 * Set the shadow registers that are modified when the source
747 static void set_src_registers(struct vpe_ctx
*ctx
)
749 set_us_coefficients(ctx
);
753 * Set the shadow registers that are modified when the destination
756 static void set_dst_registers(struct vpe_ctx
*ctx
)
758 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
759 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_DST
].fmt
;
760 const struct v4l2_format_info
*finfo
;
763 finfo
= v4l2_format_info(fmt
->fourcc
);
764 if (v4l2_is_format_rgb(finfo
)) {
765 val
|= VPE_RGB_OUT_SELECT
;
766 vpdma_set_bg_color(ctx
->dev
->vpdma
,
767 (struct vpdma_data_format
*)fmt
->vpdma_fmt
[0], 0xff);
768 } else if (fmt
->fourcc
== V4L2_PIX_FMT_NV16
)
769 val
|= VPE_COLOR_SEPARATE_422
;
772 * the source of CHR_DS and CSC is always the scaler, irrespective of
773 * whether it's used or not
775 val
|= VPE_DS_SRC_DEI_SCALER
| VPE_CSC_SRC_DEI_SCALER
;
777 if (fmt
->fourcc
!= V4L2_PIX_FMT_NV12
&&
778 fmt
->fourcc
!= V4L2_PIX_FMT_NV21
)
779 val
|= VPE_DS_BYPASS
;
781 mmr_adb
->out_fmt_reg
[0] = val
;
783 ctx
->load_mmrs
= true;
787 * Set the de-interlacer shadow register values
789 static void set_dei_regs(struct vpe_ctx
*ctx
)
791 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
792 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
793 unsigned int src_h
= s_q_data
->c_rect
.height
;
794 unsigned int src_w
= s_q_data
->c_rect
.width
;
795 u32
*dei_mmr0
= &mmr_adb
->dei_regs
[0];
796 bool deinterlace
= true;
800 * according to TRM, we should set DEI in progressive bypass mode when
801 * the input content is progressive, however, DEI is bypassed correctly
802 * for both progressive and interlace content in interlace bypass mode.
803 * It has been recommended not to use progressive bypass mode.
805 if (!(s_q_data
->flags
& Q_IS_INTERLACED
) || !ctx
->deinterlacing
) {
807 val
= VPE_DEI_INTERLACE_BYPASS
;
810 src_h
= deinterlace
? src_h
* 2 : src_h
;
812 val
|= (src_h
<< VPE_DEI_HEIGHT_SHIFT
) |
813 (src_w
<< VPE_DEI_WIDTH_SHIFT
) |
818 ctx
->load_mmrs
= true;
821 static void set_dei_shadow_registers(struct vpe_ctx
*ctx
)
823 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
824 u32
*dei_mmr
= &mmr_adb
->dei_regs
[0];
825 const struct vpe_dei_regs
*cur
= &dei_regs
;
827 dei_mmr
[2] = cur
->mdt_spacial_freq_thr_reg
;
828 dei_mmr
[3] = cur
->edi_config_reg
;
829 dei_mmr
[4] = cur
->edi_lut_reg0
;
830 dei_mmr
[5] = cur
->edi_lut_reg1
;
831 dei_mmr
[6] = cur
->edi_lut_reg2
;
832 dei_mmr
[7] = cur
->edi_lut_reg3
;
834 ctx
->load_mmrs
= true;
837 static void config_edi_input_mode(struct vpe_ctx
*ctx
, int mode
)
839 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
840 u32
*edi_config_reg
= &mmr_adb
->dei_regs
[3];
843 write_field(edi_config_reg
, 1, 1, 2); /* EDI_ENABLE_3D */
846 write_field(edi_config_reg
, 1, 1, 3); /* EDI_CHROMA_3D */
848 write_field(edi_config_reg
, mode
, VPE_EDI_INP_MODE_MASK
,
849 VPE_EDI_INP_MODE_SHIFT
);
851 ctx
->load_mmrs
= true;
855 * Set the shadow registers whose values are modified when either the
856 * source or destination format is changed.
858 static int set_srcdst_params(struct vpe_ctx
*ctx
)
860 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
861 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
862 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
863 unsigned int src_w
= s_q_data
->c_rect
.width
;
864 unsigned int src_h
= s_q_data
->c_rect
.height
;
865 unsigned int dst_w
= d_q_data
->c_rect
.width
;
866 unsigned int dst_h
= d_q_data
->c_rect
.height
;
867 struct v4l2_pix_format_mplane
*spix
;
872 ctx
->field
= V4L2_FIELD_TOP
;
873 spix
= &s_q_data
->format
.fmt
.pix_mp
;
875 if ((s_q_data
->flags
& Q_IS_INTERLACED
) &&
876 !(d_q_data
->flags
& Q_IS_INTERLACED
)) {
878 const struct vpdma_data_format
*mv
=
879 &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
882 * we make sure that the source image has a 16 byte aligned
883 * stride, we need to do the same for the motion vector buffer
884 * by aligning it's stride to the next 16 byte boundary. this
885 * extra space will not be used by the de-interlacer, but will
886 * ensure that vpdma operates correctly
888 bytes_per_line
= ALIGN((spix
->width
* mv
->depth
) >> 3,
890 mv_buf_size
= bytes_per_line
* spix
->height
;
892 ctx
->deinterlacing
= true;
895 ctx
->deinterlacing
= false;
900 ctx
->src_vbs
[2] = ctx
->src_vbs
[1] = ctx
->src_vbs
[0] = NULL
;
902 ret
= realloc_mv_buffers(ctx
, mv_buf_size
);
909 csc_set_coeff(ctx
->dev
->csc
, &mmr_adb
->csc_regs
[0],
910 &s_q_data
->format
, &d_q_data
->format
);
912 sc_set_hs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_h
.addr
, src_w
, dst_w
);
913 sc_set_vs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_v
.addr
, src_h
, dst_h
);
915 sc_config_scaler(ctx
->dev
->sc
, &mmr_adb
->sc_regs0
[0],
916 &mmr_adb
->sc_regs8
[0], &mmr_adb
->sc_regs17
[0],
917 src_w
, src_h
, dst_w
, dst_h
);
927 * job_ready() - check whether an instance is ready to be scheduled to run
929 static int job_ready(void *priv
)
931 struct vpe_ctx
*ctx
= priv
;
934 * This check is needed as this might be called directly from driver
935 * When called by m2m framework, this will always satisfy, but when
936 * called from vpe_irq, this might fail. (src stream with zero buffers)
938 if (v4l2_m2m_num_src_bufs_ready(ctx
->fh
.m2m_ctx
) <= 0 ||
939 v4l2_m2m_num_dst_bufs_ready(ctx
->fh
.m2m_ctx
) <= 0)
945 static void job_abort(void *priv
)
947 struct vpe_ctx
*ctx
= priv
;
949 /* Will cancel the transaction in the next interrupt handler */
953 static void vpe_dump_regs(struct vpe_dev
*dev
)
955 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
957 vpe_dbg(dev
, "VPE Registers:\n");
961 DUMPREG(INT0_STATUS0_RAW
);
962 DUMPREG(INT0_STATUS0
);
963 DUMPREG(INT0_ENABLE0
);
964 DUMPREG(INT0_STATUS1_RAW
);
965 DUMPREG(INT0_STATUS1
);
966 DUMPREG(INT0_ENABLE1
);
969 DUMPREG(CLK_FORMAT_SELECT
);
970 DUMPREG(CLK_RANGE_MAP
);
995 DUMPREG(DEI_FRAME_SIZE
);
997 DUMPREG(MDT_SF_THRESHOLD
);
999 DUMPREG(DEI_EDI_LUT_R0
);
1000 DUMPREG(DEI_EDI_LUT_R1
);
1001 DUMPREG(DEI_EDI_LUT_R2
);
1002 DUMPREG(DEI_EDI_LUT_R3
);
1003 DUMPREG(DEI_FMD_WINDOW_R0
);
1004 DUMPREG(DEI_FMD_WINDOW_R1
);
1005 DUMPREG(DEI_FMD_CONTROL_R0
);
1006 DUMPREG(DEI_FMD_CONTROL_R1
);
1007 DUMPREG(DEI_FMD_STATUS_R0
);
1008 DUMPREG(DEI_FMD_STATUS_R1
);
1009 DUMPREG(DEI_FMD_STATUS_R2
);
1012 sc_dump_regs(dev
->sc
);
1013 csc_dump_regs(dev
->csc
);
1016 static void add_out_dtd(struct vpe_ctx
*ctx
, int port
)
1018 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_DST
];
1019 const struct vpe_port_data
*p_data
= &port_data
[port
];
1020 struct vb2_buffer
*vb
= &ctx
->dst_vb
->vb2_buf
;
1021 struct vpe_fmt
*fmt
= q_data
->fmt
;
1022 const struct vpdma_data_format
*vpdma_fmt
;
1023 int mv_buf_selector
= !ctx
->src_mv_buf_selector
;
1024 struct v4l2_pix_format_mplane
*pix
;
1025 dma_addr_t dma_addr
;
1030 if (port
== VPE_PORT_MV_OUT
) {
1031 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1032 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1033 q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1034 pix
= &q_data
->format
.fmt
.pix_mp
;
1035 stride
= ALIGN((pix
->width
* vpdma_fmt
->depth
) >> 3,
1036 VPDMA_STRIDE_ALIGN
);
1038 /* to incorporate interleaved formats */
1039 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1041 pix
= &q_data
->format
.fmt
.pix_mp
;
1042 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1044 * If we are using a single plane buffer and
1045 * we need to set a separate vpdma chroma channel.
1047 if (pix
->num_planes
== 1 && plane
) {
1048 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, 0);
1049 /* Compute required offset */
1050 offset
= pix
->plane_fmt
[0].bytesperline
* pix
->height
;
1052 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1053 /* Use address as is, no offset */
1058 "acquiring output buffer(%d) dma_addr failed\n",
1062 /* Apply the offset */
1064 stride
= pix
->plane_fmt
[VPE_LUMA
].bytesperline
;
1067 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1068 flags
|= VPDMA_DATA_FRAME_1D
;
1069 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1070 flags
|= VPDMA_DATA_MODE_TILED
;
1072 vpdma_set_max_size(ctx
->dev
->vpdma
, VPDMA_MAX_SIZE1
,
1075 vpdma_add_out_dtd(&ctx
->desc_list
, pix
->width
,
1076 stride
, &q_data
->c_rect
,
1077 vpdma_fmt
, dma_addr
, MAX_OUT_WIDTH_REG1
,
1078 MAX_OUT_HEIGHT_REG1
, p_data
->channel
, flags
);
1081 static void add_in_dtd(struct vpe_ctx
*ctx
, int port
)
1083 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1084 const struct vpe_port_data
*p_data
= &port_data
[port
];
1085 struct vb2_buffer
*vb
= &ctx
->src_vbs
[p_data
->vb_index
]->vb2_buf
;
1086 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1087 struct vpe_fmt
*fmt
= q_data
->fmt
;
1088 struct v4l2_pix_format_mplane
*pix
;
1089 const struct vpdma_data_format
*vpdma_fmt
;
1090 int mv_buf_selector
= ctx
->src_mv_buf_selector
;
1091 int field
= vbuf
->field
== V4L2_FIELD_BOTTOM
;
1092 int frame_width
, frame_height
;
1093 dma_addr_t dma_addr
;
1098 pix
= &q_data
->format
.fmt
.pix_mp
;
1099 if (port
== VPE_PORT_MV_IN
) {
1100 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1101 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1102 stride
= ALIGN((pix
->width
* vpdma_fmt
->depth
) >> 3,
1103 VPDMA_STRIDE_ALIGN
);
1105 /* to incorporate interleaved formats */
1106 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1108 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1110 * If we are using a single plane buffer and
1111 * we need to set a separate vpdma chroma channel.
1113 if (pix
->num_planes
== 1 && plane
) {
1114 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, 0);
1115 /* Compute required offset */
1116 offset
= pix
->plane_fmt
[0].bytesperline
* pix
->height
;
1118 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1119 /* Use address as is, no offset */
1124 "acquiring output buffer(%d) dma_addr failed\n",
1128 /* Apply the offset */
1130 stride
= pix
->plane_fmt
[VPE_LUMA
].bytesperline
;
1133 * field used in VPDMA desc = 0 (top) / 1 (bottom)
1134 * Use top or bottom field from same vb alternately
1135 * For each de-interlacing operation, f,f-1,f-2 should be one
1138 if (q_data
->flags
& Q_DATA_INTERLACED_SEQ_TB
||
1139 q_data
->flags
& Q_DATA_INTERLACED_SEQ_BT
) {
1140 /* Select initial value based on format */
1141 if (q_data
->flags
& Q_DATA_INTERLACED_SEQ_BT
)
1146 /* Toggle for each vb_index and each operation */
1147 field
= (field
+ p_data
->vb_index
+ ctx
->sequence
) % 2;
1150 int height
= pix
->height
/ 2;
1153 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
||
1154 fmt
->fourcc
== V4L2_PIX_FMT_NV21
)
1157 bpp
= vpdma_fmt
->depth
>> 3;
1162 dma_addr
+= pix
->width
* height
* bpp
;
1167 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1168 flags
|= VPDMA_DATA_FRAME_1D
;
1169 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1170 flags
|= VPDMA_DATA_MODE_TILED
;
1172 frame_width
= q_data
->c_rect
.width
;
1173 frame_height
= q_data
->c_rect
.height
;
1175 if (p_data
->vb_part
&& (fmt
->fourcc
== V4L2_PIX_FMT_NV12
||
1176 fmt
->fourcc
== V4L2_PIX_FMT_NV21
))
1179 vpdma_add_in_dtd(&ctx
->desc_list
, pix
->width
, stride
,
1180 &q_data
->c_rect
, vpdma_fmt
, dma_addr
,
1181 p_data
->channel
, field
, flags
, frame_width
,
1182 frame_height
, 0, 0);
1186 * Enable the expected IRQ sources
1188 static void enable_irqs(struct vpe_ctx
*ctx
)
1190 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_SET
, VPE_INT0_LIST0_COMPLETE
);
1191 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_SET
, VPE_DEI_ERROR_INT
|
1192 VPE_DS1_UV_ERROR_INT
);
1194 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, 0, true);
1197 static void disable_irqs(struct vpe_ctx
*ctx
)
1199 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_CLR
, 0xffffffff);
1200 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_CLR
, 0xffffffff);
1202 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, 0, false);
1205 /* device_run() - prepares and starts the device
1207 * This function is only called when both the source and destination
1208 * buffers are in place.
1210 static void device_run(void *priv
)
1212 struct vpe_ctx
*ctx
= priv
;
1213 struct sc_data
*sc
= ctx
->dev
->sc
;
1214 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1215 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1216 const struct v4l2_format_info
*d_finfo
;
1218 d_finfo
= v4l2_format_info(d_q_data
->fmt
->fourcc
);
1220 if (ctx
->deinterlacing
&& s_q_data
->flags
& Q_IS_SEQ_XX
&&
1221 ctx
->sequence
% 2 == 0) {
1222 /* When using SEQ_XX type buffers, each buffer has two fields
1223 * each buffer has two fields (top & bottom)
1224 * Removing one buffer is actually getting two fields
1225 * Alternate between two operations:-
1226 * Even : consume one field but DO NOT REMOVE from queue
1227 * Odd : consume other field and REMOVE from queue
1229 ctx
->src_vbs
[0] = v4l2_m2m_next_src_buf(ctx
->fh
.m2m_ctx
);
1230 WARN_ON(ctx
->src_vbs
[0] == NULL
);
1232 ctx
->src_vbs
[0] = v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
1233 WARN_ON(ctx
->src_vbs
[0] == NULL
);
1236 ctx
->dst_vb
= v4l2_m2m_dst_buf_remove(ctx
->fh
.m2m_ctx
);
1237 WARN_ON(ctx
->dst_vb
== NULL
);
1239 if (ctx
->deinterlacing
) {
1241 if (ctx
->src_vbs
[2] == NULL
) {
1242 ctx
->src_vbs
[2] = ctx
->src_vbs
[0];
1243 WARN_ON(ctx
->src_vbs
[2] == NULL
);
1244 ctx
->src_vbs
[1] = ctx
->src_vbs
[0];
1245 WARN_ON(ctx
->src_vbs
[1] == NULL
);
1249 * we have output the first 2 frames through line average, we
1250 * now switch to EDI de-interlacer
1252 if (ctx
->sequence
== 2)
1253 config_edi_input_mode(ctx
, 0x3); /* EDI (Y + UV) */
1256 /* config descriptors */
1257 if (ctx
->dev
->loaded_mmrs
!= ctx
->mmr_adb
.dma_addr
|| ctx
->load_mmrs
) {
1258 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->mmr_adb
);
1259 vpdma_add_cfd_adb(&ctx
->desc_list
, CFD_MMR_CLIENT
, &ctx
->mmr_adb
);
1261 set_line_modes(ctx
);
1263 ctx
->dev
->loaded_mmrs
= ctx
->mmr_adb
.dma_addr
;
1264 ctx
->load_mmrs
= false;
1267 if (sc
->loaded_coeff_h
!= ctx
->sc_coeff_h
.dma_addr
||
1269 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_h
);
1270 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1271 &ctx
->sc_coeff_h
, 0);
1273 sc
->loaded_coeff_h
= ctx
->sc_coeff_h
.dma_addr
;
1274 sc
->load_coeff_h
= false;
1277 if (sc
->loaded_coeff_v
!= ctx
->sc_coeff_v
.dma_addr
||
1279 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_v
);
1280 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1281 &ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
>> 4);
1283 sc
->loaded_coeff_v
= ctx
->sc_coeff_v
.dma_addr
;
1284 sc
->load_coeff_v
= false;
1287 /* output data descriptors */
1288 if (ctx
->deinterlacing
)
1289 add_out_dtd(ctx
, VPE_PORT_MV_OUT
);
1291 if (v4l2_is_format_rgb(d_finfo
)) {
1292 add_out_dtd(ctx
, VPE_PORT_RGB_OUT
);
1294 add_out_dtd(ctx
, VPE_PORT_LUMA_OUT
);
1295 if (d_q_data
->fmt
->coplanar
)
1296 add_out_dtd(ctx
, VPE_PORT_CHROMA_OUT
);
1299 /* input data descriptors */
1300 if (ctx
->deinterlacing
) {
1301 add_in_dtd(ctx
, VPE_PORT_LUMA3_IN
);
1302 add_in_dtd(ctx
, VPE_PORT_CHROMA3_IN
);
1304 add_in_dtd(ctx
, VPE_PORT_LUMA2_IN
);
1305 add_in_dtd(ctx
, VPE_PORT_CHROMA2_IN
);
1308 add_in_dtd(ctx
, VPE_PORT_LUMA1_IN
);
1309 add_in_dtd(ctx
, VPE_PORT_CHROMA1_IN
);
1311 if (ctx
->deinterlacing
)
1312 add_in_dtd(ctx
, VPE_PORT_MV_IN
);
1314 /* sync on channel control descriptors for input ports */
1315 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_LUMA1_IN
);
1316 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_CHROMA1_IN
);
1318 if (ctx
->deinterlacing
) {
1319 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1321 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1322 VPE_CHAN_CHROMA2_IN
);
1324 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1326 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1327 VPE_CHAN_CHROMA3_IN
);
1329 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_IN
);
1332 /* sync on channel control descriptors for output ports */
1333 if (v4l2_is_format_rgb(d_finfo
)) {
1334 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1337 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1339 if (d_q_data
->fmt
->coplanar
)
1340 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1341 VPE_CHAN_CHROMA_OUT
);
1344 if (ctx
->deinterlacing
)
1345 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_OUT
);
1349 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->desc_list
.buf
);
1350 vpdma_submit_descs(ctx
->dev
->vpdma
, &ctx
->desc_list
, 0);
1353 static void dei_error(struct vpe_ctx
*ctx
)
1355 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1356 "received DEI error interrupt\n");
1359 static void ds1_uv_error(struct vpe_ctx
*ctx
)
1361 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1362 "received downsampler error interrupt\n");
1365 static irqreturn_t
vpe_irq(int irq_vpe
, void *data
)
1367 struct vpe_dev
*dev
= (struct vpe_dev
*)data
;
1368 struct vpe_ctx
*ctx
;
1369 struct vpe_q_data
*d_q_data
;
1370 struct vb2_v4l2_buffer
*s_vb
, *d_vb
;
1371 unsigned long flags
;
1373 bool list_complete
= false;
1375 irqst0
= read_reg(dev
, VPE_INT0_STATUS0
);
1377 write_reg(dev
, VPE_INT0_STATUS0_CLR
, irqst0
);
1378 vpe_dbg(dev
, "INT0_STATUS0 = 0x%08x\n", irqst0
);
1381 irqst1
= read_reg(dev
, VPE_INT0_STATUS1
);
1383 write_reg(dev
, VPE_INT0_STATUS1_CLR
, irqst1
);
1384 vpe_dbg(dev
, "INT0_STATUS1 = 0x%08x\n", irqst1
);
1387 ctx
= v4l2_m2m_get_curr_priv(dev
->m2m_dev
);
1389 vpe_err(dev
, "instance released before end of transaction\n");
1394 if (irqst1
& VPE_DEI_ERROR_INT
) {
1395 irqst1
&= ~VPE_DEI_ERROR_INT
;
1398 if (irqst1
& VPE_DS1_UV_ERROR_INT
) {
1399 irqst1
&= ~VPE_DS1_UV_ERROR_INT
;
1405 if (irqst0
& VPE_INT0_LIST0_COMPLETE
)
1406 vpdma_clear_list_stat(ctx
->dev
->vpdma
, 0, 0);
1408 irqst0
&= ~(VPE_INT0_LIST0_COMPLETE
);
1409 list_complete
= true;
1412 if (irqst0
| irqst1
) {
1413 dev_warn(dev
->v4l2_dev
.dev
, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1418 * Setup next operation only when list complete IRQ occurs
1419 * otherwise, skip the following code
1426 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->desc_list
.buf
);
1427 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->mmr_adb
);
1428 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_h
);
1429 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_v
);
1431 vpdma_reset_desc_list(&ctx
->desc_list
);
1433 /* the previous dst mv buffer becomes the next src mv buffer */
1434 ctx
->src_mv_buf_selector
= !ctx
->src_mv_buf_selector
;
1436 s_vb
= ctx
->src_vbs
[0];
1439 d_vb
->flags
= s_vb
->flags
;
1440 d_vb
->vb2_buf
.timestamp
= s_vb
->vb2_buf
.timestamp
;
1442 if (s_vb
->flags
& V4L2_BUF_FLAG_TIMECODE
)
1443 d_vb
->timecode
= s_vb
->timecode
;
1445 d_vb
->sequence
= ctx
->sequence
;
1446 s_vb
->sequence
= ctx
->sequence
;
1448 d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1449 if (d_q_data
->flags
& Q_IS_INTERLACED
) {
1450 d_vb
->field
= ctx
->field
;
1451 if (ctx
->field
== V4L2_FIELD_BOTTOM
) {
1453 ctx
->field
= V4L2_FIELD_TOP
;
1455 WARN_ON(ctx
->field
!= V4L2_FIELD_TOP
);
1456 ctx
->field
= V4L2_FIELD_BOTTOM
;
1459 d_vb
->field
= V4L2_FIELD_NONE
;
1463 if (ctx
->deinterlacing
) {
1465 * Allow source buffer to be dequeued only if it won't be used
1466 * in the next iteration. All vbs are initialized to first
1467 * buffer and we are shifting buffers every iteration, for the
1468 * first two iterations, no buffer will be dequeued.
1469 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1470 * field when deinterlacing is enabled
1472 if (ctx
->src_vbs
[2] != ctx
->src_vbs
[1])
1473 s_vb
= ctx
->src_vbs
[2];
1478 spin_lock_irqsave(&dev
->lock
, flags
);
1481 v4l2_m2m_buf_done(s_vb
, VB2_BUF_STATE_DONE
);
1483 v4l2_m2m_buf_done(d_vb
, VB2_BUF_STATE_DONE
);
1485 spin_unlock_irqrestore(&dev
->lock
, flags
);
1487 if (ctx
->deinterlacing
) {
1488 ctx
->src_vbs
[2] = ctx
->src_vbs
[1];
1489 ctx
->src_vbs
[1] = ctx
->src_vbs
[0];
1493 * Since the vb2_buf_done has already been called fir therse
1494 * buffer we can now NULL them out so that we won't try
1495 * to clean out stray pointer later on.
1497 ctx
->src_vbs
[0] = NULL
;
1503 ctx
->bufs_completed
++;
1504 if (ctx
->bufs_completed
< ctx
->bufs_per_job
&& job_ready(ctx
)) {
1510 vpe_dbg(ctx
->dev
, "finishing transaction\n");
1511 ctx
->bufs_completed
= 0;
1512 v4l2_m2m_job_finish(dev
->m2m_dev
, ctx
->fh
.m2m_ctx
);
1520 static int vpe_querycap(struct file
*file
, void *priv
,
1521 struct v4l2_capability
*cap
)
1523 strscpy(cap
->driver
, VPE_MODULE_NAME
, sizeof(cap
->driver
));
1524 strscpy(cap
->card
, VPE_MODULE_NAME
, sizeof(cap
->card
));
1525 snprintf(cap
->bus_info
, sizeof(cap
->bus_info
), "platform:%s",
1530 static int __enum_fmt(struct v4l2_fmtdesc
*f
, u32 type
)
1533 struct vpe_fmt
*fmt
= NULL
;
1536 for (i
= 0; i
< ARRAY_SIZE(vpe_formats
); ++i
) {
1537 if (vpe_formats
[i
].types
& type
) {
1538 if (index
== f
->index
) {
1539 fmt
= &vpe_formats
[i
];
1549 f
->pixelformat
= fmt
->fourcc
;
1553 static int vpe_enum_fmt(struct file
*file
, void *priv
,
1554 struct v4l2_fmtdesc
*f
)
1556 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1557 return __enum_fmt(f
, VPE_FMT_TYPE_OUTPUT
);
1559 return __enum_fmt(f
, VPE_FMT_TYPE_CAPTURE
);
1562 static int vpe_g_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1564 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1565 struct vpe_ctx
*ctx
= file
->private_data
;
1566 struct vb2_queue
*vq
;
1567 struct vpe_q_data
*q_data
;
1569 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1573 q_data
= get_q_data(ctx
, f
->type
);
1577 *f
= q_data
->format
;
1579 if (V4L2_TYPE_IS_CAPTURE(f
->type
)) {
1580 struct vpe_q_data
*s_q_data
;
1581 struct v4l2_pix_format_mplane
*spix
;
1583 /* get colorimetry from the source queue */
1584 s_q_data
= get_q_data(ctx
, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
);
1585 spix
= &s_q_data
->format
.fmt
.pix_mp
;
1587 pix
->colorspace
= spix
->colorspace
;
1588 pix
->xfer_func
= spix
->xfer_func
;
1589 pix
->ycbcr_enc
= spix
->ycbcr_enc
;
1590 pix
->quantization
= spix
->quantization
;
1596 static int __vpe_try_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
,
1597 struct vpe_fmt
*fmt
, int type
)
1599 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1600 struct v4l2_plane_pix_format
*plane_fmt
;
1601 unsigned int w_align
;
1602 int i
, depth
, depth_bytes
, height
;
1603 unsigned int stride
= 0;
1604 const struct v4l2_format_info
*finfo
;
1606 if (!fmt
|| !(fmt
->types
& type
)) {
1607 vpe_dbg(ctx
->dev
, "Fourcc format (0x%08x) invalid.\n",
1609 fmt
= __find_format(V4L2_PIX_FMT_YUYV
);
1612 if (pix
->field
!= V4L2_FIELD_NONE
&&
1613 pix
->field
!= V4L2_FIELD_ALTERNATE
&&
1614 pix
->field
!= V4L2_FIELD_SEQ_TB
&&
1615 pix
->field
!= V4L2_FIELD_SEQ_BT
)
1616 pix
->field
= V4L2_FIELD_NONE
;
1618 depth
= fmt
->vpdma_fmt
[VPE_LUMA
]->depth
;
1621 * the line stride should 16 byte aligned for VPDMA to work, based on
1622 * the bytes per pixel, figure out how much the width should be aligned
1623 * to make sure line stride is 16 byte aligned
1625 depth_bytes
= depth
>> 3;
1627 if (depth_bytes
== 3) {
1629 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1630 * really help in ensuring line stride is 16 byte aligned
1635 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1636 * can ensure a line stride alignment of 16 bytes. For example,
1637 * if bpp is 2, then the line stride can be 16 byte aligned if
1638 * the width is 8 byte aligned
1642 * HACK: using order_base_2() here causes lots of asm output
1643 * errors with smatch, on i386:
1644 * ./arch/x86/include/asm/bitops.h:457:22:
1645 * warning: asm output is not an lvalue
1646 * Perhaps some gcc optimization is doing the wrong thing
1648 * Let's get rid of them by doing the calculus on two steps
1650 w_align
= roundup_pow_of_two(VPDMA_DESC_ALIGN
/ depth_bytes
);
1651 w_align
= ilog2(w_align
);
1654 v4l_bound_align_image(&pix
->width
, MIN_W
, MAX_W
, w_align
,
1655 &pix
->height
, MIN_H
, MAX_H
, H_ALIGN
,
1658 if (!pix
->num_planes
|| pix
->num_planes
> 2)
1659 pix
->num_planes
= fmt
->coplanar
? 2 : 1;
1660 else if (pix
->num_planes
> 1 && !fmt
->coplanar
)
1661 pix
->num_planes
= 1;
1663 pix
->pixelformat
= fmt
->fourcc
;
1664 finfo
= v4l2_format_info(fmt
->fourcc
);
1667 * For the actual image parameters, we need to consider the field
1668 * height of the image for SEQ_XX buffers.
1670 if (pix
->field
== V4L2_FIELD_SEQ_TB
|| pix
->field
== V4L2_FIELD_SEQ_BT
)
1671 height
= pix
->height
/ 2;
1673 height
= pix
->height
;
1675 if (!pix
->colorspace
) {
1676 if (v4l2_is_format_rgb(finfo
)) {
1677 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
1679 if (height
> 1280) /* HD */
1680 pix
->colorspace
= V4L2_COLORSPACE_REC709
;
1682 pix
->colorspace
= V4L2_COLORSPACE_SMPTE170M
;
1686 memset(pix
->reserved
, 0, sizeof(pix
->reserved
));
1687 for (i
= 0; i
< pix
->num_planes
; i
++) {
1688 plane_fmt
= &pix
->plane_fmt
[i
];
1689 depth
= fmt
->vpdma_fmt
[i
]->depth
;
1691 stride
= (pix
->width
* fmt
->vpdma_fmt
[VPE_LUMA
]->depth
) >> 3;
1692 if (stride
> plane_fmt
->bytesperline
)
1693 plane_fmt
->bytesperline
= stride
;
1695 plane_fmt
->bytesperline
= clamp_t(u32
, plane_fmt
->bytesperline
,
1699 plane_fmt
->bytesperline
= ALIGN(plane_fmt
->bytesperline
,
1700 VPDMA_STRIDE_ALIGN
);
1702 if (i
== VPE_LUMA
) {
1703 plane_fmt
->sizeimage
= pix
->height
*
1704 plane_fmt
->bytesperline
;
1706 if (pix
->num_planes
== 1 && fmt
->coplanar
)
1707 plane_fmt
->sizeimage
+= pix
->height
*
1708 plane_fmt
->bytesperline
*
1709 fmt
->vpdma_fmt
[VPE_CHROMA
]->depth
>> 3;
1711 } else { /* i == VIP_CHROMA */
1712 plane_fmt
->sizeimage
= (pix
->height
*
1713 plane_fmt
->bytesperline
*
1716 memset(plane_fmt
->reserved
, 0, sizeof(plane_fmt
->reserved
));
1722 static int vpe_try_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1724 struct vpe_ctx
*ctx
= file
->private_data
;
1725 struct vpe_fmt
*fmt
= find_format(f
);
1727 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1728 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_OUTPUT
);
1730 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_CAPTURE
);
1733 static int __vpe_s_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
)
1735 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1736 struct v4l2_pix_format_mplane
*qpix
;
1737 struct vpe_q_data
*q_data
;
1738 struct vb2_queue
*vq
;
1740 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1744 if (vb2_is_busy(vq
)) {
1745 vpe_err(ctx
->dev
, "queue busy\n");
1749 q_data
= get_q_data(ctx
, f
->type
);
1753 qpix
= &q_data
->format
.fmt
.pix_mp
;
1754 q_data
->fmt
= find_format(f
);
1755 q_data
->format
= *f
;
1757 q_data
->c_rect
.left
= 0;
1758 q_data
->c_rect
.top
= 0;
1759 q_data
->c_rect
.width
= pix
->width
;
1760 q_data
->c_rect
.height
= pix
->height
;
1762 if (qpix
->field
== V4L2_FIELD_ALTERNATE
)
1763 q_data
->flags
|= Q_DATA_INTERLACED_ALTERNATE
;
1764 else if (qpix
->field
== V4L2_FIELD_SEQ_TB
)
1765 q_data
->flags
|= Q_DATA_INTERLACED_SEQ_TB
;
1766 else if (qpix
->field
== V4L2_FIELD_SEQ_BT
)
1767 q_data
->flags
|= Q_DATA_INTERLACED_SEQ_BT
;
1769 q_data
->flags
&= ~Q_IS_INTERLACED
;
1771 /* the crop height is halved for the case of SEQ_XX buffers */
1772 if (q_data
->flags
& Q_IS_SEQ_XX
)
1773 q_data
->c_rect
.height
/= 2;
1775 vpe_dbg(ctx
->dev
, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1776 f
->type
, pix
->width
, pix
->height
, pix
->pixelformat
,
1777 pix
->plane_fmt
[0].bytesperline
);
1778 if (pix
->num_planes
== 2)
1779 vpe_dbg(ctx
->dev
, " bpl_uv %d\n",
1780 pix
->plane_fmt
[1].bytesperline
);
1785 static int vpe_s_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1788 struct vpe_ctx
*ctx
= file
->private_data
;
1790 ret
= vpe_try_fmt(file
, priv
, f
);
1794 ret
= __vpe_s_fmt(ctx
, f
);
1798 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1799 set_src_registers(ctx
);
1801 set_dst_registers(ctx
);
1803 return set_srcdst_params(ctx
);
1806 static int __vpe_try_selection(struct vpe_ctx
*ctx
, struct v4l2_selection
*s
)
1808 struct vpe_q_data
*q_data
;
1809 struct v4l2_pix_format_mplane
*pix
;
1812 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1813 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1816 q_data
= get_q_data(ctx
, s
->type
);
1820 pix
= &q_data
->format
.fmt
.pix_mp
;
1822 switch (s
->target
) {
1823 case V4L2_SEL_TGT_COMPOSE
:
1825 * COMPOSE target is only valid for capture buffer type, return
1826 * error for output buffer type
1828 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1831 case V4L2_SEL_TGT_CROP
:
1833 * CROP target is only valid for output buffer type, return
1834 * error for capture buffer type
1836 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1840 * bound and default crop/compose targets are invalid targets to
1848 * For SEQ_XX buffers, crop height should be less than the height of
1849 * the field height, not the buffer height
1851 if (q_data
->flags
& Q_IS_SEQ_XX
)
1852 height
= pix
->height
/ 2;
1854 height
= pix
->height
;
1856 if (s
->r
.top
< 0 || s
->r
.left
< 0) {
1857 vpe_err(ctx
->dev
, "negative values for top and left\n");
1858 s
->r
.top
= s
->r
.left
= 0;
1861 v4l_bound_align_image(&s
->r
.width
, MIN_W
, pix
->width
, 1,
1862 &s
->r
.height
, MIN_H
, height
, H_ALIGN
, S_ALIGN
);
1864 /* adjust left/top if cropping rectangle is out of bounds */
1865 if (s
->r
.left
+ s
->r
.width
> pix
->width
)
1866 s
->r
.left
= pix
->width
- s
->r
.width
;
1867 if (s
->r
.top
+ s
->r
.height
> pix
->height
)
1868 s
->r
.top
= pix
->height
- s
->r
.height
;
1873 static int vpe_g_selection(struct file
*file
, void *fh
,
1874 struct v4l2_selection
*s
)
1876 struct vpe_ctx
*ctx
= file
->private_data
;
1877 struct vpe_q_data
*q_data
;
1878 struct v4l2_pix_format_mplane
*pix
;
1879 bool use_c_rect
= false;
1881 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1882 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1885 q_data
= get_q_data(ctx
, s
->type
);
1889 pix
= &q_data
->format
.fmt
.pix_mp
;
1891 switch (s
->target
) {
1892 case V4L2_SEL_TGT_COMPOSE_DEFAULT
:
1893 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
1894 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1897 case V4L2_SEL_TGT_CROP_BOUNDS
:
1898 case V4L2_SEL_TGT_CROP_DEFAULT
:
1899 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1902 case V4L2_SEL_TGT_COMPOSE
:
1903 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1907 case V4L2_SEL_TGT_CROP
:
1908 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1918 * for CROP/COMPOSE target type, return c_rect params from the
1919 * respective buffer type
1921 s
->r
= q_data
->c_rect
;
1924 * for DEFAULT/BOUNDS target type, return width and height from
1925 * S_FMT of the respective buffer type
1929 s
->r
.width
= pix
->width
;
1930 s
->r
.height
= pix
->height
;
1937 static int vpe_s_selection(struct file
*file
, void *fh
,
1938 struct v4l2_selection
*s
)
1940 struct vpe_ctx
*ctx
= file
->private_data
;
1941 struct vpe_q_data
*q_data
;
1942 struct v4l2_selection sel
= *s
;
1945 ret
= __vpe_try_selection(ctx
, &sel
);
1949 q_data
= get_q_data(ctx
, sel
.type
);
1953 if ((q_data
->c_rect
.left
== sel
.r
.left
) &&
1954 (q_data
->c_rect
.top
== sel
.r
.top
) &&
1955 (q_data
->c_rect
.width
== sel
.r
.width
) &&
1956 (q_data
->c_rect
.height
== sel
.r
.height
)) {
1958 "requested crop/compose values are already set\n");
1962 q_data
->c_rect
= sel
.r
;
1964 return set_srcdst_params(ctx
);
1968 * defines number of buffers/frames a context can process with VPE before
1969 * switching to a different context. default value is 1 buffer per context
1971 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1973 static int vpe_s_ctrl(struct v4l2_ctrl
*ctrl
)
1975 struct vpe_ctx
*ctx
=
1976 container_of(ctrl
->handler
, struct vpe_ctx
, hdl
);
1979 case V4L2_CID_VPE_BUFS_PER_JOB
:
1980 ctx
->bufs_per_job
= ctrl
->val
;
1984 vpe_err(ctx
->dev
, "Invalid control\n");
1991 static const struct v4l2_ctrl_ops vpe_ctrl_ops
= {
1992 .s_ctrl
= vpe_s_ctrl
,
1995 static const struct v4l2_ioctl_ops vpe_ioctl_ops
= {
1996 .vidioc_querycap
= vpe_querycap
,
1998 .vidioc_enum_fmt_vid_cap
= vpe_enum_fmt
,
1999 .vidioc_g_fmt_vid_cap_mplane
= vpe_g_fmt
,
2000 .vidioc_try_fmt_vid_cap_mplane
= vpe_try_fmt
,
2001 .vidioc_s_fmt_vid_cap_mplane
= vpe_s_fmt
,
2003 .vidioc_enum_fmt_vid_out
= vpe_enum_fmt
,
2004 .vidioc_g_fmt_vid_out_mplane
= vpe_g_fmt
,
2005 .vidioc_try_fmt_vid_out_mplane
= vpe_try_fmt
,
2006 .vidioc_s_fmt_vid_out_mplane
= vpe_s_fmt
,
2008 .vidioc_g_selection
= vpe_g_selection
,
2009 .vidioc_s_selection
= vpe_s_selection
,
2011 .vidioc_reqbufs
= v4l2_m2m_ioctl_reqbufs
,
2012 .vidioc_querybuf
= v4l2_m2m_ioctl_querybuf
,
2013 .vidioc_qbuf
= v4l2_m2m_ioctl_qbuf
,
2014 .vidioc_dqbuf
= v4l2_m2m_ioctl_dqbuf
,
2015 .vidioc_expbuf
= v4l2_m2m_ioctl_expbuf
,
2016 .vidioc_streamon
= v4l2_m2m_ioctl_streamon
,
2017 .vidioc_streamoff
= v4l2_m2m_ioctl_streamoff
,
2019 .vidioc_subscribe_event
= v4l2_ctrl_subscribe_event
,
2020 .vidioc_unsubscribe_event
= v4l2_event_unsubscribe
,
2026 static int vpe_queue_setup(struct vb2_queue
*vq
,
2027 unsigned int *nbuffers
, unsigned int *nplanes
,
2028 unsigned int sizes
[], struct device
*alloc_devs
[])
2031 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vq
);
2032 struct vpe_q_data
*q_data
;
2033 struct v4l2_pix_format_mplane
*pix
;
2035 q_data
= get_q_data(ctx
, vq
->type
);
2039 pix
= &q_data
->format
.fmt
.pix_mp
;
2040 *nplanes
= pix
->num_planes
;
2042 for (i
= 0; i
< *nplanes
; i
++)
2043 sizes
[i
] = pix
->plane_fmt
[i
].sizeimage
;
2045 vpe_dbg(ctx
->dev
, "get %d buffer(s) of size %d", *nbuffers
,
2048 vpe_dbg(ctx
->dev
, " and %d\n", sizes
[VPE_CHROMA
]);
2053 static int vpe_buf_prepare(struct vb2_buffer
*vb
)
2055 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
2056 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
2057 struct vpe_q_data
*q_data
;
2058 struct v4l2_pix_format_mplane
*pix
;
2061 vpe_dbg(ctx
->dev
, "type: %d\n", vb
->vb2_queue
->type
);
2063 q_data
= get_q_data(ctx
, vb
->vb2_queue
->type
);
2067 pix
= &q_data
->format
.fmt
.pix_mp
;
2069 if (vb
->vb2_queue
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
) {
2070 if (!(q_data
->flags
& Q_IS_INTERLACED
)) {
2071 vbuf
->field
= V4L2_FIELD_NONE
;
2073 if (vbuf
->field
!= V4L2_FIELD_TOP
&&
2074 vbuf
->field
!= V4L2_FIELD_BOTTOM
&&
2075 vbuf
->field
!= V4L2_FIELD_SEQ_TB
&&
2076 vbuf
->field
!= V4L2_FIELD_SEQ_BT
)
2081 for (i
= 0; i
< pix
->num_planes
; i
++) {
2082 if (vb2_plane_size(vb
, i
) < pix
->plane_fmt
[i
].sizeimage
) {
2084 "data will not fit into plane (%lu < %lu)\n",
2085 vb2_plane_size(vb
, i
),
2086 (long)pix
->plane_fmt
[i
].sizeimage
);
2091 for (i
= 0; i
< pix
->num_planes
; i
++)
2092 vb2_set_plane_payload(vb
, i
, pix
->plane_fmt
[i
].sizeimage
);
2097 static void vpe_buf_queue(struct vb2_buffer
*vb
)
2099 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
2100 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
2102 v4l2_m2m_buf_queue(ctx
->fh
.m2m_ctx
, vbuf
);
2105 static int check_srcdst_sizes(struct vpe_ctx
*ctx
)
2107 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
2108 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
2109 unsigned int src_w
= s_q_data
->c_rect
.width
;
2110 unsigned int src_h
= s_q_data
->c_rect
.height
;
2111 unsigned int dst_w
= d_q_data
->c_rect
.width
;
2112 unsigned int dst_h
= d_q_data
->c_rect
.height
;
2114 if (src_w
== dst_w
&& src_h
== dst_h
)
2117 if (src_h
<= SC_MAX_PIXEL_HEIGHT
&&
2118 src_w
<= SC_MAX_PIXEL_WIDTH
&&
2119 dst_h
<= SC_MAX_PIXEL_HEIGHT
&&
2120 dst_w
<= SC_MAX_PIXEL_WIDTH
)
2126 static void vpe_return_all_buffers(struct vpe_ctx
*ctx
, struct vb2_queue
*q
,
2127 enum vb2_buffer_state state
)
2129 struct vb2_v4l2_buffer
*vb
;
2130 unsigned long flags
;
2133 if (V4L2_TYPE_IS_OUTPUT(q
->type
))
2134 vb
= v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
2136 vb
= v4l2_m2m_dst_buf_remove(ctx
->fh
.m2m_ctx
);
2139 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2140 v4l2_m2m_buf_done(vb
, state
);
2141 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2145 * Cleanup the in-transit vb2 buffers that have been
2146 * removed from their respective queue already but for
2147 * which procecessing has not been completed yet.
2149 if (V4L2_TYPE_IS_OUTPUT(q
->type
)) {
2150 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2152 if (ctx
->src_vbs
[2])
2153 v4l2_m2m_buf_done(ctx
->src_vbs
[2], state
);
2155 if (ctx
->src_vbs
[1] && (ctx
->src_vbs
[1] != ctx
->src_vbs
[2]))
2156 v4l2_m2m_buf_done(ctx
->src_vbs
[1], state
);
2158 if (ctx
->src_vbs
[0] &&
2159 (ctx
->src_vbs
[0] != ctx
->src_vbs
[1]) &&
2160 (ctx
->src_vbs
[0] != ctx
->src_vbs
[2]))
2161 v4l2_m2m_buf_done(ctx
->src_vbs
[0], state
);
2163 ctx
->src_vbs
[2] = NULL
;
2164 ctx
->src_vbs
[1] = NULL
;
2165 ctx
->src_vbs
[0] = NULL
;
2167 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2170 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2172 v4l2_m2m_buf_done(ctx
->dst_vb
, state
);
2174 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2179 static int vpe_start_streaming(struct vb2_queue
*q
, unsigned int count
)
2181 struct vpe_ctx
*ctx
= vb2_get_drv_priv(q
);
2183 /* Check any of the size exceed maximum scaling sizes */
2184 if (check_srcdst_sizes(ctx
)) {
2186 "Conversion setup failed, check source and destination parameters\n"
2188 vpe_return_all_buffers(ctx
, q
, VB2_BUF_STATE_QUEUED
);
2192 if (ctx
->deinterlacing
)
2193 config_edi_input_mode(ctx
, 0x0);
2195 if (ctx
->sequence
!= 0)
2196 set_srcdst_params(ctx
);
2201 static void vpe_stop_streaming(struct vb2_queue
*q
)
2203 struct vpe_ctx
*ctx
= vb2_get_drv_priv(q
);
2205 vpe_dump_regs(ctx
->dev
);
2206 vpdma_dump_regs(ctx
->dev
->vpdma
);
2208 vpe_return_all_buffers(ctx
, q
, VB2_BUF_STATE_ERROR
);
2211 static const struct vb2_ops vpe_qops
= {
2212 .queue_setup
= vpe_queue_setup
,
2213 .buf_prepare
= vpe_buf_prepare
,
2214 .buf_queue
= vpe_buf_queue
,
2215 .wait_prepare
= vb2_ops_wait_prepare
,
2216 .wait_finish
= vb2_ops_wait_finish
,
2217 .start_streaming
= vpe_start_streaming
,
2218 .stop_streaming
= vpe_stop_streaming
,
2221 static int queue_init(void *priv
, struct vb2_queue
*src_vq
,
2222 struct vb2_queue
*dst_vq
)
2224 struct vpe_ctx
*ctx
= priv
;
2225 struct vpe_dev
*dev
= ctx
->dev
;
2228 memset(src_vq
, 0, sizeof(*src_vq
));
2229 src_vq
->type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
2230 src_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
2231 src_vq
->drv_priv
= ctx
;
2232 src_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
2233 src_vq
->ops
= &vpe_qops
;
2234 src_vq
->mem_ops
= &vb2_dma_contig_memops
;
2235 src_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
2236 src_vq
->lock
= &dev
->dev_mutex
;
2237 src_vq
->dev
= dev
->v4l2_dev
.dev
;
2239 ret
= vb2_queue_init(src_vq
);
2243 memset(dst_vq
, 0, sizeof(*dst_vq
));
2244 dst_vq
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
2245 dst_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
2246 dst_vq
->drv_priv
= ctx
;
2247 dst_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
2248 dst_vq
->ops
= &vpe_qops
;
2249 dst_vq
->mem_ops
= &vb2_dma_contig_memops
;
2250 dst_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
2251 dst_vq
->lock
= &dev
->dev_mutex
;
2252 dst_vq
->dev
= dev
->v4l2_dev
.dev
;
2254 return vb2_queue_init(dst_vq
);
2257 static const struct v4l2_ctrl_config vpe_bufs_per_job
= {
2258 .ops
= &vpe_ctrl_ops
,
2259 .id
= V4L2_CID_VPE_BUFS_PER_JOB
,
2260 .name
= "Buffers Per Transaction",
2261 .type
= V4L2_CTRL_TYPE_INTEGER
,
2262 .def
= VPE_DEF_BUFS_PER_JOB
,
2264 .max
= VIDEO_MAX_FRAME
,
2271 static int vpe_open(struct file
*file
)
2273 struct vpe_dev
*dev
= video_drvdata(file
);
2274 struct vpe_q_data
*s_q_data
;
2275 struct v4l2_ctrl_handler
*hdl
;
2276 struct vpe_ctx
*ctx
;
2277 struct v4l2_pix_format_mplane
*pix
;
2280 vpe_dbg(dev
, "vpe_open\n");
2282 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2288 if (mutex_lock_interruptible(&dev
->dev_mutex
)) {
2293 ret
= vpdma_create_desc_list(&ctx
->desc_list
, VPE_DESC_LIST_SIZE
,
2294 VPDMA_LIST_TYPE_NORMAL
);
2298 ret
= vpdma_alloc_desc_buf(&ctx
->mmr_adb
, sizeof(struct vpe_mmr_adb
));
2300 goto free_desc_list
;
2302 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_h
, SC_COEF_SRAM_SIZE
);
2306 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
);
2312 v4l2_fh_init(&ctx
->fh
, video_devdata(file
));
2313 file
->private_data
= ctx
;
2316 v4l2_ctrl_handler_init(hdl
, 1);
2317 v4l2_ctrl_new_custom(hdl
, &vpe_bufs_per_job
, NULL
);
2322 ctx
->fh
.ctrl_handler
= hdl
;
2323 v4l2_ctrl_handler_setup(hdl
);
2325 s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
2326 pix
= &s_q_data
->format
.fmt
.pix_mp
;
2327 s_q_data
->fmt
= __find_format(V4L2_PIX_FMT_YUYV
);
2328 pix
->pixelformat
= s_q_data
->fmt
->fourcc
;
2329 s_q_data
->format
.type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
2332 pix
->num_planes
= 1;
2333 pix
->plane_fmt
[VPE_LUMA
].bytesperline
= (pix
->width
*
2334 s_q_data
->fmt
->vpdma_fmt
[VPE_LUMA
]->depth
) >> 3;
2335 pix
->plane_fmt
[VPE_LUMA
].sizeimage
=
2336 pix
->plane_fmt
[VPE_LUMA
].bytesperline
*
2338 pix
->colorspace
= V4L2_COLORSPACE_REC709
;
2339 pix
->xfer_func
= V4L2_XFER_FUNC_DEFAULT
;
2340 pix
->ycbcr_enc
= V4L2_YCBCR_ENC_DEFAULT
;
2341 pix
->quantization
= V4L2_QUANTIZATION_DEFAULT
;
2342 pix
->field
= V4L2_FIELD_NONE
;
2343 s_q_data
->c_rect
.left
= 0;
2344 s_q_data
->c_rect
.top
= 0;
2345 s_q_data
->c_rect
.width
= pix
->width
;
2346 s_q_data
->c_rect
.height
= pix
->height
;
2347 s_q_data
->flags
= 0;
2349 ctx
->q_data
[Q_DATA_DST
] = *s_q_data
;
2350 ctx
->q_data
[Q_DATA_DST
].format
.type
=
2351 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
2353 set_dei_shadow_registers(ctx
);
2354 set_src_registers(ctx
);
2355 set_dst_registers(ctx
);
2356 ret
= set_srcdst_params(ctx
);
2360 ctx
->fh
.m2m_ctx
= v4l2_m2m_ctx_init(dev
->m2m_dev
, ctx
, &queue_init
);
2362 if (IS_ERR(ctx
->fh
.m2m_ctx
)) {
2363 ret
= PTR_ERR(ctx
->fh
.m2m_ctx
);
2367 v4l2_fh_add(&ctx
->fh
);
2370 * for now, just report the creation of the first instance, we can later
2371 * optimize the driver to enable or disable clocks when the first
2372 * instance is created or the last instance released
2374 if (atomic_inc_return(&dev
->num_instances
) == 1)
2375 vpe_dbg(dev
, "first instance created\n");
2377 ctx
->bufs_per_job
= VPE_DEF_BUFS_PER_JOB
;
2379 ctx
->load_mmrs
= true;
2381 vpe_dbg(dev
, "created instance %p, m2m_ctx: %p\n",
2382 ctx
, ctx
->fh
.m2m_ctx
);
2384 mutex_unlock(&dev
->dev_mutex
);
2388 v4l2_ctrl_handler_free(hdl
);
2389 v4l2_fh_exit(&ctx
->fh
);
2390 vpdma_free_desc_buf(&ctx
->sc_coeff_v
);
2392 vpdma_free_desc_buf(&ctx
->sc_coeff_h
);
2394 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2396 vpdma_free_desc_list(&ctx
->desc_list
);
2398 mutex_unlock(&dev
->dev_mutex
);
2404 static int vpe_release(struct file
*file
)
2406 struct vpe_dev
*dev
= video_drvdata(file
);
2407 struct vpe_ctx
*ctx
= file
->private_data
;
2409 vpe_dbg(dev
, "releasing instance %p\n", ctx
);
2411 mutex_lock(&dev
->dev_mutex
);
2412 free_mv_buffers(ctx
);
2414 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->desc_list
.buf
);
2415 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->mmr_adb
);
2416 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_h
);
2417 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_v
);
2419 vpdma_free_desc_list(&ctx
->desc_list
);
2420 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2422 vpdma_free_desc_buf(&ctx
->sc_coeff_v
);
2423 vpdma_free_desc_buf(&ctx
->sc_coeff_h
);
2425 v4l2_fh_del(&ctx
->fh
);
2426 v4l2_fh_exit(&ctx
->fh
);
2427 v4l2_ctrl_handler_free(&ctx
->hdl
);
2428 v4l2_m2m_ctx_release(ctx
->fh
.m2m_ctx
);
2433 * for now, just report the release of the last instance, we can later
2434 * optimize the driver to enable or disable clocks when the first
2435 * instance is created or the last instance released
2437 if (atomic_dec_return(&dev
->num_instances
) == 0)
2438 vpe_dbg(dev
, "last instance released\n");
2440 mutex_unlock(&dev
->dev_mutex
);
2445 static const struct v4l2_file_operations vpe_fops
= {
2446 .owner
= THIS_MODULE
,
2448 .release
= vpe_release
,
2449 .poll
= v4l2_m2m_fop_poll
,
2450 .unlocked_ioctl
= video_ioctl2
,
2451 .mmap
= v4l2_m2m_fop_mmap
,
2454 static const struct video_device vpe_videodev
= {
2455 .name
= VPE_MODULE_NAME
,
2457 .ioctl_ops
= &vpe_ioctl_ops
,
2459 .release
= video_device_release_empty
,
2460 .vfl_dir
= VFL_DIR_M2M
,
2461 .device_caps
= V4L2_CAP_VIDEO_M2M_MPLANE
| V4L2_CAP_STREAMING
,
2464 static const struct v4l2_m2m_ops m2m_ops
= {
2465 .device_run
= device_run
,
2466 .job_ready
= job_ready
,
2467 .job_abort
= job_abort
,
2470 static int vpe_runtime_get(struct platform_device
*pdev
)
2474 dev_dbg(&pdev
->dev
, "vpe_runtime_get\n");
2476 r
= pm_runtime_get_sync(&pdev
->dev
);
2479 pm_runtime_put_noidle(&pdev
->dev
);
2480 return r
< 0 ? r
: 0;
2483 static void vpe_runtime_put(struct platform_device
*pdev
)
2488 dev_dbg(&pdev
->dev
, "vpe_runtime_put\n");
2490 r
= pm_runtime_put_sync(&pdev
->dev
);
2491 WARN_ON(r
< 0 && r
!= -ENOSYS
);
2494 static void vpe_fw_cb(struct platform_device
*pdev
)
2496 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2497 struct video_device
*vfd
;
2501 *vfd
= vpe_videodev
;
2502 vfd
->lock
= &dev
->dev_mutex
;
2503 vfd
->v4l2_dev
= &dev
->v4l2_dev
;
2505 ret
= video_register_device(vfd
, VFL_TYPE_VIDEO
, 0);
2507 vpe_err(dev
, "Failed to register video device\n");
2509 vpe_set_clock_enable(dev
, 0);
2510 vpe_runtime_put(pdev
);
2511 pm_runtime_disable(&pdev
->dev
);
2512 v4l2_m2m_release(dev
->m2m_dev
);
2513 v4l2_device_unregister(&dev
->v4l2_dev
);
2518 video_set_drvdata(vfd
, dev
);
2519 dev_info(dev
->v4l2_dev
.dev
, "Device registered as /dev/video%d\n",
2523 static int vpe_probe(struct platform_device
*pdev
)
2525 struct vpe_dev
*dev
;
2528 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
2531 "32-bit consistent DMA enable failed\n");
2535 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
2539 spin_lock_init(&dev
->lock
);
2541 ret
= v4l2_device_register(&pdev
->dev
, &dev
->v4l2_dev
);
2545 atomic_set(&dev
->num_instances
, 0);
2546 mutex_init(&dev
->dev_mutex
);
2548 dev
->res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2551 dev_err(&pdev
->dev
, "missing 'vpe_top' resources data\n");
2556 * HACK: we get resource info from device tree in the form of a list of
2557 * VPE sub blocks, the driver currently uses only the base of vpe_top
2558 * for register access, the driver should be changed later to access
2559 * registers based on the sub block base addresses
2561 dev
->base
= devm_ioremap(&pdev
->dev
, dev
->res
->start
, SZ_32K
);
2564 goto v4l2_dev_unreg
;
2567 irq
= platform_get_irq(pdev
, 0);
2568 ret
= devm_request_irq(&pdev
->dev
, irq
, vpe_irq
, 0, VPE_MODULE_NAME
,
2571 goto v4l2_dev_unreg
;
2573 platform_set_drvdata(pdev
, dev
);
2575 dev
->m2m_dev
= v4l2_m2m_init(&m2m_ops
);
2576 if (IS_ERR(dev
->m2m_dev
)) {
2577 vpe_err(dev
, "Failed to init mem2mem device\n");
2578 ret
= PTR_ERR(dev
->m2m_dev
);
2579 goto v4l2_dev_unreg
;
2582 pm_runtime_enable(&pdev
->dev
);
2584 ret
= vpe_runtime_get(pdev
);
2588 /* Perform clk enable followed by reset */
2589 vpe_set_clock_enable(dev
, 1);
2593 func
= read_field_reg(dev
, VPE_PID
, VPE_PID_FUNC_MASK
,
2594 VPE_PID_FUNC_SHIFT
);
2595 vpe_dbg(dev
, "VPE PID function %x\n", func
);
2597 vpe_top_vpdma_reset(dev
);
2599 dev
->sc
= sc_create(pdev
, "sc");
2600 if (IS_ERR(dev
->sc
)) {
2601 ret
= PTR_ERR(dev
->sc
);
2605 dev
->csc
= csc_create(pdev
, "csc");
2606 if (IS_ERR(dev
->csc
)) {
2607 ret
= PTR_ERR(dev
->csc
);
2611 dev
->vpdma
= &dev
->vpdma_data
;
2612 ret
= vpdma_create(pdev
, dev
->vpdma
, vpe_fw_cb
);
2619 vpe_runtime_put(pdev
);
2621 pm_runtime_disable(&pdev
->dev
);
2622 v4l2_m2m_release(dev
->m2m_dev
);
2624 v4l2_device_unregister(&dev
->v4l2_dev
);
2629 static int vpe_remove(struct platform_device
*pdev
)
2631 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2633 v4l2_info(&dev
->v4l2_dev
, "Removing " VPE_MODULE_NAME
);
2635 v4l2_m2m_release(dev
->m2m_dev
);
2636 video_unregister_device(&dev
->vfd
);
2637 v4l2_device_unregister(&dev
->v4l2_dev
);
2639 vpe_set_clock_enable(dev
, 0);
2640 vpe_runtime_put(pdev
);
2641 pm_runtime_disable(&pdev
->dev
);
2646 #if defined(CONFIG_OF)
2647 static const struct of_device_id vpe_of_match
[] = {
2649 .compatible
= "ti,dra7-vpe",
2653 MODULE_DEVICE_TABLE(of
, vpe_of_match
);
2656 static struct platform_driver vpe_pdrv
= {
2658 .remove
= vpe_remove
,
2660 .name
= VPE_MODULE_NAME
,
2661 .of_match_table
= of_match_ptr(vpe_of_match
),
2665 module_platform_driver(vpe_pdrv
);
2667 MODULE_DESCRIPTION("TI VPE driver");
2668 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2669 MODULE_LICENSE("GPL");