Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / media / platform / vsp1 / vsp1_rpf.c
blob85587c1b6a37320cac7a974eeaba4611858a794e
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
10 #include <linux/device.h>
12 #include <media/v4l2-subdev.h>
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
20 #define RPF_MAX_WIDTH 8190
21 #define RPF_MAX_HEIGHT 8190
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25 u32 top_y0;
26 u32 bottom_y0;
27 u32 top_c0;
28 u32 bottom_c0;
29 u32 top_c1;
30 u32 bottom_c1;
31 u32 reserved0;
32 u32 reserved1;
33 } __packed;
35 /* -----------------------------------------------------------------------------
36 * Device Access
39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40 struct vsp1_dl_body *dlb, u32 reg, u32 data)
42 vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43 data);
46 /* -----------------------------------------------------------------------------
47 * V4L2 Subdevice Operations
50 static const struct v4l2_subdev_ops rpf_ops = {
51 .pad = &vsp1_rwpf_pad_ops,
54 /* -----------------------------------------------------------------------------
55 * VSP1 Entity Operations
58 static void rpf_configure_stream(struct vsp1_entity *entity,
59 struct vsp1_pipeline *pipe,
60 struct vsp1_dl_list *dl,
61 struct vsp1_dl_body *dlb)
63 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
64 const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
65 const struct v4l2_pix_format_mplane *format = &rpf->format;
66 const struct v4l2_mbus_framefmt *source_format;
67 const struct v4l2_mbus_framefmt *sink_format;
68 unsigned int left = 0;
69 unsigned int top = 0;
70 u32 pstride;
71 u32 infmt;
73 /* Stride */
74 pstride = format->plane_fmt[0].bytesperline
75 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
76 if (format->num_planes > 1)
77 pstride |= format->plane_fmt[1].bytesperline
78 << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
81 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
82 * of pstride by 2 is conveniently OK here as we are multiplying both
83 * values.
85 if (pipe->interlaced)
86 pstride *= 2;
88 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
90 /* Format */
91 sink_format = vsp1_entity_get_pad_format(&rpf->entity,
92 rpf->entity.config,
93 RWPF_PAD_SINK);
94 source_format = vsp1_entity_get_pad_format(&rpf->entity,
95 rpf->entity.config,
96 RWPF_PAD_SOURCE);
98 infmt = VI6_RPF_INFMT_CIPM
99 | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
101 if (fmtinfo->swap_yc)
102 infmt |= VI6_RPF_INFMT_SPYCS;
103 if (fmtinfo->swap_uv)
104 infmt |= VI6_RPF_INFMT_SPUVS;
106 if (sink_format->code != source_format->code)
107 infmt |= VI6_RPF_INFMT_CSC;
109 vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
110 vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
112 /* Output location. */
113 if (pipe->brx) {
114 const struct v4l2_rect *compose;
116 compose = vsp1_entity_get_pad_selection(pipe->brx,
117 pipe->brx->config,
118 rpf->brx_input,
119 V4L2_SEL_TGT_COMPOSE);
120 left = compose->left;
121 top = compose->top;
124 if (pipe->interlaced)
125 top /= 2;
127 vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
128 (left << VI6_RPF_LOC_HCOORD_SHIFT) |
129 (top << VI6_RPF_LOC_VCOORD_SHIFT));
132 * On Gen2 use the alpha channel (extended to 8 bits) when available or
133 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
134 * otherwise.
136 * The Gen3 RPF has extended alpha capability and can both multiply the
137 * alpha channel by a fixed global alpha value, and multiply the pixel
138 * components to convert the input to premultiplied alpha.
140 * As alpha premultiplication is available in the BRx for both Gen2 and
141 * Gen3 we handle it there and use the Gen3 alpha multiplier for global
142 * alpha multiplication only. This however prevents conversion to
143 * premultiplied alpha if no BRx is present in the pipeline. If that use
144 * case turns out to be useful we will revisit the implementation (for
145 * Gen3 only).
147 * We enable alpha multiplication on Gen3 using the fixed alpha value
148 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
149 * contains an alpha channel. On Gen2 the global alpha is ignored in
150 * that case.
152 * In all cases, disable color keying.
154 vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
155 (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
156 : VI6_RPF_ALPH_SEL_ASEL_FIXED));
158 if (entity->vsp1->info->gen == 3) {
159 u32 mult;
161 if (fmtinfo->alpha) {
163 * When the input contains an alpha channel enable the
164 * alpha multiplier. If the input is premultiplied we
165 * need to multiply both the alpha channel and the pixel
166 * components by the global alpha value to keep them
167 * premultiplied. Otherwise multiply the alpha channel
168 * only.
170 bool premultiplied = format->flags
171 & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
173 mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
174 | (premultiplied ?
175 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
176 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
177 } else {
179 * When the input doesn't contain an alpha channel the
180 * global alpha value is applied in the unpacking unit,
181 * the alpha multiplier isn't needed and must be
182 * disabled.
184 mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
185 | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
188 rpf->mult_alpha = mult;
191 vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
192 vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
196 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
197 struct vsp1_dl_list *dl)
199 const struct v4l2_pix_format_mplane *format = &rpf->format;
200 struct vsp1_dl_ext_cmd *cmd;
201 struct vsp1_extcmd_auto_fld_body *auto_fld;
202 u32 offset_y, offset_c;
204 cmd = vsp1_dl_get_pre_cmd(dl);
205 if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
206 return;
208 /* Re-index our auto_fld to match the current RPF. */
209 auto_fld = cmd->data;
210 auto_fld = &auto_fld[rpf->entity.index];
212 auto_fld->top_y0 = rpf->mem.addr[0];
213 auto_fld->top_c0 = rpf->mem.addr[1];
214 auto_fld->top_c1 = rpf->mem.addr[2];
216 offset_y = format->plane_fmt[0].bytesperline;
217 offset_c = format->plane_fmt[1].bytesperline;
219 auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
220 auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
221 auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
223 cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
226 static void rpf_configure_frame(struct vsp1_entity *entity,
227 struct vsp1_pipeline *pipe,
228 struct vsp1_dl_list *dl,
229 struct vsp1_dl_body *dlb)
231 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
233 vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
234 rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
235 vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
236 (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
238 vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
241 static void rpf_configure_partition(struct vsp1_entity *entity,
242 struct vsp1_pipeline *pipe,
243 struct vsp1_dl_list *dl,
244 struct vsp1_dl_body *dlb)
246 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
247 struct vsp1_rwpf_memory mem = rpf->mem;
248 struct vsp1_device *vsp1 = rpf->entity.vsp1;
249 const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
250 const struct v4l2_pix_format_mplane *format = &rpf->format;
251 struct v4l2_rect crop;
254 * Source size and crop offsets.
256 * The crop offsets correspond to the location of the crop
257 * rectangle top left corner in the plane buffer. Only two
258 * offsets are needed, as planes 2 and 3 always have identical
259 * strides.
261 crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
264 * Partition Algorithm Control
266 * The partition algorithm can split this frame into multiple
267 * slices. We must scale our partition window based on the pipe
268 * configuration to match the destination partition window.
269 * To achieve this, we adjust our crop to provide a 'sub-crop'
270 * matching the expected partition window. Only 'left' and
271 * 'width' need to be adjusted.
273 if (pipe->partitions > 1) {
274 crop.width = pipe->partition->rpf.width;
275 crop.left += pipe->partition->rpf.left;
278 if (pipe->interlaced) {
279 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
280 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
283 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
284 (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
285 (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
286 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
287 (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
288 (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
290 mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
291 + crop.left * fmtinfo->bpp[0] / 8;
293 if (format->num_planes > 1) {
294 unsigned int offset;
296 offset = crop.top * format->plane_fmt[1].bytesperline
297 + crop.left / fmtinfo->hsub
298 * fmtinfo->bpp[1] / 8;
299 mem.addr[1] += offset;
300 mem.addr[2] += offset;
304 * On Gen3 hardware the SPUVS bit has no effect on 3-planar
305 * formats. Swap the U and V planes manually in that case.
307 if (vsp1->info->gen == 3 && format->num_planes == 3 &&
308 fmtinfo->swap_uv)
309 swap(mem.addr[1], mem.addr[2]);
312 * Interlaced pipelines will use the extended pre-cmd to process
313 * SRCM_ADDR_{Y,C0,C1}.
315 if (pipe->interlaced) {
316 vsp1_rpf_configure_autofld(rpf, dl);
317 } else {
318 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
319 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
320 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
324 static void rpf_partition(struct vsp1_entity *entity,
325 struct vsp1_pipeline *pipe,
326 struct vsp1_partition *partition,
327 unsigned int partition_idx,
328 struct vsp1_partition_window *window)
330 partition->rpf = *window;
333 static const struct vsp1_entity_operations rpf_entity_ops = {
334 .configure_stream = rpf_configure_stream,
335 .configure_frame = rpf_configure_frame,
336 .configure_partition = rpf_configure_partition,
337 .partition = rpf_partition,
340 /* -----------------------------------------------------------------------------
341 * Initialization and Cleanup
344 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
346 struct vsp1_rwpf *rpf;
347 char name[6];
348 int ret;
350 rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
351 if (rpf == NULL)
352 return ERR_PTR(-ENOMEM);
354 rpf->max_width = RPF_MAX_WIDTH;
355 rpf->max_height = RPF_MAX_HEIGHT;
357 rpf->entity.ops = &rpf_entity_ops;
358 rpf->entity.type = VSP1_ENTITY_RPF;
359 rpf->entity.index = index;
361 sprintf(name, "rpf.%u", index);
362 ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
363 MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
364 if (ret < 0)
365 return ERR_PTR(ret);
367 /* Initialize the control handler. */
368 ret = vsp1_rwpf_init_ctrls(rpf, 0);
369 if (ret < 0) {
370 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
371 index);
372 goto error;
375 v4l2_ctrl_handler_setup(&rpf->ctrls);
377 return rpf;
379 error:
380 vsp1_entity_destroy(&rpf->entity);
381 return ERR_PTR(ret);