1 // SPDX-License-Identifier: GPL-2.0+
3 * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
5 * Copyright (C) 2013-2014 Renesas Electronics Corporation
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
10 #include <linux/device.h>
12 #include <media/v4l2-subdev.h>
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
20 #define RPF_MAX_WIDTH 8190
21 #define RPF_MAX_HEIGHT 8190
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body
{
35 /* -----------------------------------------------------------------------------
39 static inline void vsp1_rpf_write(struct vsp1_rwpf
*rpf
,
40 struct vsp1_dl_body
*dlb
, u32 reg
, u32 data
)
42 vsp1_dl_body_write(dlb
, reg
+ rpf
->entity
.index
* VI6_RPF_OFFSET
,
46 /* -----------------------------------------------------------------------------
47 * V4L2 Subdevice Operations
50 static const struct v4l2_subdev_ops rpf_ops
= {
51 .pad
= &vsp1_rwpf_pad_ops
,
54 /* -----------------------------------------------------------------------------
55 * VSP1 Entity Operations
58 static void rpf_configure_stream(struct vsp1_entity
*entity
,
59 struct vsp1_pipeline
*pipe
,
60 struct vsp1_dl_list
*dl
,
61 struct vsp1_dl_body
*dlb
)
63 struct vsp1_rwpf
*rpf
= to_rwpf(&entity
->subdev
);
64 const struct vsp1_format_info
*fmtinfo
= rpf
->fmtinfo
;
65 const struct v4l2_pix_format_mplane
*format
= &rpf
->format
;
66 const struct v4l2_mbus_framefmt
*source_format
;
67 const struct v4l2_mbus_framefmt
*sink_format
;
68 unsigned int left
= 0;
74 pstride
= format
->plane_fmt
[0].bytesperline
75 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT
;
76 if (format
->num_planes
> 1)
77 pstride
|= format
->plane_fmt
[1].bytesperline
78 << VI6_RPF_SRCM_PSTRIDE_C_SHIFT
;
81 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
82 * of pstride by 2 is conveniently OK here as we are multiplying both
88 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRCM_PSTRIDE
, pstride
);
91 sink_format
= vsp1_entity_get_pad_format(&rpf
->entity
,
94 source_format
= vsp1_entity_get_pad_format(&rpf
->entity
,
98 infmt
= VI6_RPF_INFMT_CIPM
99 | (fmtinfo
->hwfmt
<< VI6_RPF_INFMT_RDFMT_SHIFT
);
101 if (fmtinfo
->swap_yc
)
102 infmt
|= VI6_RPF_INFMT_SPYCS
;
103 if (fmtinfo
->swap_uv
)
104 infmt
|= VI6_RPF_INFMT_SPUVS
;
106 if (sink_format
->code
!= source_format
->code
)
107 infmt
|= VI6_RPF_INFMT_CSC
;
109 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_INFMT
, infmt
);
110 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_DSWAP
, fmtinfo
->swap
);
112 /* Output location. */
114 const struct v4l2_rect
*compose
;
116 compose
= vsp1_entity_get_pad_selection(pipe
->brx
,
119 V4L2_SEL_TGT_COMPOSE
);
120 left
= compose
->left
;
124 if (pipe
->interlaced
)
127 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_LOC
,
128 (left
<< VI6_RPF_LOC_HCOORD_SHIFT
) |
129 (top
<< VI6_RPF_LOC_VCOORD_SHIFT
));
132 * On Gen2 use the alpha channel (extended to 8 bits) when available or
133 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
136 * The Gen3 RPF has extended alpha capability and can both multiply the
137 * alpha channel by a fixed global alpha value, and multiply the pixel
138 * components to convert the input to premultiplied alpha.
140 * As alpha premultiplication is available in the BRx for both Gen2 and
141 * Gen3 we handle it there and use the Gen3 alpha multiplier for global
142 * alpha multiplication only. This however prevents conversion to
143 * premultiplied alpha if no BRx is present in the pipeline. If that use
144 * case turns out to be useful we will revisit the implementation (for
147 * We enable alpha multiplication on Gen3 using the fixed alpha value
148 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
149 * contains an alpha channel. On Gen2 the global alpha is ignored in
152 * In all cases, disable color keying.
154 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_ALPH_SEL
, VI6_RPF_ALPH_SEL_AEXT_EXT
|
155 (fmtinfo
->alpha
? VI6_RPF_ALPH_SEL_ASEL_PACKED
156 : VI6_RPF_ALPH_SEL_ASEL_FIXED
));
158 if (entity
->vsp1
->info
->gen
== 3) {
161 if (fmtinfo
->alpha
) {
163 * When the input contains an alpha channel enable the
164 * alpha multiplier. If the input is premultiplied we
165 * need to multiply both the alpha channel and the pixel
166 * components by the global alpha value to keep them
167 * premultiplied. Otherwise multiply the alpha channel
170 bool premultiplied
= format
->flags
171 & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA
;
173 mult
= VI6_RPF_MULT_ALPHA_A_MMD_RATIO
175 VI6_RPF_MULT_ALPHA_P_MMD_RATIO
:
176 VI6_RPF_MULT_ALPHA_P_MMD_NONE
);
179 * When the input doesn't contain an alpha channel the
180 * global alpha value is applied in the unpacking unit,
181 * the alpha multiplier isn't needed and must be
184 mult
= VI6_RPF_MULT_ALPHA_A_MMD_NONE
185 | VI6_RPF_MULT_ALPHA_P_MMD_NONE
;
188 rpf
->mult_alpha
= mult
;
191 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_MSK_CTRL
, 0);
192 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_CKEY_CTRL
, 0);
196 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf
*rpf
,
197 struct vsp1_dl_list
*dl
)
199 const struct v4l2_pix_format_mplane
*format
= &rpf
->format
;
200 struct vsp1_dl_ext_cmd
*cmd
;
201 struct vsp1_extcmd_auto_fld_body
*auto_fld
;
202 u32 offset_y
, offset_c
;
204 cmd
= vsp1_dl_get_pre_cmd(dl
);
205 if (WARN_ONCE(!cmd
, "Failed to obtain an autofld cmd"))
208 /* Re-index our auto_fld to match the current RPF. */
209 auto_fld
= cmd
->data
;
210 auto_fld
= &auto_fld
[rpf
->entity
.index
];
212 auto_fld
->top_y0
= rpf
->mem
.addr
[0];
213 auto_fld
->top_c0
= rpf
->mem
.addr
[1];
214 auto_fld
->top_c1
= rpf
->mem
.addr
[2];
216 offset_y
= format
->plane_fmt
[0].bytesperline
;
217 offset_c
= format
->plane_fmt
[1].bytesperline
;
219 auto_fld
->bottom_y0
= rpf
->mem
.addr
[0] + offset_y
;
220 auto_fld
->bottom_c0
= rpf
->mem
.addr
[1] + offset_c
;
221 auto_fld
->bottom_c1
= rpf
->mem
.addr
[2] + offset_c
;
223 cmd
->flags
|= VI6_DL_EXT_AUTOFLD_INT
| BIT(16 + rpf
->entity
.index
);
226 static void rpf_configure_frame(struct vsp1_entity
*entity
,
227 struct vsp1_pipeline
*pipe
,
228 struct vsp1_dl_list
*dl
,
229 struct vsp1_dl_body
*dlb
)
231 struct vsp1_rwpf
*rpf
= to_rwpf(&entity
->subdev
);
233 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_VRTCOL_SET
,
234 rpf
->alpha
<< VI6_RPF_VRTCOL_SET_LAYA_SHIFT
);
235 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_MULT_ALPHA
, rpf
->mult_alpha
|
236 (rpf
->alpha
<< VI6_RPF_MULT_ALPHA_RATIO_SHIFT
));
238 vsp1_pipeline_propagate_alpha(pipe
, dlb
, rpf
->alpha
);
241 static void rpf_configure_partition(struct vsp1_entity
*entity
,
242 struct vsp1_pipeline
*pipe
,
243 struct vsp1_dl_list
*dl
,
244 struct vsp1_dl_body
*dlb
)
246 struct vsp1_rwpf
*rpf
= to_rwpf(&entity
->subdev
);
247 struct vsp1_rwpf_memory mem
= rpf
->mem
;
248 struct vsp1_device
*vsp1
= rpf
->entity
.vsp1
;
249 const struct vsp1_format_info
*fmtinfo
= rpf
->fmtinfo
;
250 const struct v4l2_pix_format_mplane
*format
= &rpf
->format
;
251 struct v4l2_rect crop
;
254 * Source size and crop offsets.
256 * The crop offsets correspond to the location of the crop
257 * rectangle top left corner in the plane buffer. Only two
258 * offsets are needed, as planes 2 and 3 always have identical
261 crop
= *vsp1_rwpf_get_crop(rpf
, rpf
->entity
.config
);
264 * Partition Algorithm Control
266 * The partition algorithm can split this frame into multiple
267 * slices. We must scale our partition window based on the pipe
268 * configuration to match the destination partition window.
269 * To achieve this, we adjust our crop to provide a 'sub-crop'
270 * matching the expected partition window. Only 'left' and
271 * 'width' need to be adjusted.
273 if (pipe
->partitions
> 1) {
274 crop
.width
= pipe
->partition
->rpf
.width
;
275 crop
.left
+= pipe
->partition
->rpf
.left
;
278 if (pipe
->interlaced
) {
279 crop
.height
= round_down(crop
.height
/ 2, fmtinfo
->vsub
);
280 crop
.top
= round_down(crop
.top
/ 2, fmtinfo
->vsub
);
283 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRC_BSIZE
,
284 (crop
.width
<< VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT
) |
285 (crop
.height
<< VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT
));
286 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRC_ESIZE
,
287 (crop
.width
<< VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT
) |
288 (crop
.height
<< VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT
));
290 mem
.addr
[0] += crop
.top
* format
->plane_fmt
[0].bytesperline
291 + crop
.left
* fmtinfo
->bpp
[0] / 8;
293 if (format
->num_planes
> 1) {
296 offset
= crop
.top
* format
->plane_fmt
[1].bytesperline
297 + crop
.left
/ fmtinfo
->hsub
298 * fmtinfo
->bpp
[1] / 8;
299 mem
.addr
[1] += offset
;
300 mem
.addr
[2] += offset
;
304 * On Gen3 hardware the SPUVS bit has no effect on 3-planar
305 * formats. Swap the U and V planes manually in that case.
307 if (vsp1
->info
->gen
== 3 && format
->num_planes
== 3 &&
309 swap(mem
.addr
[1], mem
.addr
[2]);
312 * Interlaced pipelines will use the extended pre-cmd to process
313 * SRCM_ADDR_{Y,C0,C1}.
315 if (pipe
->interlaced
) {
316 vsp1_rpf_configure_autofld(rpf
, dl
);
318 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRCM_ADDR_Y
, mem
.addr
[0]);
319 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRCM_ADDR_C0
, mem
.addr
[1]);
320 vsp1_rpf_write(rpf
, dlb
, VI6_RPF_SRCM_ADDR_C1
, mem
.addr
[2]);
324 static void rpf_partition(struct vsp1_entity
*entity
,
325 struct vsp1_pipeline
*pipe
,
326 struct vsp1_partition
*partition
,
327 unsigned int partition_idx
,
328 struct vsp1_partition_window
*window
)
330 partition
->rpf
= *window
;
333 static const struct vsp1_entity_operations rpf_entity_ops
= {
334 .configure_stream
= rpf_configure_stream
,
335 .configure_frame
= rpf_configure_frame
,
336 .configure_partition
= rpf_configure_partition
,
337 .partition
= rpf_partition
,
340 /* -----------------------------------------------------------------------------
341 * Initialization and Cleanup
344 struct vsp1_rwpf
*vsp1_rpf_create(struct vsp1_device
*vsp1
, unsigned int index
)
346 struct vsp1_rwpf
*rpf
;
350 rpf
= devm_kzalloc(vsp1
->dev
, sizeof(*rpf
), GFP_KERNEL
);
352 return ERR_PTR(-ENOMEM
);
354 rpf
->max_width
= RPF_MAX_WIDTH
;
355 rpf
->max_height
= RPF_MAX_HEIGHT
;
357 rpf
->entity
.ops
= &rpf_entity_ops
;
358 rpf
->entity
.type
= VSP1_ENTITY_RPF
;
359 rpf
->entity
.index
= index
;
361 sprintf(name
, "rpf.%u", index
);
362 ret
= vsp1_entity_init(vsp1
, &rpf
->entity
, name
, 2, &rpf_ops
,
363 MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER
);
367 /* Initialize the control handler. */
368 ret
= vsp1_rwpf_init_ctrls(rpf
, 0);
370 dev_err(vsp1
->dev
, "rpf%u: failed to initialize controls\n",
375 v4l2_ctrl_handler_setup(&rpf
->ctrls
);
380 vsp1_entity_destroy(&rpf
->entity
);