1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
26 unsigned int repeat_period
;
27 unsigned int scancode_bits
;
29 [RC_PROTO_UNKNOWN
] = { .name
= "unknown", .repeat_period
= 125 },
30 [RC_PROTO_OTHER
] = { .name
= "other", .repeat_period
= 125 },
31 [RC_PROTO_RC5
] = { .name
= "rc-5",
32 .scancode_bits
= 0x1f7f, .repeat_period
= 114 },
33 [RC_PROTO_RC5X_20
] = { .name
= "rc-5x-20",
34 .scancode_bits
= 0x1f7f3f, .repeat_period
= 114 },
35 [RC_PROTO_RC5_SZ
] = { .name
= "rc-5-sz",
36 .scancode_bits
= 0x2fff, .repeat_period
= 114 },
37 [RC_PROTO_JVC
] = { .name
= "jvc",
38 .scancode_bits
= 0xffff, .repeat_period
= 125 },
39 [RC_PROTO_SONY12
] = { .name
= "sony-12",
40 .scancode_bits
= 0x1f007f, .repeat_period
= 100 },
41 [RC_PROTO_SONY15
] = { .name
= "sony-15",
42 .scancode_bits
= 0xff007f, .repeat_period
= 100 },
43 [RC_PROTO_SONY20
] = { .name
= "sony-20",
44 .scancode_bits
= 0x1fff7f, .repeat_period
= 100 },
45 [RC_PROTO_NEC
] = { .name
= "nec",
46 .scancode_bits
= 0xffff, .repeat_period
= 110 },
47 [RC_PROTO_NECX
] = { .name
= "nec-x",
48 .scancode_bits
= 0xffffff, .repeat_period
= 110 },
49 [RC_PROTO_NEC32
] = { .name
= "nec-32",
50 .scancode_bits
= 0xffffffff, .repeat_period
= 110 },
51 [RC_PROTO_SANYO
] = { .name
= "sanyo",
52 .scancode_bits
= 0x1fffff, .repeat_period
= 125 },
53 [RC_PROTO_MCIR2_KBD
] = { .name
= "mcir2-kbd",
54 .scancode_bits
= 0xffffff, .repeat_period
= 100 },
55 [RC_PROTO_MCIR2_MSE
] = { .name
= "mcir2-mse",
56 .scancode_bits
= 0x1fffff, .repeat_period
= 100 },
57 [RC_PROTO_RC6_0
] = { .name
= "rc-6-0",
58 .scancode_bits
= 0xffff, .repeat_period
= 114 },
59 [RC_PROTO_RC6_6A_20
] = { .name
= "rc-6-6a-20",
60 .scancode_bits
= 0xfffff, .repeat_period
= 114 },
61 [RC_PROTO_RC6_6A_24
] = { .name
= "rc-6-6a-24",
62 .scancode_bits
= 0xffffff, .repeat_period
= 114 },
63 [RC_PROTO_RC6_6A_32
] = { .name
= "rc-6-6a-32",
64 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
65 [RC_PROTO_RC6_MCE
] = { .name
= "rc-6-mce",
66 .scancode_bits
= 0xffff7fff, .repeat_period
= 114 },
67 [RC_PROTO_SHARP
] = { .name
= "sharp",
68 .scancode_bits
= 0x1fff, .repeat_period
= 125 },
69 [RC_PROTO_XMP
] = { .name
= "xmp", .repeat_period
= 125 },
70 [RC_PROTO_CEC
] = { .name
= "cec", .repeat_period
= 0 },
71 [RC_PROTO_IMON
] = { .name
= "imon",
72 .scancode_bits
= 0x7fffffff, .repeat_period
= 114 },
73 [RC_PROTO_RCMM12
] = { .name
= "rc-mm-12",
74 .scancode_bits
= 0x00000fff, .repeat_period
= 114 },
75 [RC_PROTO_RCMM24
] = { .name
= "rc-mm-24",
76 .scancode_bits
= 0x00ffffff, .repeat_period
= 114 },
77 [RC_PROTO_RCMM32
] = { .name
= "rc-mm-32",
78 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
79 [RC_PROTO_XBOX_DVD
] = { .name
= "xbox-dvd", .repeat_period
= 64 },
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list
);
84 static DEFINE_SPINLOCK(rc_map_lock
);
85 static struct led_trigger
*led_feedback
;
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida
);
90 static struct rc_map_list
*seek_rc_map(const char *name
)
92 struct rc_map_list
*map
= NULL
;
94 spin_lock(&rc_map_lock
);
95 list_for_each_entry(map
, &rc_map_list
, list
) {
96 if (!strcmp(name
, map
->map
.name
)) {
97 spin_unlock(&rc_map_lock
);
101 spin_unlock(&rc_map_lock
);
106 struct rc_map
*rc_map_get(const char *name
)
109 struct rc_map_list
*map
;
111 map
= seek_rc_map(name
);
112 #ifdef CONFIG_MODULES
114 int rc
= request_module("%s", name
);
116 pr_err("Couldn't load IR keymap %s\n", name
);
119 msleep(20); /* Give some time for IR to register */
121 map
= seek_rc_map(name
);
125 pr_err("IR keymap %s not found\n", name
);
129 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
133 EXPORT_SYMBOL_GPL(rc_map_get
);
135 int rc_map_register(struct rc_map_list
*map
)
137 spin_lock(&rc_map_lock
);
138 list_add_tail(&map
->list
, &rc_map_list
);
139 spin_unlock(&rc_map_lock
);
142 EXPORT_SYMBOL_GPL(rc_map_register
);
144 void rc_map_unregister(struct rc_map_list
*map
)
146 spin_lock(&rc_map_lock
);
147 list_del(&map
->list
);
148 spin_unlock(&rc_map_lock
);
150 EXPORT_SYMBOL_GPL(rc_map_unregister
);
153 static struct rc_map_table empty
[] = {
154 { 0x2a, KEY_COFFEE
},
157 static struct rc_map_list empty_map
= {
160 .size
= ARRAY_SIZE(empty
),
161 .rc_proto
= RC_PROTO_UNKNOWN
, /* Legacy IR type */
162 .name
= RC_MAP_EMPTY
,
167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
168 * @ke: keymap entry containing scancode to be converted.
169 * @scancode: pointer to the location where converted scancode should
172 * This function is a version of input_scancode_to_scalar specialized for
175 static int scancode_to_u64(const struct input_keymap_entry
*ke
, u64
*scancode
)
179 *scancode
= *((u8
*)ke
->scancode
);
183 *scancode
= *((u16
*)ke
->scancode
);
187 *scancode
= *((u32
*)ke
->scancode
);
191 *scancode
= *((u64
*)ke
->scancode
);
202 * ir_create_table() - initializes a scancode table
203 * @dev: the rc_dev device
204 * @rc_map: the rc_map to initialize
205 * @name: name to assign to the table
206 * @rc_proto: ir type to assign to the new table
207 * @size: initial size of the table
209 * This routine will initialize the rc_map and will allocate
210 * memory to hold at least the specified number of elements.
212 * return: zero on success or a negative error code
214 static int ir_create_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
215 const char *name
, u64 rc_proto
, size_t size
)
217 rc_map
->name
= kstrdup(name
, GFP_KERNEL
);
220 rc_map
->rc_proto
= rc_proto
;
221 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
222 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
223 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
230 dev_dbg(&dev
->dev
, "Allocated space for %u keycode entries (%u bytes)\n",
231 rc_map
->size
, rc_map
->alloc
);
236 * ir_free_table() - frees memory allocated by a scancode table
237 * @rc_map: the table whose mappings need to be freed
239 * This routine will free memory alloctaed for key mappings used by given
242 static void ir_free_table(struct rc_map
*rc_map
)
252 * ir_resize_table() - resizes a scancode table if necessary
253 * @dev: the rc_dev device
254 * @rc_map: the rc_map to resize
255 * @gfp_flags: gfp flags to use when allocating memory
257 * This routine will shrink the rc_map if it has lots of
258 * unused entries and grow it if it is full.
260 * return: zero on success or a negative error code
262 static int ir_resize_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
265 unsigned int oldalloc
= rc_map
->alloc
;
266 unsigned int newalloc
= oldalloc
;
267 struct rc_map_table
*oldscan
= rc_map
->scan
;
268 struct rc_map_table
*newscan
;
270 if (rc_map
->size
== rc_map
->len
) {
271 /* All entries in use -> grow keytable */
272 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
276 dev_dbg(&dev
->dev
, "Growing table to %u bytes\n", newalloc
);
279 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
280 /* Less than 1/3 of entries in use -> shrink keytable */
282 dev_dbg(&dev
->dev
, "Shrinking table to %u bytes\n", newalloc
);
285 if (newalloc
== oldalloc
)
288 newscan
= kmalloc(newalloc
, gfp_flags
);
292 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
293 rc_map
->scan
= newscan
;
294 rc_map
->alloc
= newalloc
;
295 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
301 * ir_update_mapping() - set a keycode in the scancode->keycode table
302 * @dev: the struct rc_dev device descriptor
303 * @rc_map: scancode table to be adjusted
304 * @index: index of the mapping that needs to be updated
305 * @new_keycode: the desired keycode
307 * This routine is used to update scancode->keycode mapping at given
310 * return: previous keycode assigned to the mapping
313 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
314 struct rc_map
*rc_map
,
316 unsigned int new_keycode
)
318 int old_keycode
= rc_map
->scan
[index
].keycode
;
321 /* Did the user wish to remove the mapping? */
322 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
323 dev_dbg(&dev
->dev
, "#%d: Deleting scan 0x%04llx\n",
324 index
, rc_map
->scan
[index
].scancode
);
326 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
327 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
329 dev_dbg(&dev
->dev
, "#%d: %s scan 0x%04llx with key 0x%04x\n",
331 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
332 rc_map
->scan
[index
].scancode
, new_keycode
);
333 rc_map
->scan
[index
].keycode
= new_keycode
;
334 __set_bit(new_keycode
, dev
->input_dev
->keybit
);
337 if (old_keycode
!= KEY_RESERVED
) {
338 /* A previous mapping was updated... */
339 __clear_bit(old_keycode
, dev
->input_dev
->keybit
);
340 /* ... but another scancode might use the same keycode */
341 for (i
= 0; i
< rc_map
->len
; i
++) {
342 if (rc_map
->scan
[i
].keycode
== old_keycode
) {
343 __set_bit(old_keycode
, dev
->input_dev
->keybit
);
348 /* Possibly shrink the keytable, failure is not a problem */
349 ir_resize_table(dev
, rc_map
, GFP_ATOMIC
);
356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
357 * @dev: the struct rc_dev device descriptor
358 * @rc_map: scancode table to be searched
359 * @scancode: the desired scancode
360 * @resize: controls whether we allowed to resize the table to
361 * accommodate not yet present scancodes
363 * This routine is used to locate given scancode in rc_map.
364 * If scancode is not yet present the routine will allocate a new slot
367 * return: index of the mapping containing scancode in question
368 * or -1U in case of failure.
370 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
371 struct rc_map
*rc_map
,
372 u64 scancode
, bool resize
)
377 * Unfortunately, some hardware-based IR decoders don't provide
378 * all bits for the complete IR code. In general, they provide only
379 * the command part of the IR code. Yet, as it is possible to replace
380 * the provided IR with another one, it is needed to allow loading
381 * IR tables from other remotes. So, we support specifying a mask to
382 * indicate the valid bits of the scancodes.
384 if (dev
->scancode_mask
)
385 scancode
&= dev
->scancode_mask
;
387 /* First check if we already have a mapping for this ir command */
388 for (i
= 0; i
< rc_map
->len
; i
++) {
389 if (rc_map
->scan
[i
].scancode
== scancode
)
392 /* Keytable is sorted from lowest to highest scancode */
393 if (rc_map
->scan
[i
].scancode
>= scancode
)
397 /* No previous mapping found, we might need to grow the table */
398 if (rc_map
->size
== rc_map
->len
) {
399 if (!resize
|| ir_resize_table(dev
, rc_map
, GFP_ATOMIC
))
403 /* i is the proper index to insert our new keycode */
405 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
406 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
407 rc_map
->scan
[i
].scancode
= scancode
;
408 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
415 * ir_setkeycode() - set a keycode in the scancode->keycode table
416 * @idev: the struct input_dev device descriptor
417 * @ke: Input keymap entry
418 * @old_keycode: result
420 * This routine is used to handle evdev EVIOCSKEY ioctl.
422 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
424 static int ir_setkeycode(struct input_dev
*idev
,
425 const struct input_keymap_entry
*ke
,
426 unsigned int *old_keycode
)
428 struct rc_dev
*rdev
= input_get_drvdata(idev
);
429 struct rc_map
*rc_map
= &rdev
->rc_map
;
435 spin_lock_irqsave(&rc_map
->lock
, flags
);
437 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
439 if (index
>= rc_map
->len
) {
444 retval
= scancode_to_u64(ke
, &scancode
);
448 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
449 if (index
>= rc_map
->len
) {
455 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
458 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
463 * ir_setkeytable() - sets several entries in the scancode->keycode table
464 * @dev: the struct rc_dev device descriptor
465 * @from: the struct rc_map to copy entries from
467 * This routine is used to handle table initialization.
469 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
471 static int ir_setkeytable(struct rc_dev
*dev
, const struct rc_map
*from
)
473 struct rc_map
*rc_map
= &dev
->rc_map
;
474 unsigned int i
, index
;
477 rc
= ir_create_table(dev
, rc_map
, from
->name
, from
->rc_proto
,
482 for (i
= 0; i
< from
->size
; i
++) {
483 index
= ir_establish_scancode(dev
, rc_map
,
484 from
->scan
[i
].scancode
, false);
485 if (index
>= rc_map
->len
) {
490 ir_update_mapping(dev
, rc_map
, index
,
491 from
->scan
[i
].keycode
);
495 ir_free_table(rc_map
);
500 static int rc_map_cmp(const void *key
, const void *elt
)
502 const u64
*scancode
= key
;
503 const struct rc_map_table
*e
= elt
;
505 if (*scancode
< e
->scancode
)
507 else if (*scancode
> e
->scancode
)
513 * ir_lookup_by_scancode() - locate mapping by scancode
514 * @rc_map: the struct rc_map to search
515 * @scancode: scancode to look for in the table
517 * This routine performs binary search in RC keykeymap table for
520 * return: index in the table, -1U if not found
522 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
525 struct rc_map_table
*res
;
527 res
= bsearch(&scancode
, rc_map
->scan
, rc_map
->len
,
528 sizeof(struct rc_map_table
), rc_map_cmp
);
532 return res
- rc_map
->scan
;
536 * ir_getkeycode() - get a keycode from the scancode->keycode table
537 * @idev: the struct input_dev device descriptor
538 * @ke: Input keymap entry
540 * This routine is used to handle evdev EVIOCGKEY ioctl.
542 * return: always returns zero.
544 static int ir_getkeycode(struct input_dev
*idev
,
545 struct input_keymap_entry
*ke
)
547 struct rc_dev
*rdev
= input_get_drvdata(idev
);
548 struct rc_map
*rc_map
= &rdev
->rc_map
;
549 struct rc_map_table
*entry
;
555 spin_lock_irqsave(&rc_map
->lock
, flags
);
557 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
560 retval
= scancode_to_u64(ke
, &scancode
);
564 index
= ir_lookup_by_scancode(rc_map
, scancode
);
567 if (index
< rc_map
->len
) {
568 entry
= &rc_map
->scan
[index
];
571 ke
->keycode
= entry
->keycode
;
572 ke
->len
= sizeof(entry
->scancode
);
573 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
574 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
576 * We do not really know the valid range of scancodes
577 * so let's respond with KEY_RESERVED to anything we
578 * do not have mapping for [yet].
581 ke
->keycode
= KEY_RESERVED
;
590 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
596 * @dev: the struct rc_dev descriptor of the device
597 * @scancode: the scancode to look for
599 * This routine is used by drivers which need to convert a scancode to a
600 * keycode. Normally it should not be used since drivers should have no
601 * interest in keycodes.
603 * return: the corresponding keycode, or KEY_RESERVED
605 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u64 scancode
)
607 struct rc_map
*rc_map
= &dev
->rc_map
;
608 unsigned int keycode
;
612 spin_lock_irqsave(&rc_map
->lock
, flags
);
614 index
= ir_lookup_by_scancode(rc_map
, scancode
);
615 keycode
= index
< rc_map
->len
?
616 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
618 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
620 if (keycode
!= KEY_RESERVED
)
621 dev_dbg(&dev
->dev
, "%s: scancode 0x%04llx keycode 0x%02x\n",
622 dev
->device_name
, scancode
, keycode
);
626 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
629 * ir_do_keyup() - internal function to signal the release of a keypress
630 * @dev: the struct rc_dev descriptor of the device
631 * @sync: whether or not to call input_sync
633 * This function is used internally to release a keypress, it must be
634 * called with keylock held.
636 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
638 if (!dev
->keypressed
)
641 dev_dbg(&dev
->dev
, "keyup key 0x%04x\n", dev
->last_keycode
);
642 del_timer(&dev
->timer_repeat
);
643 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
644 led_trigger_event(led_feedback
, LED_OFF
);
646 input_sync(dev
->input_dev
);
647 dev
->keypressed
= false;
651 * rc_keyup() - signals the release of a keypress
652 * @dev: the struct rc_dev descriptor of the device
654 * This routine is used to signal that a key has been released on the
657 void rc_keyup(struct rc_dev
*dev
)
661 spin_lock_irqsave(&dev
->keylock
, flags
);
662 ir_do_keyup(dev
, true);
663 spin_unlock_irqrestore(&dev
->keylock
, flags
);
665 EXPORT_SYMBOL_GPL(rc_keyup
);
668 * ir_timer_keyup() - generates a keyup event after a timeout
670 * @t: a pointer to the struct timer_list
672 * This routine will generate a keyup event some time after a keydown event
673 * is generated when no further activity has been detected.
675 static void ir_timer_keyup(struct timer_list
*t
)
677 struct rc_dev
*dev
= from_timer(dev
, t
, timer_keyup
);
681 * ir->keyup_jiffies is used to prevent a race condition if a
682 * hardware interrupt occurs at this point and the keyup timer
683 * event is moved further into the future as a result.
685 * The timer will then be reactivated and this function called
686 * again in the future. We need to exit gracefully in that case
687 * to allow the input subsystem to do its auto-repeat magic or
688 * a keyup event might follow immediately after the keydown.
690 spin_lock_irqsave(&dev
->keylock
, flags
);
691 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
692 ir_do_keyup(dev
, true);
693 spin_unlock_irqrestore(&dev
->keylock
, flags
);
697 * ir_timer_repeat() - generates a repeat event after a timeout
699 * @t: a pointer to the struct timer_list
701 * This routine will generate a soft repeat event every REP_PERIOD
704 static void ir_timer_repeat(struct timer_list
*t
)
706 struct rc_dev
*dev
= from_timer(dev
, t
, timer_repeat
);
707 struct input_dev
*input
= dev
->input_dev
;
710 spin_lock_irqsave(&dev
->keylock
, flags
);
711 if (dev
->keypressed
) {
712 input_event(input
, EV_KEY
, dev
->last_keycode
, 2);
714 if (input
->rep
[REP_PERIOD
])
715 mod_timer(&dev
->timer_repeat
, jiffies
+
716 msecs_to_jiffies(input
->rep
[REP_PERIOD
]));
718 spin_unlock_irqrestore(&dev
->keylock
, flags
);
721 static unsigned int repeat_period(int protocol
)
723 if (protocol
>= ARRAY_SIZE(protocols
))
726 return protocols
[protocol
].repeat_period
;
730 * rc_repeat() - signals that a key is still pressed
731 * @dev: the struct rc_dev descriptor of the device
733 * This routine is used by IR decoders when a repeat message which does
734 * not include the necessary bits to reproduce the scancode has been
737 void rc_repeat(struct rc_dev
*dev
)
740 unsigned int timeout
= nsecs_to_jiffies(dev
->timeout
) +
741 msecs_to_jiffies(repeat_period(dev
->last_protocol
));
742 struct lirc_scancode sc
= {
743 .scancode
= dev
->last_scancode
, .rc_proto
= dev
->last_protocol
,
744 .keycode
= dev
->keypressed
? dev
->last_keycode
: KEY_RESERVED
,
745 .flags
= LIRC_SCANCODE_FLAG_REPEAT
|
746 (dev
->last_toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0)
749 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
750 lirc_scancode_event(dev
, &sc
);
752 spin_lock_irqsave(&dev
->keylock
, flags
);
754 if (dev
->last_scancode
<= U32_MAX
) {
755 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
,
757 input_sync(dev
->input_dev
);
760 if (dev
->keypressed
) {
761 dev
->keyup_jiffies
= jiffies
+ timeout
;
762 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
765 spin_unlock_irqrestore(&dev
->keylock
, flags
);
767 EXPORT_SYMBOL_GPL(rc_repeat
);
770 * ir_do_keydown() - internal function to process a keypress
771 * @dev: the struct rc_dev descriptor of the device
772 * @protocol: the protocol of the keypress
773 * @scancode: the scancode of the keypress
774 * @keycode: the keycode of the keypress
775 * @toggle: the toggle value of the keypress
777 * This function is used internally to register a keypress, it must be
778 * called with keylock held.
780 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_proto protocol
,
781 u64 scancode
, u32 keycode
, u8 toggle
)
783 bool new_event
= (!dev
->keypressed
||
784 dev
->last_protocol
!= protocol
||
785 dev
->last_scancode
!= scancode
||
786 dev
->last_toggle
!= toggle
);
787 struct lirc_scancode sc
= {
788 .scancode
= scancode
, .rc_proto
= protocol
,
789 .flags
= toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0,
793 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
794 lirc_scancode_event(dev
, &sc
);
796 if (new_event
&& dev
->keypressed
)
797 ir_do_keyup(dev
, false);
799 if (scancode
<= U32_MAX
)
800 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
802 dev
->last_protocol
= protocol
;
803 dev
->last_scancode
= scancode
;
804 dev
->last_toggle
= toggle
;
805 dev
->last_keycode
= keycode
;
807 if (new_event
&& keycode
!= KEY_RESERVED
) {
808 /* Register a keypress */
809 dev
->keypressed
= true;
811 dev_dbg(&dev
->dev
, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
812 dev
->device_name
, keycode
, protocol
, scancode
);
813 input_report_key(dev
->input_dev
, keycode
, 1);
815 led_trigger_event(led_feedback
, LED_FULL
);
819 * For CEC, start sending repeat messages as soon as the first
820 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
821 * is non-zero. Otherwise, the input layer will generate repeat
824 if (!new_event
&& keycode
!= KEY_RESERVED
&&
825 dev
->allowed_protocols
== RC_PROTO_BIT_CEC
&&
826 !timer_pending(&dev
->timer_repeat
) &&
827 dev
->input_dev
->rep
[REP_PERIOD
] &&
828 !dev
->input_dev
->rep
[REP_DELAY
]) {
829 input_event(dev
->input_dev
, EV_KEY
, keycode
, 2);
830 mod_timer(&dev
->timer_repeat
, jiffies
+
831 msecs_to_jiffies(dev
->input_dev
->rep
[REP_PERIOD
]));
834 input_sync(dev
->input_dev
);
838 * rc_keydown() - generates input event for a key press
839 * @dev: the struct rc_dev descriptor of the device
840 * @protocol: the protocol for the keypress
841 * @scancode: the scancode for the keypress
842 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
843 * support toggle values, this should be set to zero)
845 * This routine is used to signal that a key has been pressed on the
848 void rc_keydown(struct rc_dev
*dev
, enum rc_proto protocol
, u64 scancode
,
852 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
854 spin_lock_irqsave(&dev
->keylock
, flags
);
855 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
857 if (dev
->keypressed
) {
858 dev
->keyup_jiffies
= jiffies
+ nsecs_to_jiffies(dev
->timeout
) +
859 msecs_to_jiffies(repeat_period(protocol
));
860 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
862 spin_unlock_irqrestore(&dev
->keylock
, flags
);
864 EXPORT_SYMBOL_GPL(rc_keydown
);
867 * rc_keydown_notimeout() - generates input event for a key press without
868 * an automatic keyup event at a later time
869 * @dev: the struct rc_dev descriptor of the device
870 * @protocol: the protocol for the keypress
871 * @scancode: the scancode for the keypress
872 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
873 * support toggle values, this should be set to zero)
875 * This routine is used to signal that a key has been pressed on the
876 * remote control. The driver must manually call rc_keyup() at a later stage.
878 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_proto protocol
,
879 u64 scancode
, u8 toggle
)
882 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
884 spin_lock_irqsave(&dev
->keylock
, flags
);
885 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
886 spin_unlock_irqrestore(&dev
->keylock
, flags
);
888 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
891 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
892 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
894 * @scancode: scancode
896 bool rc_validate_scancode(enum rc_proto proto
, u32 scancode
)
900 * NECX has a 16-bit address; if the lower 8 bits match the upper
901 * 8 bits inverted, then the address would match regular nec.
904 if ((((scancode
>> 16) ^ ~(scancode
>> 8)) & 0xff) == 0)
908 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
909 * of the command match the upper 8 bits inverted, then it would
910 * be either NEC or NECX.
913 if ((((scancode
>> 8) ^ ~scancode
) & 0xff) == 0)
917 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
918 * is regular mode-6a 32 bit
920 case RC_PROTO_RC6_MCE
:
921 if ((scancode
& 0xffff0000) != 0x800f0000)
924 case RC_PROTO_RC6_6A_32
:
925 if ((scancode
& 0xffff0000) == 0x800f0000)
936 * rc_validate_filter() - checks that the scancode and mask are valid and
937 * provides sensible defaults
938 * @dev: the struct rc_dev descriptor of the device
939 * @filter: the scancode and mask
941 * return: 0 or -EINVAL if the filter is not valid
943 static int rc_validate_filter(struct rc_dev
*dev
,
944 struct rc_scancode_filter
*filter
)
946 u32 mask
, s
= filter
->data
;
947 enum rc_proto protocol
= dev
->wakeup_protocol
;
949 if (protocol
>= ARRAY_SIZE(protocols
))
952 mask
= protocols
[protocol
].scancode_bits
;
954 if (!rc_validate_scancode(protocol
, s
))
957 filter
->data
&= mask
;
958 filter
->mask
&= mask
;
961 * If we have to raw encode the IR for wakeup, we cannot have a mask
963 if (dev
->encode_wakeup
&& filter
->mask
!= 0 && filter
->mask
!= mask
)
969 int rc_open(struct rc_dev
*rdev
)
976 mutex_lock(&rdev
->lock
);
978 if (!rdev
->registered
) {
981 if (!rdev
->users
++ && rdev
->open
)
982 rval
= rdev
->open(rdev
);
988 mutex_unlock(&rdev
->lock
);
993 static int ir_open(struct input_dev
*idev
)
995 struct rc_dev
*rdev
= input_get_drvdata(idev
);
997 return rc_open(rdev
);
1000 void rc_close(struct rc_dev
*rdev
)
1003 mutex_lock(&rdev
->lock
);
1005 if (!--rdev
->users
&& rdev
->close
&& rdev
->registered
)
1008 mutex_unlock(&rdev
->lock
);
1012 static void ir_close(struct input_dev
*idev
)
1014 struct rc_dev
*rdev
= input_get_drvdata(idev
);
1018 /* class for /sys/class/rc */
1019 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
1021 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
1024 static struct class rc_class
= {
1026 .devnode
= rc_devnode
,
1030 * These are the protocol textual descriptions that are
1031 * used by the sysfs protocols file. Note that the order
1032 * of the entries is relevant.
1034 static const struct {
1037 const char *module_name
;
1039 { RC_PROTO_BIT_NONE
, "none", NULL
},
1040 { RC_PROTO_BIT_OTHER
, "other", NULL
},
1041 { RC_PROTO_BIT_UNKNOWN
, "unknown", NULL
},
1042 { RC_PROTO_BIT_RC5
|
1043 RC_PROTO_BIT_RC5X_20
, "rc-5", "ir-rc5-decoder" },
1044 { RC_PROTO_BIT_NEC
|
1046 RC_PROTO_BIT_NEC32
, "nec", "ir-nec-decoder" },
1047 { RC_PROTO_BIT_RC6_0
|
1048 RC_PROTO_BIT_RC6_6A_20
|
1049 RC_PROTO_BIT_RC6_6A_24
|
1050 RC_PROTO_BIT_RC6_6A_32
|
1051 RC_PROTO_BIT_RC6_MCE
, "rc-6", "ir-rc6-decoder" },
1052 { RC_PROTO_BIT_JVC
, "jvc", "ir-jvc-decoder" },
1053 { RC_PROTO_BIT_SONY12
|
1054 RC_PROTO_BIT_SONY15
|
1055 RC_PROTO_BIT_SONY20
, "sony", "ir-sony-decoder" },
1056 { RC_PROTO_BIT_RC5_SZ
, "rc-5-sz", "ir-rc5-decoder" },
1057 { RC_PROTO_BIT_SANYO
, "sanyo", "ir-sanyo-decoder" },
1058 { RC_PROTO_BIT_SHARP
, "sharp", "ir-sharp-decoder" },
1059 { RC_PROTO_BIT_MCIR2_KBD
|
1060 RC_PROTO_BIT_MCIR2_MSE
, "mce_kbd", "ir-mce_kbd-decoder" },
1061 { RC_PROTO_BIT_XMP
, "xmp", "ir-xmp-decoder" },
1062 { RC_PROTO_BIT_CEC
, "cec", NULL
},
1063 { RC_PROTO_BIT_IMON
, "imon", "ir-imon-decoder" },
1064 { RC_PROTO_BIT_RCMM12
|
1065 RC_PROTO_BIT_RCMM24
|
1066 RC_PROTO_BIT_RCMM32
, "rc-mm", "ir-rcmm-decoder" },
1067 { RC_PROTO_BIT_XBOX_DVD
, "xbox-dvd", NULL
},
1071 * struct rc_filter_attribute - Device attribute relating to a filter type.
1072 * @attr: Device attribute.
1073 * @type: Filter type.
1074 * @mask: false for filter value, true for filter mask.
1076 struct rc_filter_attribute
{
1077 struct device_attribute attr
;
1078 enum rc_filter_type type
;
1081 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1084 struct rc_filter_attribute dev_attr_##_name = { \
1085 .attr = __ATTR(_name, _mode, _show, _store), \
1091 * show_protocols() - shows the current IR protocol(s)
1092 * @device: the device descriptor
1093 * @mattr: the device attribute struct
1094 * @buf: a pointer to the output buffer
1096 * This routine is a callback routine for input read the IR protocol type(s).
1097 * it is triggered by reading /sys/class/rc/rc?/protocols.
1098 * It returns the protocol names of supported protocols.
1099 * Enabled protocols are printed in brackets.
1101 * dev->lock is taken to guard against races between
1102 * store_protocols and show_protocols.
1104 static ssize_t
show_protocols(struct device
*device
,
1105 struct device_attribute
*mattr
, char *buf
)
1107 struct rc_dev
*dev
= to_rc_dev(device
);
1108 u64 allowed
, enabled
;
1112 mutex_lock(&dev
->lock
);
1114 enabled
= dev
->enabled_protocols
;
1115 allowed
= dev
->allowed_protocols
;
1116 if (dev
->raw
&& !allowed
)
1117 allowed
= ir_raw_get_allowed_protocols();
1119 mutex_unlock(&dev
->lock
);
1121 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1122 __func__
, (long long)allowed
, (long long)enabled
);
1124 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1125 if (allowed
& enabled
& proto_names
[i
].type
)
1126 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
1127 else if (allowed
& proto_names
[i
].type
)
1128 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
1130 if (allowed
& proto_names
[i
].type
)
1131 allowed
&= ~proto_names
[i
].type
;
1135 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1136 tmp
+= sprintf(tmp
, "[lirc] ");
1143 return tmp
+ 1 - buf
;
1147 * parse_protocol_change() - parses a protocol change request
1148 * @dev: rc_dev device
1149 * @protocols: pointer to the bitmask of current protocols
1150 * @buf: pointer to the buffer with a list of changes
1152 * Writing "+proto" will add a protocol to the protocol mask.
1153 * Writing "-proto" will remove a protocol from protocol mask.
1154 * Writing "proto" will enable only "proto".
1155 * Writing "none" will disable all protocols.
1156 * Returns the number of changes performed or a negative error code.
1158 static int parse_protocol_change(struct rc_dev
*dev
, u64
*protocols
,
1163 bool enable
, disable
;
1167 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
1175 } else if (*tmp
== '-') {
1184 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1185 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
1186 mask
= proto_names
[i
].type
;
1191 if (i
== ARRAY_SIZE(proto_names
)) {
1192 if (!strcasecmp(tmp
, "lirc"))
1195 dev_dbg(&dev
->dev
, "Unknown protocol: '%s'\n",
1206 *protocols
&= ~mask
;
1212 dev_dbg(&dev
->dev
, "Protocol not specified\n");
1219 void ir_raw_load_modules(u64
*protocols
)
1224 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1225 if (proto_names
[i
].type
== RC_PROTO_BIT_NONE
||
1226 proto_names
[i
].type
& (RC_PROTO_BIT_OTHER
|
1227 RC_PROTO_BIT_UNKNOWN
))
1230 available
= ir_raw_get_allowed_protocols();
1231 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1234 if (!proto_names
[i
].module_name
) {
1235 pr_err("Can't enable IR protocol %s\n",
1236 proto_names
[i
].name
);
1237 *protocols
&= ~proto_names
[i
].type
;
1241 ret
= request_module("%s", proto_names
[i
].module_name
);
1243 pr_err("Couldn't load IR protocol module %s\n",
1244 proto_names
[i
].module_name
);
1245 *protocols
&= ~proto_names
[i
].type
;
1249 available
= ir_raw_get_allowed_protocols();
1250 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1253 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1254 proto_names
[i
].module_name
,
1255 proto_names
[i
].name
);
1256 *protocols
&= ~proto_names
[i
].type
;
1261 * store_protocols() - changes the current/wakeup IR protocol(s)
1262 * @device: the device descriptor
1263 * @mattr: the device attribute struct
1264 * @buf: a pointer to the input buffer
1265 * @len: length of the input buffer
1267 * This routine is for changing the IR protocol type.
1268 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1269 * See parse_protocol_change() for the valid commands.
1270 * Returns @len on success or a negative error code.
1272 * dev->lock is taken to guard against races between
1273 * store_protocols and show_protocols.
1275 static ssize_t
store_protocols(struct device
*device
,
1276 struct device_attribute
*mattr
,
1277 const char *buf
, size_t len
)
1279 struct rc_dev
*dev
= to_rc_dev(device
);
1280 u64
*current_protocols
;
1281 struct rc_scancode_filter
*filter
;
1282 u64 old_protocols
, new_protocols
;
1285 dev_dbg(&dev
->dev
, "Normal protocol change requested\n");
1286 current_protocols
= &dev
->enabled_protocols
;
1287 filter
= &dev
->scancode_filter
;
1289 if (!dev
->change_protocol
) {
1290 dev_dbg(&dev
->dev
, "Protocol switching not supported\n");
1294 mutex_lock(&dev
->lock
);
1295 if (!dev
->registered
) {
1296 mutex_unlock(&dev
->lock
);
1300 old_protocols
= *current_protocols
;
1301 new_protocols
= old_protocols
;
1302 rc
= parse_protocol_change(dev
, &new_protocols
, buf
);
1306 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1307 ir_raw_load_modules(&new_protocols
);
1309 rc
= dev
->change_protocol(dev
, &new_protocols
);
1311 dev_dbg(&dev
->dev
, "Error setting protocols to 0x%llx\n",
1312 (long long)new_protocols
);
1316 if (new_protocols
!= old_protocols
) {
1317 *current_protocols
= new_protocols
;
1318 dev_dbg(&dev
->dev
, "Protocols changed to 0x%llx\n",
1319 (long long)new_protocols
);
1323 * If a protocol change was attempted the filter may need updating, even
1324 * if the actual protocol mask hasn't changed (since the driver may have
1325 * cleared the filter).
1326 * Try setting the same filter with the new protocol (if any).
1327 * Fall back to clearing the filter.
1329 if (dev
->s_filter
&& filter
->mask
) {
1331 rc
= dev
->s_filter(dev
, filter
);
1338 dev
->s_filter(dev
, filter
);
1345 mutex_unlock(&dev
->lock
);
1350 * show_filter() - shows the current scancode filter value or mask
1351 * @device: the device descriptor
1352 * @attr: the device attribute struct
1353 * @buf: a pointer to the output buffer
1355 * This routine is a callback routine to read a scancode filter value or mask.
1356 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1357 * It prints the current scancode filter value or mask of the appropriate filter
1358 * type in hexadecimal into @buf and returns the size of the buffer.
1360 * Bits of the filter value corresponding to set bits in the filter mask are
1361 * compared against input scancodes and non-matching scancodes are discarded.
1363 * dev->lock is taken to guard against races between
1364 * store_filter and show_filter.
1366 static ssize_t
show_filter(struct device
*device
,
1367 struct device_attribute
*attr
,
1370 struct rc_dev
*dev
= to_rc_dev(device
);
1371 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1372 struct rc_scancode_filter
*filter
;
1375 mutex_lock(&dev
->lock
);
1377 if (fattr
->type
== RC_FILTER_NORMAL
)
1378 filter
= &dev
->scancode_filter
;
1380 filter
= &dev
->scancode_wakeup_filter
;
1386 mutex_unlock(&dev
->lock
);
1388 return sprintf(buf
, "%#x\n", val
);
1392 * store_filter() - changes the scancode filter value
1393 * @device: the device descriptor
1394 * @attr: the device attribute struct
1395 * @buf: a pointer to the input buffer
1396 * @len: length of the input buffer
1398 * This routine is for changing a scancode filter value or mask.
1399 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1400 * Returns -EINVAL if an invalid filter value for the current protocol was
1401 * specified or if scancode filtering is not supported by the driver, otherwise
1404 * Bits of the filter value corresponding to set bits in the filter mask are
1405 * compared against input scancodes and non-matching scancodes are discarded.
1407 * dev->lock is taken to guard against races between
1408 * store_filter and show_filter.
1410 static ssize_t
store_filter(struct device
*device
,
1411 struct device_attribute
*attr
,
1412 const char *buf
, size_t len
)
1414 struct rc_dev
*dev
= to_rc_dev(device
);
1415 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1416 struct rc_scancode_filter new_filter
, *filter
;
1419 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1421 ret
= kstrtoul(buf
, 0, &val
);
1425 if (fattr
->type
== RC_FILTER_NORMAL
) {
1426 set_filter
= dev
->s_filter
;
1427 filter
= &dev
->scancode_filter
;
1429 set_filter
= dev
->s_wakeup_filter
;
1430 filter
= &dev
->scancode_wakeup_filter
;
1436 mutex_lock(&dev
->lock
);
1437 if (!dev
->registered
) {
1438 mutex_unlock(&dev
->lock
);
1442 new_filter
= *filter
;
1444 new_filter
.mask
= val
;
1446 new_filter
.data
= val
;
1448 if (fattr
->type
== RC_FILTER_WAKEUP
) {
1450 * Refuse to set a filter unless a protocol is enabled
1451 * and the filter is valid for that protocol
1453 if (dev
->wakeup_protocol
!= RC_PROTO_UNKNOWN
)
1454 ret
= rc_validate_filter(dev
, &new_filter
);
1462 if (fattr
->type
== RC_FILTER_NORMAL
&& !dev
->enabled_protocols
&&
1464 /* refuse to set a filter unless a protocol is enabled */
1469 ret
= set_filter(dev
, &new_filter
);
1473 *filter
= new_filter
;
1476 mutex_unlock(&dev
->lock
);
1477 return (ret
< 0) ? ret
: len
;
1481 * show_wakeup_protocols() - shows the wakeup IR protocol
1482 * @device: the device descriptor
1483 * @mattr: the device attribute struct
1484 * @buf: a pointer to the output buffer
1486 * This routine is a callback routine for input read the IR protocol type(s).
1487 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1488 * It returns the protocol names of supported protocols.
1489 * The enabled protocols are printed in brackets.
1491 * dev->lock is taken to guard against races between
1492 * store_wakeup_protocols and show_wakeup_protocols.
1494 static ssize_t
show_wakeup_protocols(struct device
*device
,
1495 struct device_attribute
*mattr
,
1498 struct rc_dev
*dev
= to_rc_dev(device
);
1500 enum rc_proto enabled
;
1504 mutex_lock(&dev
->lock
);
1506 allowed
= dev
->allowed_wakeup_protocols
;
1507 enabled
= dev
->wakeup_protocol
;
1509 mutex_unlock(&dev
->lock
);
1511 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - %d\n",
1512 __func__
, (long long)allowed
, enabled
);
1514 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1515 if (allowed
& (1ULL << i
)) {
1517 tmp
+= sprintf(tmp
, "[%s] ", protocols
[i
].name
);
1519 tmp
+= sprintf(tmp
, "%s ", protocols
[i
].name
);
1527 return tmp
+ 1 - buf
;
1531 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1532 * @device: the device descriptor
1533 * @mattr: the device attribute struct
1534 * @buf: a pointer to the input buffer
1535 * @len: length of the input buffer
1537 * This routine is for changing the IR protocol type.
1538 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1539 * Returns @len on success or a negative error code.
1541 * dev->lock is taken to guard against races between
1542 * store_wakeup_protocols and show_wakeup_protocols.
1544 static ssize_t
store_wakeup_protocols(struct device
*device
,
1545 struct device_attribute
*mattr
,
1546 const char *buf
, size_t len
)
1548 struct rc_dev
*dev
= to_rc_dev(device
);
1549 enum rc_proto protocol
= RC_PROTO_UNKNOWN
;
1554 mutex_lock(&dev
->lock
);
1555 if (!dev
->registered
) {
1556 mutex_unlock(&dev
->lock
);
1560 allowed
= dev
->allowed_wakeup_protocols
;
1562 if (!sysfs_streq(buf
, "none")) {
1563 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1564 if ((allowed
& (1ULL << i
)) &&
1565 sysfs_streq(buf
, protocols
[i
].name
)) {
1571 if (i
== ARRAY_SIZE(protocols
)) {
1576 if (dev
->encode_wakeup
) {
1577 u64 mask
= 1ULL << protocol
;
1579 ir_raw_load_modules(&mask
);
1587 if (dev
->wakeup_protocol
!= protocol
) {
1588 dev
->wakeup_protocol
= protocol
;
1589 dev_dbg(&dev
->dev
, "Wakeup protocol changed to %d\n", protocol
);
1591 if (protocol
== RC_PROTO_RC6_MCE
)
1592 dev
->scancode_wakeup_filter
.data
= 0x800f0000;
1594 dev
->scancode_wakeup_filter
.data
= 0;
1595 dev
->scancode_wakeup_filter
.mask
= 0;
1597 rc
= dev
->s_wakeup_filter(dev
, &dev
->scancode_wakeup_filter
);
1605 mutex_unlock(&dev
->lock
);
1609 static void rc_dev_release(struct device
*device
)
1611 struct rc_dev
*dev
= to_rc_dev(device
);
1616 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1618 struct rc_dev
*dev
= to_rc_dev(device
);
1621 mutex_lock(&dev
->lock
);
1623 if (!dev
->registered
)
1625 if (ret
== 0 && dev
->rc_map
.name
)
1626 ret
= add_uevent_var(env
, "NAME=%s", dev
->rc_map
.name
);
1627 if (ret
== 0 && dev
->driver_name
)
1628 ret
= add_uevent_var(env
, "DRV_NAME=%s", dev
->driver_name
);
1629 if (ret
== 0 && dev
->device_name
)
1630 ret
= add_uevent_var(env
, "DEV_NAME=%s", dev
->device_name
);
1632 mutex_unlock(&dev
->lock
);
1638 * Static device attribute struct with the sysfs attributes for IR's
1640 static struct device_attribute dev_attr_ro_protocols
=
1641 __ATTR(protocols
, 0444, show_protocols
, NULL
);
1642 static struct device_attribute dev_attr_rw_protocols
=
1643 __ATTR(protocols
, 0644, show_protocols
, store_protocols
);
1644 static DEVICE_ATTR(wakeup_protocols
, 0644, show_wakeup_protocols
,
1645 store_wakeup_protocols
);
1646 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1647 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1648 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1649 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1650 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1651 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1652 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1653 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1655 static struct attribute
*rc_dev_rw_protocol_attrs
[] = {
1656 &dev_attr_rw_protocols
.attr
,
1660 static const struct attribute_group rc_dev_rw_protocol_attr_grp
= {
1661 .attrs
= rc_dev_rw_protocol_attrs
,
1664 static struct attribute
*rc_dev_ro_protocol_attrs
[] = {
1665 &dev_attr_ro_protocols
.attr
,
1669 static const struct attribute_group rc_dev_ro_protocol_attr_grp
= {
1670 .attrs
= rc_dev_ro_protocol_attrs
,
1673 static struct attribute
*rc_dev_filter_attrs
[] = {
1674 &dev_attr_filter
.attr
.attr
,
1675 &dev_attr_filter_mask
.attr
.attr
,
1679 static const struct attribute_group rc_dev_filter_attr_grp
= {
1680 .attrs
= rc_dev_filter_attrs
,
1683 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1684 &dev_attr_wakeup_filter
.attr
.attr
,
1685 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1686 &dev_attr_wakeup_protocols
.attr
,
1690 static const struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1691 .attrs
= rc_dev_wakeup_filter_attrs
,
1694 static const struct device_type rc_dev_type
= {
1695 .release
= rc_dev_release
,
1696 .uevent
= rc_dev_uevent
,
1699 struct rc_dev
*rc_allocate_device(enum rc_driver_type type
)
1703 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1707 if (type
!= RC_DRIVER_IR_RAW_TX
) {
1708 dev
->input_dev
= input_allocate_device();
1709 if (!dev
->input_dev
) {
1714 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1715 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1716 input_set_drvdata(dev
->input_dev
, dev
);
1718 dev
->timeout
= IR_DEFAULT_TIMEOUT
;
1719 timer_setup(&dev
->timer_keyup
, ir_timer_keyup
, 0);
1720 timer_setup(&dev
->timer_repeat
, ir_timer_repeat
, 0);
1722 spin_lock_init(&dev
->rc_map
.lock
);
1723 spin_lock_init(&dev
->keylock
);
1725 mutex_init(&dev
->lock
);
1727 dev
->dev
.type
= &rc_dev_type
;
1728 dev
->dev
.class = &rc_class
;
1729 device_initialize(&dev
->dev
);
1731 dev
->driver_type
= type
;
1733 __module_get(THIS_MODULE
);
1736 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1738 void rc_free_device(struct rc_dev
*dev
)
1743 input_free_device(dev
->input_dev
);
1745 put_device(&dev
->dev
);
1747 /* kfree(dev) will be called by the callback function
1750 module_put(THIS_MODULE
);
1752 EXPORT_SYMBOL_GPL(rc_free_device
);
1754 static void devm_rc_alloc_release(struct device
*dev
, void *res
)
1756 rc_free_device(*(struct rc_dev
**)res
);
1759 struct rc_dev
*devm_rc_allocate_device(struct device
*dev
,
1760 enum rc_driver_type type
)
1762 struct rc_dev
**dr
, *rc
;
1764 dr
= devres_alloc(devm_rc_alloc_release
, sizeof(*dr
), GFP_KERNEL
);
1768 rc
= rc_allocate_device(type
);
1774 rc
->dev
.parent
= dev
;
1775 rc
->managed_alloc
= true;
1777 devres_add(dev
, dr
);
1781 EXPORT_SYMBOL_GPL(devm_rc_allocate_device
);
1783 static int rc_prepare_rx_device(struct rc_dev
*dev
)
1786 struct rc_map
*rc_map
;
1792 rc_map
= rc_map_get(dev
->map_name
);
1794 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1795 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1798 rc
= ir_setkeytable(dev
, rc_map
);
1802 rc_proto
= BIT_ULL(rc_map
->rc_proto
);
1804 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1805 dev
->enabled_protocols
= dev
->allowed_protocols
;
1807 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1808 ir_raw_load_modules(&rc_proto
);
1810 if (dev
->change_protocol
) {
1811 rc
= dev
->change_protocol(dev
, &rc_proto
);
1814 dev
->enabled_protocols
= rc_proto
;
1817 /* Keyboard events */
1818 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1819 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1820 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1821 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1823 /* Pointer/mouse events */
1824 set_bit(INPUT_PROP_POINTING_STICK
, dev
->input_dev
->propbit
);
1825 set_bit(EV_REL
, dev
->input_dev
->evbit
);
1826 set_bit(REL_X
, dev
->input_dev
->relbit
);
1827 set_bit(REL_Y
, dev
->input_dev
->relbit
);
1830 dev
->input_dev
->open
= ir_open
;
1832 dev
->input_dev
->close
= ir_close
;
1834 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1835 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1836 dev
->input_dev
->phys
= dev
->input_phys
;
1837 dev
->input_dev
->name
= dev
->device_name
;
1842 ir_free_table(&dev
->rc_map
);
1847 static int rc_setup_rx_device(struct rc_dev
*dev
)
1851 /* rc_open will be called here */
1852 rc
= input_register_device(dev
->input_dev
);
1857 * Default delay of 250ms is too short for some protocols, especially
1858 * since the timeout is currently set to 250ms. Increase it to 500ms,
1859 * to avoid wrong repetition of the keycodes. Note that this must be
1860 * set after the call to input_register_device().
1862 if (dev
->allowed_protocols
== RC_PROTO_BIT_CEC
)
1863 dev
->input_dev
->rep
[REP_DELAY
] = 0;
1865 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1868 * As a repeat event on protocols like RC-5 and NEC take as long as
1869 * 110/114ms, using 33ms as a repeat period is not the right thing
1872 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1877 static void rc_free_rx_device(struct rc_dev
*dev
)
1882 if (dev
->input_dev
) {
1883 input_unregister_device(dev
->input_dev
);
1884 dev
->input_dev
= NULL
;
1887 ir_free_table(&dev
->rc_map
);
1890 int rc_register_device(struct rc_dev
*dev
)
1900 minor
= ida_simple_get(&rc_ida
, 0, RC_DEV_MAX
, GFP_KERNEL
);
1905 dev_set_name(&dev
->dev
, "rc%u", dev
->minor
);
1906 dev_set_drvdata(&dev
->dev
, dev
);
1908 dev
->dev
.groups
= dev
->sysfs_groups
;
1909 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1910 dev
->sysfs_groups
[attr
++] = &rc_dev_ro_protocol_attr_grp
;
1911 else if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
)
1912 dev
->sysfs_groups
[attr
++] = &rc_dev_rw_protocol_attr_grp
;
1914 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1915 if (dev
->s_wakeup_filter
)
1916 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1917 dev
->sysfs_groups
[attr
++] = NULL
;
1919 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1920 rc
= ir_raw_event_prepare(dev
);
1925 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1926 rc
= rc_prepare_rx_device(dev
);
1931 rc
= device_add(&dev
->dev
);
1935 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1936 dev_info(&dev
->dev
, "%s as %s\n",
1937 dev
->device_name
?: "Unspecified device", path
?: "N/A");
1940 dev
->registered
= true;
1943 * once the the input device is registered in rc_setup_rx_device,
1944 * userspace can open the input device and rc_open() will be called
1945 * as a result. This results in driver code being allowed to submit
1946 * keycodes with rc_keydown, so lirc must be registered first.
1948 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
) {
1949 rc
= lirc_register(dev
);
1954 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1955 rc
= rc_setup_rx_device(dev
);
1960 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1961 rc
= ir_raw_event_register(dev
);
1966 dev_dbg(&dev
->dev
, "Registered rc%u (driver: %s)\n", dev
->minor
,
1967 dev
->driver_name
? dev
->driver_name
: "unknown");
1972 rc_free_rx_device(dev
);
1974 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1975 lirc_unregister(dev
);
1977 device_del(&dev
->dev
);
1979 ir_free_table(&dev
->rc_map
);
1981 ir_raw_event_free(dev
);
1983 ida_simple_remove(&rc_ida
, minor
);
1986 EXPORT_SYMBOL_GPL(rc_register_device
);
1988 static void devm_rc_release(struct device
*dev
, void *res
)
1990 rc_unregister_device(*(struct rc_dev
**)res
);
1993 int devm_rc_register_device(struct device
*parent
, struct rc_dev
*dev
)
1998 dr
= devres_alloc(devm_rc_release
, sizeof(*dr
), GFP_KERNEL
);
2002 ret
= rc_register_device(dev
);
2009 devres_add(parent
, dr
);
2013 EXPORT_SYMBOL_GPL(devm_rc_register_device
);
2015 void rc_unregister_device(struct rc_dev
*dev
)
2020 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
2021 ir_raw_event_unregister(dev
);
2023 del_timer_sync(&dev
->timer_keyup
);
2024 del_timer_sync(&dev
->timer_repeat
);
2026 mutex_lock(&dev
->lock
);
2027 if (dev
->users
&& dev
->close
)
2029 dev
->registered
= false;
2030 mutex_unlock(&dev
->lock
);
2032 rc_free_rx_device(dev
);
2035 * lirc device should be freed with dev->registered = false, so
2036 * that userspace polling will get notified.
2038 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
2039 lirc_unregister(dev
);
2041 device_del(&dev
->dev
);
2043 ida_simple_remove(&rc_ida
, dev
->minor
);
2045 if (!dev
->managed_alloc
)
2046 rc_free_device(dev
);
2049 EXPORT_SYMBOL_GPL(rc_unregister_device
);
2052 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2055 static int __init
rc_core_init(void)
2057 int rc
= class_register(&rc_class
);
2059 pr_err("rc_core: unable to register rc class\n");
2063 rc
= lirc_dev_init();
2065 pr_err("rc_core: unable to init lirc\n");
2066 class_unregister(&rc_class
);
2070 led_trigger_register_simple("rc-feedback", &led_feedback
);
2071 rc_map_register(&empty_map
);
2076 static void __exit
rc_core_exit(void)
2079 class_unregister(&rc_class
);
2080 led_trigger_unregister_simple(led_feedback
);
2081 rc_map_unregister(&empty_map
);
2084 subsys_initcall(rc_core_init
);
2085 module_exit(rc_core_exit
);
2087 MODULE_AUTHOR("Mauro Carvalho Chehab");
2088 MODULE_LICENSE("GPL v2");