Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / media / v4l2-core / v4l2-mem2mem.c
blobb221b4e438a1a91f8e8bf31164390189288e1cdb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
5 * Helper functions for devices that use videobuf buffers for both their
6 * source and destination.
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9 * Pawel Osciak, <pawel@osciak.com>
10 * Marek Szyprowski, <m.szyprowski@samsung.com>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26 MODULE_LICENSE("GPL");
28 static bool debug;
29 module_param(debug, bool, 0644);
31 #define dprintk(fmt, arg...) \
32 do { \
33 if (debug) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 } while (0)
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED (1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING (1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT (1 << 2)
46 /* The job queue is not running new jobs */
47 #define QUEUE_PAUSED (1 << 0)
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
61 static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
67 /**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_unregister_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_unregister_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_unregister_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_unregister_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
94 struct v4l2_m2m_dev {
95 struct v4l2_m2m_ctx *curr_ctx;
96 #ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
104 #endif
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
111 const struct v4l2_m2m_ops *m2m_ops;
114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
119 else
120 return &m2m_ctx->cap_q_ctx;
123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
126 struct v4l2_m2m_queue_ctx *q_ctx;
128 q_ctx = get_queue_ctx(m2m_ctx, type);
129 if (!q_ctx)
130 return NULL;
132 return &q_ctx->q;
134 EXPORT_SYMBOL(v4l2_m2m_get_vq);
136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
138 struct v4l2_m2m_buffer *b;
139 unsigned long flags;
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
143 if (list_empty(&q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
145 return NULL;
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
150 return &b->vb;
152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
156 struct v4l2_m2m_buffer *b;
157 unsigned long flags;
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
161 if (list_empty(&q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
163 return NULL;
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
168 return &b->vb;
170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
174 struct v4l2_m2m_buffer *b;
175 unsigned long flags;
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(&q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
180 return NULL;
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
183 list_del(&b->list);
184 q_ctx->num_rdy--;
185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
187 return &b->vb;
189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
194 struct v4l2_m2m_buffer *b;
195 unsigned long flags;
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
199 list_del(&b->list);
200 q_ctx->num_rdy--;
201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
205 struct vb2_v4l2_buffer *
206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
211 unsigned long flags;
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
216 list_del(&b->list);
217 q_ctx->num_rdy--;
218 ret = &b->vb;
219 break;
222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
224 return ret;
226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
229 * Scheduling handlers
232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
234 unsigned long flags;
235 void *ret = NULL;
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
242 return ret;
244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
250 * Get next transaction (if present) from the waiting jobs list and run it.
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
257 unsigned long flags;
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
263 return;
266 if (list_empty(&m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
269 return;
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
275 return;
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
292 * Check if this context is ready to queue a job.
294 * This function can run in interrupt context.
296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
304 if (!m2m_ctx->out_q_ctx.q.streaming
305 || !m2m_ctx->cap_q_ctx.q.streaming) {
306 dprintk("Streaming needs to be on for both queues\n");
307 return;
310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
312 /* If the context is aborted then don't schedule it */
313 if (m2m_ctx->job_flags & TRANS_ABORT) {
314 dprintk("Aborted context\n");
315 goto job_unlock;
318 if (m2m_ctx->job_flags & TRANS_QUEUED) {
319 dprintk("On job queue already\n");
320 goto job_unlock;
323 src = v4l2_m2m_next_src_buf(m2m_ctx);
324 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
325 if (!src && !m2m_ctx->out_q_ctx.buffered) {
326 dprintk("No input buffers available\n");
327 goto job_unlock;
329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
330 dprintk("No output buffers available\n");
331 goto job_unlock;
334 m2m_ctx->new_frame = true;
336 if (src && dst && dst->is_held &&
337 dst->vb2_buf.copied_timestamp &&
338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
339 dst->is_held = false;
340 v4l2_m2m_dst_buf_remove(m2m_ctx);
341 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
342 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
344 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
345 dprintk("No output buffers available after returning held buffer\n");
346 goto job_unlock;
350 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
351 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
352 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
353 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
355 if (m2m_ctx->has_stopped) {
356 dprintk("Device has stopped\n");
357 goto job_unlock;
360 if (m2m_dev->m2m_ops->job_ready
361 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
362 dprintk("Driver not ready\n");
363 goto job_unlock;
366 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
367 m2m_ctx->job_flags |= TRANS_QUEUED;
369 job_unlock:
370 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
374 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
375 * @m2m_ctx: m2m context
377 * Check if this context is ready to queue a job. If suitable,
378 * run the next queued job on the mem2mem device.
380 * This function shouldn't run in interrupt context.
382 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
383 * and then run another job for another context.
385 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
387 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
389 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
390 v4l2_m2m_try_run(m2m_dev);
392 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
395 * v4l2_m2m_device_run_work() - run pending jobs for the context
396 * @work: Work structure used for scheduling the execution of this function.
398 static void v4l2_m2m_device_run_work(struct work_struct *work)
400 struct v4l2_m2m_dev *m2m_dev =
401 container_of(work, struct v4l2_m2m_dev, job_work);
403 v4l2_m2m_try_run(m2m_dev);
407 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
408 * @m2m_ctx: m2m context with jobs to be canceled
410 * In case of streamoff or release called on any context,
411 * 1] If the context is currently running, then abort job will be called
412 * 2] If the context is queued, then the context will be removed from
413 * the job_queue
415 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
417 struct v4l2_m2m_dev *m2m_dev;
418 unsigned long flags;
420 m2m_dev = m2m_ctx->m2m_dev;
421 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
423 m2m_ctx->job_flags |= TRANS_ABORT;
424 if (m2m_ctx->job_flags & TRANS_RUNNING) {
425 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
426 if (m2m_dev->m2m_ops->job_abort)
427 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
428 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
429 wait_event(m2m_ctx->finished,
430 !(m2m_ctx->job_flags & TRANS_RUNNING));
431 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
432 list_del(&m2m_ctx->queue);
433 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
434 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
435 dprintk("m2m_ctx: %p had been on queue and was removed\n",
436 m2m_ctx);
437 } else {
438 /* Do nothing, was not on queue/running */
439 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
444 * Schedule the next job, called from v4l2_m2m_job_finish() or
445 * v4l2_m2m_buf_done_and_job_finish().
447 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
448 struct v4l2_m2m_ctx *m2m_ctx)
451 * This instance might have more buffers ready, but since we do not
452 * allow more than one job on the job_queue per instance, each has
453 * to be scheduled separately after the previous one finishes.
455 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
458 * We might be running in atomic context,
459 * but the job must be run in non-atomic context.
461 schedule_work(&m2m_dev->job_work);
465 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
466 * v4l2_m2m_buf_done_and_job_finish().
468 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
469 struct v4l2_m2m_ctx *m2m_ctx)
471 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
472 dprintk("Called by an instance not currently running\n");
473 return false;
476 list_del(&m2m_dev->curr_ctx->queue);
477 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
478 wake_up(&m2m_dev->curr_ctx->finished);
479 m2m_dev->curr_ctx = NULL;
480 return true;
483 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
484 struct v4l2_m2m_ctx *m2m_ctx)
486 unsigned long flags;
487 bool schedule_next;
490 * This function should not be used for drivers that support
491 * holding capture buffers. Those should use
492 * v4l2_m2m_buf_done_and_job_finish() instead.
494 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
495 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
496 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
497 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
498 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
500 if (schedule_next)
501 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
503 EXPORT_SYMBOL(v4l2_m2m_job_finish);
505 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
506 struct v4l2_m2m_ctx *m2m_ctx,
507 enum vb2_buffer_state state)
509 struct vb2_v4l2_buffer *src_buf, *dst_buf;
510 bool schedule_next = false;
511 unsigned long flags;
513 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
514 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
515 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
517 if (WARN_ON(!src_buf || !dst_buf))
518 goto unlock;
519 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
520 if (!dst_buf->is_held) {
521 v4l2_m2m_dst_buf_remove(m2m_ctx);
522 v4l2_m2m_buf_done(dst_buf, state);
525 * If the request API is being used, returning the OUTPUT
526 * (src) buffer will wake-up any process waiting on the
527 * request file descriptor.
529 * Therefore, return the CAPTURE (dst) buffer first,
530 * to avoid signalling the request file descriptor
531 * before the CAPTURE buffer is done.
533 v4l2_m2m_buf_done(src_buf, state);
534 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
535 unlock:
536 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
538 if (schedule_next)
539 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
541 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
543 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
545 unsigned long flags;
546 struct v4l2_m2m_ctx *curr_ctx;
548 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
549 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
550 curr_ctx = m2m_dev->curr_ctx;
551 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
553 if (curr_ctx)
554 wait_event(curr_ctx->finished,
555 !(curr_ctx->job_flags & TRANS_RUNNING));
557 EXPORT_SYMBOL(v4l2_m2m_suspend);
559 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
561 unsigned long flags;
563 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
564 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
565 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
567 v4l2_m2m_try_run(m2m_dev);
569 EXPORT_SYMBOL(v4l2_m2m_resume);
571 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
572 struct v4l2_requestbuffers *reqbufs)
574 struct vb2_queue *vq;
575 int ret;
577 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
578 ret = vb2_reqbufs(vq, reqbufs);
579 /* If count == 0, then the owner has released all buffers and he
580 is no longer owner of the queue. Otherwise we have an owner. */
581 if (ret == 0)
582 vq->owner = reqbufs->count ? file->private_data : NULL;
584 return ret;
586 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
588 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
589 struct v4l2_buffer *buf)
591 struct vb2_queue *vq;
592 int ret = 0;
593 unsigned int i;
595 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
596 ret = vb2_querybuf(vq, buf);
598 /* Adjust MMAP memory offsets for the CAPTURE queue */
599 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
600 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
601 for (i = 0; i < buf->length; ++i)
602 buf->m.planes[i].m.mem_offset
603 += DST_QUEUE_OFF_BASE;
604 } else {
605 buf->m.offset += DST_QUEUE_OFF_BASE;
609 return ret;
611 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
614 * This will add the LAST flag and mark the buffer management
615 * state as stopped.
616 * This is called when the last capture buffer must be flagged as LAST
617 * in draining mode from the encoder/decoder driver buf_queue() callback
618 * or from v4l2_update_last_buf_state() when a capture buffer is available.
620 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
621 struct vb2_v4l2_buffer *vbuf)
623 vbuf->flags |= V4L2_BUF_FLAG_LAST;
624 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
626 v4l2_m2m_mark_stopped(m2m_ctx);
628 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
630 /* When stop command is issued, update buffer management state */
631 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
633 struct vb2_v4l2_buffer *next_dst_buf;
635 if (m2m_ctx->is_draining)
636 return -EBUSY;
638 if (m2m_ctx->has_stopped)
639 return 0;
641 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
642 m2m_ctx->is_draining = true;
645 * The processing of the last output buffer queued before
646 * the STOP command is expected to mark the buffer management
647 * state as stopped with v4l2_m2m_mark_stopped().
649 if (m2m_ctx->last_src_buf)
650 return 0;
653 * In case the output queue is empty, try to mark the last capture
654 * buffer as LAST.
656 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
657 if (!next_dst_buf) {
659 * Wait for the next queued one in encoder/decoder driver
660 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
661 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
662 * streaming.
664 m2m_ctx->next_buf_last = true;
665 return 0;
668 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
670 return 0;
674 * Updates the encoding/decoding buffer management state, should
675 * be called from encoder/decoder drivers start_streaming()
677 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
678 struct vb2_queue *q)
680 /* If start streaming again, untag the last output buffer */
681 if (V4L2_TYPE_IS_OUTPUT(q->type))
682 m2m_ctx->last_src_buf = NULL;
684 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
687 * Updates the encoding/decoding buffer management state, should
688 * be called from encoder/decoder driver stop_streaming()
690 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
691 struct vb2_queue *q)
693 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
695 * If in draining state, either mark next dst buffer as
696 * done or flag next one to be marked as done either
697 * in encoder/decoder driver buf_queue() callback using
698 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
699 * if encoder/decoder is not yet streaming
701 if (m2m_ctx->is_draining) {
702 struct vb2_v4l2_buffer *next_dst_buf;
704 m2m_ctx->last_src_buf = NULL;
705 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
706 if (!next_dst_buf)
707 m2m_ctx->next_buf_last = true;
708 else
709 v4l2_m2m_last_buffer_done(m2m_ctx,
710 next_dst_buf);
712 } else {
713 v4l2_m2m_clear_state(m2m_ctx);
716 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
718 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
719 struct vb2_queue *q)
721 struct vb2_buffer *vb;
722 struct vb2_v4l2_buffer *vbuf;
723 unsigned int i;
725 if (WARN_ON(q->is_output))
726 return;
727 if (list_empty(&q->queued_list))
728 return;
730 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
731 for (i = 0; i < vb->num_planes; i++)
732 vb2_set_plane_payload(vb, i, 0);
735 * Since the buffer hasn't been queued to the ready queue,
736 * mark is active and owned before marking it LAST and DONE
738 vb->state = VB2_BUF_STATE_ACTIVE;
739 atomic_inc(&q->owned_by_drv_count);
741 vbuf = to_vb2_v4l2_buffer(vb);
742 vbuf->field = V4L2_FIELD_NONE;
744 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
747 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
748 struct v4l2_buffer *buf)
750 struct video_device *vdev = video_devdata(file);
751 struct vb2_queue *vq;
752 int ret;
754 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
755 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
756 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
757 dprintk("%s: requests cannot be used with capture buffers\n",
758 __func__);
759 return -EPERM;
762 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
763 if (ret)
764 return ret;
767 * If the capture queue is streaming, but streaming hasn't started
768 * on the device, but was asked to stop, mark the previously queued
769 * buffer as DONE with LAST flag since it won't be queued on the
770 * device.
772 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
773 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
774 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
775 v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
776 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
777 v4l2_m2m_try_schedule(m2m_ctx);
779 return 0;
781 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
783 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
784 struct v4l2_buffer *buf)
786 struct vb2_queue *vq;
788 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
789 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
791 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
793 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
794 struct v4l2_buffer *buf)
796 struct video_device *vdev = video_devdata(file);
797 struct vb2_queue *vq;
799 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
800 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
802 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
804 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
805 struct v4l2_create_buffers *create)
807 struct vb2_queue *vq;
809 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
810 return vb2_create_bufs(vq, create);
812 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
814 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
815 struct v4l2_exportbuffer *eb)
817 struct vb2_queue *vq;
819 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
820 return vb2_expbuf(vq, eb);
822 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
824 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
825 enum v4l2_buf_type type)
827 struct vb2_queue *vq;
828 int ret;
830 vq = v4l2_m2m_get_vq(m2m_ctx, type);
831 ret = vb2_streamon(vq, type);
832 if (!ret)
833 v4l2_m2m_try_schedule(m2m_ctx);
835 return ret;
837 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
839 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
840 enum v4l2_buf_type type)
842 struct v4l2_m2m_dev *m2m_dev;
843 struct v4l2_m2m_queue_ctx *q_ctx;
844 unsigned long flags_job, flags;
845 int ret;
847 /* wait until the current context is dequeued from job_queue */
848 v4l2_m2m_cancel_job(m2m_ctx);
850 q_ctx = get_queue_ctx(m2m_ctx, type);
851 ret = vb2_streamoff(&q_ctx->q, type);
852 if (ret)
853 return ret;
855 m2m_dev = m2m_ctx->m2m_dev;
856 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
857 /* We should not be scheduled anymore, since we're dropping a queue. */
858 if (m2m_ctx->job_flags & TRANS_QUEUED)
859 list_del(&m2m_ctx->queue);
860 m2m_ctx->job_flags = 0;
862 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
863 /* Drop queue, since streamoff returns device to the same state as after
864 * calling reqbufs. */
865 INIT_LIST_HEAD(&q_ctx->rdy_queue);
866 q_ctx->num_rdy = 0;
867 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
869 if (m2m_dev->curr_ctx == m2m_ctx) {
870 m2m_dev->curr_ctx = NULL;
871 wake_up(&m2m_ctx->finished);
873 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
875 return 0;
877 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
879 static __poll_t v4l2_m2m_poll_for_data(struct file *file,
880 struct v4l2_m2m_ctx *m2m_ctx,
881 struct poll_table_struct *wait)
883 struct vb2_queue *src_q, *dst_q;
884 __poll_t rc = 0;
885 unsigned long flags;
887 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
888 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
890 poll_wait(file, &src_q->done_wq, wait);
891 poll_wait(file, &dst_q->done_wq, wait);
894 * There has to be at least one buffer queued on each queued_list, which
895 * means either in driver already or waiting for driver to claim it
896 * and start processing.
898 if ((!src_q->streaming || src_q->error ||
899 list_empty(&src_q->queued_list)) &&
900 (!dst_q->streaming || dst_q->error ||
901 list_empty(&dst_q->queued_list)))
902 return EPOLLERR;
904 spin_lock_irqsave(&src_q->done_lock, flags);
905 if (!list_empty(&src_q->done_list))
906 rc |= EPOLLOUT | EPOLLWRNORM;
907 spin_unlock_irqrestore(&src_q->done_lock, flags);
909 spin_lock_irqsave(&dst_q->done_lock, flags);
911 * If the last buffer was dequeued from the capture queue, signal
912 * userspace. DQBUF(CAPTURE) will return -EPIPE.
914 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
915 rc |= EPOLLIN | EPOLLRDNORM;
916 spin_unlock_irqrestore(&dst_q->done_lock, flags);
918 return rc;
921 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
922 struct poll_table_struct *wait)
924 struct video_device *vfd = video_devdata(file);
925 __poll_t req_events = poll_requested_events(wait);
926 __poll_t rc = 0;
928 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
929 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
931 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
932 struct v4l2_fh *fh = file->private_data;
934 poll_wait(file, &fh->wait, wait);
935 if (v4l2_event_pending(fh))
936 rc |= EPOLLPRI;
939 return rc;
941 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
943 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
944 struct vm_area_struct *vma)
946 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
947 struct vb2_queue *vq;
949 if (offset < DST_QUEUE_OFF_BASE) {
950 vq = v4l2_m2m_get_src_vq(m2m_ctx);
951 } else {
952 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
953 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
956 return vb2_mmap(vq, vma);
958 EXPORT_SYMBOL(v4l2_m2m_mmap);
960 #if defined(CONFIG_MEDIA_CONTROLLER)
961 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
963 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
964 media_devnode_remove(m2m_dev->intf_devnode);
966 media_entity_remove_links(m2m_dev->source);
967 media_entity_remove_links(&m2m_dev->sink);
968 media_entity_remove_links(&m2m_dev->proc);
969 media_device_unregister_entity(m2m_dev->source);
970 media_device_unregister_entity(&m2m_dev->sink);
971 media_device_unregister_entity(&m2m_dev->proc);
972 kfree(m2m_dev->source->name);
973 kfree(m2m_dev->sink.name);
974 kfree(m2m_dev->proc.name);
976 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
978 static int v4l2_m2m_register_entity(struct media_device *mdev,
979 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
980 struct video_device *vdev, int function)
982 struct media_entity *entity;
983 struct media_pad *pads;
984 char *name;
985 unsigned int len;
986 int num_pads;
987 int ret;
989 switch (type) {
990 case MEM2MEM_ENT_TYPE_SOURCE:
991 entity = m2m_dev->source;
992 pads = &m2m_dev->source_pad;
993 pads[0].flags = MEDIA_PAD_FL_SOURCE;
994 num_pads = 1;
995 break;
996 case MEM2MEM_ENT_TYPE_SINK:
997 entity = &m2m_dev->sink;
998 pads = &m2m_dev->sink_pad;
999 pads[0].flags = MEDIA_PAD_FL_SINK;
1000 num_pads = 1;
1001 break;
1002 case MEM2MEM_ENT_TYPE_PROC:
1003 entity = &m2m_dev->proc;
1004 pads = m2m_dev->proc_pads;
1005 pads[0].flags = MEDIA_PAD_FL_SINK;
1006 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1007 num_pads = 2;
1008 break;
1009 default:
1010 return -EINVAL;
1013 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1014 if (type != MEM2MEM_ENT_TYPE_PROC) {
1015 entity->info.dev.major = VIDEO_MAJOR;
1016 entity->info.dev.minor = vdev->minor;
1018 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1019 name = kmalloc(len, GFP_KERNEL);
1020 if (!name)
1021 return -ENOMEM;
1022 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1023 entity->name = name;
1024 entity->function = function;
1026 ret = media_entity_pads_init(entity, num_pads, pads);
1027 if (ret)
1028 return ret;
1029 ret = media_device_register_entity(mdev, entity);
1030 if (ret)
1031 return ret;
1033 return 0;
1036 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1037 struct video_device *vdev, int function)
1039 struct media_device *mdev = vdev->v4l2_dev->mdev;
1040 struct media_link *link;
1041 int ret;
1043 if (!mdev)
1044 return 0;
1046 /* A memory-to-memory device consists in two
1047 * DMA engine and one video processing entities.
1048 * The DMA engine entities are linked to a V4L interface
1051 /* Create the three entities with their pads */
1052 m2m_dev->source = &vdev->entity;
1053 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1054 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1055 if (ret)
1056 return ret;
1057 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1058 MEM2MEM_ENT_TYPE_PROC, vdev, function);
1059 if (ret)
1060 goto err_rel_entity0;
1061 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1062 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1063 if (ret)
1064 goto err_rel_entity1;
1066 /* Connect the three entities */
1067 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1068 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1069 if (ret)
1070 goto err_rel_entity2;
1072 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1073 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1074 if (ret)
1075 goto err_rm_links0;
1077 /* Create video interface */
1078 m2m_dev->intf_devnode = media_devnode_create(mdev,
1079 MEDIA_INTF_T_V4L_VIDEO, 0,
1080 VIDEO_MAJOR, vdev->minor);
1081 if (!m2m_dev->intf_devnode) {
1082 ret = -ENOMEM;
1083 goto err_rm_links1;
1086 /* Connect the two DMA engines to the interface */
1087 link = media_create_intf_link(m2m_dev->source,
1088 &m2m_dev->intf_devnode->intf,
1089 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1090 if (!link) {
1091 ret = -ENOMEM;
1092 goto err_rm_devnode;
1095 link = media_create_intf_link(&m2m_dev->sink,
1096 &m2m_dev->intf_devnode->intf,
1097 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1098 if (!link) {
1099 ret = -ENOMEM;
1100 goto err_rm_intf_link;
1102 return 0;
1104 err_rm_intf_link:
1105 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1106 err_rm_devnode:
1107 media_devnode_remove(m2m_dev->intf_devnode);
1108 err_rm_links1:
1109 media_entity_remove_links(&m2m_dev->sink);
1110 err_rm_links0:
1111 media_entity_remove_links(&m2m_dev->proc);
1112 media_entity_remove_links(m2m_dev->source);
1113 err_rel_entity2:
1114 media_device_unregister_entity(&m2m_dev->proc);
1115 kfree(m2m_dev->proc.name);
1116 err_rel_entity1:
1117 media_device_unregister_entity(&m2m_dev->sink);
1118 kfree(m2m_dev->sink.name);
1119 err_rel_entity0:
1120 media_device_unregister_entity(m2m_dev->source);
1121 kfree(m2m_dev->source->name);
1122 return ret;
1123 return 0;
1125 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1126 #endif
1128 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1130 struct v4l2_m2m_dev *m2m_dev;
1132 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1133 return ERR_PTR(-EINVAL);
1135 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1136 if (!m2m_dev)
1137 return ERR_PTR(-ENOMEM);
1139 m2m_dev->curr_ctx = NULL;
1140 m2m_dev->m2m_ops = m2m_ops;
1141 INIT_LIST_HEAD(&m2m_dev->job_queue);
1142 spin_lock_init(&m2m_dev->job_spinlock);
1143 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1145 return m2m_dev;
1147 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1149 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1151 kfree(m2m_dev);
1153 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1155 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1156 void *drv_priv,
1157 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1159 struct v4l2_m2m_ctx *m2m_ctx;
1160 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1161 int ret;
1163 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1164 if (!m2m_ctx)
1165 return ERR_PTR(-ENOMEM);
1167 m2m_ctx->priv = drv_priv;
1168 m2m_ctx->m2m_dev = m2m_dev;
1169 init_waitqueue_head(&m2m_ctx->finished);
1171 out_q_ctx = &m2m_ctx->out_q_ctx;
1172 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1174 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1175 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1176 spin_lock_init(&out_q_ctx->rdy_spinlock);
1177 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1179 INIT_LIST_HEAD(&m2m_ctx->queue);
1181 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1183 if (ret)
1184 goto err;
1186 * Both queues should use same the mutex to lock the m2m context.
1187 * This lock is used in some v4l2_m2m_* helpers.
1189 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1190 ret = -EINVAL;
1191 goto err;
1193 m2m_ctx->q_lock = out_q_ctx->q.lock;
1195 return m2m_ctx;
1196 err:
1197 kfree(m2m_ctx);
1198 return ERR_PTR(ret);
1200 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1202 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1204 /* wait until the current context is dequeued from job_queue */
1205 v4l2_m2m_cancel_job(m2m_ctx);
1207 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1208 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1210 kfree(m2m_ctx);
1212 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1214 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1215 struct vb2_v4l2_buffer *vbuf)
1217 struct v4l2_m2m_buffer *b = container_of(vbuf,
1218 struct v4l2_m2m_buffer, vb);
1219 struct v4l2_m2m_queue_ctx *q_ctx;
1220 unsigned long flags;
1222 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1223 if (!q_ctx)
1224 return;
1226 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1227 list_add_tail(&b->list, &q_ctx->rdy_queue);
1228 q_ctx->num_rdy++;
1229 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1231 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1233 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1234 struct vb2_v4l2_buffer *cap_vb,
1235 bool copy_frame_flags)
1237 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1239 if (copy_frame_flags)
1240 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1241 V4L2_BUF_FLAG_BFRAME;
1243 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1245 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1246 cap_vb->timecode = out_vb->timecode;
1247 cap_vb->field = out_vb->field;
1248 cap_vb->flags &= ~mask;
1249 cap_vb->flags |= out_vb->flags & mask;
1250 cap_vb->vb2_buf.copied_timestamp = 1;
1252 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1254 void v4l2_m2m_request_queue(struct media_request *req)
1256 struct media_request_object *obj, *obj_safe;
1257 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1260 * Queue all objects. Note that buffer objects are at the end of the
1261 * objects list, after all other object types. Once buffer objects
1262 * are queued, the driver might delete them immediately (if the driver
1263 * processes the buffer at once), so we have to use
1264 * list_for_each_entry_safe() to handle the case where the object we
1265 * queue is deleted.
1267 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1268 struct v4l2_m2m_ctx *m2m_ctx_obj;
1269 struct vb2_buffer *vb;
1271 if (!obj->ops->queue)
1272 continue;
1274 if (vb2_request_object_is_buffer(obj)) {
1275 /* Sanity checks */
1276 vb = container_of(obj, struct vb2_buffer, req_obj);
1277 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1278 m2m_ctx_obj = container_of(vb->vb2_queue,
1279 struct v4l2_m2m_ctx,
1280 out_q_ctx.q);
1281 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1282 m2m_ctx = m2m_ctx_obj;
1286 * The buffer we queue here can in theory be immediately
1287 * unbound, hence the use of list_for_each_entry_safe()
1288 * above and why we call the queue op last.
1290 obj->ops->queue(obj);
1293 WARN_ON(!m2m_ctx);
1295 if (m2m_ctx)
1296 v4l2_m2m_try_schedule(m2m_ctx);
1298 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1300 /* Videobuf2 ioctl helpers */
1302 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1303 struct v4l2_requestbuffers *rb)
1305 struct v4l2_fh *fh = file->private_data;
1307 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1309 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1311 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1312 struct v4l2_create_buffers *create)
1314 struct v4l2_fh *fh = file->private_data;
1316 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1318 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1320 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1321 struct v4l2_buffer *buf)
1323 struct v4l2_fh *fh = file->private_data;
1325 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1327 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1329 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1330 struct v4l2_buffer *buf)
1332 struct v4l2_fh *fh = file->private_data;
1334 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1336 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1338 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1339 struct v4l2_buffer *buf)
1341 struct v4l2_fh *fh = file->private_data;
1343 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1345 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1347 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1348 struct v4l2_buffer *buf)
1350 struct v4l2_fh *fh = file->private_data;
1352 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1354 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1356 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1357 struct v4l2_exportbuffer *eb)
1359 struct v4l2_fh *fh = file->private_data;
1361 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1363 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1365 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1366 enum v4l2_buf_type type)
1368 struct v4l2_fh *fh = file->private_data;
1370 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1372 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1374 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1375 enum v4l2_buf_type type)
1377 struct v4l2_fh *fh = file->private_data;
1379 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1381 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1383 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1384 struct v4l2_encoder_cmd *ec)
1386 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1387 return -EINVAL;
1389 ec->flags = 0;
1390 return 0;
1392 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1394 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1395 struct v4l2_decoder_cmd *dc)
1397 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1398 return -EINVAL;
1400 dc->flags = 0;
1402 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1403 dc->stop.pts = 0;
1404 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1405 dc->start.speed = 0;
1406 dc->start.format = V4L2_DEC_START_FMT_NONE;
1408 return 0;
1410 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1413 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1414 * Should be called from the encoder driver encoder_cmd() callback
1416 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1417 struct v4l2_encoder_cmd *ec)
1419 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1420 return -EINVAL;
1422 if (ec->cmd == V4L2_ENC_CMD_STOP)
1423 return v4l2_update_last_buf_state(m2m_ctx);
1425 if (m2m_ctx->is_draining)
1426 return -EBUSY;
1428 if (m2m_ctx->has_stopped)
1429 m2m_ctx->has_stopped = false;
1431 return 0;
1433 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1436 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1437 * Should be called from the decoder driver decoder_cmd() callback
1439 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1440 struct v4l2_decoder_cmd *dc)
1442 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1443 return -EINVAL;
1445 if (dc->cmd == V4L2_DEC_CMD_STOP)
1446 return v4l2_update_last_buf_state(m2m_ctx);
1448 if (m2m_ctx->is_draining)
1449 return -EBUSY;
1451 if (m2m_ctx->has_stopped)
1452 m2m_ctx->has_stopped = false;
1454 return 0;
1456 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1458 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1459 struct v4l2_encoder_cmd *ec)
1461 struct v4l2_fh *fh = file->private_data;
1463 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1465 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1467 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1468 struct v4l2_decoder_cmd *dc)
1470 struct v4l2_fh *fh = file->private_data;
1472 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1474 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1476 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1477 struct v4l2_decoder_cmd *dc)
1479 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1480 return -EINVAL;
1482 dc->flags = 0;
1484 return 0;
1486 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1488 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1489 struct v4l2_decoder_cmd *dc)
1491 struct v4l2_fh *fh = file->private_data;
1492 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1493 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1494 unsigned long flags;
1495 int ret;
1497 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1498 if (ret < 0)
1499 return ret;
1501 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1502 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1503 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1506 * If there is an out buffer pending, then clear any HOLD flag.
1508 * By clearing this flag we ensure that when this output
1509 * buffer is processed any held capture buffer will be released.
1511 if (out_vb) {
1512 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1513 } else if (cap_vb && cap_vb->is_held) {
1515 * If there were no output buffers, but there is a
1516 * capture buffer that is held, then release that
1517 * buffer.
1519 cap_vb->is_held = false;
1520 v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1521 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1523 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1525 return 0;
1527 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1530 * v4l2_file_operations helpers. It is assumed here same lock is used
1531 * for the output and the capture buffer queue.
1534 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1536 struct v4l2_fh *fh = file->private_data;
1538 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1540 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1542 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1544 struct v4l2_fh *fh = file->private_data;
1545 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1546 __poll_t ret;
1548 if (m2m_ctx->q_lock)
1549 mutex_lock(m2m_ctx->q_lock);
1551 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1553 if (m2m_ctx->q_lock)
1554 mutex_unlock(m2m_ctx->q_lock);
1556 return ret;
1558 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);