1 // SPDX-License-Identifier: GPL-2.0-only
3 * IBM Accelerator Family 'GenWQE'
5 * (C) Copyright IBM Corp. 2013
7 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9 * Author: Michael Jung <mijung@gmx.net>
10 * Author: Michael Ruettger <michael@ibmra.de>
14 * Miscelanous functionality used in the other GenWQE driver parts.
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/page-flags.h>
21 #include <linux/scatterlist.h>
22 #include <linux/hugetlb.h>
23 #include <linux/iommu.h>
24 #include <linux/pci.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/ctype.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/delay.h>
30 #include <linux/pgtable.h>
32 #include "genwqe_driver.h"
33 #include "card_base.h"
34 #include "card_ddcb.h"
37 * __genwqe_writeq() - Write 64-bit register
38 * @cd: genwqe device descriptor
39 * @byte_offs: byte offset within BAR
42 * Return: 0 if success; < 0 if error
44 int __genwqe_writeq(struct genwqe_dev
*cd
, u64 byte_offs
, u64 val
)
46 struct pci_dev
*pci_dev
= cd
->pci_dev
;
48 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
54 if (pci_channel_offline(pci_dev
))
57 __raw_writeq((__force u64
)cpu_to_be64(val
), cd
->mmio
+ byte_offs
);
62 * __genwqe_readq() - Read 64-bit register
63 * @cd: genwqe device descriptor
64 * @byte_offs: offset within BAR
66 * Return: value from register
68 u64
__genwqe_readq(struct genwqe_dev
*cd
, u64 byte_offs
)
70 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
71 return 0xffffffffffffffffull
;
73 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_FATAL
) &&
74 (byte_offs
== IO_SLC_CFGREG_GFIR
))
75 return 0x000000000000ffffull
;
77 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_INFO
) &&
78 (byte_offs
== IO_SLC_CFGREG_GFIR
))
79 return 0x00000000ffff0000ull
;
82 return 0xffffffffffffffffull
;
84 return be64_to_cpu((__force __be64
)__raw_readq(cd
->mmio
+ byte_offs
));
88 * __genwqe_writel() - Write 32-bit register
89 * @cd: genwqe device descriptor
90 * @byte_offs: byte offset within BAR
93 * Return: 0 if success; < 0 if error
95 int __genwqe_writel(struct genwqe_dev
*cd
, u64 byte_offs
, u32 val
)
97 struct pci_dev
*pci_dev
= cd
->pci_dev
;
99 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
102 if (cd
->mmio
== NULL
)
105 if (pci_channel_offline(pci_dev
))
108 __raw_writel((__force u32
)cpu_to_be32(val
), cd
->mmio
+ byte_offs
);
113 * __genwqe_readl() - Read 32-bit register
114 * @cd: genwqe device descriptor
115 * @byte_offs: offset within BAR
117 * Return: Value from register
119 u32
__genwqe_readl(struct genwqe_dev
*cd
, u64 byte_offs
)
121 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
124 if (cd
->mmio
== NULL
)
127 return be32_to_cpu((__force __be32
)__raw_readl(cd
->mmio
+ byte_offs
));
131 * genwqe_read_app_id() - Extract app_id
132 * @cd: genwqe device descriptor
133 * @app_name: carrier used to pass-back name
134 * @len: length of data for name
136 * app_unitcfg need to be filled with valid data first
138 int genwqe_read_app_id(struct genwqe_dev
*cd
, char *app_name
, int len
)
141 u32 app_id
= (u32
)cd
->app_unitcfg
;
143 memset(app_name
, 0, len
);
144 for (i
= 0, j
= 0; j
< min(len
, 4); j
++) {
145 char ch
= (char)((app_id
>> (24 - j
*8)) & 0xff);
149 app_name
[i
++] = isprint(ch
) ? ch
: 'X';
155 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
157 * Existing kernel functions seem to use a different polynom,
158 * therefore we could not use them here.
160 * Genwqe's Polynomial = 0x20044009
162 #define CRC32_POLYNOMIAL 0x20044009
163 static u32 crc32_tab
[256]; /* crc32 lookup table */
165 void genwqe_init_crc32(void)
170 for (i
= 0; i
< 256; i
++) {
172 for (j
= 0; j
< 8; j
++) {
173 if (crc
& 0x80000000)
174 crc
= (crc
<< 1) ^ CRC32_POLYNOMIAL
;
183 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
184 * @buff: pointer to data buffer
185 * @len: length of data for calculation
186 * @init: initial crc (0xffffffff at start)
188 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
190 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
191 * result in a crc32 of 0xf33cb7d3.
193 * The existing kernel crc functions did not cover this polynom yet.
195 * Return: crc32 checksum.
197 u32
genwqe_crc32(u8
*buff
, size_t len
, u32 init
)
204 i
= ((crc
>> 24) ^ *buff
++) & 0xFF;
205 crc
= (crc
<< 8) ^ crc32_tab
[i
];
210 void *__genwqe_alloc_consistent(struct genwqe_dev
*cd
, size_t size
,
211 dma_addr_t
*dma_handle
)
213 if (get_order(size
) >= MAX_ORDER
)
216 return dma_alloc_coherent(&cd
->pci_dev
->dev
, size
, dma_handle
,
220 void __genwqe_free_consistent(struct genwqe_dev
*cd
, size_t size
,
221 void *vaddr
, dma_addr_t dma_handle
)
226 dma_free_coherent(&cd
->pci_dev
->dev
, size
, vaddr
, dma_handle
);
229 static void genwqe_unmap_pages(struct genwqe_dev
*cd
, dma_addr_t
*dma_list
,
233 struct pci_dev
*pci_dev
= cd
->pci_dev
;
235 for (i
= 0; (i
< num_pages
) && (dma_list
[i
] != 0x0); i
++) {
236 pci_unmap_page(pci_dev
, dma_list
[i
],
237 PAGE_SIZE
, PCI_DMA_BIDIRECTIONAL
);
242 static int genwqe_map_pages(struct genwqe_dev
*cd
,
243 struct page
**page_list
, int num_pages
,
244 dma_addr_t
*dma_list
)
247 struct pci_dev
*pci_dev
= cd
->pci_dev
;
249 /* establish DMA mapping for requested pages */
250 for (i
= 0; i
< num_pages
; i
++) {
254 daddr
= pci_map_page(pci_dev
, page_list
[i
],
257 PCI_DMA_BIDIRECTIONAL
); /* FIXME rd/rw */
259 if (pci_dma_mapping_error(pci_dev
, daddr
)) {
260 dev_err(&pci_dev
->dev
,
261 "[%s] err: no dma addr daddr=%016llx!\n",
262 __func__
, (long long)daddr
);
271 genwqe_unmap_pages(cd
, dma_list
, num_pages
);
275 static int genwqe_sgl_size(int num_pages
)
277 int len
, num_tlb
= num_pages
/ 7;
279 len
= sizeof(struct sg_entry
) * (num_pages
+num_tlb
+ 1);
280 return roundup(len
, PAGE_SIZE
);
284 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
286 * Allocates memory for sgl and overlapping pages. Pages which might
287 * overlap other user-space memory blocks are being cached for DMAs,
288 * such that we do not run into syncronization issues. Data is copied
289 * from user-space into the cached pages.
291 int genwqe_alloc_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
292 void __user
*user_addr
, size_t user_size
, int write
)
295 struct pci_dev
*pci_dev
= cd
->pci_dev
;
297 sgl
->fpage_offs
= offset_in_page((unsigned long)user_addr
);
298 sgl
->fpage_size
= min_t(size_t, PAGE_SIZE
-sgl
->fpage_offs
, user_size
);
299 sgl
->nr_pages
= DIV_ROUND_UP(sgl
->fpage_offs
+ user_size
, PAGE_SIZE
);
300 sgl
->lpage_size
= (user_size
- sgl
->fpage_size
) % PAGE_SIZE
;
302 dev_dbg(&pci_dev
->dev
, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
303 __func__
, user_addr
, user_size
, sgl
->nr_pages
,
304 sgl
->fpage_offs
, sgl
->fpage_size
, sgl
->lpage_size
);
306 sgl
->user_addr
= user_addr
;
307 sgl
->user_size
= user_size
;
309 sgl
->sgl_size
= genwqe_sgl_size(sgl
->nr_pages
);
311 if (get_order(sgl
->sgl_size
) > MAX_ORDER
) {
312 dev_err(&pci_dev
->dev
,
313 "[%s] err: too much memory requested!\n", __func__
);
317 sgl
->sgl
= __genwqe_alloc_consistent(cd
, sgl
->sgl_size
,
319 if (sgl
->sgl
== NULL
) {
320 dev_err(&pci_dev
->dev
,
321 "[%s] err: no memory available!\n", __func__
);
325 /* Only use buffering on incomplete pages */
326 if ((sgl
->fpage_size
!= 0) && (sgl
->fpage_size
!= PAGE_SIZE
)) {
327 sgl
->fpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
328 &sgl
->fpage_dma_addr
);
329 if (sgl
->fpage
== NULL
)
332 /* Sync with user memory */
333 if (copy_from_user(sgl
->fpage
+ sgl
->fpage_offs
,
334 user_addr
, sgl
->fpage_size
)) {
339 if (sgl
->lpage_size
!= 0) {
340 sgl
->lpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
341 &sgl
->lpage_dma_addr
);
342 if (sgl
->lpage
== NULL
)
345 /* Sync with user memory */
346 if (copy_from_user(sgl
->lpage
, user_addr
+ user_size
-
347 sgl
->lpage_size
, sgl
->lpage_size
)) {
355 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
356 sgl
->lpage_dma_addr
);
358 sgl
->lpage_dma_addr
= 0;
360 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
361 sgl
->fpage_dma_addr
);
363 sgl
->fpage_dma_addr
= 0;
365 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
368 sgl
->sgl_dma_addr
= 0;
374 int genwqe_setup_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
375 dma_addr_t
*dma_list
)
378 unsigned long dma_offs
, map_offs
;
379 dma_addr_t prev_daddr
= 0;
380 struct sg_entry
*s
, *last_s
= NULL
;
381 size_t size
= sgl
->user_size
;
383 dma_offs
= 128; /* next block if needed/dma_offset */
384 map_offs
= sgl
->fpage_offs
; /* offset in first page */
386 s
= &sgl
->sgl
[0]; /* first set of 8 entries */
388 while (p
< sgl
->nr_pages
) {
390 unsigned int size_to_map
;
392 /* always write the chaining entry, cleanup is done later */
394 s
[j
].target_addr
= cpu_to_be64(sgl
->sgl_dma_addr
+ dma_offs
);
395 s
[j
].len
= cpu_to_be32(128);
396 s
[j
].flags
= cpu_to_be32(SG_CHAINED
);
400 /* DMA mapping for requested page, offs, size */
401 size_to_map
= min(size
, PAGE_SIZE
- map_offs
);
403 if ((p
== 0) && (sgl
->fpage
!= NULL
)) {
404 daddr
= sgl
->fpage_dma_addr
+ map_offs
;
406 } else if ((p
== sgl
->nr_pages
- 1) &&
407 (sgl
->lpage
!= NULL
)) {
408 daddr
= sgl
->lpage_dma_addr
;
410 daddr
= dma_list
[p
] + map_offs
;
416 if (prev_daddr
== daddr
) {
417 u32 prev_len
= be32_to_cpu(last_s
->len
);
419 /* pr_info("daddr combining: "
420 "%016llx/%08x -> %016llx\n",
421 prev_daddr, prev_len, daddr); */
423 last_s
->len
= cpu_to_be32(prev_len
+
426 p
++; /* process next page */
427 if (p
== sgl
->nr_pages
)
428 goto fixup
; /* nothing to do */
430 prev_daddr
= daddr
+ size_to_map
;
434 /* start new entry */
435 s
[j
].target_addr
= cpu_to_be64(daddr
);
436 s
[j
].len
= cpu_to_be32(size_to_map
);
437 s
[j
].flags
= cpu_to_be32(SG_DATA
);
438 prev_daddr
= daddr
+ size_to_map
;
442 p
++; /* process next page */
443 if (p
== sgl
->nr_pages
)
444 goto fixup
; /* nothing to do */
447 s
+= 8; /* continue 8 elements further */
450 if (j
== 1) { /* combining happened on last entry! */
451 s
-= 8; /* full shift needed on previous sgl block */
452 j
= 7; /* shift all elements */
455 for (i
= 0; i
< j
; i
++) /* move elements 1 up */
458 s
[i
].target_addr
= cpu_to_be64(0);
459 s
[i
].len
= cpu_to_be32(0);
460 s
[i
].flags
= cpu_to_be32(SG_END_LIST
);
465 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
466 * @cd: genwqe device descriptor
467 * @sgl: scatter gather list describing user-space memory
469 * After the DMA transfer has been completed we free the memory for
470 * the sgl and the cached pages. Data is being transferred from cached
471 * pages into user-space buffers.
473 int genwqe_free_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
)
478 struct pci_dev
*pci_dev
= cd
->pci_dev
;
482 res
= copy_to_user(sgl
->user_addr
,
483 sgl
->fpage
+ sgl
->fpage_offs
, sgl
->fpage_size
);
485 dev_err(&pci_dev
->dev
,
486 "[%s] err: copying fpage! (res=%lu)\n",
491 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
492 sgl
->fpage_dma_addr
);
494 sgl
->fpage_dma_addr
= 0;
498 offset
= sgl
->user_size
- sgl
->lpage_size
;
499 res
= copy_to_user(sgl
->user_addr
+ offset
, sgl
->lpage
,
502 dev_err(&pci_dev
->dev
,
503 "[%s] err: copying lpage! (res=%lu)\n",
508 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
509 sgl
->lpage_dma_addr
);
511 sgl
->lpage_dma_addr
= 0;
513 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
517 sgl
->sgl_dma_addr
= 0x0;
523 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
524 * @cd: pointer to genwqe device
526 * @uaddr: user virtual address
527 * @size: size of memory to be mapped
529 * We need to think about how we could speed this up. Of course it is
530 * not a good idea to do this over and over again, like we are
531 * currently doing it. Nevertheless, I am curious where on the path
532 * the performance is spend. Most probably within the memory
533 * allocation functions, but maybe also in the DMA mapping code.
535 * Restrictions: The maximum size of the possible mapping currently depends
536 * on the amount of memory we can get using kzalloc() for the
537 * page_list and pci_alloc_consistent for the sg_list.
538 * The sg_list is currently itself not scattered, which could
539 * be fixed with some effort. The page_list must be split into
540 * PAGE_SIZE chunks too. All that will make the complicated
541 * code more complicated.
543 * Return: 0 if success
545 int genwqe_user_vmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
, void *uaddr
,
549 unsigned long data
, offs
;
550 struct pci_dev
*pci_dev
= cd
->pci_dev
;
552 if ((uaddr
== NULL
) || (size
== 0)) {
553 m
->size
= 0; /* mark unused and not added */
559 /* determine space needed for page_list. */
560 data
= (unsigned long)uaddr
;
561 offs
= offset_in_page(data
);
562 if (size
> ULONG_MAX
- PAGE_SIZE
- offs
) {
563 m
->size
= 0; /* mark unused and not added */
566 m
->nr_pages
= DIV_ROUND_UP(offs
+ size
, PAGE_SIZE
);
568 m
->page_list
= kcalloc(m
->nr_pages
,
569 sizeof(struct page
*) + sizeof(dma_addr_t
),
572 dev_err(&pci_dev
->dev
, "err: alloc page_list failed\n");
575 m
->size
= 0; /* mark unused and not added */
578 m
->dma_list
= (dma_addr_t
*)(m
->page_list
+ m
->nr_pages
);
580 /* pin user pages in memory */
581 rc
= pin_user_pages_fast(data
& PAGE_MASK
, /* page aligned addr */
583 m
->write
? FOLL_WRITE
: 0, /* readable/writable */
584 m
->page_list
); /* ptrs to pages */
586 goto fail_pin_user_pages
;
588 /* assumption: pin_user_pages can be killed by signals. */
589 if (rc
< m
->nr_pages
) {
590 unpin_user_pages_dirty_lock(m
->page_list
, rc
, m
->write
);
592 goto fail_pin_user_pages
;
595 rc
= genwqe_map_pages(cd
, m
->page_list
, m
->nr_pages
, m
->dma_list
);
597 goto fail_free_user_pages
;
601 fail_free_user_pages
:
602 unpin_user_pages_dirty_lock(m
->page_list
, m
->nr_pages
, m
->write
);
610 m
->size
= 0; /* mark unused and not added */
615 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
617 * @cd: pointer to genwqe device
620 int genwqe_user_vunmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
)
622 struct pci_dev
*pci_dev
= cd
->pci_dev
;
624 if (!dma_mapping_used(m
)) {
625 dev_err(&pci_dev
->dev
, "[%s] err: mapping %p not used!\n",
631 genwqe_unmap_pages(cd
, m
->dma_list
, m
->nr_pages
);
634 unpin_user_pages_dirty_lock(m
->page_list
, m
->nr_pages
,
643 m
->size
= 0; /* mark as unused and not added */
648 * genwqe_card_type() - Get chip type SLU Configuration Register
649 * @cd: pointer to the genwqe device descriptor
650 * Return: 0: Altera Stratix-IV 230
651 * 1: Altera Stratix-IV 530
652 * 2: Altera Stratix-V A4
653 * 3: Altera Stratix-V A7
655 u8
genwqe_card_type(struct genwqe_dev
*cd
)
657 u64 card_type
= cd
->slu_unitcfg
;
659 return (u8
)((card_type
& IO_SLU_UNITCFG_TYPE_MASK
) >> 20);
663 * genwqe_card_reset() - Reset the card
664 * @cd: pointer to the genwqe device descriptor
666 int genwqe_card_reset(struct genwqe_dev
*cd
)
669 struct pci_dev
*pci_dev
= cd
->pci_dev
;
671 if (!genwqe_is_privileged(cd
))
675 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, 0x1ull
);
677 __genwqe_readq(cd
, IO_HSU_FIR_CLR
);
678 __genwqe_readq(cd
, IO_APP_FIR_CLR
);
679 __genwqe_readq(cd
, IO_SLU_FIR_CLR
);
682 * Read-modify-write to preserve the stealth bits
684 * For SL >= 039, Stealth WE bit allows removing
685 * the read-modify-wrote.
686 * r-m-w may require a mask 0x3C to avoid hitting hard
687 * reset again for error reset (should be 0, chicken).
689 softrst
= __genwqe_readq(cd
, IO_SLC_CFGREG_SOFTRESET
) & 0x3cull
;
690 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, softrst
| 0x2ull
);
692 /* give ERRORRESET some time to finish */
695 if (genwqe_need_err_masking(cd
)) {
696 dev_info(&pci_dev
->dev
,
697 "[%s] masking errors for old bitstreams\n", __func__
);
698 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);
703 int genwqe_read_softreset(struct genwqe_dev
*cd
)
707 if (!genwqe_is_privileged(cd
))
710 bitstream
= __genwqe_readq(cd
, IO_SLU_BITSTREAM
) & 0x1;
711 cd
->softreset
= (bitstream
== 0) ? 0x8ull
: 0xcull
;
716 * genwqe_set_interrupt_capability() - Configure MSI capability structure
717 * @cd: pointer to the device
718 * @count: number of vectors to allocate
719 * Return: 0 if no error
721 int genwqe_set_interrupt_capability(struct genwqe_dev
*cd
, int count
)
725 rc
= pci_alloc_irq_vectors(cd
->pci_dev
, 1, count
, PCI_IRQ_MSI
);
732 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
733 * @cd: pointer to the device
735 void genwqe_reset_interrupt_capability(struct genwqe_dev
*cd
)
737 pci_free_irq_vectors(cd
->pci_dev
);
741 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
743 * @r: debug register array
744 * @i: index to desired entry
745 * @m: maximum possible entries
746 * @addr: addr which is read
747 * @idx: index in debug array
750 static int set_reg_idx(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
751 unsigned int *i
, unsigned int m
, u32 addr
, u32 idx
,
754 if (WARN_ON_ONCE(*i
>= m
))
764 static int set_reg(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
765 unsigned int *i
, unsigned int m
, u32 addr
, u64 val
)
767 return set_reg_idx(cd
, r
, i
, m
, addr
, 0, val
);
770 int genwqe_read_ffdc_regs(struct genwqe_dev
*cd
, struct genwqe_reg
*regs
,
771 unsigned int max_regs
, int all
)
773 unsigned int i
, j
, idx
= 0;
774 u32 ufir_addr
, ufec_addr
, sfir_addr
, sfec_addr
;
775 u64 gfir
, sluid
, appid
, ufir
, ufec
, sfir
, sfec
;
778 gfir
= __genwqe_readq(cd
, IO_SLC_CFGREG_GFIR
);
779 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLC_CFGREG_GFIR
, gfir
);
781 /* UnitCfg for SLU */
782 sluid
= __genwqe_readq(cd
, IO_SLU_UNITCFG
); /* 0x00000000 */
783 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLU_UNITCFG
, sluid
);
785 /* UnitCfg for APP */
786 appid
= __genwqe_readq(cd
, IO_APP_UNITCFG
); /* 0x02000000 */
787 set_reg(cd
, regs
, &idx
, max_regs
, IO_APP_UNITCFG
, appid
);
789 /* Check all chip Units */
790 for (i
= 0; i
< GENWQE_MAX_UNITS
; i
++) {
793 ufir_addr
= (i
<< 24) | 0x008;
794 ufir
= __genwqe_readq(cd
, ufir_addr
);
795 set_reg(cd
, regs
, &idx
, max_regs
, ufir_addr
, ufir
);
798 ufec_addr
= (i
<< 24) | 0x018;
799 ufec
= __genwqe_readq(cd
, ufec_addr
);
800 set_reg(cd
, regs
, &idx
, max_regs
, ufec_addr
, ufec
);
802 for (j
= 0; j
< 64; j
++) {
803 /* wherever there is a primary 1, read the 2ndary */
804 if (!all
&& (!(ufir
& (1ull << j
))))
807 sfir_addr
= (i
<< 24) | (0x100 + 8 * j
);
808 sfir
= __genwqe_readq(cd
, sfir_addr
);
809 set_reg(cd
, regs
, &idx
, max_regs
, sfir_addr
, sfir
);
811 sfec_addr
= (i
<< 24) | (0x300 + 8 * j
);
812 sfec
= __genwqe_readq(cd
, sfec_addr
);
813 set_reg(cd
, regs
, &idx
, max_regs
, sfec_addr
, sfec
);
817 /* fill with invalid data until end */
818 for (i
= idx
; i
< max_regs
; i
++) {
819 regs
[i
].addr
= 0xffffffff;
820 regs
[i
].val
= 0xffffffffffffffffull
;
826 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
827 * @cd: genwqe device descriptor
830 int genwqe_ffdc_buff_size(struct genwqe_dev
*cd
, int uid
)
832 int entries
= 0, ring
, traps
, traces
, trace_entries
;
833 u32 eevptr_addr
, l_addr
, d_len
, d_type
;
834 u64 eevptr
, val
, addr
;
836 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
837 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
839 if ((eevptr
!= 0x0) && (eevptr
!= -1ull)) {
840 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
843 val
= __genwqe_readq(cd
, l_addr
);
845 if ((val
== 0x0) || (val
== -1ull))
849 d_len
= (val
& 0x0000007fff000000ull
) >> 24;
852 d_type
= (val
& 0x0000008000000000ull
) >> 36;
854 if (d_type
) { /* repeat */
856 } else { /* size in bytes! */
857 entries
+= d_len
>> 3;
864 for (ring
= 0; ring
< 8; ring
++) {
865 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
866 val
= __genwqe_readq(cd
, addr
);
868 if ((val
== 0x0ull
) || (val
== -1ull))
871 traps
= (val
>> 24) & 0xff;
872 traces
= (val
>> 16) & 0xff;
873 trace_entries
= val
& 0xffff;
875 entries
+= traps
+ (traces
* trace_entries
);
881 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
882 * @cd: genwqe device descriptor
884 * @regs: register information
885 * @max_regs: number of register entries
887 int genwqe_ffdc_buff_read(struct genwqe_dev
*cd
, int uid
,
888 struct genwqe_reg
*regs
, unsigned int max_regs
)
890 int i
, traps
, traces
, trace
, trace_entries
, trace_entry
, ring
;
891 unsigned int idx
= 0;
892 u32 eevptr_addr
, l_addr
, d_addr
, d_len
, d_type
;
893 u64 eevptr
, e
, val
, addr
;
895 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
896 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
898 if ((eevptr
!= 0x0) && (eevptr
!= 0xffffffffffffffffull
)) {
899 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
901 e
= __genwqe_readq(cd
, l_addr
);
902 if ((e
== 0x0) || (e
== 0xffffffffffffffffull
))
905 d_addr
= (e
& 0x0000000000ffffffull
); /* 23:0 */
906 d_len
= (e
& 0x0000007fff000000ull
) >> 24; /* 38:24 */
907 d_type
= (e
& 0x0000008000000000ull
) >> 36; /* 39 */
908 d_addr
|= GENWQE_UID_OFFS(uid
);
911 for (i
= 0; i
< (int)d_len
; i
++) {
912 val
= __genwqe_readq(cd
, d_addr
);
913 set_reg_idx(cd
, regs
, &idx
, max_regs
,
917 d_len
>>= 3; /* Size in bytes! */
918 for (i
= 0; i
< (int)d_len
; i
++, d_addr
+= 8) {
919 val
= __genwqe_readq(cd
, d_addr
);
920 set_reg_idx(cd
, regs
, &idx
, max_regs
,
929 * To save time, there are only 6 traces poplulated on Uid=2,
930 * Ring=1. each with iters=512.
932 for (ring
= 0; ring
< 8; ring
++) { /* 0 is fls, 1 is fds,
933 2...7 are ASI rings */
934 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
935 val
= __genwqe_readq(cd
, addr
);
937 if ((val
== 0x0ull
) || (val
== -1ull))
940 traps
= (val
>> 24) & 0xff; /* Number of Traps */
941 traces
= (val
>> 16) & 0xff; /* Number of Traces */
942 trace_entries
= val
& 0xffff; /* Entries per trace */
944 /* Note: This is a combined loop that dumps both the traps */
945 /* (for the trace == 0 case) as well as the traces 1 to */
947 for (trace
= 0; trace
<= traces
; trace
++) {
949 GENWQE_EXTENDED_DIAG_SELECTOR(ring
, trace
);
951 addr
= (GENWQE_UID_OFFS(uid
) |
952 IO_EXTENDED_DIAG_SELECTOR
);
953 __genwqe_writeq(cd
, addr
, diag_sel
);
955 for (trace_entry
= 0;
956 trace_entry
< (trace
? trace_entries
: traps
);
958 addr
= (GENWQE_UID_OFFS(uid
) |
959 IO_EXTENDED_DIAG_READ_MBX
);
960 val
= __genwqe_readq(cd
, addr
);
961 set_reg_idx(cd
, regs
, &idx
, max_regs
, addr
,
962 (diag_sel
<<16) | trace_entry
, val
);
970 * genwqe_write_vreg() - Write register in virtual window
971 * @cd: genwqe device descriptor
972 * @reg: register (byte) offset within BAR
973 * @val: value to write
974 * @func: PCI virtual function
976 * Note, these registers are only accessible to the PF through the
977 * VF-window. It is not intended for the VF to access.
979 int genwqe_write_vreg(struct genwqe_dev
*cd
, u32 reg
, u64 val
, int func
)
981 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
982 __genwqe_writeq(cd
, reg
, val
);
987 * genwqe_read_vreg() - Read register in virtual window
988 * @cd: genwqe device descriptor
989 * @reg: register (byte) offset within BAR
990 * @func: PCI virtual function
992 * Note, these registers are only accessible to the PF through the
993 * VF-window. It is not intended for the VF to access.
995 u64
genwqe_read_vreg(struct genwqe_dev
*cd
, u32 reg
, int func
)
997 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
998 return __genwqe_readq(cd
, reg
);
1002 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1003 * @cd: genwqe device descriptor
1005 * Note: From a design perspective it turned out to be a bad idea to
1006 * use codes here to specifiy the frequency/speed values. An old
1007 * driver cannot understand new codes and is therefore always a
1008 * problem. Better is to measure out the value or put the
1009 * speed/frequency directly into a register which is always a valid
1010 * value for old as well as for new software.
1012 * Return: Card clock in MHz
1014 int genwqe_base_clock_frequency(struct genwqe_dev
*cd
)
1016 u16 speed
; /* MHz MHz MHz MHz */
1017 static const int speed_grade
[] = { 250, 200, 166, 175 };
1019 speed
= (u16
)((cd
->slu_unitcfg
>> 28) & 0x0full
);
1020 if (speed
>= ARRAY_SIZE(speed_grade
))
1021 return 0; /* illegal value */
1023 return speed_grade
[speed
];
1027 * genwqe_stop_traps() - Stop traps
1028 * @cd: genwqe device descriptor
1030 * Before reading out the analysis data, we need to stop the traps.
1032 void genwqe_stop_traps(struct genwqe_dev
*cd
)
1034 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_SET
, 0xcull
);
1038 * genwqe_start_traps() - Start traps
1039 * @cd: genwqe device descriptor
1041 * After having read the data, we can/must enable the traps again.
1043 void genwqe_start_traps(struct genwqe_dev
*cd
)
1045 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_CLR
, 0xcull
);
1047 if (genwqe_need_err_masking(cd
))
1048 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);