1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright 2016-2019 HabanaLabs, Ltd.
8 #include "habanalabs.h"
9 #include "../include/hw_ip/mmu/mmu_general.h"
11 #include <linux/slab.h>
13 static inline u64
get_phys_addr(struct hl_ctx
*ctx
, u64 shadow_addr
);
15 static struct pgt_info
*get_pgt_info(struct hl_ctx
*ctx
, u64 hop_addr
)
17 struct pgt_info
*pgt_info
= NULL
;
19 hash_for_each_possible(ctx
->mmu_shadow_hash
, pgt_info
, node
,
20 (unsigned long) hop_addr
)
21 if (hop_addr
== pgt_info
->shadow_addr
)
27 static void _free_hop(struct hl_ctx
*ctx
, struct pgt_info
*pgt_info
)
29 struct hl_device
*hdev
= ctx
->hdev
;
31 gen_pool_free(hdev
->mmu_priv
.dr
.mmu_pgt_pool
, pgt_info
->phys_addr
,
32 hdev
->asic_prop
.mmu_hop_table_size
);
33 hash_del(&pgt_info
->node
);
34 kfree((u64
*) (uintptr_t) pgt_info
->shadow_addr
);
38 static void free_hop(struct hl_ctx
*ctx
, u64 hop_addr
)
40 struct pgt_info
*pgt_info
= get_pgt_info(ctx
, hop_addr
);
42 _free_hop(ctx
, pgt_info
);
45 static u64
alloc_hop(struct hl_ctx
*ctx
)
47 struct hl_device
*hdev
= ctx
->hdev
;
48 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
49 struct pgt_info
*pgt_info
;
50 u64 phys_addr
, shadow_addr
;
52 pgt_info
= kmalloc(sizeof(*pgt_info
), GFP_KERNEL
);
56 phys_addr
= (u64
) gen_pool_alloc(hdev
->mmu_priv
.dr
.mmu_pgt_pool
,
57 prop
->mmu_hop_table_size
);
59 dev_err(hdev
->dev
, "failed to allocate page\n");
63 shadow_addr
= (u64
) (uintptr_t) kzalloc(prop
->mmu_hop_table_size
,
68 pgt_info
->phys_addr
= phys_addr
;
69 pgt_info
->shadow_addr
= shadow_addr
;
71 pgt_info
->num_of_ptes
= 0;
72 hash_add(ctx
->mmu_shadow_hash
, &pgt_info
->node
, shadow_addr
);
77 gen_pool_free(hdev
->mmu_priv
.dr
.mmu_pgt_pool
, phys_addr
,
78 prop
->mmu_hop_table_size
);
85 static inline u64
get_phys_hop0_addr(struct hl_ctx
*ctx
)
87 return ctx
->hdev
->asic_prop
.mmu_pgt_addr
+
88 (ctx
->asid
* ctx
->hdev
->asic_prop
.mmu_hop_table_size
);
91 static inline u64
get_hop0_addr(struct hl_ctx
*ctx
)
93 return (u64
) (uintptr_t) ctx
->hdev
->mmu_priv
.dr
.mmu_shadow_hop0
+
94 (ctx
->asid
* ctx
->hdev
->asic_prop
.mmu_hop_table_size
);
97 static void flush(struct hl_ctx
*ctx
)
99 /* flush all writes from all cores to reach PCI */
101 ctx
->hdev
->asic_funcs
->read_pte(ctx
->hdev
, get_phys_hop0_addr(ctx
));
104 /* transform the value to physical address when writing to H/W */
105 static inline void write_pte(struct hl_ctx
*ctx
, u64 shadow_pte_addr
, u64 val
)
108 * The value to write is actually the address of the next shadow hop +
109 * flags at the 12 LSBs.
110 * Hence in order to get the value to write to the physical PTE, we
111 * clear the 12 LSBs and translate the shadow hop to its associated
112 * physical hop, and add back the original 12 LSBs.
114 u64 phys_val
= get_phys_addr(ctx
, val
& HOP_PHYS_ADDR_MASK
) |
117 ctx
->hdev
->asic_funcs
->write_pte(ctx
->hdev
,
118 get_phys_addr(ctx
, shadow_pte_addr
),
121 *(u64
*) (uintptr_t) shadow_pte_addr
= val
;
124 /* do not transform the value to physical address when writing to H/W */
125 static inline void write_final_pte(struct hl_ctx
*ctx
, u64 shadow_pte_addr
,
128 ctx
->hdev
->asic_funcs
->write_pte(ctx
->hdev
,
129 get_phys_addr(ctx
, shadow_pte_addr
),
131 *(u64
*) (uintptr_t) shadow_pte_addr
= val
;
134 /* clear the last and present bits */
135 static inline void clear_pte(struct hl_ctx
*ctx
, u64 pte_addr
)
137 /* no need to transform the value to physical address */
138 write_final_pte(ctx
, pte_addr
, 0);
141 static inline void get_pte(struct hl_ctx
*ctx
, u64 hop_addr
)
143 get_pgt_info(ctx
, hop_addr
)->num_of_ptes
++;
147 * put_pte - decrement the num of ptes and free the hop if possible
149 * @ctx: pointer to the context structure
150 * @hop_addr: addr of the hop
152 * This function returns the number of ptes left on this hop. If the number is
153 * 0, it means the pte was freed.
155 static inline int put_pte(struct hl_ctx
*ctx
, u64 hop_addr
)
157 struct pgt_info
*pgt_info
= get_pgt_info(ctx
, hop_addr
);
158 int num_of_ptes_left
;
160 pgt_info
->num_of_ptes
--;
163 * Need to save the number of ptes left because free_hop might free
166 num_of_ptes_left
= pgt_info
->num_of_ptes
;
167 if (!num_of_ptes_left
)
168 _free_hop(ctx
, pgt_info
);
170 return num_of_ptes_left
;
173 static inline u64
get_hopN_pte_addr(struct hl_ctx
*ctx
, u64 hop_addr
,
174 u64 virt_addr
, u64 mask
, u64 shift
)
176 return hop_addr
+ ctx
->hdev
->asic_prop
.mmu_pte_size
*
177 ((virt_addr
& mask
) >> shift
);
180 static inline u64
get_hop0_pte_addr(struct hl_ctx
*ctx
,
181 struct hl_mmu_properties
*mmu_prop
,
182 u64 hop_addr
, u64 vaddr
)
184 return get_hopN_pte_addr(ctx
, hop_addr
, vaddr
, mmu_prop
->hop0_mask
,
185 mmu_prop
->hop0_shift
);
188 static inline u64
get_hop1_pte_addr(struct hl_ctx
*ctx
,
189 struct hl_mmu_properties
*mmu_prop
,
190 u64 hop_addr
, u64 vaddr
)
192 return get_hopN_pte_addr(ctx
, hop_addr
, vaddr
, mmu_prop
->hop1_mask
,
193 mmu_prop
->hop1_shift
);
196 static inline u64
get_hop2_pte_addr(struct hl_ctx
*ctx
,
197 struct hl_mmu_properties
*mmu_prop
,
198 u64 hop_addr
, u64 vaddr
)
200 return get_hopN_pte_addr(ctx
, hop_addr
, vaddr
, mmu_prop
->hop2_mask
,
201 mmu_prop
->hop2_shift
);
204 static inline u64
get_hop3_pte_addr(struct hl_ctx
*ctx
,
205 struct hl_mmu_properties
*mmu_prop
,
206 u64 hop_addr
, u64 vaddr
)
208 return get_hopN_pte_addr(ctx
, hop_addr
, vaddr
, mmu_prop
->hop3_mask
,
209 mmu_prop
->hop3_shift
);
212 static inline u64
get_hop4_pte_addr(struct hl_ctx
*ctx
,
213 struct hl_mmu_properties
*mmu_prop
,
214 u64 hop_addr
, u64 vaddr
)
216 return get_hopN_pte_addr(ctx
, hop_addr
, vaddr
, mmu_prop
->hop4_mask
,
217 mmu_prop
->hop4_shift
);
220 static inline u64
get_next_hop_addr(struct hl_ctx
*ctx
, u64 curr_pte
)
222 if (curr_pte
& PAGE_PRESENT_MASK
)
223 return curr_pte
& HOP_PHYS_ADDR_MASK
;
228 static inline u64
get_alloc_next_hop_addr(struct hl_ctx
*ctx
, u64 curr_pte
,
231 u64 hop_addr
= get_next_hop_addr(ctx
, curr_pte
);
233 if (hop_addr
== ULLONG_MAX
) {
234 hop_addr
= alloc_hop(ctx
);
235 *is_new_hop
= (hop_addr
!= ULLONG_MAX
);
241 /* translates shadow address inside hop to a physical address */
242 static inline u64
get_phys_addr(struct hl_ctx
*ctx
, u64 shadow_addr
)
244 u64 page_mask
= (ctx
->hdev
->asic_prop
.mmu_hop_table_size
- 1);
245 u64 shadow_hop_addr
= shadow_addr
& ~page_mask
;
246 u64 pte_offset
= shadow_addr
& page_mask
;
249 if (shadow_hop_addr
!= get_hop0_addr(ctx
))
250 phys_hop_addr
= get_pgt_info(ctx
, shadow_hop_addr
)->phys_addr
;
252 phys_hop_addr
= get_phys_hop0_addr(ctx
);
254 return phys_hop_addr
+ pte_offset
;
257 static int dram_default_mapping_init(struct hl_ctx
*ctx
)
259 struct hl_device
*hdev
= ctx
->hdev
;
260 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
261 u64 num_of_hop3
, total_hops
, hop0_addr
, hop1_addr
, hop2_addr
,
262 hop2_pte_addr
, hop3_pte_addr
, pte_val
;
263 int rc
, i
, j
, hop3_allocated
= 0;
265 if ((!prop
->dram_supports_virtual_memory
) ||
266 (!hdev
->dram_default_page_mapping
) ||
267 (ctx
->asid
== HL_KERNEL_ASID_ID
))
270 num_of_hop3
= prop
->dram_size_for_default_page_mapping
;
271 do_div(num_of_hop3
, prop
->dram_page_size
);
272 do_div(num_of_hop3
, PTE_ENTRIES_IN_HOP
);
274 /* add hop1 and hop2 */
275 total_hops
= num_of_hop3
+ 2;
277 ctx
->dram_default_hops
= kzalloc(HL_PTE_SIZE
* total_hops
, GFP_KERNEL
);
278 if (!ctx
->dram_default_hops
)
281 hop0_addr
= get_hop0_addr(ctx
);
283 hop1_addr
= alloc_hop(ctx
);
284 if (hop1_addr
== ULLONG_MAX
) {
285 dev_err(hdev
->dev
, "failed to alloc hop 1\n");
290 ctx
->dram_default_hops
[total_hops
- 1] = hop1_addr
;
292 hop2_addr
= alloc_hop(ctx
);
293 if (hop2_addr
== ULLONG_MAX
) {
294 dev_err(hdev
->dev
, "failed to alloc hop 2\n");
299 ctx
->dram_default_hops
[total_hops
- 2] = hop2_addr
;
301 for (i
= 0 ; i
< num_of_hop3
; i
++) {
302 ctx
->dram_default_hops
[i
] = alloc_hop(ctx
);
303 if (ctx
->dram_default_hops
[i
] == ULLONG_MAX
) {
304 dev_err(hdev
->dev
, "failed to alloc hop 3, i: %d\n", i
);
311 /* need only pte 0 in hops 0 and 1 */
312 pte_val
= (hop1_addr
& HOP_PHYS_ADDR_MASK
) | PAGE_PRESENT_MASK
;
313 write_pte(ctx
, hop0_addr
, pte_val
);
315 pte_val
= (hop2_addr
& HOP_PHYS_ADDR_MASK
) | PAGE_PRESENT_MASK
;
316 write_pte(ctx
, hop1_addr
, pte_val
);
317 get_pte(ctx
, hop1_addr
);
319 hop2_pte_addr
= hop2_addr
;
320 for (i
= 0 ; i
< num_of_hop3
; i
++) {
321 pte_val
= (ctx
->dram_default_hops
[i
] & HOP_PHYS_ADDR_MASK
) |
323 write_pte(ctx
, hop2_pte_addr
, pte_val
);
324 get_pte(ctx
, hop2_addr
);
325 hop2_pte_addr
+= HL_PTE_SIZE
;
328 pte_val
= (prop
->mmu_dram_default_page_addr
& HOP_PHYS_ADDR_MASK
) |
329 LAST_MASK
| PAGE_PRESENT_MASK
;
331 for (i
= 0 ; i
< num_of_hop3
; i
++) {
332 hop3_pte_addr
= ctx
->dram_default_hops
[i
];
333 for (j
= 0 ; j
< PTE_ENTRIES_IN_HOP
; j
++) {
334 write_final_pte(ctx
, hop3_pte_addr
, pte_val
);
335 get_pte(ctx
, ctx
->dram_default_hops
[i
]);
336 hop3_pte_addr
+= HL_PTE_SIZE
;
345 for (i
= 0 ; i
< hop3_allocated
; i
++)
346 free_hop(ctx
, ctx
->dram_default_hops
[i
]);
348 free_hop(ctx
, hop2_addr
);
350 free_hop(ctx
, hop1_addr
);
352 kfree(ctx
->dram_default_hops
);
357 static void dram_default_mapping_fini(struct hl_ctx
*ctx
)
359 struct hl_device
*hdev
= ctx
->hdev
;
360 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
361 u64 num_of_hop3
, total_hops
, hop0_addr
, hop1_addr
, hop2_addr
,
362 hop2_pte_addr
, hop3_pte_addr
;
365 if ((!prop
->dram_supports_virtual_memory
) ||
366 (!hdev
->dram_default_page_mapping
) ||
367 (ctx
->asid
== HL_KERNEL_ASID_ID
))
370 num_of_hop3
= prop
->dram_size_for_default_page_mapping
;
371 do_div(num_of_hop3
, prop
->dram_page_size
);
372 do_div(num_of_hop3
, PTE_ENTRIES_IN_HOP
);
374 hop0_addr
= get_hop0_addr(ctx
);
375 /* add hop1 and hop2 */
376 total_hops
= num_of_hop3
+ 2;
377 hop1_addr
= ctx
->dram_default_hops
[total_hops
- 1];
378 hop2_addr
= ctx
->dram_default_hops
[total_hops
- 2];
380 for (i
= 0 ; i
< num_of_hop3
; i
++) {
381 hop3_pte_addr
= ctx
->dram_default_hops
[i
];
382 for (j
= 0 ; j
< PTE_ENTRIES_IN_HOP
; j
++) {
383 clear_pte(ctx
, hop3_pte_addr
);
384 put_pte(ctx
, ctx
->dram_default_hops
[i
]);
385 hop3_pte_addr
+= HL_PTE_SIZE
;
389 hop2_pte_addr
= hop2_addr
;
390 hop2_pte_addr
= hop2_addr
;
391 for (i
= 0 ; i
< num_of_hop3
; i
++) {
392 clear_pte(ctx
, hop2_pte_addr
);
393 put_pte(ctx
, hop2_addr
);
394 hop2_pte_addr
+= HL_PTE_SIZE
;
397 clear_pte(ctx
, hop1_addr
);
398 put_pte(ctx
, hop1_addr
);
399 clear_pte(ctx
, hop0_addr
);
401 kfree(ctx
->dram_default_hops
);
407 * hl_mmu_v1_init() - initialize the MMU module.
408 * @hdev: habanalabs device structure.
410 * This function does the following:
411 * - Create a pool of pages for pgt_infos.
412 * - Create a shadow table for pgt
414 * Return: 0 for success, non-zero for failure.
416 static int hl_mmu_v1_init(struct hl_device
*hdev
)
418 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
421 hdev
->mmu_priv
.dr
.mmu_pgt_pool
=
422 gen_pool_create(__ffs(prop
->mmu_hop_table_size
), -1);
424 if (!hdev
->mmu_priv
.dr
.mmu_pgt_pool
) {
425 dev_err(hdev
->dev
, "Failed to create page gen pool\n");
429 rc
= gen_pool_add(hdev
->mmu_priv
.dr
.mmu_pgt_pool
, prop
->mmu_pgt_addr
+
430 prop
->mmu_hop0_tables_total_size
,
431 prop
->mmu_pgt_size
- prop
->mmu_hop0_tables_total_size
,
434 dev_err(hdev
->dev
, "Failed to add memory to page gen pool\n");
438 hdev
->mmu_priv
.dr
.mmu_shadow_hop0
= kvmalloc_array(prop
->max_asid
,
439 prop
->mmu_hop_table_size
,
440 GFP_KERNEL
| __GFP_ZERO
);
441 if (ZERO_OR_NULL_PTR(hdev
->mmu_priv
.dr
.mmu_shadow_hop0
)) {
446 /* MMU H/W init will be done in device hw_init() */
451 gen_pool_destroy(hdev
->mmu_priv
.dr
.mmu_pgt_pool
);
457 * hl_mmu_fini() - release the MMU module.
458 * @hdev: habanalabs device structure.
460 * This function does the following:
461 * - Disable MMU in H/W.
462 * - Free the pgt_infos pool.
464 * All contexts should be freed before calling this function.
466 static void hl_mmu_v1_fini(struct hl_device
*hdev
)
468 /* MMU H/W fini was already done in device hw_fini() */
470 kvfree(hdev
->mmu_priv
.dr
.mmu_shadow_hop0
);
471 gen_pool_destroy(hdev
->mmu_priv
.dr
.mmu_pgt_pool
);
475 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
476 * @ctx: pointer to the context structure to initialize.
478 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
479 * page tables hops related to this context.
480 * Return: 0 on success, non-zero otherwise.
482 static int hl_mmu_v1_ctx_init(struct hl_ctx
*ctx
)
484 hash_init(ctx
->mmu_shadow_hash
);
485 return dram_default_mapping_init(ctx
);
489 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
491 * @ctx: pointer to the context structure
493 * This function does the following:
494 * - Free any pgts which were not freed yet
496 * - Free DRAM default page mapping hops
498 static void hl_mmu_v1_ctx_fini(struct hl_ctx
*ctx
)
500 struct hl_device
*hdev
= ctx
->hdev
;
501 struct pgt_info
*pgt_info
;
502 struct hlist_node
*tmp
;
505 dram_default_mapping_fini(ctx
);
507 if (!hash_empty(ctx
->mmu_shadow_hash
))
508 dev_err(hdev
->dev
, "ctx %d is freed while it has pgts in use\n",
511 hash_for_each_safe(ctx
->mmu_shadow_hash
, i
, tmp
, pgt_info
, node
) {
512 dev_err_ratelimited(hdev
->dev
,
513 "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
514 pgt_info
->phys_addr
, ctx
->asid
, pgt_info
->num_of_ptes
);
515 _free_hop(ctx
, pgt_info
);
519 static int _hl_mmu_v1_unmap(struct hl_ctx
*ctx
,
520 u64 virt_addr
, bool is_dram_addr
)
522 struct hl_device
*hdev
= ctx
->hdev
;
523 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
524 struct hl_mmu_properties
*mmu_prop
;
525 u64 hop0_addr
= 0, hop0_pte_addr
= 0,
526 hop1_addr
= 0, hop1_pte_addr
= 0,
527 hop2_addr
= 0, hop2_pte_addr
= 0,
528 hop3_addr
= 0, hop3_pte_addr
= 0,
529 hop4_addr
= 0, hop4_pte_addr
= 0,
531 bool is_huge
, clear_hop3
= true;
533 /* shifts and masks are the same in PMMU and HPMMU, use one of them */
534 mmu_prop
= is_dram_addr
? &prop
->dmmu
: &prop
->pmmu
;
536 hop0_addr
= get_hop0_addr(ctx
);
537 hop0_pte_addr
= get_hop0_pte_addr(ctx
, mmu_prop
, hop0_addr
, virt_addr
);
539 curr_pte
= *(u64
*) (uintptr_t) hop0_pte_addr
;
541 hop1_addr
= get_next_hop_addr(ctx
, curr_pte
);
543 if (hop1_addr
== ULLONG_MAX
)
546 hop1_pte_addr
= get_hop1_pte_addr(ctx
, mmu_prop
, hop1_addr
, virt_addr
);
548 curr_pte
= *(u64
*) (uintptr_t) hop1_pte_addr
;
550 hop2_addr
= get_next_hop_addr(ctx
, curr_pte
);
552 if (hop2_addr
== ULLONG_MAX
)
555 hop2_pte_addr
= get_hop2_pte_addr(ctx
, mmu_prop
, hop2_addr
, virt_addr
);
557 curr_pte
= *(u64
*) (uintptr_t) hop2_pte_addr
;
559 hop3_addr
= get_next_hop_addr(ctx
, curr_pte
);
561 if (hop3_addr
== ULLONG_MAX
)
564 hop3_pte_addr
= get_hop3_pte_addr(ctx
, mmu_prop
, hop3_addr
, virt_addr
);
566 curr_pte
= *(u64
*) (uintptr_t) hop3_pte_addr
;
568 is_huge
= curr_pte
& LAST_MASK
;
570 if (is_dram_addr
&& !is_huge
) {
572 "DRAM unmapping should use huge pages only\n");
577 hop4_addr
= get_next_hop_addr(ctx
, curr_pte
);
579 if (hop4_addr
== ULLONG_MAX
)
582 hop4_pte_addr
= get_hop4_pte_addr(ctx
, mmu_prop
, hop4_addr
,
585 curr_pte
= *(u64
*) (uintptr_t) hop4_pte_addr
;
590 if (hdev
->dram_default_page_mapping
&& is_dram_addr
) {
591 u64 default_pte
= (prop
->mmu_dram_default_page_addr
&
592 HOP_PHYS_ADDR_MASK
) | LAST_MASK
|
594 if (curr_pte
== default_pte
) {
596 "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
601 if (!(curr_pte
& PAGE_PRESENT_MASK
)) {
603 "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
608 write_final_pte(ctx
, hop3_pte_addr
, default_pte
);
609 put_pte(ctx
, hop3_addr
);
611 if (!(curr_pte
& PAGE_PRESENT_MASK
))
615 clear_pte(ctx
, hop4_pte_addr
);
617 clear_pte(ctx
, hop3_pte_addr
);
619 if (hop4_addr
&& !put_pte(ctx
, hop4_addr
))
625 clear_pte(ctx
, hop3_pte_addr
);
627 if (put_pte(ctx
, hop3_addr
))
630 clear_pte(ctx
, hop2_pte_addr
);
632 if (put_pte(ctx
, hop2_addr
))
635 clear_pte(ctx
, hop1_pte_addr
);
637 if (put_pte(ctx
, hop1_addr
))
640 clear_pte(ctx
, hop0_pte_addr
);
647 dev_err(hdev
->dev
, "virt addr 0x%llx is not mapped to phys addr\n",
653 static int _hl_mmu_v1_map(struct hl_ctx
*ctx
, u64 virt_addr
, u64 phys_addr
,
654 u32 page_size
, bool is_dram_addr
)
656 struct hl_device
*hdev
= ctx
->hdev
;
657 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
658 struct hl_mmu_properties
*mmu_prop
;
659 u64 hop0_addr
= 0, hop0_pte_addr
= 0,
660 hop1_addr
= 0, hop1_pte_addr
= 0,
661 hop2_addr
= 0, hop2_pte_addr
= 0,
662 hop3_addr
= 0, hop3_pte_addr
= 0,
663 hop4_addr
= 0, hop4_pte_addr
= 0,
665 bool hop1_new
= false, hop2_new
= false, hop3_new
= false,
666 hop4_new
= false, is_huge
;
670 * This mapping function can map a page or a huge page. For huge page
671 * there are only 3 hops rather than 4. Currently the DRAM allocation
672 * uses huge pages only but user memory could have been allocated with
673 * one of the two page sizes. Since this is a common code for all the
674 * three cases, we need this hugs page check.
677 mmu_prop
= &prop
->dmmu
;
679 } else if (page_size
== prop
->pmmu_huge
.page_size
) {
680 mmu_prop
= &prop
->pmmu_huge
;
683 mmu_prop
= &prop
->pmmu
;
687 hop0_addr
= get_hop0_addr(ctx
);
688 hop0_pte_addr
= get_hop0_pte_addr(ctx
, mmu_prop
, hop0_addr
, virt_addr
);
689 curr_pte
= *(u64
*) (uintptr_t) hop0_pte_addr
;
691 hop1_addr
= get_alloc_next_hop_addr(ctx
, curr_pte
, &hop1_new
);
692 if (hop1_addr
== ULLONG_MAX
)
695 hop1_pte_addr
= get_hop1_pte_addr(ctx
, mmu_prop
, hop1_addr
, virt_addr
);
696 curr_pte
= *(u64
*) (uintptr_t) hop1_pte_addr
;
698 hop2_addr
= get_alloc_next_hop_addr(ctx
, curr_pte
, &hop2_new
);
699 if (hop2_addr
== ULLONG_MAX
)
702 hop2_pte_addr
= get_hop2_pte_addr(ctx
, mmu_prop
, hop2_addr
, virt_addr
);
703 curr_pte
= *(u64
*) (uintptr_t) hop2_pte_addr
;
705 hop3_addr
= get_alloc_next_hop_addr(ctx
, curr_pte
, &hop3_new
);
706 if (hop3_addr
== ULLONG_MAX
)
709 hop3_pte_addr
= get_hop3_pte_addr(ctx
, mmu_prop
, hop3_addr
, virt_addr
);
710 curr_pte
= *(u64
*) (uintptr_t) hop3_pte_addr
;
713 hop4_addr
= get_alloc_next_hop_addr(ctx
, curr_pte
, &hop4_new
);
714 if (hop4_addr
== ULLONG_MAX
)
717 hop4_pte_addr
= get_hop4_pte_addr(ctx
, mmu_prop
, hop4_addr
,
719 curr_pte
= *(u64
*) (uintptr_t) hop4_pte_addr
;
722 if (hdev
->dram_default_page_mapping
&& is_dram_addr
) {
723 u64 default_pte
= (prop
->mmu_dram_default_page_addr
&
724 HOP_PHYS_ADDR_MASK
) | LAST_MASK
|
727 if (curr_pte
!= default_pte
) {
729 "DRAM: mapping already exists for virt_addr 0x%llx\n",
735 if (hop1_new
|| hop2_new
|| hop3_new
|| hop4_new
) {
737 "DRAM mapping should not allocate more hops\n");
741 } else if (curr_pte
& PAGE_PRESENT_MASK
) {
743 "mapping already exists for virt_addr 0x%llx\n",
746 dev_dbg(hdev
->dev
, "hop0 pte: 0x%llx (0x%llx)\n",
747 *(u64
*) (uintptr_t) hop0_pte_addr
, hop0_pte_addr
);
748 dev_dbg(hdev
->dev
, "hop1 pte: 0x%llx (0x%llx)\n",
749 *(u64
*) (uintptr_t) hop1_pte_addr
, hop1_pte_addr
);
750 dev_dbg(hdev
->dev
, "hop2 pte: 0x%llx (0x%llx)\n",
751 *(u64
*) (uintptr_t) hop2_pte_addr
, hop2_pte_addr
);
752 dev_dbg(hdev
->dev
, "hop3 pte: 0x%llx (0x%llx)\n",
753 *(u64
*) (uintptr_t) hop3_pte_addr
, hop3_pte_addr
);
756 dev_dbg(hdev
->dev
, "hop4 pte: 0x%llx (0x%llx)\n",
757 *(u64
*) (uintptr_t) hop4_pte_addr
,
764 curr_pte
= (phys_addr
& HOP_PHYS_ADDR_MASK
) | LAST_MASK
768 write_final_pte(ctx
, hop3_pte_addr
, curr_pte
);
770 write_final_pte(ctx
, hop4_pte_addr
, curr_pte
);
774 (hop1_addr
& HOP_PHYS_ADDR_MASK
) | PAGE_PRESENT_MASK
;
775 write_pte(ctx
, hop0_pte_addr
, curr_pte
);
779 (hop2_addr
& HOP_PHYS_ADDR_MASK
) | PAGE_PRESENT_MASK
;
780 write_pte(ctx
, hop1_pte_addr
, curr_pte
);
781 get_pte(ctx
, hop1_addr
);
785 (hop3_addr
& HOP_PHYS_ADDR_MASK
) | PAGE_PRESENT_MASK
;
786 write_pte(ctx
, hop2_pte_addr
, curr_pte
);
787 get_pte(ctx
, hop2_addr
);
792 curr_pte
= (hop4_addr
& HOP_PHYS_ADDR_MASK
) |
794 write_pte(ctx
, hop3_pte_addr
, curr_pte
);
795 get_pte(ctx
, hop3_addr
);
798 get_pte(ctx
, hop4_addr
);
800 get_pte(ctx
, hop3_addr
);
807 free_hop(ctx
, hop4_addr
);
809 free_hop(ctx
, hop3_addr
);
811 free_hop(ctx
, hop2_addr
);
813 free_hop(ctx
, hop1_addr
);
819 * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
821 * @ctx: pointer to the context structure
824 static void hl_mmu_v1_swap_out(struct hl_ctx
*ctx
)
830 * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
832 * @ctx: pointer to the context structure
835 static void hl_mmu_v1_swap_in(struct hl_ctx
*ctx
)
840 static inline u64
get_hop_pte_addr(struct hl_ctx
*ctx
,
841 struct hl_mmu_properties
*mmu_prop
,
842 int hop_num
, u64 hop_addr
, u64 virt_addr
)
846 return get_hop0_pte_addr(ctx
, mmu_prop
, hop_addr
, virt_addr
);
848 return get_hop1_pte_addr(ctx
, mmu_prop
, hop_addr
, virt_addr
);
850 return get_hop2_pte_addr(ctx
, mmu_prop
, hop_addr
, virt_addr
);
852 return get_hop3_pte_addr(ctx
, mmu_prop
, hop_addr
, virt_addr
);
854 return get_hop4_pte_addr(ctx
, mmu_prop
, hop_addr
, virt_addr
);
861 static int hl_mmu_v1_get_tlb_info(struct hl_ctx
*ctx
, u64 virt_addr
,
862 struct hl_mmu_hop_info
*hops
)
864 struct hl_device
*hdev
= ctx
->hdev
;
865 struct asic_fixed_properties
*prop
= &hdev
->asic_prop
;
866 struct hl_mmu_properties
*mmu_prop
;
867 bool is_dram_addr
, is_pmmu_addr
, is_pmmu_h_addr
, is_huge
;
870 is_dram_addr
= hl_mem_area_inside_range(virt_addr
, prop
->dmmu
.page_size
,
871 prop
->dmmu
.start_addr
,
872 prop
->dmmu
.end_addr
);
873 is_pmmu_addr
= hl_mem_area_inside_range(virt_addr
, prop
->pmmu
.page_size
,
874 prop
->pmmu
.start_addr
,
875 prop
->pmmu
.end_addr
);
876 is_pmmu_h_addr
= hl_mem_area_inside_range(virt_addr
,
877 prop
->pmmu_huge
.page_size
,
878 prop
->pmmu_huge
.start_addr
,
879 prop
->pmmu_huge
.end_addr
);
881 mmu_prop
= &prop
->dmmu
;
883 } else if (is_pmmu_addr
) {
884 mmu_prop
= &prop
->pmmu
;
886 } else if (is_pmmu_h_addr
) {
887 mmu_prop
= &prop
->pmmu_huge
;
893 used_hops
= mmu_prop
->num_hops
;
895 /* huge pages use lesser hops */
899 hops
->hop_info
[0].hop_addr
= get_phys_hop0_addr(ctx
);
900 hops
->hop_info
[0].hop_pte_addr
=
901 get_hop_pte_addr(ctx
, mmu_prop
, 0,
902 hops
->hop_info
[0].hop_addr
, virt_addr
);
903 hops
->hop_info
[0].hop_pte_val
=
904 hdev
->asic_funcs
->read_pte(hdev
,
905 hops
->hop_info
[0].hop_pte_addr
);
907 for (i
= 1 ; i
< used_hops
; i
++) {
908 hops
->hop_info
[i
].hop_addr
=
909 get_next_hop_addr(ctx
,
910 hops
->hop_info
[i
- 1].hop_pte_val
);
911 if (hops
->hop_info
[i
].hop_addr
== ULLONG_MAX
)
914 hops
->hop_info
[i
].hop_pte_addr
=
915 get_hop_pte_addr(ctx
, mmu_prop
, i
,
916 hops
->hop_info
[i
].hop_addr
,
918 hops
->hop_info
[i
].hop_pte_val
=
919 hdev
->asic_funcs
->read_pte(hdev
,
920 hops
->hop_info
[i
].hop_pte_addr
);
922 if (!(hops
->hop_info
[i
].hop_pte_val
& PAGE_PRESENT_MASK
))
925 if (hops
->hop_info
[i
].hop_pte_val
& LAST_MASK
)
929 /* if passed over all hops then no last hop was found */
930 if (i
== mmu_prop
->num_hops
)
933 if (!(hops
->hop_info
[i
].hop_pte_val
& PAGE_PRESENT_MASK
))
936 hops
->used_hops
= i
+ 1;
942 * hl_mmu_v1_prepare - prepare mmu for working with mmu v1
944 * @hdev: pointer to the device structure
946 void hl_mmu_v1_set_funcs(struct hl_device
*hdev
, struct hl_mmu_funcs
*mmu
)
948 mmu
->init
= hl_mmu_v1_init
;
949 mmu
->fini
= hl_mmu_v1_fini
;
950 mmu
->ctx_init
= hl_mmu_v1_ctx_init
;
951 mmu
->ctx_fini
= hl_mmu_v1_ctx_fini
;
952 mmu
->map
= _hl_mmu_v1_map
;
953 mmu
->unmap
= _hl_mmu_v1_unmap
;
955 mmu
->swap_out
= hl_mmu_v1_swap_out
;
956 mmu
->swap_in
= hl_mmu_v1_swap_in
;
957 mmu
->get_tlb_info
= hl_mmu_v1_get_tlb_info
;