Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / misc / habanalabs / common / mmu_v1.c
blob2ce6ea89d4fa22930aef8e325e2db9ce1b193d49
1 // SPDX-License-Identifier: GPL-2.0
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
8 #include "habanalabs.h"
9 #include "../include/hw_ip/mmu/mmu_general.h"
11 #include <linux/slab.h>
13 static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
15 static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
17 struct pgt_info *pgt_info = NULL;
19 hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
20 (unsigned long) hop_addr)
21 if (hop_addr == pgt_info->shadow_addr)
22 break;
24 return pgt_info;
27 static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info)
29 struct hl_device *hdev = ctx->hdev;
31 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
32 hdev->asic_prop.mmu_hop_table_size);
33 hash_del(&pgt_info->node);
34 kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
35 kfree(pgt_info);
38 static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
40 struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
42 _free_hop(ctx, pgt_info);
45 static u64 alloc_hop(struct hl_ctx *ctx)
47 struct hl_device *hdev = ctx->hdev;
48 struct asic_fixed_properties *prop = &hdev->asic_prop;
49 struct pgt_info *pgt_info;
50 u64 phys_addr, shadow_addr;
52 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
53 if (!pgt_info)
54 return ULLONG_MAX;
56 phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
57 prop->mmu_hop_table_size);
58 if (!phys_addr) {
59 dev_err(hdev->dev, "failed to allocate page\n");
60 goto pool_add_err;
63 shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
64 GFP_KERNEL);
65 if (!shadow_addr)
66 goto shadow_err;
68 pgt_info->phys_addr = phys_addr;
69 pgt_info->shadow_addr = shadow_addr;
70 pgt_info->ctx = ctx;
71 pgt_info->num_of_ptes = 0;
72 hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
74 return shadow_addr;
76 shadow_err:
77 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr,
78 prop->mmu_hop_table_size);
79 pool_add_err:
80 kfree(pgt_info);
82 return ULLONG_MAX;
85 static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
87 return ctx->hdev->asic_prop.mmu_pgt_addr +
88 (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
91 static inline u64 get_hop0_addr(struct hl_ctx *ctx)
93 return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
94 (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
97 static void flush(struct hl_ctx *ctx)
99 /* flush all writes from all cores to reach PCI */
100 mb();
101 ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
104 /* transform the value to physical address when writing to H/W */
105 static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
108 * The value to write is actually the address of the next shadow hop +
109 * flags at the 12 LSBs.
110 * Hence in order to get the value to write to the physical PTE, we
111 * clear the 12 LSBs and translate the shadow hop to its associated
112 * physical hop, and add back the original 12 LSBs.
114 u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) |
115 (val & FLAGS_MASK);
117 ctx->hdev->asic_funcs->write_pte(ctx->hdev,
118 get_phys_addr(ctx, shadow_pte_addr),
119 phys_val);
121 *(u64 *) (uintptr_t) shadow_pte_addr = val;
124 /* do not transform the value to physical address when writing to H/W */
125 static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
126 u64 val)
128 ctx->hdev->asic_funcs->write_pte(ctx->hdev,
129 get_phys_addr(ctx, shadow_pte_addr),
130 val);
131 *(u64 *) (uintptr_t) shadow_pte_addr = val;
134 /* clear the last and present bits */
135 static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
137 /* no need to transform the value to physical address */
138 write_final_pte(ctx, pte_addr, 0);
141 static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
143 get_pgt_info(ctx, hop_addr)->num_of_ptes++;
147 * put_pte - decrement the num of ptes and free the hop if possible
149 * @ctx: pointer to the context structure
150 * @hop_addr: addr of the hop
152 * This function returns the number of ptes left on this hop. If the number is
153 * 0, it means the pte was freed.
155 static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
157 struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
158 int num_of_ptes_left;
160 pgt_info->num_of_ptes--;
163 * Need to save the number of ptes left because free_hop might free
164 * the pgt_info
166 num_of_ptes_left = pgt_info->num_of_ptes;
167 if (!num_of_ptes_left)
168 _free_hop(ctx, pgt_info);
170 return num_of_ptes_left;
173 static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
174 u64 virt_addr, u64 mask, u64 shift)
176 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
177 ((virt_addr & mask) >> shift);
180 static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx,
181 struct hl_mmu_properties *mmu_prop,
182 u64 hop_addr, u64 vaddr)
184 return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask,
185 mmu_prop->hop0_shift);
188 static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx,
189 struct hl_mmu_properties *mmu_prop,
190 u64 hop_addr, u64 vaddr)
192 return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask,
193 mmu_prop->hop1_shift);
196 static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx,
197 struct hl_mmu_properties *mmu_prop,
198 u64 hop_addr, u64 vaddr)
200 return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask,
201 mmu_prop->hop2_shift);
204 static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx,
205 struct hl_mmu_properties *mmu_prop,
206 u64 hop_addr, u64 vaddr)
208 return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask,
209 mmu_prop->hop3_shift);
212 static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx,
213 struct hl_mmu_properties *mmu_prop,
214 u64 hop_addr, u64 vaddr)
216 return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask,
217 mmu_prop->hop4_shift);
220 static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
222 if (curr_pte & PAGE_PRESENT_MASK)
223 return curr_pte & HOP_PHYS_ADDR_MASK;
224 else
225 return ULLONG_MAX;
228 static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
229 bool *is_new_hop)
231 u64 hop_addr = get_next_hop_addr(ctx, curr_pte);
233 if (hop_addr == ULLONG_MAX) {
234 hop_addr = alloc_hop(ctx);
235 *is_new_hop = (hop_addr != ULLONG_MAX);
238 return hop_addr;
241 /* translates shadow address inside hop to a physical address */
242 static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
244 u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
245 u64 shadow_hop_addr = shadow_addr & ~page_mask;
246 u64 pte_offset = shadow_addr & page_mask;
247 u64 phys_hop_addr;
249 if (shadow_hop_addr != get_hop0_addr(ctx))
250 phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
251 else
252 phys_hop_addr = get_phys_hop0_addr(ctx);
254 return phys_hop_addr + pte_offset;
257 static int dram_default_mapping_init(struct hl_ctx *ctx)
259 struct hl_device *hdev = ctx->hdev;
260 struct asic_fixed_properties *prop = &hdev->asic_prop;
261 u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
262 hop2_pte_addr, hop3_pte_addr, pte_val;
263 int rc, i, j, hop3_allocated = 0;
265 if ((!prop->dram_supports_virtual_memory) ||
266 (!hdev->dram_default_page_mapping) ||
267 (ctx->asid == HL_KERNEL_ASID_ID))
268 return 0;
270 num_of_hop3 = prop->dram_size_for_default_page_mapping;
271 do_div(num_of_hop3, prop->dram_page_size);
272 do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
274 /* add hop1 and hop2 */
275 total_hops = num_of_hop3 + 2;
277 ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
278 if (!ctx->dram_default_hops)
279 return -ENOMEM;
281 hop0_addr = get_hop0_addr(ctx);
283 hop1_addr = alloc_hop(ctx);
284 if (hop1_addr == ULLONG_MAX) {
285 dev_err(hdev->dev, "failed to alloc hop 1\n");
286 rc = -ENOMEM;
287 goto hop1_err;
290 ctx->dram_default_hops[total_hops - 1] = hop1_addr;
292 hop2_addr = alloc_hop(ctx);
293 if (hop2_addr == ULLONG_MAX) {
294 dev_err(hdev->dev, "failed to alloc hop 2\n");
295 rc = -ENOMEM;
296 goto hop2_err;
299 ctx->dram_default_hops[total_hops - 2] = hop2_addr;
301 for (i = 0 ; i < num_of_hop3 ; i++) {
302 ctx->dram_default_hops[i] = alloc_hop(ctx);
303 if (ctx->dram_default_hops[i] == ULLONG_MAX) {
304 dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
305 rc = -ENOMEM;
306 goto hop3_err;
308 hop3_allocated++;
311 /* need only pte 0 in hops 0 and 1 */
312 pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
313 write_pte(ctx, hop0_addr, pte_val);
315 pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
316 write_pte(ctx, hop1_addr, pte_val);
317 get_pte(ctx, hop1_addr);
319 hop2_pte_addr = hop2_addr;
320 for (i = 0 ; i < num_of_hop3 ; i++) {
321 pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
322 PAGE_PRESENT_MASK;
323 write_pte(ctx, hop2_pte_addr, pte_val);
324 get_pte(ctx, hop2_addr);
325 hop2_pte_addr += HL_PTE_SIZE;
328 pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
329 LAST_MASK | PAGE_PRESENT_MASK;
331 for (i = 0 ; i < num_of_hop3 ; i++) {
332 hop3_pte_addr = ctx->dram_default_hops[i];
333 for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
334 write_final_pte(ctx, hop3_pte_addr, pte_val);
335 get_pte(ctx, ctx->dram_default_hops[i]);
336 hop3_pte_addr += HL_PTE_SIZE;
340 flush(ctx);
342 return 0;
344 hop3_err:
345 for (i = 0 ; i < hop3_allocated ; i++)
346 free_hop(ctx, ctx->dram_default_hops[i]);
348 free_hop(ctx, hop2_addr);
349 hop2_err:
350 free_hop(ctx, hop1_addr);
351 hop1_err:
352 kfree(ctx->dram_default_hops);
354 return rc;
357 static void dram_default_mapping_fini(struct hl_ctx *ctx)
359 struct hl_device *hdev = ctx->hdev;
360 struct asic_fixed_properties *prop = &hdev->asic_prop;
361 u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
362 hop2_pte_addr, hop3_pte_addr;
363 int i, j;
365 if ((!prop->dram_supports_virtual_memory) ||
366 (!hdev->dram_default_page_mapping) ||
367 (ctx->asid == HL_KERNEL_ASID_ID))
368 return;
370 num_of_hop3 = prop->dram_size_for_default_page_mapping;
371 do_div(num_of_hop3, prop->dram_page_size);
372 do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
374 hop0_addr = get_hop0_addr(ctx);
375 /* add hop1 and hop2 */
376 total_hops = num_of_hop3 + 2;
377 hop1_addr = ctx->dram_default_hops[total_hops - 1];
378 hop2_addr = ctx->dram_default_hops[total_hops - 2];
380 for (i = 0 ; i < num_of_hop3 ; i++) {
381 hop3_pte_addr = ctx->dram_default_hops[i];
382 for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
383 clear_pte(ctx, hop3_pte_addr);
384 put_pte(ctx, ctx->dram_default_hops[i]);
385 hop3_pte_addr += HL_PTE_SIZE;
389 hop2_pte_addr = hop2_addr;
390 hop2_pte_addr = hop2_addr;
391 for (i = 0 ; i < num_of_hop3 ; i++) {
392 clear_pte(ctx, hop2_pte_addr);
393 put_pte(ctx, hop2_addr);
394 hop2_pte_addr += HL_PTE_SIZE;
397 clear_pte(ctx, hop1_addr);
398 put_pte(ctx, hop1_addr);
399 clear_pte(ctx, hop0_addr);
401 kfree(ctx->dram_default_hops);
403 flush(ctx);
407 * hl_mmu_v1_init() - initialize the MMU module.
408 * @hdev: habanalabs device structure.
410 * This function does the following:
411 * - Create a pool of pages for pgt_infos.
412 * - Create a shadow table for pgt
414 * Return: 0 for success, non-zero for failure.
416 static int hl_mmu_v1_init(struct hl_device *hdev)
418 struct asic_fixed_properties *prop = &hdev->asic_prop;
419 int rc;
421 hdev->mmu_priv.dr.mmu_pgt_pool =
422 gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
424 if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
425 dev_err(hdev->dev, "Failed to create page gen pool\n");
426 return -ENOMEM;
429 rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
430 prop->mmu_hop0_tables_total_size,
431 prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
432 -1);
433 if (rc) {
434 dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
435 goto err_pool_add;
438 hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid,
439 prop->mmu_hop_table_size,
440 GFP_KERNEL | __GFP_ZERO);
441 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
442 rc = -ENOMEM;
443 goto err_pool_add;
446 /* MMU H/W init will be done in device hw_init() */
448 return 0;
450 err_pool_add:
451 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
453 return rc;
457 * hl_mmu_fini() - release the MMU module.
458 * @hdev: habanalabs device structure.
460 * This function does the following:
461 * - Disable MMU in H/W.
462 * - Free the pgt_infos pool.
464 * All contexts should be freed before calling this function.
466 static void hl_mmu_v1_fini(struct hl_device *hdev)
468 /* MMU H/W fini was already done in device hw_fini() */
470 kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
471 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
475 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
476 * @ctx: pointer to the context structure to initialize.
478 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
479 * page tables hops related to this context.
480 * Return: 0 on success, non-zero otherwise.
482 static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
484 hash_init(ctx->mmu_shadow_hash);
485 return dram_default_mapping_init(ctx);
489 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
491 * @ctx: pointer to the context structure
493 * This function does the following:
494 * - Free any pgts which were not freed yet
495 * - Free the mutex
496 * - Free DRAM default page mapping hops
498 static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
500 struct hl_device *hdev = ctx->hdev;
501 struct pgt_info *pgt_info;
502 struct hlist_node *tmp;
503 int i;
505 dram_default_mapping_fini(ctx);
507 if (!hash_empty(ctx->mmu_shadow_hash))
508 dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
509 ctx->asid);
511 hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
512 dev_err_ratelimited(hdev->dev,
513 "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
514 pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
515 _free_hop(ctx, pgt_info);
519 static int _hl_mmu_v1_unmap(struct hl_ctx *ctx,
520 u64 virt_addr, bool is_dram_addr)
522 struct hl_device *hdev = ctx->hdev;
523 struct asic_fixed_properties *prop = &hdev->asic_prop;
524 struct hl_mmu_properties *mmu_prop;
525 u64 hop0_addr = 0, hop0_pte_addr = 0,
526 hop1_addr = 0, hop1_pte_addr = 0,
527 hop2_addr = 0, hop2_pte_addr = 0,
528 hop3_addr = 0, hop3_pte_addr = 0,
529 hop4_addr = 0, hop4_pte_addr = 0,
530 curr_pte;
531 bool is_huge, clear_hop3 = true;
533 /* shifts and masks are the same in PMMU and HPMMU, use one of them */
534 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
536 hop0_addr = get_hop0_addr(ctx);
537 hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
539 curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
541 hop1_addr = get_next_hop_addr(ctx, curr_pte);
543 if (hop1_addr == ULLONG_MAX)
544 goto not_mapped;
546 hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
548 curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
550 hop2_addr = get_next_hop_addr(ctx, curr_pte);
552 if (hop2_addr == ULLONG_MAX)
553 goto not_mapped;
555 hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
557 curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
559 hop3_addr = get_next_hop_addr(ctx, curr_pte);
561 if (hop3_addr == ULLONG_MAX)
562 goto not_mapped;
564 hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
566 curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
568 is_huge = curr_pte & LAST_MASK;
570 if (is_dram_addr && !is_huge) {
571 dev_err(hdev->dev,
572 "DRAM unmapping should use huge pages only\n");
573 return -EFAULT;
576 if (!is_huge) {
577 hop4_addr = get_next_hop_addr(ctx, curr_pte);
579 if (hop4_addr == ULLONG_MAX)
580 goto not_mapped;
582 hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
583 virt_addr);
585 curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
587 clear_hop3 = false;
590 if (hdev->dram_default_page_mapping && is_dram_addr) {
591 u64 default_pte = (prop->mmu_dram_default_page_addr &
592 HOP_PHYS_ADDR_MASK) | LAST_MASK |
593 PAGE_PRESENT_MASK;
594 if (curr_pte == default_pte) {
595 dev_err(hdev->dev,
596 "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
597 virt_addr);
598 goto not_mapped;
601 if (!(curr_pte & PAGE_PRESENT_MASK)) {
602 dev_err(hdev->dev,
603 "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
604 virt_addr);
605 goto not_mapped;
608 write_final_pte(ctx, hop3_pte_addr, default_pte);
609 put_pte(ctx, hop3_addr);
610 } else {
611 if (!(curr_pte & PAGE_PRESENT_MASK))
612 goto not_mapped;
614 if (hop4_addr)
615 clear_pte(ctx, hop4_pte_addr);
616 else
617 clear_pte(ctx, hop3_pte_addr);
619 if (hop4_addr && !put_pte(ctx, hop4_addr))
620 clear_hop3 = true;
622 if (!clear_hop3)
623 goto mapped;
625 clear_pte(ctx, hop3_pte_addr);
627 if (put_pte(ctx, hop3_addr))
628 goto mapped;
630 clear_pte(ctx, hop2_pte_addr);
632 if (put_pte(ctx, hop2_addr))
633 goto mapped;
635 clear_pte(ctx, hop1_pte_addr);
637 if (put_pte(ctx, hop1_addr))
638 goto mapped;
640 clear_pte(ctx, hop0_pte_addr);
643 mapped:
644 return 0;
646 not_mapped:
647 dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
648 virt_addr);
650 return -EINVAL;
653 static int _hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
654 u32 page_size, bool is_dram_addr)
656 struct hl_device *hdev = ctx->hdev;
657 struct asic_fixed_properties *prop = &hdev->asic_prop;
658 struct hl_mmu_properties *mmu_prop;
659 u64 hop0_addr = 0, hop0_pte_addr = 0,
660 hop1_addr = 0, hop1_pte_addr = 0,
661 hop2_addr = 0, hop2_pte_addr = 0,
662 hop3_addr = 0, hop3_pte_addr = 0,
663 hop4_addr = 0, hop4_pte_addr = 0,
664 curr_pte = 0;
665 bool hop1_new = false, hop2_new = false, hop3_new = false,
666 hop4_new = false, is_huge;
667 int rc = -ENOMEM;
670 * This mapping function can map a page or a huge page. For huge page
671 * there are only 3 hops rather than 4. Currently the DRAM allocation
672 * uses huge pages only but user memory could have been allocated with
673 * one of the two page sizes. Since this is a common code for all the
674 * three cases, we need this hugs page check.
676 if (is_dram_addr) {
677 mmu_prop = &prop->dmmu;
678 is_huge = true;
679 } else if (page_size == prop->pmmu_huge.page_size) {
680 mmu_prop = &prop->pmmu_huge;
681 is_huge = true;
682 } else {
683 mmu_prop = &prop->pmmu;
684 is_huge = false;
687 hop0_addr = get_hop0_addr(ctx);
688 hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr);
689 curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
691 hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
692 if (hop1_addr == ULLONG_MAX)
693 goto err;
695 hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr);
696 curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
698 hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
699 if (hop2_addr == ULLONG_MAX)
700 goto err;
702 hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr);
703 curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
705 hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
706 if (hop3_addr == ULLONG_MAX)
707 goto err;
709 hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr);
710 curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
712 if (!is_huge) {
713 hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
714 if (hop4_addr == ULLONG_MAX)
715 goto err;
717 hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr,
718 virt_addr);
719 curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
722 if (hdev->dram_default_page_mapping && is_dram_addr) {
723 u64 default_pte = (prop->mmu_dram_default_page_addr &
724 HOP_PHYS_ADDR_MASK) | LAST_MASK |
725 PAGE_PRESENT_MASK;
727 if (curr_pte != default_pte) {
728 dev_err(hdev->dev,
729 "DRAM: mapping already exists for virt_addr 0x%llx\n",
730 virt_addr);
731 rc = -EINVAL;
732 goto err;
735 if (hop1_new || hop2_new || hop3_new || hop4_new) {
736 dev_err(hdev->dev,
737 "DRAM mapping should not allocate more hops\n");
738 rc = -EFAULT;
739 goto err;
741 } else if (curr_pte & PAGE_PRESENT_MASK) {
742 dev_err(hdev->dev,
743 "mapping already exists for virt_addr 0x%llx\n",
744 virt_addr);
746 dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
747 *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr);
748 dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
749 *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr);
750 dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
751 *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr);
752 dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
753 *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr);
755 if (!is_huge)
756 dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
757 *(u64 *) (uintptr_t) hop4_pte_addr,
758 hop4_pte_addr);
760 rc = -EINVAL;
761 goto err;
764 curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK
765 | PAGE_PRESENT_MASK;
767 if (is_huge)
768 write_final_pte(ctx, hop3_pte_addr, curr_pte);
769 else
770 write_final_pte(ctx, hop4_pte_addr, curr_pte);
772 if (hop1_new) {
773 curr_pte =
774 (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
775 write_pte(ctx, hop0_pte_addr, curr_pte);
777 if (hop2_new) {
778 curr_pte =
779 (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
780 write_pte(ctx, hop1_pte_addr, curr_pte);
781 get_pte(ctx, hop1_addr);
783 if (hop3_new) {
784 curr_pte =
785 (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
786 write_pte(ctx, hop2_pte_addr, curr_pte);
787 get_pte(ctx, hop2_addr);
790 if (!is_huge) {
791 if (hop4_new) {
792 curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) |
793 PAGE_PRESENT_MASK;
794 write_pte(ctx, hop3_pte_addr, curr_pte);
795 get_pte(ctx, hop3_addr);
798 get_pte(ctx, hop4_addr);
799 } else {
800 get_pte(ctx, hop3_addr);
803 return 0;
805 err:
806 if (hop4_new)
807 free_hop(ctx, hop4_addr);
808 if (hop3_new)
809 free_hop(ctx, hop3_addr);
810 if (hop2_new)
811 free_hop(ctx, hop2_addr);
812 if (hop1_new)
813 free_hop(ctx, hop1_addr);
815 return rc;
819 * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
821 * @ctx: pointer to the context structure
824 static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
830 * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
832 * @ctx: pointer to the context structure
835 static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
840 static inline u64 get_hop_pte_addr(struct hl_ctx *ctx,
841 struct hl_mmu_properties *mmu_prop,
842 int hop_num, u64 hop_addr, u64 virt_addr)
844 switch (hop_num) {
845 case 0:
846 return get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
847 case 1:
848 return get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
849 case 2:
850 return get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
851 case 3:
852 return get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
853 case 4:
854 return get_hop4_pte_addr(ctx, mmu_prop, hop_addr, virt_addr);
855 default:
856 break;
858 return U64_MAX;
861 static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
862 struct hl_mmu_hop_info *hops)
864 struct hl_device *hdev = ctx->hdev;
865 struct asic_fixed_properties *prop = &hdev->asic_prop;
866 struct hl_mmu_properties *mmu_prop;
867 bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
868 int i, used_hops;
870 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
871 prop->dmmu.start_addr,
872 prop->dmmu.end_addr);
873 is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
874 prop->pmmu.start_addr,
875 prop->pmmu.end_addr);
876 is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
877 prop->pmmu_huge.page_size,
878 prop->pmmu_huge.start_addr,
879 prop->pmmu_huge.end_addr);
880 if (is_dram_addr) {
881 mmu_prop = &prop->dmmu;
882 is_huge = true;
883 } else if (is_pmmu_addr) {
884 mmu_prop = &prop->pmmu;
885 is_huge = false;
886 } else if (is_pmmu_h_addr) {
887 mmu_prop = &prop->pmmu_huge;
888 is_huge = true;
889 } else {
890 return -EINVAL;
893 used_hops = mmu_prop->num_hops;
895 /* huge pages use lesser hops */
896 if (is_huge)
897 used_hops--;
899 hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx);
900 hops->hop_info[0].hop_pte_addr =
901 get_hop_pte_addr(ctx, mmu_prop, 0,
902 hops->hop_info[0].hop_addr, virt_addr);
903 hops->hop_info[0].hop_pte_val =
904 hdev->asic_funcs->read_pte(hdev,
905 hops->hop_info[0].hop_pte_addr);
907 for (i = 1 ; i < used_hops ; i++) {
908 hops->hop_info[i].hop_addr =
909 get_next_hop_addr(ctx,
910 hops->hop_info[i - 1].hop_pte_val);
911 if (hops->hop_info[i].hop_addr == ULLONG_MAX)
912 return -EFAULT;
914 hops->hop_info[i].hop_pte_addr =
915 get_hop_pte_addr(ctx, mmu_prop, i,
916 hops->hop_info[i].hop_addr,
917 virt_addr);
918 hops->hop_info[i].hop_pte_val =
919 hdev->asic_funcs->read_pte(hdev,
920 hops->hop_info[i].hop_pte_addr);
922 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
923 return -EFAULT;
925 if (hops->hop_info[i].hop_pte_val & LAST_MASK)
926 break;
929 /* if passed over all hops then no last hop was found */
930 if (i == mmu_prop->num_hops)
931 return -EFAULT;
933 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
934 return -EFAULT;
936 hops->used_hops = i + 1;
938 return 0;
942 * hl_mmu_v1_prepare - prepare mmu for working with mmu v1
944 * @hdev: pointer to the device structure
946 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
948 mmu->init = hl_mmu_v1_init;
949 mmu->fini = hl_mmu_v1_fini;
950 mmu->ctx_init = hl_mmu_v1_ctx_init;
951 mmu->ctx_fini = hl_mmu_v1_ctx_fini;
952 mmu->map = _hl_mmu_v1_map;
953 mmu->unmap = _hl_mmu_v1_unmap;
954 mmu->flush = flush;
955 mmu->swap_out = hl_mmu_v1_swap_out;
956 mmu->swap_in = hl_mmu_v1_swap_in;
957 mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;