Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mmc / host / meson-gx-mmc.c
blob13f6a2c0ed046767d8e67a02847f9aaef5d2705c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
5 * Copyright (c) 2016 BayLibre, SAS.
6 * Author: Kevin Hilman <khilman@baylibre.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/iopoll.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/ioport.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/sdio.h>
21 #include <linux/mmc/slot-gpio.h>
22 #include <linux/io.h>
23 #include <linux/clk.h>
24 #include <linux/clk-provider.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/interrupt.h>
28 #include <linux/bitfield.h>
29 #include <linux/pinctrl/consumer.h>
31 #define DRIVER_NAME "meson-gx-mmc"
33 #define SD_EMMC_CLOCK 0x0
34 #define CLK_DIV_MASK GENMASK(5, 0)
35 #define CLK_SRC_MASK GENMASK(7, 6)
36 #define CLK_CORE_PHASE_MASK GENMASK(9, 8)
37 #define CLK_TX_PHASE_MASK GENMASK(11, 10)
38 #define CLK_RX_PHASE_MASK GENMASK(13, 12)
39 #define CLK_PHASE_0 0
40 #define CLK_PHASE_180 2
41 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43 #define CLK_V2_ALWAYS_ON BIT(24)
45 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47 #define CLK_V3_ALWAYS_ON BIT(28)
49 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
50 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
51 #define CLK_ALWAYS_ON(h) (h->data->always_on)
53 #define SD_EMMC_DELAY 0x4
54 #define SD_EMMC_ADJUST 0x8
55 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56 #define ADJUST_DS_EN BIT(15)
57 #define ADJUST_ADJ_EN BIT(13)
59 #define SD_EMMC_DELAY1 0x4
60 #define SD_EMMC_DELAY2 0x8
61 #define SD_EMMC_V3_ADJUST 0xc
63 #define SD_EMMC_CALOUT 0x10
64 #define SD_EMMC_START 0x40
65 #define START_DESC_INIT BIT(0)
66 #define START_DESC_BUSY BIT(1)
67 #define START_DESC_ADDR_MASK GENMASK(31, 2)
69 #define SD_EMMC_CFG 0x44
70 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71 #define CFG_BUS_WIDTH_1 0x0
72 #define CFG_BUS_WIDTH_4 0x1
73 #define CFG_BUS_WIDTH_8 0x2
74 #define CFG_DDR BIT(2)
75 #define CFG_BLK_LEN_MASK GENMASK(7, 4)
76 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77 #define CFG_RC_CC_MASK GENMASK(15, 12)
78 #define CFG_STOP_CLOCK BIT(22)
79 #define CFG_CLK_ALWAYS_ON BIT(18)
80 #define CFG_CHK_DS BIT(20)
81 #define CFG_AUTO_CLK BIT(23)
82 #define CFG_ERR_ABORT BIT(27)
84 #define SD_EMMC_STATUS 0x48
85 #define STATUS_BUSY BIT(31)
86 #define STATUS_DESC_BUSY BIT(30)
87 #define STATUS_DATI GENMASK(23, 16)
89 #define SD_EMMC_IRQ_EN 0x4c
90 #define IRQ_RXD_ERR_MASK GENMASK(7, 0)
91 #define IRQ_TXD_ERR BIT(8)
92 #define IRQ_DESC_ERR BIT(9)
93 #define IRQ_RESP_ERR BIT(10)
94 #define IRQ_CRC_ERR \
95 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96 #define IRQ_RESP_TIMEOUT BIT(11)
97 #define IRQ_DESC_TIMEOUT BIT(12)
98 #define IRQ_TIMEOUTS \
99 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100 #define IRQ_END_OF_CHAIN BIT(13)
101 #define IRQ_RESP_STATUS BIT(14)
102 #define IRQ_SDIO BIT(15)
103 #define IRQ_EN_MASK \
104 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105 IRQ_SDIO)
107 #define SD_EMMC_CMD_CFG 0x50
108 #define SD_EMMC_CMD_ARG 0x54
109 #define SD_EMMC_CMD_DAT 0x58
110 #define SD_EMMC_CMD_RSP 0x5c
111 #define SD_EMMC_CMD_RSP1 0x60
112 #define SD_EMMC_CMD_RSP2 0x64
113 #define SD_EMMC_CMD_RSP3 0x68
115 #define SD_EMMC_RXD 0x94
116 #define SD_EMMC_TXD 0x94
117 #define SD_EMMC_LAST_REG SD_EMMC_TXD
119 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
122 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
129 #define SD_EMMC_PRE_REQ_DONE BIT(0)
130 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
132 #define MUX_CLK_NUM_PARENTS 2
134 struct meson_mmc_data {
135 unsigned int tx_delay_mask;
136 unsigned int rx_delay_mask;
137 unsigned int always_on;
138 unsigned int adjust;
141 struct sd_emmc_desc {
142 u32 cmd_cfg;
143 u32 cmd_arg;
144 u32 cmd_data;
145 u32 cmd_resp;
148 struct meson_host {
149 struct device *dev;
150 struct meson_mmc_data *data;
151 struct mmc_host *mmc;
152 struct mmc_command *cmd;
154 void __iomem *regs;
155 struct clk *core_clk;
156 struct clk *mux_clk;
157 struct clk *mmc_clk;
158 unsigned long req_rate;
159 bool ddr;
161 bool dram_access_quirk;
163 struct pinctrl *pinctrl;
164 struct pinctrl_state *pins_clk_gate;
166 unsigned int bounce_buf_size;
167 void *bounce_buf;
168 dma_addr_t bounce_dma_addr;
169 struct sd_emmc_desc *descs;
170 dma_addr_t descs_dma_addr;
172 int irq;
174 bool vqmmc_enabled;
177 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
178 #define CMD_CFG_BLOCK_MODE BIT(9)
179 #define CMD_CFG_R1B BIT(10)
180 #define CMD_CFG_END_OF_CHAIN BIT(11)
181 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
182 #define CMD_CFG_NO_RESP BIT(16)
183 #define CMD_CFG_NO_CMD BIT(17)
184 #define CMD_CFG_DATA_IO BIT(18)
185 #define CMD_CFG_DATA_WR BIT(19)
186 #define CMD_CFG_RESP_NOCRC BIT(20)
187 #define CMD_CFG_RESP_128 BIT(21)
188 #define CMD_CFG_RESP_NUM BIT(22)
189 #define CMD_CFG_DATA_NUM BIT(23)
190 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
191 #define CMD_CFG_ERROR BIT(30)
192 #define CMD_CFG_OWNER BIT(31)
194 #define CMD_DATA_MASK GENMASK(31, 2)
195 #define CMD_DATA_BIG_ENDIAN BIT(1)
196 #define CMD_DATA_SRAM BIT(0)
197 #define CMD_RESP_MASK GENMASK(31, 1)
198 #define CMD_RESP_SRAM BIT(0)
200 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
202 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
204 if (!timeout)
205 return SD_EMMC_CMD_TIMEOUT_DATA;
207 timeout = roundup_pow_of_two(timeout);
209 return min(timeout, 32768U); /* max. 2^15 ms */
212 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
214 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
215 return cmd->mrq->cmd;
216 else if (mmc_op_multi(cmd->opcode) &&
217 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
218 return cmd->mrq->stop;
219 else
220 return NULL;
223 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
224 struct mmc_request *mrq)
226 struct meson_host *host = mmc_priv(mmc);
227 struct mmc_data *data = mrq->data;
228 struct scatterlist *sg;
229 int i;
230 bool use_desc_chain_mode = true;
233 * When Controller DMA cannot directly access DDR memory, disable
234 * support for Chain Mode to directly use the internal SRAM using
235 * the bounce buffer mode.
237 if (host->dram_access_quirk)
238 return;
241 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
242 * reported. For some strange reason this occurs in descriptor
243 * chain mode only. So let's fall back to bounce buffer mode
244 * for command SD_IO_RW_EXTENDED.
246 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
247 return;
249 for_each_sg(data->sg, sg, data->sg_len, i)
250 /* check for 8 byte alignment */
251 if (sg->offset & 7) {
252 WARN_ONCE(1, "unaligned scatterlist buffer\n");
253 use_desc_chain_mode = false;
254 break;
257 if (use_desc_chain_mode)
258 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
261 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
263 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
266 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
268 return data && data->flags & MMC_DATA_READ &&
269 !meson_mmc_desc_chain_mode(data);
272 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
274 struct mmc_data *data = mrq->data;
276 if (!data)
277 return;
279 meson_mmc_get_transfer_mode(mmc, mrq);
280 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
282 if (!meson_mmc_desc_chain_mode(data))
283 return;
285 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
286 mmc_get_dma_dir(data));
287 if (!data->sg_count)
288 dev_err(mmc_dev(mmc), "dma_map_sg failed");
291 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
292 int err)
294 struct mmc_data *data = mrq->data;
296 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
297 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
298 mmc_get_dma_dir(data));
302 * Gating the clock on this controller is tricky. It seems the mmc clock
303 * is also used by the controller. It may crash during some operation if the
304 * clock is stopped. The safest thing to do, whenever possible, is to keep
305 * clock running at stop it at the pad using the pinmux.
307 static void meson_mmc_clk_gate(struct meson_host *host)
309 u32 cfg;
311 if (host->pins_clk_gate) {
312 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
313 } else {
315 * If the pinmux is not provided - default to the classic and
316 * unsafe method
318 cfg = readl(host->regs + SD_EMMC_CFG);
319 cfg |= CFG_STOP_CLOCK;
320 writel(cfg, host->regs + SD_EMMC_CFG);
324 static void meson_mmc_clk_ungate(struct meson_host *host)
326 u32 cfg;
328 if (host->pins_clk_gate)
329 pinctrl_select_default_state(host->dev);
331 /* Make sure the clock is not stopped in the controller */
332 cfg = readl(host->regs + SD_EMMC_CFG);
333 cfg &= ~CFG_STOP_CLOCK;
334 writel(cfg, host->regs + SD_EMMC_CFG);
337 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
338 bool ddr)
340 struct mmc_host *mmc = host->mmc;
341 int ret;
342 u32 cfg;
344 /* Same request - bail-out */
345 if (host->ddr == ddr && host->req_rate == rate)
346 return 0;
348 /* stop clock */
349 meson_mmc_clk_gate(host);
350 host->req_rate = 0;
351 mmc->actual_clock = 0;
353 /* return with clock being stopped */
354 if (!rate)
355 return 0;
357 /* Stop the clock during rate change to avoid glitches */
358 cfg = readl(host->regs + SD_EMMC_CFG);
359 cfg |= CFG_STOP_CLOCK;
360 writel(cfg, host->regs + SD_EMMC_CFG);
362 if (ddr) {
363 /* DDR modes require higher module clock */
364 rate <<= 1;
365 cfg |= CFG_DDR;
366 } else {
367 cfg &= ~CFG_DDR;
369 writel(cfg, host->regs + SD_EMMC_CFG);
370 host->ddr = ddr;
372 ret = clk_set_rate(host->mmc_clk, rate);
373 if (ret) {
374 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
375 rate, ret);
376 return ret;
379 host->req_rate = rate;
380 mmc->actual_clock = clk_get_rate(host->mmc_clk);
382 /* We should report the real output frequency of the controller */
383 if (ddr) {
384 host->req_rate >>= 1;
385 mmc->actual_clock >>= 1;
388 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
389 if (rate != mmc->actual_clock)
390 dev_dbg(host->dev, "requested rate was %lu\n", rate);
392 /* (re)start clock */
393 meson_mmc_clk_ungate(host);
395 return 0;
399 * The SD/eMMC IP block has an internal mux and divider used for
400 * generating the MMC clock. Use the clock framework to create and
401 * manage these clocks.
403 static int meson_mmc_clk_init(struct meson_host *host)
405 struct clk_init_data init;
406 struct clk_mux *mux;
407 struct clk_divider *div;
408 char clk_name[32];
409 int i, ret = 0;
410 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
411 const char *clk_parent[1];
412 u32 clk_reg;
414 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
415 clk_reg = CLK_ALWAYS_ON(host);
416 clk_reg |= CLK_DIV_MASK;
417 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
418 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
419 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
420 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
422 /* get the mux parents */
423 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
424 struct clk *clk;
425 char name[16];
427 snprintf(name, sizeof(name), "clkin%d", i);
428 clk = devm_clk_get(host->dev, name);
429 if (IS_ERR(clk))
430 return dev_err_probe(host->dev, PTR_ERR(clk),
431 "Missing clock %s\n", name);
433 mux_parent_names[i] = __clk_get_name(clk);
436 /* create the mux */
437 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
438 if (!mux)
439 return -ENOMEM;
441 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
442 init.name = clk_name;
443 init.ops = &clk_mux_ops;
444 init.flags = 0;
445 init.parent_names = mux_parent_names;
446 init.num_parents = MUX_CLK_NUM_PARENTS;
448 mux->reg = host->regs + SD_EMMC_CLOCK;
449 mux->shift = __ffs(CLK_SRC_MASK);
450 mux->mask = CLK_SRC_MASK >> mux->shift;
451 mux->hw.init = &init;
453 host->mux_clk = devm_clk_register(host->dev, &mux->hw);
454 if (WARN_ON(IS_ERR(host->mux_clk)))
455 return PTR_ERR(host->mux_clk);
457 /* create the divider */
458 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
459 if (!div)
460 return -ENOMEM;
462 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
463 init.name = clk_name;
464 init.ops = &clk_divider_ops;
465 init.flags = CLK_SET_RATE_PARENT;
466 clk_parent[0] = __clk_get_name(host->mux_clk);
467 init.parent_names = clk_parent;
468 init.num_parents = 1;
470 div->reg = host->regs + SD_EMMC_CLOCK;
471 div->shift = __ffs(CLK_DIV_MASK);
472 div->width = __builtin_popcountl(CLK_DIV_MASK);
473 div->hw.init = &init;
474 div->flags = CLK_DIVIDER_ONE_BASED;
476 host->mmc_clk = devm_clk_register(host->dev, &div->hw);
477 if (WARN_ON(IS_ERR(host->mmc_clk)))
478 return PTR_ERR(host->mmc_clk);
480 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
481 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
482 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
483 if (ret)
484 return ret;
486 return clk_prepare_enable(host->mmc_clk);
489 static void meson_mmc_disable_resampling(struct meson_host *host)
491 unsigned int val = readl(host->regs + host->data->adjust);
493 val &= ~ADJUST_ADJ_EN;
494 writel(val, host->regs + host->data->adjust);
497 static void meson_mmc_reset_resampling(struct meson_host *host)
499 unsigned int val;
501 meson_mmc_disable_resampling(host);
503 val = readl(host->regs + host->data->adjust);
504 val &= ~ADJUST_ADJ_DELAY_MASK;
505 writel(val, host->regs + host->data->adjust);
508 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
510 struct meson_host *host = mmc_priv(mmc);
511 unsigned int val, dly, max_dly, i;
512 int ret;
514 /* Resampling is done using the source clock */
515 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
516 clk_get_rate(host->mmc_clk));
518 val = readl(host->regs + host->data->adjust);
519 val |= ADJUST_ADJ_EN;
520 writel(val, host->regs + host->data->adjust);
522 if (mmc_doing_retune(mmc))
523 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
524 else
525 dly = 0;
527 for (i = 0; i < max_dly; i++) {
528 val &= ~ADJUST_ADJ_DELAY_MASK;
529 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
530 writel(val, host->regs + host->data->adjust);
532 ret = mmc_send_tuning(mmc, opcode, NULL);
533 if (!ret) {
534 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
535 (dly + i) % max_dly);
536 return 0;
540 meson_mmc_reset_resampling(host);
541 return -EIO;
544 static int meson_mmc_prepare_ios_clock(struct meson_host *host,
545 struct mmc_ios *ios)
547 bool ddr;
549 switch (ios->timing) {
550 case MMC_TIMING_MMC_DDR52:
551 case MMC_TIMING_UHS_DDR50:
552 ddr = true;
553 break;
555 default:
556 ddr = false;
557 break;
560 return meson_mmc_clk_set(host, ios->clock, ddr);
563 static void meson_mmc_check_resampling(struct meson_host *host,
564 struct mmc_ios *ios)
566 switch (ios->timing) {
567 case MMC_TIMING_LEGACY:
568 case MMC_TIMING_MMC_HS:
569 case MMC_TIMING_SD_HS:
570 case MMC_TIMING_MMC_DDR52:
571 meson_mmc_disable_resampling(host);
572 break;
576 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
578 struct meson_host *host = mmc_priv(mmc);
579 u32 bus_width, val;
580 int err;
583 * GPIO regulator, only controls switching between 1v8 and
584 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
586 switch (ios->power_mode) {
587 case MMC_POWER_OFF:
588 if (!IS_ERR(mmc->supply.vmmc))
589 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
591 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
592 regulator_disable(mmc->supply.vqmmc);
593 host->vqmmc_enabled = false;
596 break;
598 case MMC_POWER_UP:
599 if (!IS_ERR(mmc->supply.vmmc))
600 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
602 break;
604 case MMC_POWER_ON:
605 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
606 int ret = regulator_enable(mmc->supply.vqmmc);
608 if (ret < 0)
609 dev_err(host->dev,
610 "failed to enable vqmmc regulator\n");
611 else
612 host->vqmmc_enabled = true;
615 break;
618 /* Bus width */
619 switch (ios->bus_width) {
620 case MMC_BUS_WIDTH_1:
621 bus_width = CFG_BUS_WIDTH_1;
622 break;
623 case MMC_BUS_WIDTH_4:
624 bus_width = CFG_BUS_WIDTH_4;
625 break;
626 case MMC_BUS_WIDTH_8:
627 bus_width = CFG_BUS_WIDTH_8;
628 break;
629 default:
630 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
631 ios->bus_width);
632 bus_width = CFG_BUS_WIDTH_4;
635 val = readl(host->regs + SD_EMMC_CFG);
636 val &= ~CFG_BUS_WIDTH_MASK;
637 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
638 writel(val, host->regs + SD_EMMC_CFG);
640 meson_mmc_check_resampling(host, ios);
641 err = meson_mmc_prepare_ios_clock(host, ios);
642 if (err)
643 dev_err(host->dev, "Failed to set clock: %d\n,", err);
645 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
648 static void meson_mmc_request_done(struct mmc_host *mmc,
649 struct mmc_request *mrq)
651 struct meson_host *host = mmc_priv(mmc);
653 host->cmd = NULL;
654 mmc_request_done(host->mmc, mrq);
657 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
659 struct meson_host *host = mmc_priv(mmc);
660 u32 cfg, blksz_old;
662 cfg = readl(host->regs + SD_EMMC_CFG);
663 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
665 if (!is_power_of_2(blksz))
666 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
668 blksz = ilog2(blksz);
670 /* check if block-size matches, if not update */
671 if (blksz == blksz_old)
672 return;
674 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
675 blksz_old, blksz);
677 cfg &= ~CFG_BLK_LEN_MASK;
678 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
679 writel(cfg, host->regs + SD_EMMC_CFG);
682 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
684 if (cmd->flags & MMC_RSP_PRESENT) {
685 if (cmd->flags & MMC_RSP_136)
686 *cmd_cfg |= CMD_CFG_RESP_128;
687 *cmd_cfg |= CMD_CFG_RESP_NUM;
689 if (!(cmd->flags & MMC_RSP_CRC))
690 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
692 if (cmd->flags & MMC_RSP_BUSY)
693 *cmd_cfg |= CMD_CFG_R1B;
694 } else {
695 *cmd_cfg |= CMD_CFG_NO_RESP;
699 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
701 struct meson_host *host = mmc_priv(mmc);
702 struct sd_emmc_desc *desc = host->descs;
703 struct mmc_data *data = host->cmd->data;
704 struct scatterlist *sg;
705 u32 start;
706 int i;
708 if (data->flags & MMC_DATA_WRITE)
709 cmd_cfg |= CMD_CFG_DATA_WR;
711 if (data->blocks > 1) {
712 cmd_cfg |= CMD_CFG_BLOCK_MODE;
713 meson_mmc_set_blksz(mmc, data->blksz);
716 for_each_sg(data->sg, sg, data->sg_count, i) {
717 unsigned int len = sg_dma_len(sg);
719 if (data->blocks > 1)
720 len /= data->blksz;
722 desc[i].cmd_cfg = cmd_cfg;
723 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
724 if (i > 0)
725 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
726 desc[i].cmd_arg = host->cmd->arg;
727 desc[i].cmd_resp = 0;
728 desc[i].cmd_data = sg_dma_address(sg);
730 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
732 dma_wmb(); /* ensure descriptor is written before kicked */
733 start = host->descs_dma_addr | START_DESC_BUSY;
734 writel(start, host->regs + SD_EMMC_START);
737 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
739 struct meson_host *host = mmc_priv(mmc);
740 struct mmc_data *data = cmd->data;
741 u32 cmd_cfg = 0, cmd_data = 0;
742 unsigned int xfer_bytes = 0;
744 /* Setup descriptors */
745 dma_rmb();
747 host->cmd = cmd;
749 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
750 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
751 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
753 meson_mmc_set_response_bits(cmd, &cmd_cfg);
755 /* data? */
756 if (data) {
757 data->bytes_xfered = 0;
758 cmd_cfg |= CMD_CFG_DATA_IO;
759 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
760 ilog2(meson_mmc_get_timeout_msecs(data)));
762 if (meson_mmc_desc_chain_mode(data)) {
763 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
764 return;
767 if (data->blocks > 1) {
768 cmd_cfg |= CMD_CFG_BLOCK_MODE;
769 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
770 data->blocks);
771 meson_mmc_set_blksz(mmc, data->blksz);
772 } else {
773 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
776 xfer_bytes = data->blksz * data->blocks;
777 if (data->flags & MMC_DATA_WRITE) {
778 cmd_cfg |= CMD_CFG_DATA_WR;
779 WARN_ON(xfer_bytes > host->bounce_buf_size);
780 sg_copy_to_buffer(data->sg, data->sg_len,
781 host->bounce_buf, xfer_bytes);
782 dma_wmb();
785 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
786 } else {
787 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
788 ilog2(SD_EMMC_CMD_TIMEOUT));
791 /* Last descriptor */
792 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
793 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
794 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
795 writel(0, host->regs + SD_EMMC_CMD_RSP);
796 wmb(); /* ensure descriptor is written before kicked */
797 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
800 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
802 struct meson_host *host = mmc_priv(mmc);
803 bool needs_pre_post_req = mrq->data &&
804 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
806 if (needs_pre_post_req) {
807 meson_mmc_get_transfer_mode(mmc, mrq);
808 if (!meson_mmc_desc_chain_mode(mrq->data))
809 needs_pre_post_req = false;
812 if (needs_pre_post_req)
813 meson_mmc_pre_req(mmc, mrq);
815 /* Stop execution */
816 writel(0, host->regs + SD_EMMC_START);
818 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
820 if (needs_pre_post_req)
821 meson_mmc_post_req(mmc, mrq, 0);
824 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
826 struct meson_host *host = mmc_priv(mmc);
828 if (cmd->flags & MMC_RSP_136) {
829 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
830 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
831 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
832 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
833 } else if (cmd->flags & MMC_RSP_PRESENT) {
834 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
838 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
840 struct meson_host *host = dev_id;
841 struct mmc_command *cmd;
842 struct mmc_data *data;
843 u32 irq_en, status, raw_status;
844 irqreturn_t ret = IRQ_NONE;
846 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
847 raw_status = readl(host->regs + SD_EMMC_STATUS);
848 status = raw_status & irq_en;
850 if (!status) {
851 dev_dbg(host->dev,
852 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
853 irq_en, raw_status);
854 return IRQ_NONE;
857 if (WARN_ON(!host) || WARN_ON(!host->cmd))
858 return IRQ_NONE;
860 /* ack all raised interrupts */
861 writel(status, host->regs + SD_EMMC_STATUS);
863 cmd = host->cmd;
864 data = cmd->data;
865 cmd->error = 0;
866 if (status & IRQ_CRC_ERR) {
867 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
868 cmd->error = -EILSEQ;
869 ret = IRQ_WAKE_THREAD;
870 goto out;
873 if (status & IRQ_TIMEOUTS) {
874 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
875 cmd->error = -ETIMEDOUT;
876 ret = IRQ_WAKE_THREAD;
877 goto out;
880 meson_mmc_read_resp(host->mmc, cmd);
882 if (status & IRQ_SDIO) {
883 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
884 ret = IRQ_HANDLED;
887 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
888 if (data && !cmd->error)
889 data->bytes_xfered = data->blksz * data->blocks;
890 if (meson_mmc_bounce_buf_read(data) ||
891 meson_mmc_get_next_command(cmd))
892 ret = IRQ_WAKE_THREAD;
893 else
894 ret = IRQ_HANDLED;
897 out:
898 if (cmd->error) {
899 /* Stop desc in case of errors */
900 u32 start = readl(host->regs + SD_EMMC_START);
902 start &= ~START_DESC_BUSY;
903 writel(start, host->regs + SD_EMMC_START);
906 if (ret == IRQ_HANDLED)
907 meson_mmc_request_done(host->mmc, cmd->mrq);
909 return ret;
912 static int meson_mmc_wait_desc_stop(struct meson_host *host)
914 u32 status;
917 * It may sometimes take a while for it to actually halt. Here, we
918 * are giving it 5ms to comply
920 * If we don't confirm the descriptor is stopped, it might raise new
921 * IRQs after we have called mmc_request_done() which is bad.
924 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
925 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
926 100, 5000);
929 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
931 struct meson_host *host = dev_id;
932 struct mmc_command *next_cmd, *cmd = host->cmd;
933 struct mmc_data *data;
934 unsigned int xfer_bytes;
936 if (WARN_ON(!cmd))
937 return IRQ_NONE;
939 if (cmd->error) {
940 meson_mmc_wait_desc_stop(host);
941 meson_mmc_request_done(host->mmc, cmd->mrq);
943 return IRQ_HANDLED;
946 data = cmd->data;
947 if (meson_mmc_bounce_buf_read(data)) {
948 xfer_bytes = data->blksz * data->blocks;
949 WARN_ON(xfer_bytes > host->bounce_buf_size);
950 sg_copy_from_buffer(data->sg, data->sg_len,
951 host->bounce_buf, xfer_bytes);
954 next_cmd = meson_mmc_get_next_command(cmd);
955 if (next_cmd)
956 meson_mmc_start_cmd(host->mmc, next_cmd);
957 else
958 meson_mmc_request_done(host->mmc, cmd->mrq);
960 return IRQ_HANDLED;
964 * NOTE: we only need this until the GPIO/pinctrl driver can handle
965 * interrupts. For now, the MMC core will use this for polling.
967 static int meson_mmc_get_cd(struct mmc_host *mmc)
969 int status = mmc_gpio_get_cd(mmc);
971 if (status == -ENOSYS)
972 return 1; /* assume present */
974 return status;
977 static void meson_mmc_cfg_init(struct meson_host *host)
979 u32 cfg = 0;
981 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
982 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
983 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
984 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
986 /* abort chain on R/W errors */
987 cfg |= CFG_ERR_ABORT;
989 writel(cfg, host->regs + SD_EMMC_CFG);
992 static int meson_mmc_card_busy(struct mmc_host *mmc)
994 struct meson_host *host = mmc_priv(mmc);
995 u32 regval;
997 regval = readl(host->regs + SD_EMMC_STATUS);
999 /* We are only interrested in lines 0 to 3, so mask the other ones */
1000 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1003 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1005 int ret;
1007 /* vqmmc regulator is available */
1008 if (!IS_ERR(mmc->supply.vqmmc)) {
1010 * The usual amlogic setup uses a GPIO to switch from one
1011 * regulator to the other. While the voltage ramp up is
1012 * pretty fast, care must be taken when switching from 3.3v
1013 * to 1.8v. Please make sure the regulator framework is aware
1014 * of your own regulator constraints
1016 ret = mmc_regulator_set_vqmmc(mmc, ios);
1017 return ret < 0 ? ret : 0;
1020 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1021 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1022 return 0;
1024 return -EINVAL;
1027 static const struct mmc_host_ops meson_mmc_ops = {
1028 .request = meson_mmc_request,
1029 .set_ios = meson_mmc_set_ios,
1030 .get_cd = meson_mmc_get_cd,
1031 .pre_req = meson_mmc_pre_req,
1032 .post_req = meson_mmc_post_req,
1033 .execute_tuning = meson_mmc_resampling_tuning,
1034 .card_busy = meson_mmc_card_busy,
1035 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1038 static int meson_mmc_probe(struct platform_device *pdev)
1040 struct resource *res;
1041 struct meson_host *host;
1042 struct mmc_host *mmc;
1043 int ret;
1045 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1046 if (!mmc)
1047 return -ENOMEM;
1048 host = mmc_priv(mmc);
1049 host->mmc = mmc;
1050 host->dev = &pdev->dev;
1051 dev_set_drvdata(&pdev->dev, host);
1053 /* The G12A SDIO Controller needs an SRAM bounce buffer */
1054 host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1055 "amlogic,dram-access-quirk");
1057 /* Get regulators and the supported OCR mask */
1058 host->vqmmc_enabled = false;
1059 ret = mmc_regulator_get_supply(mmc);
1060 if (ret)
1061 goto free_host;
1063 ret = mmc_of_parse(mmc);
1064 if (ret) {
1065 if (ret != -EPROBE_DEFER)
1066 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1067 goto free_host;
1070 host->data = (struct meson_mmc_data *)
1071 of_device_get_match_data(&pdev->dev);
1072 if (!host->data) {
1073 ret = -EINVAL;
1074 goto free_host;
1077 ret = device_reset_optional(&pdev->dev);
1078 if (ret)
1079 return dev_err_probe(&pdev->dev, ret, "device reset failed\n");
1081 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1082 host->regs = devm_ioremap_resource(&pdev->dev, res);
1083 if (IS_ERR(host->regs)) {
1084 ret = PTR_ERR(host->regs);
1085 goto free_host;
1088 host->irq = platform_get_irq(pdev, 0);
1089 if (host->irq <= 0) {
1090 ret = -EINVAL;
1091 goto free_host;
1094 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1095 if (IS_ERR(host->pinctrl)) {
1096 ret = PTR_ERR(host->pinctrl);
1097 goto free_host;
1100 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1101 "clk-gate");
1102 if (IS_ERR(host->pins_clk_gate)) {
1103 dev_warn(&pdev->dev,
1104 "can't get clk-gate pinctrl, using clk_stop bit\n");
1105 host->pins_clk_gate = NULL;
1108 host->core_clk = devm_clk_get(&pdev->dev, "core");
1109 if (IS_ERR(host->core_clk)) {
1110 ret = PTR_ERR(host->core_clk);
1111 goto free_host;
1114 ret = clk_prepare_enable(host->core_clk);
1115 if (ret)
1116 goto free_host;
1118 ret = meson_mmc_clk_init(host);
1119 if (ret)
1120 goto err_core_clk;
1122 /* set config to sane default */
1123 meson_mmc_cfg_init(host);
1125 /* Stop execution */
1126 writel(0, host->regs + SD_EMMC_START);
1128 /* clear, ack and enable interrupts */
1129 writel(0, host->regs + SD_EMMC_IRQ_EN);
1130 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1131 host->regs + SD_EMMC_STATUS);
1132 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1133 host->regs + SD_EMMC_IRQ_EN);
1135 ret = request_threaded_irq(host->irq, meson_mmc_irq,
1136 meson_mmc_irq_thread, IRQF_ONESHOT,
1137 dev_name(&pdev->dev), host);
1138 if (ret)
1139 goto err_init_clk;
1141 mmc->caps |= MMC_CAP_CMD23;
1142 if (host->dram_access_quirk) {
1143 /* Limit segments to 1 due to low available sram memory */
1144 mmc->max_segs = 1;
1145 /* Limit to the available sram memory */
1146 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1147 mmc->max_blk_size;
1148 } else {
1149 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1150 mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1151 sizeof(struct sd_emmc_desc);
1153 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1154 mmc->max_seg_size = mmc->max_req_size;
1157 * At the moment, we don't know how to reliably enable HS400.
1158 * From the different datasheets, it is not even clear if this mode
1159 * is officially supported by any of the SoCs
1161 mmc->caps2 &= ~MMC_CAP2_HS400;
1163 if (host->dram_access_quirk) {
1165 * The MMC Controller embeds 1,5KiB of internal SRAM
1166 * that can be used to be used as bounce buffer.
1167 * In the case of the G12A SDIO controller, use these
1168 * instead of the DDR memory
1170 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1171 host->bounce_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1172 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1173 } else {
1174 /* data bounce buffer */
1175 host->bounce_buf_size = mmc->max_req_size;
1176 host->bounce_buf =
1177 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1178 &host->bounce_dma_addr, GFP_KERNEL);
1179 if (host->bounce_buf == NULL) {
1180 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1181 ret = -ENOMEM;
1182 goto err_free_irq;
1186 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1187 &host->descs_dma_addr, GFP_KERNEL);
1188 if (!host->descs) {
1189 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1190 ret = -ENOMEM;
1191 goto err_bounce_buf;
1194 mmc->ops = &meson_mmc_ops;
1195 mmc_add_host(mmc);
1197 return 0;
1199 err_bounce_buf:
1200 if (!host->dram_access_quirk)
1201 dma_free_coherent(host->dev, host->bounce_buf_size,
1202 host->bounce_buf, host->bounce_dma_addr);
1203 err_free_irq:
1204 free_irq(host->irq, host);
1205 err_init_clk:
1206 clk_disable_unprepare(host->mmc_clk);
1207 err_core_clk:
1208 clk_disable_unprepare(host->core_clk);
1209 free_host:
1210 mmc_free_host(mmc);
1211 return ret;
1214 static int meson_mmc_remove(struct platform_device *pdev)
1216 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1218 mmc_remove_host(host->mmc);
1220 /* disable interrupts */
1221 writel(0, host->regs + SD_EMMC_IRQ_EN);
1222 free_irq(host->irq, host);
1224 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1225 host->descs, host->descs_dma_addr);
1227 if (!host->dram_access_quirk)
1228 dma_free_coherent(host->dev, host->bounce_buf_size,
1229 host->bounce_buf, host->bounce_dma_addr);
1231 clk_disable_unprepare(host->mmc_clk);
1232 clk_disable_unprepare(host->core_clk);
1234 mmc_free_host(host->mmc);
1235 return 0;
1238 static const struct meson_mmc_data meson_gx_data = {
1239 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1240 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1241 .always_on = CLK_V2_ALWAYS_ON,
1242 .adjust = SD_EMMC_ADJUST,
1245 static const struct meson_mmc_data meson_axg_data = {
1246 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1247 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1248 .always_on = CLK_V3_ALWAYS_ON,
1249 .adjust = SD_EMMC_V3_ADJUST,
1252 static const struct of_device_id meson_mmc_of_match[] = {
1253 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1254 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1255 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1256 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1257 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1260 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1262 static struct platform_driver meson_mmc_driver = {
1263 .probe = meson_mmc_probe,
1264 .remove = meson_mmc_remove,
1265 .driver = {
1266 .name = DRIVER_NAME,
1267 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1268 .of_match_table = meson_mmc_of_match,
1272 module_platform_driver(meson_mmc_driver);
1274 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1275 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1276 MODULE_LICENSE("GPL v2");