1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
59 #define DRIVER_NAME "sh_mmcif"
62 #define CMD_MASK 0x3f000000
63 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN (1 << 20)
68 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH (1 << 5)
83 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
89 #define CMD_CTRL_BREAK (1 << 0)
92 #define BLOCK_SIZE_MASK 0x0000ffff
95 #define INT_CCSDE (1 << 29)
96 #define INT_CMD12DRE (1 << 26)
97 #define INT_CMD12RBE (1 << 25)
98 #define INT_CMD12CRE (1 << 24)
99 #define INT_DTRANE (1 << 23)
100 #define INT_BUFRE (1 << 22)
101 #define INT_BUFWEN (1 << 21)
102 #define INT_BUFREN (1 << 20)
103 #define INT_CCSRCV (1 << 19)
104 #define INT_RBSYE (1 << 17)
105 #define INT_CRSPE (1 << 16)
106 #define INT_CMDVIO (1 << 15)
107 #define INT_BUFVIO (1 << 14)
108 #define INT_WDATERR (1 << 11)
109 #define INT_RDATERR (1 << 10)
110 #define INT_RIDXERR (1 << 9)
111 #define INT_RSPERR (1 << 8)
112 #define INT_CCSTO (1 << 5)
113 #define INT_CRCSTO (1 << 4)
114 #define INT_WDATTO (1 << 3)
115 #define INT_RDATTO (1 << 2)
116 #define INT_RBSYTO (1 << 1)
117 #define INT_RSPTO (1 << 0)
118 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
121 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
123 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
127 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
130 #define MASK_ALL 0x00000000
131 #define MASK_MCCSDE (1 << 29)
132 #define MASK_MCMD12DRE (1 << 26)
133 #define MASK_MCMD12RBE (1 << 25)
134 #define MASK_MCMD12CRE (1 << 24)
135 #define MASK_MDTRANE (1 << 23)
136 #define MASK_MBUFRE (1 << 22)
137 #define MASK_MBUFWEN (1 << 21)
138 #define MASK_MBUFREN (1 << 20)
139 #define MASK_MCCSRCV (1 << 19)
140 #define MASK_MRBSYE (1 << 17)
141 #define MASK_MCRSPE (1 << 16)
142 #define MASK_MCMDVIO (1 << 15)
143 #define MASK_MBUFVIO (1 << 14)
144 #define MASK_MWDATERR (1 << 11)
145 #define MASK_MRDATERR (1 << 10)
146 #define MASK_MRIDXERR (1 << 9)
147 #define MASK_MRSPERR (1 << 8)
148 #define MASK_MCCSTO (1 << 5)
149 #define MASK_MCRCSTO (1 << 4)
150 #define MASK_MWDATTO (1 << 3)
151 #define MASK_MRDATTO (1 << 2)
152 #define MASK_MRBSYTO (1 << 1)
153 #define MASK_MRSPTO (1 << 0)
155 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 MASK_MCRCSTO | MASK_MWDATTO | \
158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
161 MASK_MBUFREN | MASK_MBUFWEN | \
162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
163 MASK_MCMD12RBE | MASK_MCMD12CRE)
166 #define STS1_CMDSEQ (1 << 31)
169 #define STS2_CRCSTE (1 << 31)
170 #define STS2_CRC16E (1 << 30)
171 #define STS2_AC12CRCE (1 << 29)
172 #define STS2_RSPCRC7E (1 << 28)
173 #define STS2_CRCSTEBE (1 << 27)
174 #define STS2_RDATEBE (1 << 26)
175 #define STS2_AC12REBE (1 << 25)
176 #define STS2_RSPEBE (1 << 24)
177 #define STS2_AC12IDXE (1 << 23)
178 #define STS2_RSPIDXE (1 << 22)
179 #define STS2_CCSTO (1 << 15)
180 #define STS2_RDATTO (1 << 14)
181 #define STS2_DATBSYTO (1 << 13)
182 #define STS2_CRCSTTO (1 << 12)
183 #define STS2_AC12BSYTO (1 << 11)
184 #define STS2_RSPBSYTO (1 << 10)
185 #define STS2_AC12RSPTO (1 << 9)
186 #define STS2_RSPTO (1 << 8)
187 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
190 STS2_DATBSYTO | STS2_CRCSTTO | \
191 STS2_AC12BSYTO | STS2_RSPBSYTO | \
192 STS2_AC12RSPTO | STS2_RSPTO)
194 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
195 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
196 #define CLKDEV_INIT 400000 /* 400 kHz */
198 enum sh_mmcif_state
{
205 enum sh_mmcif_wait_for
{
206 MMCIF_WAIT_FOR_REQUEST
,
208 MMCIF_WAIT_FOR_MREAD
,
209 MMCIF_WAIT_FOR_MWRITE
,
211 MMCIF_WAIT_FOR_WRITE
,
212 MMCIF_WAIT_FOR_READ_END
,
213 MMCIF_WAIT_FOR_WRITE_END
,
218 * difference for each SoC
220 struct sh_mmcif_host
{
221 struct mmc_host
*mmc
;
222 struct mmc_request
*mrq
;
223 struct platform_device
*pd
;
226 unsigned char timing
;
232 spinlock_t lock
; /* protect sh_mmcif_host::state */
233 enum sh_mmcif_state state
;
234 enum sh_mmcif_wait_for wait_for
;
235 struct delayed_work timeout_work
;
240 bool ccs_enable
; /* Command Completion Signal support */
241 bool clk_ctrl2_enable
;
242 struct mutex thread_lock
;
243 u32 clkdiv_map
; /* see CE_CLK_CTRL::CLKDIV */
246 struct dma_chan
*chan_rx
;
247 struct dma_chan
*chan_tx
;
248 struct completion dma_complete
;
252 static const struct of_device_id sh_mmcif_of_match
[] = {
253 { .compatible
= "renesas,sh-mmcif" },
256 MODULE_DEVICE_TABLE(of
, sh_mmcif_of_match
);
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
261 unsigned int reg
, u32 val
)
263 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
267 unsigned int reg
, u32 val
)
269 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
272 static void sh_mmcif_dma_complete(void *arg
)
274 struct sh_mmcif_host
*host
= arg
;
275 struct mmc_request
*mrq
= host
->mrq
;
276 struct device
*dev
= sh_mmcif_host_to_dev(host
);
278 dev_dbg(dev
, "Command completed\n");
280 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
284 complete(&host
->dma_complete
);
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
289 struct mmc_data
*data
= host
->mrq
->data
;
290 struct scatterlist
*sg
= data
->sg
;
291 struct dma_async_tx_descriptor
*desc
= NULL
;
292 struct dma_chan
*chan
= host
->chan_rx
;
293 struct device
*dev
= sh_mmcif_host_to_dev(host
);
294 dma_cookie_t cookie
= -EINVAL
;
297 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
300 host
->dma_active
= true;
301 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
302 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
306 desc
->callback
= sh_mmcif_dma_complete
;
307 desc
->callback_param
= host
;
308 cookie
= dmaengine_submit(desc
);
309 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
310 dma_async_issue_pending(chan
);
312 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
313 __func__
, data
->sg_len
, ret
, cookie
);
316 /* DMA failed, fall back to PIO */
319 host
->chan_rx
= NULL
;
320 host
->dma_active
= false;
321 dma_release_channel(chan
);
322 /* Free the Tx channel too */
323 chan
= host
->chan_tx
;
325 host
->chan_tx
= NULL
;
326 dma_release_channel(chan
);
329 "DMA failed: %d, falling back to PIO\n", ret
);
330 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
333 dev_dbg(dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
334 desc
, cookie
, data
->sg_len
);
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
339 struct mmc_data
*data
= host
->mrq
->data
;
340 struct scatterlist
*sg
= data
->sg
;
341 struct dma_async_tx_descriptor
*desc
= NULL
;
342 struct dma_chan
*chan
= host
->chan_tx
;
343 struct device
*dev
= sh_mmcif_host_to_dev(host
);
344 dma_cookie_t cookie
= -EINVAL
;
347 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
350 host
->dma_active
= true;
351 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
352 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
356 desc
->callback
= sh_mmcif_dma_complete
;
357 desc
->callback_param
= host
;
358 cookie
= dmaengine_submit(desc
);
359 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
360 dma_async_issue_pending(chan
);
362 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
363 __func__
, data
->sg_len
, ret
, cookie
);
366 /* DMA failed, fall back to PIO */
369 host
->chan_tx
= NULL
;
370 host
->dma_active
= false;
371 dma_release_channel(chan
);
372 /* Free the Rx channel too */
373 chan
= host
->chan_rx
;
375 host
->chan_rx
= NULL
;
376 dma_release_channel(chan
);
379 "DMA failed: %d, falling back to PIO\n", ret
);
380 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
383 dev_dbg(dev
, "%s(): desc %p, cookie %d\n", __func__
,
387 static struct dma_chan
*
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host
*host
, uintptr_t slave_id
)
393 dma_cap_set(DMA_SLAVE
, mask
);
397 return dma_request_channel(mask
, shdma_chan_filter
, (void *)slave_id
);
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host
*host
,
401 struct dma_chan
*chan
,
402 enum dma_transfer_direction direction
)
404 struct resource
*res
;
405 struct dma_slave_config cfg
= { 0, };
407 res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
408 cfg
.direction
= direction
;
410 if (direction
== DMA_DEV_TO_MEM
) {
411 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
412 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
414 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
415 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
418 return dmaengine_slave_config(chan
, &cfg
);
421 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
)
423 struct device
*dev
= sh_mmcif_host_to_dev(host
);
424 host
->dma_active
= false;
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH
) && dev
->platform_data
) {
428 struct sh_mmcif_plat_data
*pdata
= dev
->platform_data
;
430 host
->chan_tx
= sh_mmcif_request_dma_pdata(host
,
432 host
->chan_rx
= sh_mmcif_request_dma_pdata(host
,
435 host
->chan_tx
= dma_request_chan(dev
, "tx");
436 if (IS_ERR(host
->chan_tx
))
437 host
->chan_tx
= NULL
;
438 host
->chan_rx
= dma_request_chan(dev
, "rx");
439 if (IS_ERR(host
->chan_rx
))
440 host
->chan_rx
= NULL
;
442 dev_dbg(dev
, "%s: got channel TX %p RX %p\n", __func__
, host
->chan_tx
,
445 if (!host
->chan_tx
|| !host
->chan_rx
||
446 sh_mmcif_dma_slave_config(host
, host
->chan_tx
, DMA_MEM_TO_DEV
) ||
447 sh_mmcif_dma_slave_config(host
, host
->chan_rx
, DMA_DEV_TO_MEM
))
454 dma_release_channel(host
->chan_tx
);
456 dma_release_channel(host
->chan_rx
);
457 host
->chan_tx
= host
->chan_rx
= NULL
;
460 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
462 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
463 /* Descriptors are freed automatically */
465 struct dma_chan
*chan
= host
->chan_tx
;
466 host
->chan_tx
= NULL
;
467 dma_release_channel(chan
);
470 struct dma_chan
*chan
= host
->chan_rx
;
471 host
->chan_rx
= NULL
;
472 dma_release_channel(chan
);
475 host
->dma_active
= false;
478 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
480 struct device
*dev
= sh_mmcif_host_to_dev(host
);
481 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
482 bool sup_pclk
= p
? p
->sup_pclk
: false;
483 unsigned int current_clk
= clk_get_rate(host
->clk
);
486 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
487 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
492 if (host
->clkdiv_map
) {
493 unsigned int freq
, best_freq
, myclk
, div
, diff_min
, diff
;
499 for (i
= 31; i
>= 0; i
--) {
500 if (!((1 << i
) & host
->clkdiv_map
))
504 * clk = parent_freq / div
505 * -> parent_freq = clk x div
509 freq
= clk_round_rate(host
->clk
, clk
* div
);
511 diff
= (myclk
> clk
) ? myclk
- clk
: clk
- myclk
;
513 if (diff
<= diff_min
) {
520 dev_dbg(dev
, "clk %u/%u (%u, 0x%x)\n",
521 (best_freq
/ (1 << (clkdiv
+ 1))), clk
,
524 clk_set_rate(host
->clk
, best_freq
);
525 clkdiv
= clkdiv
<< 16;
526 } else if (sup_pclk
&& clk
== current_clk
) {
527 clkdiv
= CLK_SUP_PCLK
;
529 clkdiv
= (fls(DIV_ROUND_UP(current_clk
, clk
) - 1) - 1) << 16;
532 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
& clkdiv
);
533 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
540 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
542 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
543 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
544 if (host
->ccs_enable
)
546 if (host
->clk_ctrl2_enable
)
547 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
548 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
549 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
551 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
554 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
556 struct device
*dev
= sh_mmcif_host_to_dev(host
);
560 host
->sd_error
= false;
562 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
563 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
564 dev_dbg(dev
, "ERR HOST_STS1 = %08x\n", state1
);
565 dev_dbg(dev
, "ERR HOST_STS2 = %08x\n", state2
);
567 if (state1
& STS1_CMDSEQ
) {
568 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
569 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
570 for (timeout
= 10000; timeout
; timeout
--) {
571 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
578 "Forced end of command sequence timeout err\n");
581 sh_mmcif_sync_reset(host
);
582 dev_dbg(dev
, "Forced end of command sequence\n");
586 if (state2
& STS2_CRC_ERR
) {
587 dev_err(dev
, " CRC error: state %u, wait %u\n",
588 host
->state
, host
->wait_for
);
590 } else if (state2
& STS2_TIMEOUT_ERR
) {
591 dev_err(dev
, " Timeout: state %u, wait %u\n",
592 host
->state
, host
->wait_for
);
595 dev_dbg(dev
, " End/Index error: state %u, wait %u\n",
596 host
->state
, host
->wait_for
);
602 static bool sh_mmcif_next_block(struct sh_mmcif_host
*host
, u32
*p
)
604 struct mmc_data
*data
= host
->mrq
->data
;
606 host
->sg_blkidx
+= host
->blocksize
;
608 /* data->sg->length must be a multiple of host->blocksize? */
609 BUG_ON(host
->sg_blkidx
> data
->sg
->length
);
611 if (host
->sg_blkidx
== data
->sg
->length
) {
613 if (++host
->sg_idx
< data
->sg_len
)
614 host
->pio_ptr
= sg_virt(++data
->sg
);
619 return host
->sg_idx
!= data
->sg_len
;
622 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
623 struct mmc_request
*mrq
)
625 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
626 BLOCK_SIZE_MASK
) + 3;
628 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
630 /* buf read enable */
631 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
634 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
636 struct device
*dev
= sh_mmcif_host_to_dev(host
);
637 struct mmc_data
*data
= host
->mrq
->data
;
638 u32
*p
= sg_virt(data
->sg
);
641 if (host
->sd_error
) {
642 data
->error
= sh_mmcif_error_manage(host
);
643 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
647 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
648 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
650 /* buffer read end */
651 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
652 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
657 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
658 struct mmc_request
*mrq
)
660 struct mmc_data
*data
= mrq
->data
;
662 if (!data
->sg_len
|| !data
->sg
->length
)
665 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
668 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
671 host
->pio_ptr
= sg_virt(data
->sg
);
673 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
676 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
678 struct device
*dev
= sh_mmcif_host_to_dev(host
);
679 struct mmc_data
*data
= host
->mrq
->data
;
680 u32
*p
= host
->pio_ptr
;
683 if (host
->sd_error
) {
684 data
->error
= sh_mmcif_error_manage(host
);
685 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
689 BUG_ON(!data
->sg
->length
);
691 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
692 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
694 if (!sh_mmcif_next_block(host
, p
))
697 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
702 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
703 struct mmc_request
*mrq
)
705 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
706 BLOCK_SIZE_MASK
) + 3;
708 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
710 /* buf write enable */
711 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
714 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
716 struct device
*dev
= sh_mmcif_host_to_dev(host
);
717 struct mmc_data
*data
= host
->mrq
->data
;
718 u32
*p
= sg_virt(data
->sg
);
721 if (host
->sd_error
) {
722 data
->error
= sh_mmcif_error_manage(host
);
723 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
727 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
728 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
730 /* buffer write end */
731 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
732 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
737 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
738 struct mmc_request
*mrq
)
740 struct mmc_data
*data
= mrq
->data
;
742 if (!data
->sg_len
|| !data
->sg
->length
)
745 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
748 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
751 host
->pio_ptr
= sg_virt(data
->sg
);
753 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
756 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
758 struct device
*dev
= sh_mmcif_host_to_dev(host
);
759 struct mmc_data
*data
= host
->mrq
->data
;
760 u32
*p
= host
->pio_ptr
;
763 if (host
->sd_error
) {
764 data
->error
= sh_mmcif_error_manage(host
);
765 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
769 BUG_ON(!data
->sg
->length
);
771 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
772 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
774 if (!sh_mmcif_next_block(host
, p
))
777 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
782 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
783 struct mmc_command
*cmd
)
785 if (cmd
->flags
& MMC_RSP_136
) {
786 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
787 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
788 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
789 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
791 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
794 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
795 struct mmc_command
*cmd
)
797 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
800 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
801 struct mmc_request
*mrq
)
803 struct device
*dev
= sh_mmcif_host_to_dev(host
);
804 struct mmc_data
*data
= mrq
->data
;
805 struct mmc_command
*cmd
= mrq
->cmd
;
806 u32 opc
= cmd
->opcode
;
809 /* Response Type check */
810 switch (mmc_resp_type(cmd
)) {
812 tmp
|= CMD_SET_RTYP_NO
;
816 tmp
|= CMD_SET_RTYP_6B
;
819 tmp
|= CMD_SET_RBSY
| CMD_SET_RTYP_6B
;
822 tmp
|= CMD_SET_RTYP_17B
;
825 dev_err(dev
, "Unsupported response type.\n");
832 switch (host
->bus_width
) {
833 case MMC_BUS_WIDTH_1
:
834 tmp
|= CMD_SET_DATW_1
;
836 case MMC_BUS_WIDTH_4
:
837 tmp
|= CMD_SET_DATW_4
;
839 case MMC_BUS_WIDTH_8
:
840 tmp
|= CMD_SET_DATW_8
;
843 dev_err(dev
, "Unsupported bus width.\n");
846 switch (host
->timing
) {
847 case MMC_TIMING_MMC_DDR52
:
849 * MMC core will only set this timing, if the host
850 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
851 * capability. MMCIF implementations with this
852 * capability, e.g. sh73a0, will have to set it
853 * in their platform data.
860 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
863 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
864 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
865 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
868 /* RIDXC[1:0] check bits */
869 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
870 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
871 tmp
|= CMD_SET_RIDXC_BITS
;
872 /* RCRC7C[1:0] check bits */
873 if (opc
== MMC_SEND_OP_COND
)
874 tmp
|= CMD_SET_CRC7C_BITS
;
875 /* RCRC7C[1:0] internal CRC7 */
876 if (opc
== MMC_ALL_SEND_CID
||
877 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
878 tmp
|= CMD_SET_CRC7C_INTERNAL
;
880 return (opc
<< 24) | tmp
;
883 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
884 struct mmc_request
*mrq
, u32 opc
)
886 struct device
*dev
= sh_mmcif_host_to_dev(host
);
889 case MMC_READ_MULTIPLE_BLOCK
:
890 sh_mmcif_multi_read(host
, mrq
);
892 case MMC_WRITE_MULTIPLE_BLOCK
:
893 sh_mmcif_multi_write(host
, mrq
);
895 case MMC_WRITE_BLOCK
:
896 sh_mmcif_single_write(host
, mrq
);
898 case MMC_READ_SINGLE_BLOCK
:
899 case MMC_SEND_EXT_CSD
:
900 sh_mmcif_single_read(host
, mrq
);
903 dev_err(dev
, "Unsupported CMD%d\n", opc
);
908 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
909 struct mmc_request
*mrq
)
911 struct mmc_command
*cmd
= mrq
->cmd
;
916 if (cmd
->flags
& MMC_RSP_BUSY
)
917 mask
= MASK_START_CMD
| MASK_MRBSYE
;
919 mask
= MASK_START_CMD
| MASK_MCRSPE
;
921 if (host
->ccs_enable
)
925 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
926 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
929 opc
= sh_mmcif_set_cmd(host
, mrq
);
931 if (host
->ccs_enable
)
932 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
934 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
935 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
937 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
939 spin_lock_irqsave(&host
->lock
, flags
);
940 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
942 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
943 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
944 spin_unlock_irqrestore(&host
->lock
, flags
);
947 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
948 struct mmc_request
*mrq
)
950 struct device
*dev
= sh_mmcif_host_to_dev(host
);
952 switch (mrq
->cmd
->opcode
) {
953 case MMC_READ_MULTIPLE_BLOCK
:
954 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
956 case MMC_WRITE_MULTIPLE_BLOCK
:
957 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
960 dev_err(dev
, "unsupported stop cmd\n");
961 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
965 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
968 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
970 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
971 struct device
*dev
= sh_mmcif_host_to_dev(host
);
974 spin_lock_irqsave(&host
->lock
, flags
);
975 if (host
->state
!= STATE_IDLE
) {
976 dev_dbg(dev
, "%s() rejected, state %u\n",
977 __func__
, host
->state
);
978 spin_unlock_irqrestore(&host
->lock
, flags
);
979 mrq
->cmd
->error
= -EAGAIN
;
980 mmc_request_done(mmc
, mrq
);
984 host
->state
= STATE_REQUEST
;
985 spin_unlock_irqrestore(&host
->lock
, flags
);
989 sh_mmcif_start_cmd(host
, mrq
);
992 static void sh_mmcif_clk_setup(struct sh_mmcif_host
*host
)
994 struct device
*dev
= sh_mmcif_host_to_dev(host
);
996 if (host
->mmc
->f_max
) {
997 unsigned int f_max
, f_min
= 0, f_min_old
;
999 f_max
= host
->mmc
->f_max
;
1000 for (f_min_old
= f_max
; f_min_old
> 2;) {
1001 f_min
= clk_round_rate(host
->clk
, f_min_old
/ 2);
1002 if (f_min
== f_min_old
)
1008 * This driver assumes this SoC is R-Car Gen2 or later
1010 host
->clkdiv_map
= 0x3ff;
1012 host
->mmc
->f_max
= f_max
/ (1 << ffs(host
->clkdiv_map
));
1013 host
->mmc
->f_min
= f_min
/ (1 << fls(host
->clkdiv_map
));
1015 unsigned int clk
= clk_get_rate(host
->clk
);
1017 host
->mmc
->f_max
= clk
/ 2;
1018 host
->mmc
->f_min
= clk
/ 512;
1021 dev_dbg(dev
, "clk max/min = %d/%d\n",
1022 host
->mmc
->f_max
, host
->mmc
->f_min
);
1025 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1027 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1028 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1029 unsigned long flags
;
1031 spin_lock_irqsave(&host
->lock
, flags
);
1032 if (host
->state
!= STATE_IDLE
) {
1033 dev_dbg(dev
, "%s() rejected, state %u\n",
1034 __func__
, host
->state
);
1035 spin_unlock_irqrestore(&host
->lock
, flags
);
1039 host
->state
= STATE_IOS
;
1040 spin_unlock_irqrestore(&host
->lock
, flags
);
1042 switch (ios
->power_mode
) {
1044 if (!IS_ERR(mmc
->supply
.vmmc
))
1045 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1047 clk_prepare_enable(host
->clk
);
1048 pm_runtime_get_sync(dev
);
1049 sh_mmcif_sync_reset(host
);
1050 sh_mmcif_request_dma(host
);
1055 if (!IS_ERR(mmc
->supply
.vmmc
))
1056 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1058 sh_mmcif_clock_control(host
, 0);
1059 sh_mmcif_release_dma(host
);
1060 pm_runtime_put(dev
);
1061 clk_disable_unprepare(host
->clk
);
1062 host
->power
= false;
1066 sh_mmcif_clock_control(host
, ios
->clock
);
1070 host
->timing
= ios
->timing
;
1071 host
->bus_width
= ios
->bus_width
;
1072 host
->state
= STATE_IDLE
;
1075 static const struct mmc_host_ops sh_mmcif_ops
= {
1076 .request
= sh_mmcif_request
,
1077 .set_ios
= sh_mmcif_set_ios
,
1078 .get_cd
= mmc_gpio_get_cd
,
1081 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1083 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1084 struct mmc_data
*data
= host
->mrq
->data
;
1085 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1088 if (host
->sd_error
) {
1089 switch (cmd
->opcode
) {
1090 case MMC_ALL_SEND_CID
:
1091 case MMC_SELECT_CARD
:
1093 cmd
->error
= -ETIMEDOUT
;
1096 cmd
->error
= sh_mmcif_error_manage(host
);
1099 dev_dbg(dev
, "CMD%d error %d\n",
1100 cmd
->opcode
, cmd
->error
);
1101 host
->sd_error
= false;
1104 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1109 sh_mmcif_get_response(host
, cmd
);
1115 * Completion can be signalled from DMA callback and error, so, have to
1116 * reset here, before setting .dma_active
1118 init_completion(&host
->dma_complete
);
1120 if (data
->flags
& MMC_DATA_READ
) {
1122 sh_mmcif_start_dma_rx(host
);
1125 sh_mmcif_start_dma_tx(host
);
1128 if (!host
->dma_active
) {
1129 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1130 return !data
->error
;
1133 /* Running in the IRQ thread, can sleep */
1134 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1137 if (data
->flags
& MMC_DATA_READ
)
1138 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1139 data
->sg
, data
->sg_len
,
1142 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1143 data
->sg
, data
->sg_len
,
1146 if (host
->sd_error
) {
1147 dev_err(host
->mmc
->parent
,
1148 "Error IRQ while waiting for DMA completion!\n");
1149 /* Woken up by an error IRQ: abort DMA */
1150 data
->error
= sh_mmcif_error_manage(host
);
1152 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1153 data
->error
= -ETIMEDOUT
;
1154 } else if (time
< 0) {
1155 dev_err(host
->mmc
->parent
,
1156 "wait_for_completion_...() error %ld!\n", time
);
1159 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1160 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1161 host
->dma_active
= false;
1164 data
->bytes_xfered
= 0;
1166 if (data
->flags
& MMC_DATA_READ
)
1167 dmaengine_terminate_all(host
->chan_rx
);
1169 dmaengine_terminate_all(host
->chan_tx
);
1175 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1177 struct sh_mmcif_host
*host
= dev_id
;
1178 struct mmc_request
*mrq
;
1179 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1181 unsigned long flags
;
1184 spin_lock_irqsave(&host
->lock
, flags
);
1185 wait_work
= host
->wait_for
;
1186 spin_unlock_irqrestore(&host
->lock
, flags
);
1188 cancel_delayed_work_sync(&host
->timeout_work
);
1190 mutex_lock(&host
->thread_lock
);
1194 dev_dbg(dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195 host
->state
, host
->wait_for
);
1196 mutex_unlock(&host
->thread_lock
);
1201 * All handlers return true, if processing continues, and false, if the
1202 * request has to be completed - successfully or not
1204 switch (wait_work
) {
1205 case MMCIF_WAIT_FOR_REQUEST
:
1206 /* We're too late, the timeout has already kicked in */
1207 mutex_unlock(&host
->thread_lock
);
1209 case MMCIF_WAIT_FOR_CMD
:
1210 /* Wait for data? */
1211 wait
= sh_mmcif_end_cmd(host
);
1213 case MMCIF_WAIT_FOR_MREAD
:
1214 /* Wait for more data? */
1215 wait
= sh_mmcif_mread_block(host
);
1217 case MMCIF_WAIT_FOR_READ
:
1218 /* Wait for data end? */
1219 wait
= sh_mmcif_read_block(host
);
1221 case MMCIF_WAIT_FOR_MWRITE
:
1222 /* Wait data to write? */
1223 wait
= sh_mmcif_mwrite_block(host
);
1225 case MMCIF_WAIT_FOR_WRITE
:
1226 /* Wait for data end? */
1227 wait
= sh_mmcif_write_block(host
);
1229 case MMCIF_WAIT_FOR_STOP
:
1230 if (host
->sd_error
) {
1231 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1232 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1235 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1236 mrq
->stop
->error
= 0;
1238 case MMCIF_WAIT_FOR_READ_END
:
1239 case MMCIF_WAIT_FOR_WRITE_END
:
1240 if (host
->sd_error
) {
1241 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1242 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1250 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1251 /* Wait for more data */
1252 mutex_unlock(&host
->thread_lock
);
1256 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1257 struct mmc_data
*data
= mrq
->data
;
1258 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1259 data
->bytes_xfered
=
1260 data
->blocks
* data
->blksz
;
1262 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1263 sh_mmcif_stop_cmd(host
, mrq
);
1264 if (!mrq
->stop
->error
) {
1265 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1266 mutex_unlock(&host
->thread_lock
);
1272 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1273 host
->state
= STATE_IDLE
;
1275 mmc_request_done(host
->mmc
, mrq
);
1277 mutex_unlock(&host
->thread_lock
);
1282 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1284 struct sh_mmcif_host
*host
= dev_id
;
1285 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1288 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1289 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1290 if (host
->ccs_enable
)
1291 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1293 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1294 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1296 if (state
& ~MASK_CLEAN
)
1297 dev_dbg(dev
, "IRQ state = 0x%08x incompletely cleared\n",
1300 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1301 host
->sd_error
= true;
1302 dev_dbg(dev
, "int err state = 0x%08x\n", state
);
1304 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1306 dev_dbg(dev
, "NULL IRQ state = 0x%08x\n", state
);
1307 if (!host
->dma_active
)
1308 return IRQ_WAKE_THREAD
;
1309 else if (host
->sd_error
)
1310 sh_mmcif_dma_complete(host
);
1312 dev_dbg(dev
, "Unexpected IRQ 0x%x\n", state
);
1318 static void sh_mmcif_timeout_work(struct work_struct
*work
)
1320 struct delayed_work
*d
= to_delayed_work(work
);
1321 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1322 struct mmc_request
*mrq
= host
->mrq
;
1323 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1324 unsigned long flags
;
1327 /* Don't run after mmc_remove_host() */
1330 spin_lock_irqsave(&host
->lock
, flags
);
1331 if (host
->state
== STATE_IDLE
) {
1332 spin_unlock_irqrestore(&host
->lock
, flags
);
1336 dev_err(dev
, "Timeout waiting for %u on CMD%u\n",
1337 host
->wait_for
, mrq
->cmd
->opcode
);
1339 host
->state
= STATE_TIMEOUT
;
1340 spin_unlock_irqrestore(&host
->lock
, flags
);
1343 * Handle races with cancel_delayed_work(), unless
1344 * cancel_delayed_work_sync() is used
1346 switch (host
->wait_for
) {
1347 case MMCIF_WAIT_FOR_CMD
:
1348 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1350 case MMCIF_WAIT_FOR_STOP
:
1351 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1353 case MMCIF_WAIT_FOR_MREAD
:
1354 case MMCIF_WAIT_FOR_MWRITE
:
1355 case MMCIF_WAIT_FOR_READ
:
1356 case MMCIF_WAIT_FOR_WRITE
:
1357 case MMCIF_WAIT_FOR_READ_END
:
1358 case MMCIF_WAIT_FOR_WRITE_END
:
1359 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1365 host
->state
= STATE_IDLE
;
1366 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1368 mmc_request_done(host
->mmc
, mrq
);
1371 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1373 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1374 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1375 struct mmc_host
*mmc
= host
->mmc
;
1377 mmc_regulator_get_supply(mmc
);
1382 if (!mmc
->ocr_avail
)
1383 mmc
->ocr_avail
= pd
->ocr
;
1385 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1388 static int sh_mmcif_probe(struct platform_device
*pdev
)
1390 int ret
= 0, irq
[2];
1391 struct mmc_host
*mmc
;
1392 struct sh_mmcif_host
*host
;
1393 struct device
*dev
= &pdev
->dev
;
1394 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1398 irq
[0] = platform_get_irq(pdev
, 0);
1399 irq
[1] = platform_get_irq_optional(pdev
, 1);
1403 reg
= devm_platform_ioremap_resource(pdev
, 0);
1405 return PTR_ERR(reg
);
1407 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), dev
);
1411 ret
= mmc_of_parse(mmc
);
1415 host
= mmc_priv(mmc
);
1418 host
->timeout
= msecs_to_jiffies(10000);
1419 host
->ccs_enable
= true;
1420 host
->clk_ctrl2_enable
= false;
1424 spin_lock_init(&host
->lock
);
1426 mmc
->ops
= &sh_mmcif_ops
;
1427 sh_mmcif_init_ocr(host
);
1429 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1430 mmc
->caps2
|= MMC_CAP2_NO_SD
| MMC_CAP2_NO_SDIO
;
1431 mmc
->max_busy_timeout
= 10000;
1434 mmc
->caps
|= pd
->caps
;
1436 mmc
->max_blk_size
= 512;
1437 mmc
->max_req_size
= PAGE_SIZE
* mmc
->max_segs
;
1438 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1439 mmc
->max_seg_size
= mmc
->max_req_size
;
1441 platform_set_drvdata(pdev
, host
);
1443 host
->clk
= devm_clk_get(dev
, NULL
);
1444 if (IS_ERR(host
->clk
)) {
1445 ret
= PTR_ERR(host
->clk
);
1446 dev_err(dev
, "cannot get clock: %d\n", ret
);
1450 ret
= clk_prepare_enable(host
->clk
);
1454 sh_mmcif_clk_setup(host
);
1456 pm_runtime_enable(dev
);
1457 host
->power
= false;
1459 ret
= pm_runtime_get_sync(dev
);
1463 INIT_DELAYED_WORK(&host
->timeout_work
, sh_mmcif_timeout_work
);
1465 sh_mmcif_sync_reset(host
);
1466 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1468 name
= irq
[1] < 0 ? dev_name(dev
) : "sh_mmc:error";
1469 ret
= devm_request_threaded_irq(dev
, irq
[0], sh_mmcif_intr
,
1470 sh_mmcif_irqt
, 0, name
, host
);
1472 dev_err(dev
, "request_irq error (%s)\n", name
);
1476 ret
= devm_request_threaded_irq(dev
, irq
[1],
1477 sh_mmcif_intr
, sh_mmcif_irqt
,
1478 0, "sh_mmc:int", host
);
1480 dev_err(dev
, "request_irq error (sh_mmc:int)\n");
1485 mutex_init(&host
->thread_lock
);
1487 ret
= mmc_add_host(mmc
);
1491 dev_pm_qos_expose_latency_limit(dev
, 100);
1493 dev_info(dev
, "Chip version 0x%04x, clock rate %luMHz\n",
1494 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0xffff,
1495 clk_get_rate(host
->clk
) / 1000000UL);
1497 pm_runtime_put(dev
);
1498 clk_disable_unprepare(host
->clk
);
1502 clk_disable_unprepare(host
->clk
);
1503 pm_runtime_put_sync(dev
);
1504 pm_runtime_disable(dev
);
1510 static int sh_mmcif_remove(struct platform_device
*pdev
)
1512 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1515 clk_prepare_enable(host
->clk
);
1516 pm_runtime_get_sync(&pdev
->dev
);
1518 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1520 mmc_remove_host(host
->mmc
);
1521 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1524 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525 * mmc_remove_host() call above. But swapping order doesn't help either
1526 * (a query on the linux-mmc mailing list didn't bring any replies).
1528 cancel_delayed_work_sync(&host
->timeout_work
);
1530 clk_disable_unprepare(host
->clk
);
1531 mmc_free_host(host
->mmc
);
1532 pm_runtime_put_sync(&pdev
->dev
);
1533 pm_runtime_disable(&pdev
->dev
);
1538 #ifdef CONFIG_PM_SLEEP
1539 static int sh_mmcif_suspend(struct device
*dev
)
1541 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1543 pm_runtime_get_sync(dev
);
1544 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1545 pm_runtime_put(dev
);
1550 static int sh_mmcif_resume(struct device
*dev
)
1556 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1557 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend
, sh_mmcif_resume
)
1560 static struct platform_driver sh_mmcif_driver
= {
1561 .probe
= sh_mmcif_probe
,
1562 .remove
= sh_mmcif_remove
,
1564 .name
= DRIVER_NAME
,
1565 .probe_type
= PROBE_PREFER_ASYNCHRONOUS
,
1566 .pm
= &sh_mmcif_dev_pm_ops
,
1567 .of_match_table
= sh_mmcif_of_match
,
1571 module_platform_driver(sh_mmcif_driver
);
1573 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1574 MODULE_LICENSE("GPL v2");
1575 MODULE_ALIAS("platform:" DRIVER_NAME
);
1576 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");