2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
53 * Status Register bit description. Used by flash devices that don't
54 * support DQ polling (e.g. HyperFlash)
56 #define CFI_SR_DRB BIT(7)
57 #define CFI_SR_ESB BIT(5)
58 #define CFI_SR_PSB BIT(4)
59 #define CFI_SR_WBASB BIT(3)
60 #define CFI_SR_SLSB BIT(1)
62 static int cfi_amdstd_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
63 static int cfi_amdstd_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
65 static int cfi_amdstd_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
67 static int cfi_amdstd_erase_chip(struct mtd_info
*, struct erase_info
*);
68 static int cfi_amdstd_erase_varsize(struct mtd_info
*, struct erase_info
*);
69 static void cfi_amdstd_sync (struct mtd_info
*);
70 static int cfi_amdstd_suspend (struct mtd_info
*);
71 static void cfi_amdstd_resume (struct mtd_info
*);
72 static int cfi_amdstd_reboot(struct notifier_block
*, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*, size_t,
74 size_t *, struct otp_info
*);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*, size_t,
76 size_t *, struct otp_info
*);
77 static int cfi_amdstd_secsi_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*, loff_t
, size_t,
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*, loff_t
, size_t);
86 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
87 size_t *retlen
, const u_char
*buf
);
89 static void cfi_amdstd_destroy(struct mtd_info
*);
91 struct mtd_info
*cfi_cmdset_0002(struct map_info
*, int);
92 static struct mtd_info
*cfi_amdstd_setup (struct mtd_info
*);
94 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
95 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
98 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
99 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
101 static int cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
102 static int cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
103 static int cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
105 static struct mtd_chip_driver cfi_amdstd_chipdrv
= {
106 .probe
= NULL
, /* Not usable directly */
107 .destroy
= cfi_amdstd_destroy
,
108 .name
= "cfi_cmdset_0002",
109 .module
= THIS_MODULE
113 * Use status register to poll for Erase/write completion when DQ is not
114 * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115 * CFI Primary Vendor-Specific Extended Query table 1.5
117 static int cfi_use_status_reg(struct cfi_private
*cfi
)
119 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
120 u8 poll_mask
= CFI_POLL_STATUS_REG
| CFI_POLL_DQ
;
122 return extp
->MinorVersion
>= '5' &&
123 (extp
->SoftwareFeatures
& poll_mask
) == CFI_POLL_STATUS_REG
;
126 static int cfi_check_err_status(struct map_info
*map
, struct flchip
*chip
,
129 struct cfi_private
*cfi
= map
->fldrv_priv
;
132 if (!cfi_use_status_reg(cfi
))
135 cfi_send_gen_cmd(0x70, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
136 cfi
->device_type
, NULL
);
137 status
= map_read(map
, adr
);
139 /* The error bits are invalid while the chip's busy */
140 if (!map_word_bitsset(map
, status
, CMD(CFI_SR_DRB
)))
143 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
144 unsigned long chipstatus
= MERGESTATUS(status
);
146 if (chipstatus
& CFI_SR_ESB
)
147 pr_err("%s erase operation failed, status %lx\n",
148 map
->name
, chipstatus
);
149 if (chipstatus
& CFI_SR_PSB
)
150 pr_err("%s program operation failed, status %lx\n",
151 map
->name
, chipstatus
);
152 if (chipstatus
& CFI_SR_WBASB
)
153 pr_err("%s buffer program command aborted, status %lx\n",
154 map
->name
, chipstatus
);
155 if (chipstatus
& CFI_SR_SLSB
)
156 pr_err("%s sector write protected, status %lx\n",
157 map
->name
, chipstatus
);
159 /* Erase/Program status bits are set on the operation failure */
160 if (chipstatus
& (CFI_SR_ESB
| CFI_SR_PSB
))
166 /* #define DEBUG_CFI_FEATURES */
169 #ifdef DEBUG_CFI_FEATURES
170 static void cfi_tell_features(struct cfi_pri_amdstd
*extp
)
172 const char* erase_suspend
[3] = {
173 "Not supported", "Read only", "Read/write"
175 const char* top_bottom
[6] = {
176 "No WP", "8x8KiB sectors at top & bottom, no WP",
177 "Bottom boot", "Top boot",
178 "Uniform, Bottom WP", "Uniform, Top WP"
181 printk(" Silicon revision: %d\n", extp
->SiliconRevision
>> 1);
182 printk(" Address sensitive unlock: %s\n",
183 (extp
->SiliconRevision
& 1) ? "Not required" : "Required");
185 if (extp
->EraseSuspend
< ARRAY_SIZE(erase_suspend
))
186 printk(" Erase Suspend: %s\n", erase_suspend
[extp
->EraseSuspend
]);
188 printk(" Erase Suspend: Unknown value %d\n", extp
->EraseSuspend
);
190 if (extp
->BlkProt
== 0)
191 printk(" Block protection: Not supported\n");
193 printk(" Block protection: %d sectors per group\n", extp
->BlkProt
);
196 printk(" Temporary block unprotect: %s\n",
197 extp
->TmpBlkUnprotect
? "Supported" : "Not supported");
198 printk(" Block protect/unprotect scheme: %d\n", extp
->BlkProtUnprot
);
199 printk(" Number of simultaneous operations: %d\n", extp
->SimultaneousOps
);
200 printk(" Burst mode: %s\n",
201 extp
->BurstMode
? "Supported" : "Not supported");
202 if (extp
->PageMode
== 0)
203 printk(" Page mode: Not supported\n");
205 printk(" Page mode: %d word page\n", extp
->PageMode
<< 2);
207 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
208 extp
->VppMin
>> 4, extp
->VppMin
& 0xf);
209 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
210 extp
->VppMax
>> 4, extp
->VppMax
& 0xf);
212 if (extp
->TopBottom
< ARRAY_SIZE(top_bottom
))
213 printk(" Top/Bottom Boot Block: %s\n", top_bottom
[extp
->TopBottom
]);
215 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp
->TopBottom
);
219 #ifdef AMD_BOOTLOC_BUG
220 /* Wheee. Bring me the head of someone at AMD. */
221 static void fixup_amd_bootblock(struct mtd_info
*mtd
)
223 struct map_info
*map
= mtd
->priv
;
224 struct cfi_private
*cfi
= map
->fldrv_priv
;
225 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
226 __u8 major
= extp
->MajorVersion
;
227 __u8 minor
= extp
->MinorVersion
;
229 if (((major
<< 8) | minor
) < 0x3131) {
230 /* CFI version 1.0 => don't trust bootloc */
232 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
233 map
->name
, cfi
->mfr
, cfi
->id
);
235 /* AFAICS all 29LV400 with a bottom boot block have a device ID
236 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
237 * These were badly detected as they have the 0x80 bit set
238 * so treat them as a special case.
240 if (((cfi
->id
== 0xBA) || (cfi
->id
== 0x22BA)) &&
242 /* Macronix added CFI to their 2nd generation
243 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
244 * Fujitsu, Spansion, EON, ESI and older Macronix)
247 * Therefore also check the manufacturer.
248 * This reduces the risk of false detection due to
249 * the 8-bit device ID.
251 (cfi
->mfr
== CFI_MFR_MACRONIX
)) {
252 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
253 " detected\n", map
->name
);
254 extp
->TopBottom
= 2; /* bottom boot */
256 if (cfi
->id
& 0x80) {
257 printk(KERN_WARNING
"%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map
->name
, cfi
->id
);
258 extp
->TopBottom
= 3; /* top boot */
260 extp
->TopBottom
= 2; /* bottom boot */
263 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
264 " deduced %s from Device ID\n", map
->name
, major
, minor
,
265 extp
->TopBottom
== 2 ? "bottom" : "top");
270 #if !FORCE_WORD_WRITE
271 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
273 struct map_info
*map
= mtd
->priv
;
274 struct cfi_private
*cfi
= map
->fldrv_priv
;
275 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
276 pr_debug("Using buffer write method\n");
277 mtd
->_write
= cfi_amdstd_write_buffers
;
280 #endif /* !FORCE_WORD_WRITE */
282 /* Atmel chips don't use the same PRI format as AMD chips */
283 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
285 struct map_info
*map
= mtd
->priv
;
286 struct cfi_private
*cfi
= map
->fldrv_priv
;
287 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
288 struct cfi_pri_atmel atmel_pri
;
290 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
291 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
293 if (atmel_pri
.Features
& 0x02)
294 extp
->EraseSuspend
= 2;
296 /* Some chips got it backwards... */
297 if (cfi
->id
== AT49BV6416
) {
298 if (atmel_pri
.BottomBoot
)
303 if (atmel_pri
.BottomBoot
)
309 /* burst write mode not supported */
310 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
311 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
314 static void fixup_use_secsi(struct mtd_info
*mtd
)
316 /* Setup for chips with a secsi area */
317 mtd
->_read_user_prot_reg
= cfi_amdstd_secsi_read
;
318 mtd
->_read_fact_prot_reg
= cfi_amdstd_secsi_read
;
321 static void fixup_use_erase_chip(struct mtd_info
*mtd
)
323 struct map_info
*map
= mtd
->priv
;
324 struct cfi_private
*cfi
= map
->fldrv_priv
;
325 if ((cfi
->cfiq
->NumEraseRegions
== 1) &&
326 ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0)) {
327 mtd
->_erase
= cfi_amdstd_erase_chip
;
333 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
336 static void fixup_use_atmel_lock(struct mtd_info
*mtd
)
338 mtd
->_lock
= cfi_atmel_lock
;
339 mtd
->_unlock
= cfi_atmel_unlock
;
340 mtd
->flags
|= MTD_POWERUP_LOCK
;
343 static void fixup_old_sst_eraseregion(struct mtd_info
*mtd
)
345 struct map_info
*map
= mtd
->priv
;
346 struct cfi_private
*cfi
= map
->fldrv_priv
;
349 * These flashes report two separate eraseblock regions based on the
350 * sector_erase-size and block_erase-size, although they both operate on the
351 * same memory. This is not allowed according to CFI, so we just pick the
354 cfi
->cfiq
->NumEraseRegions
= 1;
357 static void fixup_sst39vf(struct mtd_info
*mtd
)
359 struct map_info
*map
= mtd
->priv
;
360 struct cfi_private
*cfi
= map
->fldrv_priv
;
362 fixup_old_sst_eraseregion(mtd
);
364 cfi
->addr_unlock1
= 0x5555;
365 cfi
->addr_unlock2
= 0x2AAA;
368 static void fixup_sst39vf_rev_b(struct mtd_info
*mtd
)
370 struct map_info
*map
= mtd
->priv
;
371 struct cfi_private
*cfi
= map
->fldrv_priv
;
373 fixup_old_sst_eraseregion(mtd
);
375 cfi
->addr_unlock1
= 0x555;
376 cfi
->addr_unlock2
= 0x2AA;
378 cfi
->sector_erase_cmd
= CMD(0x50);
381 static void fixup_sst38vf640x_sectorsize(struct mtd_info
*mtd
)
383 struct map_info
*map
= mtd
->priv
;
384 struct cfi_private
*cfi
= map
->fldrv_priv
;
386 fixup_sst39vf_rev_b(mtd
);
389 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
390 * it should report a size of 8KBytes (0x0020*256).
392 cfi
->cfiq
->EraseRegionInfo
[0] = 0x002003ff;
393 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
397 static void fixup_s29gl064n_sectors(struct mtd_info
*mtd
)
399 struct map_info
*map
= mtd
->priv
;
400 struct cfi_private
*cfi
= map
->fldrv_priv
;
402 if ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0x003f) {
403 cfi
->cfiq
->EraseRegionInfo
[0] |= 0x0040;
404 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
409 static void fixup_s29gl032n_sectors(struct mtd_info
*mtd
)
411 struct map_info
*map
= mtd
->priv
;
412 struct cfi_private
*cfi
= map
->fldrv_priv
;
414 if ((cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff) == 0x007e) {
415 cfi
->cfiq
->EraseRegionInfo
[1] &= ~0x0040;
416 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
421 static void fixup_s29ns512p_sectors(struct mtd_info
*mtd
)
423 struct map_info
*map
= mtd
->priv
;
424 struct cfi_private
*cfi
= map
->fldrv_priv
;
427 * S29NS512P flash uses more than 8bits to report number of sectors,
428 * which is not permitted by CFI.
430 cfi
->cfiq
->EraseRegionInfo
[0] = 0x020001ff;
431 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
435 /* Used to fix CFI-Tables of chips without Extended Query Tables */
436 static struct cfi_fixup cfi_nopri_fixup_table
[] = {
437 { CFI_MFR_SST
, 0x234a, fixup_sst39vf
}, /* SST39VF1602 */
438 { CFI_MFR_SST
, 0x234b, fixup_sst39vf
}, /* SST39VF1601 */
439 { CFI_MFR_SST
, 0x235a, fixup_sst39vf
}, /* SST39VF3202 */
440 { CFI_MFR_SST
, 0x235b, fixup_sst39vf
}, /* SST39VF3201 */
441 { CFI_MFR_SST
, 0x235c, fixup_sst39vf_rev_b
}, /* SST39VF3202B */
442 { CFI_MFR_SST
, 0x235d, fixup_sst39vf_rev_b
}, /* SST39VF3201B */
443 { CFI_MFR_SST
, 0x236c, fixup_sst39vf_rev_b
}, /* SST39VF6402B */
444 { CFI_MFR_SST
, 0x236d, fixup_sst39vf_rev_b
}, /* SST39VF6401B */
448 static struct cfi_fixup cfi_fixup_table
[] = {
449 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
450 #ifdef AMD_BOOTLOC_BUG
451 { CFI_MFR_AMD
, CFI_ID_ANY
, fixup_amd_bootblock
},
452 { CFI_MFR_AMIC
, CFI_ID_ANY
, fixup_amd_bootblock
},
453 { CFI_MFR_MACRONIX
, CFI_ID_ANY
, fixup_amd_bootblock
},
455 { CFI_MFR_AMD
, 0x0050, fixup_use_secsi
},
456 { CFI_MFR_AMD
, 0x0053, fixup_use_secsi
},
457 { CFI_MFR_AMD
, 0x0055, fixup_use_secsi
},
458 { CFI_MFR_AMD
, 0x0056, fixup_use_secsi
},
459 { CFI_MFR_AMD
, 0x005C, fixup_use_secsi
},
460 { CFI_MFR_AMD
, 0x005F, fixup_use_secsi
},
461 { CFI_MFR_AMD
, 0x0c01, fixup_s29gl064n_sectors
},
462 { CFI_MFR_AMD
, 0x1301, fixup_s29gl064n_sectors
},
463 { CFI_MFR_AMD
, 0x1a00, fixup_s29gl032n_sectors
},
464 { CFI_MFR_AMD
, 0x1a01, fixup_s29gl032n_sectors
},
465 { CFI_MFR_AMD
, 0x3f00, fixup_s29ns512p_sectors
},
466 { CFI_MFR_SST
, 0x536a, fixup_sst38vf640x_sectorsize
}, /* SST38VF6402 */
467 { CFI_MFR_SST
, 0x536b, fixup_sst38vf640x_sectorsize
}, /* SST38VF6401 */
468 { CFI_MFR_SST
, 0x536c, fixup_sst38vf640x_sectorsize
}, /* SST38VF6404 */
469 { CFI_MFR_SST
, 0x536d, fixup_sst38vf640x_sectorsize
}, /* SST38VF6403 */
470 #if !FORCE_WORD_WRITE
471 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
475 static struct cfi_fixup jedec_fixup_table
[] = {
476 { CFI_MFR_SST
, SST49LF004B
, fixup_use_fwh_lock
},
477 { CFI_MFR_SST
, SST49LF040B
, fixup_use_fwh_lock
},
478 { CFI_MFR_SST
, SST49LF008A
, fixup_use_fwh_lock
},
482 static struct cfi_fixup fixup_table
[] = {
483 /* The CFI vendor ids and the JEDEC vendor IDs appear
484 * to be common. It is like the devices id's are as
485 * well. This table is to pick all cases where
486 * we know that is the case.
488 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_erase_chip
},
489 { CFI_MFR_ATMEL
, AT49BV6416
, fixup_use_atmel_lock
},
494 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
495 struct cfi_pri_amdstd
*extp
)
497 if (cfi
->mfr
== CFI_MFR_SAMSUNG
) {
498 if ((extp
->MajorVersion
== '0' && extp
->MinorVersion
== '0') ||
499 (extp
->MajorVersion
== '3' && extp
->MinorVersion
== '3')) {
501 * Samsung K8P2815UQB and K8D6x16UxM chips
502 * report major=0 / minor=0.
503 * K8D3x16UxC chips report major=3 / minor=3.
505 printk(KERN_NOTICE
" Fixing Samsung's Amd/Fujitsu"
506 " Extended Query version to 1.%c\n",
508 extp
->MajorVersion
= '1';
513 * SST 38VF640x chips report major=0xFF / minor=0xFF.
515 if (cfi
->mfr
== CFI_MFR_SST
&& (cfi
->id
>> 4) == 0x0536) {
516 extp
->MajorVersion
= '1';
517 extp
->MinorVersion
= '0';
521 static int is_m29ew(struct cfi_private
*cfi
)
523 if (cfi
->mfr
== CFI_MFR_INTEL
&&
524 ((cfi
->device_type
== CFI_DEVICETYPE_X8
&& (cfi
->id
& 0xff) == 0x7e) ||
525 (cfi
->device_type
== CFI_DEVICETYPE_X16
&& cfi
->id
== 0x227e)))
531 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
532 * Some revisions of the M29EW suffer from erase suspend hang ups. In
533 * particular, it can occur when the sequence
534 * Erase Confirm -> Suspend -> Program -> Resume
535 * causes a lockup due to internal timing issues. The consequence is that the
536 * erase cannot be resumed without inserting a dummy command after programming
537 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
538 * that writes an F0 command code before the RESUME command.
540 static void cfi_fixup_m29ew_erase_suspend(struct map_info
*map
,
543 struct cfi_private
*cfi
= map
->fldrv_priv
;
544 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
546 map_write(map
, CMD(0xF0), adr
);
550 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
552 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
553 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
554 * command is issued after an ERASE RESUME operation without waiting for a
555 * minimum delay. The result is that once the ERASE seems to be completed
556 * (no bits are toggling), the contents of the Flash memory block on which
557 * the erase was ongoing could be inconsistent with the expected values
558 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
559 * values), causing a consequent failure of the ERASE operation.
560 * The occurrence of this issue could be high, especially when file system
561 * operations on the Flash are intensive. As a result, it is recommended
562 * that a patch be applied. Intensive file system operations can cause many
563 * calls to the garbage routine to free Flash space (also by erasing physical
564 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
565 * commands can occur. The problem disappears when a delay is inserted after
566 * the RESUME command by using the udelay() function available in Linux.
567 * The DELAY value must be tuned based on the customer's platform.
568 * The maximum value that fixes the problem in all cases is 500us.
569 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
571 * We have chosen 500µs because this latency is acceptable.
573 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private
*cfi
)
576 * Resolving the Delay After Resume Issue see Micron TN-13-07
577 * Worst case delay must be 500µs but 30-50µs should be ok as well
583 struct mtd_info
*cfi_cmdset_0002(struct map_info
*map
, int primary
)
585 struct cfi_private
*cfi
= map
->fldrv_priv
;
586 struct device_node __maybe_unused
*np
= map
->device_node
;
587 struct mtd_info
*mtd
;
590 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
594 mtd
->type
= MTD_NORFLASH
;
596 /* Fill in the default mtd operations */
597 mtd
->_erase
= cfi_amdstd_erase_varsize
;
598 mtd
->_write
= cfi_amdstd_write_words
;
599 mtd
->_read
= cfi_amdstd_read
;
600 mtd
->_sync
= cfi_amdstd_sync
;
601 mtd
->_suspend
= cfi_amdstd_suspend
;
602 mtd
->_resume
= cfi_amdstd_resume
;
603 mtd
->_read_user_prot_reg
= cfi_amdstd_read_user_prot_reg
;
604 mtd
->_read_fact_prot_reg
= cfi_amdstd_read_fact_prot_reg
;
605 mtd
->_get_fact_prot_info
= cfi_amdstd_get_fact_prot_info
;
606 mtd
->_get_user_prot_info
= cfi_amdstd_get_user_prot_info
;
607 mtd
->_write_user_prot_reg
= cfi_amdstd_write_user_prot_reg
;
608 mtd
->_lock_user_prot_reg
= cfi_amdstd_lock_user_prot_reg
;
609 mtd
->flags
= MTD_CAP_NORFLASH
;
610 mtd
->name
= map
->name
;
612 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
614 pr_debug("MTD %s(): write buffer size %d\n", __func__
,
617 mtd
->_panic_write
= cfi_amdstd_panic_write
;
618 mtd
->reboot_notifier
.notifier_call
= cfi_amdstd_reboot
;
620 if (cfi
->cfi_mode
==CFI_MODE_CFI
){
621 unsigned char bootloc
;
622 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
623 struct cfi_pri_amdstd
*extp
;
625 extp
= (struct cfi_pri_amdstd
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "Amd/Fujitsu");
628 * It's a real CFI chip, not one for which the probe
629 * routine faked a CFI structure.
631 cfi_fixup_major_minor(cfi
, extp
);
634 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
635 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
636 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
637 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
638 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
640 if (extp
->MajorVersion
!= '1' ||
641 (extp
->MajorVersion
== '1' && (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5'))) {
642 printk(KERN_ERR
" Unknown Amd/Fujitsu Extended Query "
643 "version %c.%c (%#02x/%#02x).\n",
644 extp
->MajorVersion
, extp
->MinorVersion
,
645 extp
->MajorVersion
, extp
->MinorVersion
);
651 printk(KERN_INFO
" Amd/Fujitsu Extended Query version %c.%c.\n",
652 extp
->MajorVersion
, extp
->MinorVersion
);
654 /* Install our own private info structure */
655 cfi
->cmdset_priv
= extp
;
657 /* Apply cfi device specific fixups */
658 cfi_fixup(mtd
, cfi_fixup_table
);
660 #ifdef DEBUG_CFI_FEATURES
661 /* Tell the user about it in lots of lovely detail */
662 cfi_tell_features(extp
);
666 if (np
&& of_property_read_bool(
667 np
, "use-advanced-sector-protection")
668 && extp
->BlkProtUnprot
== 8) {
669 printk(KERN_INFO
" Advanced Sector Protection (PPB Locking) supported\n");
670 mtd
->_lock
= cfi_ppb_lock
;
671 mtd
->_unlock
= cfi_ppb_unlock
;
672 mtd
->_is_locked
= cfi_ppb_is_locked
;
676 bootloc
= extp
->TopBottom
;
677 if ((bootloc
< 2) || (bootloc
> 5)) {
678 printk(KERN_WARNING
"%s: CFI contains unrecognised boot "
679 "bank location (%d). Assuming bottom.\n",
684 if (bootloc
== 3 && cfi
->cfiq
->NumEraseRegions
> 1) {
685 printk(KERN_WARNING
"%s: Swapping erase regions for top-boot CFI table.\n", map
->name
);
687 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
/ 2; i
++) {
688 int j
= (cfi
->cfiq
->NumEraseRegions
-1)-i
;
690 swap(cfi
->cfiq
->EraseRegionInfo
[i
],
691 cfi
->cfiq
->EraseRegionInfo
[j
]);
694 /* Set the default CFI lock/unlock addresses */
695 cfi
->addr_unlock1
= 0x555;
696 cfi
->addr_unlock2
= 0x2aa;
698 cfi_fixup(mtd
, cfi_nopri_fixup_table
);
700 if (!cfi
->addr_unlock1
|| !cfi
->addr_unlock2
) {
706 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
707 /* Apply jedec specific fixups */
708 cfi_fixup(mtd
, jedec_fixup_table
);
710 /* Apply generic fixups */
711 cfi_fixup(mtd
, fixup_table
);
713 for (i
=0; i
< cfi
->numchips
; i
++) {
714 cfi
->chips
[i
].word_write_time
= 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
715 cfi
->chips
[i
].buffer_write_time
= 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
716 cfi
->chips
[i
].erase_time
= 1<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
718 * First calculate the timeout max according to timeout field
719 * of struct cfi_ident that probed from chip's CFI aera, if
720 * available. Specify a minimum of 2000us, in case the CFI data
723 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
724 cfi
->cfiq
->BufWriteTimeoutMax
)
725 cfi
->chips
[i
].buffer_write_time_max
=
726 1 << (cfi
->cfiq
->BufWriteTimeoutTyp
+
727 cfi
->cfiq
->BufWriteTimeoutMax
);
729 cfi
->chips
[i
].buffer_write_time_max
= 0;
731 cfi
->chips
[i
].buffer_write_time_max
=
732 max(cfi
->chips
[i
].buffer_write_time_max
, 2000);
734 cfi
->chips
[i
].ref_point_counter
= 0;
735 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
738 map
->fldrv
= &cfi_amdstd_chipdrv
;
740 return cfi_amdstd_setup(mtd
);
742 struct mtd_info
*cfi_cmdset_0006(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
743 struct mtd_info
*cfi_cmdset_0701(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
744 EXPORT_SYMBOL_GPL(cfi_cmdset_0002
);
745 EXPORT_SYMBOL_GPL(cfi_cmdset_0006
);
746 EXPORT_SYMBOL_GPL(cfi_cmdset_0701
);
748 static struct mtd_info
*cfi_amdstd_setup(struct mtd_info
*mtd
)
750 struct map_info
*map
= mtd
->priv
;
751 struct cfi_private
*cfi
= map
->fldrv_priv
;
752 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
753 unsigned long offset
= 0;
756 printk(KERN_NOTICE
"number of %s chips: %d\n",
757 (cfi
->cfi_mode
== CFI_MODE_CFI
)?"CFI":"JEDEC",cfi
->numchips
);
758 /* Select the correct geometry setup */
759 mtd
->size
= devsize
* cfi
->numchips
;
761 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
762 mtd
->eraseregions
= kmalloc_array(mtd
->numeraseregions
,
763 sizeof(struct mtd_erase_region_info
),
765 if (!mtd
->eraseregions
)
768 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
769 unsigned long ernum
, ersize
;
770 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
771 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
773 if (mtd
->erasesize
< ersize
) {
774 mtd
->erasesize
= ersize
;
776 for (j
=0; j
<cfi
->numchips
; j
++) {
777 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
778 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
779 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
781 offset
+= (ersize
* ernum
);
783 if (offset
!= devsize
) {
785 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
789 __module_get(THIS_MODULE
);
790 register_reboot_notifier(&mtd
->reboot_notifier
);
794 kfree(mtd
->eraseregions
);
796 kfree(cfi
->cmdset_priv
);
801 * Return true if the chip is ready.
803 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
804 * non-suspended sector) and is indicated by no toggle bits toggling.
806 * Note that anything more complicated than checking if no bits are toggling
807 * (including checking DQ5 for an error status) is tricky to get working
808 * correctly and is therefore not done (particularly with interleaved chips
809 * as each chip must be checked independently of the others).
811 static int __xipram
chip_ready(struct map_info
*map
, struct flchip
*chip
,
814 struct cfi_private
*cfi
= map
->fldrv_priv
;
817 if (cfi_use_status_reg(cfi
)) {
818 map_word ready
= CMD(CFI_SR_DRB
);
820 * For chips that support status register, check device
823 cfi_send_gen_cmd(0x70, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
824 cfi
->device_type
, NULL
);
825 d
= map_read(map
, addr
);
827 return map_word_andequal(map
, d
, ready
, ready
);
830 d
= map_read(map
, addr
);
831 t
= map_read(map
, addr
);
833 return map_word_equal(map
, d
, t
);
837 * Return true if the chip is ready and has the correct value.
839 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
840 * non-suspended sector) and it is indicated by no bits toggling.
842 * Error are indicated by toggling bits or bits held with the wrong value,
843 * or with bits toggling.
845 * Note that anything more complicated than checking if no bits are toggling
846 * (including checking DQ5 for an error status) is tricky to get working
847 * correctly and is therefore not done (particularly with interleaved chips
848 * as each chip must be checked independently of the others).
851 static int __xipram
chip_good(struct map_info
*map
, struct flchip
*chip
,
852 unsigned long addr
, map_word expected
)
854 struct cfi_private
*cfi
= map
->fldrv_priv
;
857 if (cfi_use_status_reg(cfi
)) {
858 map_word ready
= CMD(CFI_SR_DRB
);
861 * For chips that support status register, check device
864 cfi_send_gen_cmd(0x70, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
865 cfi
->device_type
, NULL
);
866 curd
= map_read(map
, addr
);
868 return map_word_andequal(map
, curd
, ready
, ready
);
871 oldd
= map_read(map
, addr
);
872 curd
= map_read(map
, addr
);
874 return map_word_equal(map
, oldd
, curd
) &&
875 map_word_equal(map
, curd
, expected
);
878 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
880 DECLARE_WAITQUEUE(wait
, current
);
881 struct cfi_private
*cfi
= map
->fldrv_priv
;
883 struct cfi_pri_amdstd
*cfip
= (struct cfi_pri_amdstd
*)cfi
->cmdset_priv
;
886 timeo
= jiffies
+ HZ
;
888 switch (chip
->state
) {
892 if (chip_ready(map
, chip
, adr
))
895 if (time_after(jiffies
, timeo
)) {
896 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
899 mutex_unlock(&chip
->mutex
);
901 mutex_lock(&chip
->mutex
);
902 /* Someone else might have been playing with it. */
912 if (!cfip
|| !(cfip
->EraseSuspend
& (0x1|0x2)) ||
913 !(mode
== FL_READY
|| mode
== FL_POINT
||
914 (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x2))))
917 /* Do not allow suspend iff read/write to EB address */
918 if ((adr
& chip
->in_progress_block_mask
) ==
919 chip
->in_progress_block_addr
)
923 /* It's harmless to issue the Erase-Suspend and Erase-Resume
924 * commands when the erase algorithm isn't in progress. */
925 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
926 chip
->oldstate
= FL_ERASING
;
927 chip
->state
= FL_ERASE_SUSPENDING
;
928 chip
->erase_suspended
= 1;
930 if (chip_ready(map
, chip
, adr
))
933 if (time_after(jiffies
, timeo
)) {
934 /* Should have suspended the erase by now.
935 * Send an Erase-Resume command as either
936 * there was an error (so leave the erase
937 * routine to recover from it) or we trying to
938 * use the erase-in-progress sector. */
939 put_chip(map
, chip
, adr
);
940 printk(KERN_ERR
"MTD %s(): chip not ready after erase suspend\n", __func__
);
944 mutex_unlock(&chip
->mutex
);
946 mutex_lock(&chip
->mutex
);
947 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
948 So we can just loop here. */
950 chip
->state
= FL_READY
;
953 case FL_XIP_WHILE_ERASING
:
954 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
955 (!cfip
|| !(cfip
->EraseSuspend
&2)))
957 chip
->oldstate
= chip
->state
;
958 chip
->state
= FL_READY
;
962 /* The machine is rebooting */
966 /* Only if there's no operation suspended... */
967 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
972 set_current_state(TASK_UNINTERRUPTIBLE
);
973 add_wait_queue(&chip
->wq
, &wait
);
974 mutex_unlock(&chip
->mutex
);
976 remove_wait_queue(&chip
->wq
, &wait
);
977 mutex_lock(&chip
->mutex
);
983 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
985 struct cfi_private
*cfi
= map
->fldrv_priv
;
987 switch(chip
->oldstate
) {
989 cfi_fixup_m29ew_erase_suspend(map
,
990 chip
->in_progress_block_addr
);
991 map_write(map
, cfi
->sector_erase_cmd
, chip
->in_progress_block_addr
);
992 cfi_fixup_m29ew_delay_after_resume(cfi
);
993 chip
->oldstate
= FL_READY
;
994 chip
->state
= FL_ERASING
;
997 case FL_XIP_WHILE_ERASING
:
998 chip
->state
= chip
->oldstate
;
999 chip
->oldstate
= FL_READY
;
1006 printk(KERN_ERR
"MTD: put_chip() called with oldstate %d!!\n", chip
->oldstate
);
1011 #ifdef CONFIG_MTD_XIP
1014 * No interrupt what so ever can be serviced while the flash isn't in array
1015 * mode. This is ensured by the xip_disable() and xip_enable() functions
1016 * enclosing any code path where the flash is known not to be in array mode.
1017 * And within a XIP disabled code path, only functions marked with __xipram
1018 * may be called and nothing else (it's a good thing to inspect generated
1019 * assembly to make sure inline functions were actually inlined and that gcc
1020 * didn't emit calls to its own support functions). Also configuring MTD CFI
1021 * support to a single buswidth and a single interleave is also recommended.
1024 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
1027 /* TODO: chips with no XIP use should ignore and return */
1028 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
1029 local_irq_disable();
1032 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
1035 struct cfi_private
*cfi
= map
->fldrv_priv
;
1037 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1038 map_write(map
, CMD(0xf0), adr
);
1039 chip
->state
= FL_READY
;
1041 (void) map_read(map
, adr
);
1047 * When a delay is required for the flash operation to complete, the
1048 * xip_udelay() function is polling for both the given timeout and pending
1049 * (but still masked) hardware interrupts. Whenever there is an interrupt
1050 * pending then the flash erase operation is suspended, array mode restored
1051 * and interrupts unmasked. Task scheduling might also happen at that
1052 * point. The CPU eventually returns from the interrupt or the call to
1053 * schedule() and the suspended flash operation is resumed for the remaining
1054 * of the delay period.
1056 * Warning: this function _will_ fool interrupt latency tracing tools.
1059 static void __xipram
xip_udelay(struct map_info
*map
, struct flchip
*chip
,
1060 unsigned long adr
, int usec
)
1062 struct cfi_private
*cfi
= map
->fldrv_priv
;
1063 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
1064 map_word status
, OK
= CMD(0x80);
1065 unsigned long suspended
, start
= xip_currtime();
1070 if (xip_irqpending() && extp
&&
1071 ((chip
->state
== FL_ERASING
&& (extp
->EraseSuspend
& 2))) &&
1072 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
1074 * Let's suspend the erase operation when supported.
1075 * Note that we currently don't try to suspend
1076 * interleaved chips if there is already another
1077 * operation suspended (imagine what happens
1078 * when one chip was already done with the current
1079 * operation while another chip suspended it, then
1080 * we resume the whole thing at once). Yes, it
1083 map_write(map
, CMD(0xb0), adr
);
1084 usec
-= xip_elapsed_since(start
);
1085 suspended
= xip_currtime();
1087 if (xip_elapsed_since(suspended
) > 100000) {
1089 * The chip doesn't want to suspend
1090 * after waiting for 100 msecs.
1091 * This is a critical error but there
1092 * is not much we can do here.
1096 status
= map_read(map
, adr
);
1097 } while (!map_word_andequal(map
, status
, OK
, OK
));
1099 /* Suspend succeeded */
1100 oldstate
= chip
->state
;
1101 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1103 chip
->state
= FL_XIP_WHILE_ERASING
;
1104 chip
->erase_suspended
= 1;
1105 map_write(map
, CMD(0xf0), adr
);
1106 (void) map_read(map
, adr
);
1109 mutex_unlock(&chip
->mutex
);
1114 * We're back. However someone else might have
1115 * decided to go write to the chip if we are in
1116 * a suspended erase state. If so let's wait
1119 mutex_lock(&chip
->mutex
);
1120 while (chip
->state
!= FL_XIP_WHILE_ERASING
) {
1121 DECLARE_WAITQUEUE(wait
, current
);
1122 set_current_state(TASK_UNINTERRUPTIBLE
);
1123 add_wait_queue(&chip
->wq
, &wait
);
1124 mutex_unlock(&chip
->mutex
);
1126 remove_wait_queue(&chip
->wq
, &wait
);
1127 mutex_lock(&chip
->mutex
);
1129 /* Disallow XIP again */
1130 local_irq_disable();
1132 /* Correct Erase Suspend Hangups for M29EW */
1133 cfi_fixup_m29ew_erase_suspend(map
, adr
);
1134 /* Resume the write or erase operation */
1135 map_write(map
, cfi
->sector_erase_cmd
, adr
);
1136 chip
->state
= oldstate
;
1137 start
= xip_currtime();
1138 } else if (usec
>= 1000000/HZ
) {
1140 * Try to save on CPU power when waiting delay
1141 * is at least a system timer tick period.
1142 * No need to be extremely accurate here.
1146 status
= map_read(map
, adr
);
1147 } while (!map_word_andequal(map
, status
, OK
, OK
)
1148 && xip_elapsed_since(start
) < usec
);
1151 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1154 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1155 * the flash is actively programming or erasing since we have to poll for
1156 * the operation to complete anyway. We can't do that in a generic way with
1157 * a XIP setup so do it before the actual flash operation in this case
1158 * and stub it out from INVALIDATE_CACHE_UDELAY.
1160 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1161 INVALIDATE_CACHED_RANGE(map, from, size)
1163 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1164 UDELAY(map, chip, adr, usec)
1169 * Activating this XIP support changes the way the code works a bit. For
1170 * example the code to suspend the current process when concurrent access
1171 * happens is never executed because xip_udelay() will always return with the
1172 * same chip state as it was entered with. This is why there is no care for
1173 * the presence of add_wait_queue() or schedule() calls from within a couple
1174 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1175 * The queueing and scheduling are always happening within xip_udelay().
1177 * Similarly, get_chip() and put_chip() just happen to always be executed
1178 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1179 * is in array mode, therefore never executing many cases therein and not
1180 * causing any problem with XIP.
1185 #define xip_disable(map, chip, adr)
1186 #define xip_enable(map, chip, adr)
1187 #define XIP_INVAL_CACHED_RANGE(x...)
1189 #define UDELAY(map, chip, adr, usec) \
1191 mutex_unlock(&chip->mutex); \
1193 mutex_lock(&chip->mutex); \
1196 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1198 mutex_unlock(&chip->mutex); \
1199 INVALIDATE_CACHED_RANGE(map, adr, len); \
1201 mutex_lock(&chip->mutex); \
1206 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1208 unsigned long cmd_addr
;
1209 struct cfi_private
*cfi
= map
->fldrv_priv
;
1214 /* Ensure cmd read/writes are aligned. */
1215 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1217 mutex_lock(&chip
->mutex
);
1218 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1220 mutex_unlock(&chip
->mutex
);
1224 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1225 map_write(map
, CMD(0xf0), cmd_addr
);
1226 chip
->state
= FL_READY
;
1229 map_copy_from(map
, buf
, adr
, len
);
1231 put_chip(map
, chip
, cmd_addr
);
1233 mutex_unlock(&chip
->mutex
);
1238 static int cfi_amdstd_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1240 struct map_info
*map
= mtd
->priv
;
1241 struct cfi_private
*cfi
= map
->fldrv_priv
;
1246 /* ofs: offset within the first chip that the first read should start */
1247 chipnum
= (from
>> cfi
->chipshift
);
1248 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1251 unsigned long thislen
;
1253 if (chipnum
>= cfi
->numchips
)
1256 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1257 thislen
= (1<<cfi
->chipshift
) - ofs
;
1261 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1275 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
1276 loff_t adr
, size_t len
, u_char
*buf
, size_t grouplen
);
1278 static inline void otp_enter(struct map_info
*map
, struct flchip
*chip
,
1279 loff_t adr
, size_t len
)
1281 struct cfi_private
*cfi
= map
->fldrv_priv
;
1283 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1284 cfi
->device_type
, NULL
);
1285 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1286 cfi
->device_type
, NULL
);
1287 cfi_send_gen_cmd(0x88, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1288 cfi
->device_type
, NULL
);
1290 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1293 static inline void otp_exit(struct map_info
*map
, struct flchip
*chip
,
1294 loff_t adr
, size_t len
)
1296 struct cfi_private
*cfi
= map
->fldrv_priv
;
1298 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1299 cfi
->device_type
, NULL
);
1300 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1301 cfi
->device_type
, NULL
);
1302 cfi_send_gen_cmd(0x90, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1303 cfi
->device_type
, NULL
);
1304 cfi_send_gen_cmd(0x00, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1305 cfi
->device_type
, NULL
);
1307 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1310 static inline int do_read_secsi_onechip(struct map_info
*map
,
1311 struct flchip
*chip
, loff_t adr
,
1312 size_t len
, u_char
*buf
,
1315 DECLARE_WAITQUEUE(wait
, current
);
1318 mutex_lock(&chip
->mutex
);
1320 if (chip
->state
!= FL_READY
){
1321 set_current_state(TASK_UNINTERRUPTIBLE
);
1322 add_wait_queue(&chip
->wq
, &wait
);
1324 mutex_unlock(&chip
->mutex
);
1327 remove_wait_queue(&chip
->wq
, &wait
);
1334 chip
->state
= FL_READY
;
1336 otp_enter(map
, chip
, adr
, len
);
1337 map_copy_from(map
, buf
, adr
, len
);
1338 otp_exit(map
, chip
, adr
, len
);
1341 mutex_unlock(&chip
->mutex
);
1346 static int cfi_amdstd_secsi_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1348 struct map_info
*map
= mtd
->priv
;
1349 struct cfi_private
*cfi
= map
->fldrv_priv
;
1354 /* ofs: offset within the first chip that the first read should start */
1355 /* 8 secsi bytes per chip */
1360 unsigned long thislen
;
1362 if (chipnum
>= cfi
->numchips
)
1365 if ((len
+ ofs
-1) >> 3)
1366 thislen
= (1<<3) - ofs
;
1370 ret
= do_read_secsi_onechip(map
, &cfi
->chips
[chipnum
], ofs
,
1385 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1386 unsigned long adr
, map_word datum
,
1389 static int do_otp_write(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1390 size_t len
, u_char
*buf
, size_t grouplen
)
1394 unsigned long bus_ofs
= adr
& ~(map_bankwidth(map
)-1);
1395 int gap
= adr
- bus_ofs
;
1396 int n
= min_t(int, len
, map_bankwidth(map
) - gap
);
1397 map_word datum
= map_word_ff(map
);
1399 if (n
!= map_bankwidth(map
)) {
1400 /* partial write of a word, load old contents */
1401 otp_enter(map
, chip
, bus_ofs
, map_bankwidth(map
));
1402 datum
= map_read(map
, bus_ofs
);
1403 otp_exit(map
, chip
, bus_ofs
, map_bankwidth(map
));
1406 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1407 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
1419 static int do_otp_lock(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1420 size_t len
, u_char
*buf
, size_t grouplen
)
1422 struct cfi_private
*cfi
= map
->fldrv_priv
;
1424 unsigned long timeo
;
1427 /* make sure area matches group boundaries */
1428 if ((adr
!= 0) || (len
!= grouplen
))
1431 mutex_lock(&chip
->mutex
);
1432 ret
= get_chip(map
, chip
, chip
->start
, FL_LOCKING
);
1434 mutex_unlock(&chip
->mutex
);
1437 chip
->state
= FL_LOCKING
;
1439 /* Enter lock register command */
1440 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1441 cfi
->device_type
, NULL
);
1442 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1443 cfi
->device_type
, NULL
);
1444 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1445 cfi
->device_type
, NULL
);
1447 /* read lock register */
1448 lockreg
= cfi_read_query(map
, 0);
1450 /* set bit 0 to protect extended memory block */
1453 /* set bit 0 to protect extended memory block */
1454 /* write lock register */
1455 map_write(map
, CMD(0xA0), chip
->start
);
1456 map_write(map
, CMD(lockreg
), chip
->start
);
1458 /* wait for chip to become ready */
1459 timeo
= jiffies
+ msecs_to_jiffies(2);
1461 if (chip_ready(map
, chip
, adr
))
1464 if (time_after(jiffies
, timeo
)) {
1465 pr_err("Waiting for chip to be ready timed out.\n");
1469 UDELAY(map
, chip
, 0, 1);
1472 /* exit protection commands */
1473 map_write(map
, CMD(0x90), chip
->start
);
1474 map_write(map
, CMD(0x00), chip
->start
);
1476 chip
->state
= FL_READY
;
1477 put_chip(map
, chip
, chip
->start
);
1478 mutex_unlock(&chip
->mutex
);
1483 static int cfi_amdstd_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1484 size_t *retlen
, u_char
*buf
,
1485 otp_op_t action
, int user_regs
)
1487 struct map_info
*map
= mtd
->priv
;
1488 struct cfi_private
*cfi
= map
->fldrv_priv
;
1489 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1492 struct flchip
*chip
;
1493 uint8_t otp
, lockreg
;
1496 size_t user_size
, factory_size
, otpsize
;
1497 loff_t user_offset
, factory_offset
, otpoffset
;
1498 int user_locked
= 0, otplocked
;
1502 for (chipnum
= 0; chipnum
< cfi
->numchips
; chipnum
++) {
1503 chip
= &cfi
->chips
[chipnum
];
1507 /* Micron M29EW family */
1508 if (is_m29ew(cfi
)) {
1511 /* check whether secsi area is factory locked
1513 mutex_lock(&chip
->mutex
);
1514 ret
= get_chip(map
, chip
, base
, FL_CFI_QUERY
);
1516 mutex_unlock(&chip
->mutex
);
1519 cfi_qry_mode_on(base
, map
, cfi
);
1520 otp
= cfi_read_query(map
, base
+ 0x3 * ofs_factor
);
1521 cfi_qry_mode_off(base
, map
, cfi
);
1522 put_chip(map
, chip
, base
);
1523 mutex_unlock(&chip
->mutex
);
1526 /* factory locked */
1528 factory_size
= 0x100;
1530 /* customer lockable */
1534 mutex_lock(&chip
->mutex
);
1535 ret
= get_chip(map
, chip
, base
, FL_LOCKING
);
1537 mutex_unlock(&chip
->mutex
);
1541 /* Enter lock register command */
1542 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
,
1543 chip
->start
, map
, cfi
,
1544 cfi
->device_type
, NULL
);
1545 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
,
1546 chip
->start
, map
, cfi
,
1547 cfi
->device_type
, NULL
);
1548 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
,
1549 chip
->start
, map
, cfi
,
1550 cfi
->device_type
, NULL
);
1551 /* read lock register */
1552 lockreg
= cfi_read_query(map
, 0);
1553 /* exit protection commands */
1554 map_write(map
, CMD(0x90), chip
->start
);
1555 map_write(map
, CMD(0x00), chip
->start
);
1556 put_chip(map
, chip
, chip
->start
);
1557 mutex_unlock(&chip
->mutex
);
1559 user_locked
= ((lockreg
& 0x01) == 0x00);
1563 otpsize
= user_regs
? user_size
: factory_size
;
1566 otpoffset
= user_regs
? user_offset
: factory_offset
;
1567 otplocked
= user_regs
? user_locked
: 1;
1570 /* return otpinfo */
1571 struct otp_info
*otpinfo
;
1572 len
-= sizeof(*otpinfo
);
1575 otpinfo
= (struct otp_info
*)buf
;
1576 otpinfo
->start
= from
;
1577 otpinfo
->length
= otpsize
;
1578 otpinfo
->locked
= otplocked
;
1579 buf
+= sizeof(*otpinfo
);
1580 *retlen
+= sizeof(*otpinfo
);
1582 } else if ((from
< otpsize
) && (len
> 0)) {
1584 size
= (len
< otpsize
- from
) ? len
: otpsize
- from
;
1585 ret
= action(map
, chip
, otpoffset
+ from
, size
, buf
,
1601 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
1602 size_t *retlen
, struct otp_info
*buf
)
1604 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1608 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
1609 size_t *retlen
, struct otp_info
*buf
)
1611 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1615 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1616 size_t len
, size_t *retlen
,
1619 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1620 buf
, do_read_secsi_onechip
, 0);
1623 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1624 size_t len
, size_t *retlen
,
1627 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1628 buf
, do_read_secsi_onechip
, 1);
1631 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1632 size_t len
, size_t *retlen
,
1635 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
, buf
,
1639 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1643 return cfi_amdstd_otp_walk(mtd
, from
, len
, &retlen
, NULL
,
1647 static int __xipram
do_write_oneword_once(struct map_info
*map
,
1648 struct flchip
*chip
,
1649 unsigned long adr
, map_word datum
,
1650 int mode
, struct cfi_private
*cfi
)
1652 unsigned long timeo
= jiffies
+ HZ
;
1654 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1655 * have a max write time of a few hundreds usec). However, we should
1656 * use the maximum timeout value given by the chip at probe time
1657 * instead. Unfortunately, struct flchip does have a field for
1658 * maximum timeout, only for typical which can be far too short
1659 * depending of the conditions. The ' + 1' is to avoid having a
1660 * timeout of 0 jiffies if HZ is smaller than 1000.
1662 unsigned long uWriteTimeout
= (HZ
/ 1000) + 1;
1665 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1666 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1667 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1668 map_write(map
, datum
, adr
);
1671 INVALIDATE_CACHE_UDELAY(map
, chip
,
1672 adr
, map_bankwidth(map
),
1673 chip
->word_write_time
);
1675 /* See comment above for timeout value. */
1676 timeo
= jiffies
+ uWriteTimeout
;
1678 if (chip
->state
!= mode
) {
1679 /* Someone's suspended the write. Sleep */
1680 DECLARE_WAITQUEUE(wait
, current
);
1682 set_current_state(TASK_UNINTERRUPTIBLE
);
1683 add_wait_queue(&chip
->wq
, &wait
);
1684 mutex_unlock(&chip
->mutex
);
1686 remove_wait_queue(&chip
->wq
, &wait
);
1687 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1688 mutex_lock(&chip
->mutex
);
1693 * We check "time_after" and "!chip_good" before checking
1694 * "chip_good" to avoid the failure due to scheduling.
1696 if (time_after(jiffies
, timeo
) &&
1697 !chip_good(map
, chip
, adr
, datum
)) {
1698 xip_enable(map
, chip
, adr
);
1699 printk(KERN_WARNING
"MTD %s(): software timeout\n", __func__
);
1700 xip_disable(map
, chip
, adr
);
1705 if (chip_good(map
, chip
, adr
, datum
)) {
1706 if (cfi_check_err_status(map
, chip
, adr
))
1711 /* Latency issues. Drop the lock, wait a while and retry */
1712 UDELAY(map
, chip
, adr
, 1);
1718 static int __xipram
do_write_oneword_start(struct map_info
*map
,
1719 struct flchip
*chip
,
1720 unsigned long adr
, int mode
)
1724 mutex_lock(&chip
->mutex
);
1726 ret
= get_chip(map
, chip
, adr
, mode
);
1728 mutex_unlock(&chip
->mutex
);
1732 if (mode
== FL_OTP_WRITE
)
1733 otp_enter(map
, chip
, adr
, map_bankwidth(map
));
1738 static void __xipram
do_write_oneword_done(struct map_info
*map
,
1739 struct flchip
*chip
,
1740 unsigned long adr
, int mode
)
1742 if (mode
== FL_OTP_WRITE
)
1743 otp_exit(map
, chip
, adr
, map_bankwidth(map
));
1745 chip
->state
= FL_READY
;
1747 put_chip(map
, chip
, adr
);
1749 mutex_unlock(&chip
->mutex
);
1752 static int __xipram
do_write_oneword_retry(struct map_info
*map
,
1753 struct flchip
*chip
,
1754 unsigned long adr
, map_word datum
,
1757 struct cfi_private
*cfi
= map
->fldrv_priv
;
1763 * Check for a NOP for the case when the datum to write is already
1764 * present - it saves time and works around buggy chips that corrupt
1765 * data at other locations when 0xff is written to a location that
1766 * already contains 0xff.
1768 oldd
= map_read(map
, adr
);
1769 if (map_word_equal(map
, oldd
, datum
)) {
1770 pr_debug("MTD %s(): NOP\n", __func__
);
1774 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1776 xip_disable(map
, chip
, adr
);
1779 ret
= do_write_oneword_once(map
, chip
, adr
, datum
, mode
, cfi
);
1781 /* reset on all failures. */
1782 map_write(map
, CMD(0xF0), chip
->start
);
1783 /* FIXME - should have reset delay before continuing */
1785 if (++retry_cnt
<= MAX_RETRIES
) {
1790 xip_enable(map
, chip
, adr
);
1795 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1796 unsigned long adr
, map_word datum
,
1803 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__
, adr
,
1806 ret
= do_write_oneword_start(map
, chip
, adr
, mode
);
1810 ret
= do_write_oneword_retry(map
, chip
, adr
, datum
, mode
);
1812 do_write_oneword_done(map
, chip
, adr
, mode
);
1818 static int cfi_amdstd_write_words(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1819 size_t *retlen
, const u_char
*buf
)
1821 struct map_info
*map
= mtd
->priv
;
1822 struct cfi_private
*cfi
= map
->fldrv_priv
;
1825 unsigned long ofs
, chipstart
;
1826 DECLARE_WAITQUEUE(wait
, current
);
1828 chipnum
= to
>> cfi
->chipshift
;
1829 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1830 chipstart
= cfi
->chips
[chipnum
].start
;
1832 /* If it's not bus-aligned, do the first byte write */
1833 if (ofs
& (map_bankwidth(map
)-1)) {
1834 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1835 int i
= ofs
- bus_ofs
;
1840 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1842 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1843 set_current_state(TASK_UNINTERRUPTIBLE
);
1844 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1846 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1849 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1853 /* Load 'tmp_buf' with old contents of flash */
1854 tmp_buf
= map_read(map
, bus_ofs
+chipstart
);
1856 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1858 /* Number of bytes to copy from buffer */
1859 n
= min_t(int, len
, map_bankwidth(map
)-i
);
1861 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
1863 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1864 bus_ofs
, tmp_buf
, FL_WRITING
);
1873 if (ofs
>> cfi
->chipshift
) {
1876 if (chipnum
== cfi
->numchips
)
1881 /* We are now aligned, write as much as possible */
1882 while(len
>= map_bankwidth(map
)) {
1885 datum
= map_word_load(map
, buf
);
1887 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1888 ofs
, datum
, FL_WRITING
);
1892 ofs
+= map_bankwidth(map
);
1893 buf
+= map_bankwidth(map
);
1894 (*retlen
) += map_bankwidth(map
);
1895 len
-= map_bankwidth(map
);
1897 if (ofs
>> cfi
->chipshift
) {
1900 if (chipnum
== cfi
->numchips
)
1902 chipstart
= cfi
->chips
[chipnum
].start
;
1906 /* Write the trailing bytes if any */
1907 if (len
& (map_bankwidth(map
)-1)) {
1911 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1913 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1914 set_current_state(TASK_UNINTERRUPTIBLE
);
1915 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1917 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1920 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1924 tmp_buf
= map_read(map
, ofs
+ chipstart
);
1926 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1928 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
1930 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1931 ofs
, tmp_buf
, FL_WRITING
);
1941 #if !FORCE_WORD_WRITE
1942 static int __xipram
do_write_buffer_wait(struct map_info
*map
,
1943 struct flchip
*chip
, unsigned long adr
,
1946 unsigned long timeo
;
1947 unsigned long u_write_timeout
;
1951 * Timeout is calculated according to CFI data, if available.
1952 * See more comments in cfi_cmdset_0002().
1954 u_write_timeout
= usecs_to_jiffies(chip
->buffer_write_time_max
);
1955 timeo
= jiffies
+ u_write_timeout
;
1958 if (chip
->state
!= FL_WRITING
) {
1959 /* Someone's suspended the write. Sleep */
1960 DECLARE_WAITQUEUE(wait
, current
);
1962 set_current_state(TASK_UNINTERRUPTIBLE
);
1963 add_wait_queue(&chip
->wq
, &wait
);
1964 mutex_unlock(&chip
->mutex
);
1966 remove_wait_queue(&chip
->wq
, &wait
);
1967 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1968 mutex_lock(&chip
->mutex
);
1973 * We check "time_after" and "!chip_good" before checking
1974 * "chip_good" to avoid the failure due to scheduling.
1976 if (time_after(jiffies
, timeo
) &&
1977 !chip_good(map
, chip
, adr
, datum
)) {
1978 pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1984 if (chip_good(map
, chip
, adr
, datum
)) {
1985 if (cfi_check_err_status(map
, chip
, adr
))
1990 /* Latency issues. Drop the lock, wait a while and retry */
1991 UDELAY(map
, chip
, adr
, 1);
1997 static void __xipram
do_write_buffer_reset(struct map_info
*map
,
1998 struct flchip
*chip
,
1999 struct cfi_private
*cfi
)
2002 * Recovery from write-buffer programming failures requires
2003 * the write-to-buffer-reset sequence. Since the last part
2004 * of the sequence also works as a normal reset, we can run
2005 * the same commands regardless of why we are here.
2007 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2009 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2010 cfi
->device_type
, NULL
);
2011 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2012 cfi
->device_type
, NULL
);
2013 cfi_send_gen_cmd(0xF0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2014 cfi
->device_type
, NULL
);
2016 /* FIXME - should have reset delay before continuing */
2020 * FIXME: interleaved mode not tested, and probably not supported!
2022 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
2023 unsigned long adr
, const u_char
*buf
,
2026 struct cfi_private
*cfi
= map
->fldrv_priv
;
2028 unsigned long cmd_adr
;
2035 mutex_lock(&chip
->mutex
);
2036 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
2038 mutex_unlock(&chip
->mutex
);
2042 datum
= map_word_load(map
, buf
);
2044 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2045 __func__
, adr
, datum
.x
[0]);
2047 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
2049 xip_disable(map
, chip
, cmd_adr
);
2051 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2052 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2054 /* Write Buffer Load */
2055 map_write(map
, CMD(0x25), cmd_adr
);
2057 chip
->state
= FL_WRITING_TO_BUFFER
;
2059 /* Write length of data to come */
2060 words
= len
/ map_bankwidth(map
);
2061 map_write(map
, CMD(words
- 1), cmd_adr
);
2064 while(z
< words
* map_bankwidth(map
)) {
2065 datum
= map_word_load(map
, buf
);
2066 map_write(map
, datum
, adr
+ z
);
2068 z
+= map_bankwidth(map
);
2069 buf
+= map_bankwidth(map
);
2071 z
-= map_bankwidth(map
);
2075 /* Write Buffer Program Confirm: GO GO GO */
2076 map_write(map
, CMD(0x29), cmd_adr
);
2077 chip
->state
= FL_WRITING
;
2079 INVALIDATE_CACHE_UDELAY(map
, chip
,
2080 adr
, map_bankwidth(map
),
2081 chip
->word_write_time
);
2083 ret
= do_write_buffer_wait(map
, chip
, adr
, datum
);
2085 do_write_buffer_reset(map
, chip
, cfi
);
2087 xip_enable(map
, chip
, adr
);
2089 chip
->state
= FL_READY
;
2091 put_chip(map
, chip
, adr
);
2092 mutex_unlock(&chip
->mutex
);
2098 static int cfi_amdstd_write_buffers(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2099 size_t *retlen
, const u_char
*buf
)
2101 struct map_info
*map
= mtd
->priv
;
2102 struct cfi_private
*cfi
= map
->fldrv_priv
;
2103 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
2108 chipnum
= to
>> cfi
->chipshift
;
2109 ofs
= to
- (chipnum
<< cfi
->chipshift
);
2111 /* If it's not bus-aligned, do the first word write */
2112 if (ofs
& (map_bankwidth(map
)-1)) {
2113 size_t local_len
= (-ofs
)&(map_bankwidth(map
)-1);
2114 if (local_len
> len
)
2116 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
2117 local_len
, retlen
, buf
);
2124 if (ofs
>> cfi
->chipshift
) {
2127 if (chipnum
== cfi
->numchips
)
2132 /* Write buffer is worth it only if more than one word to write... */
2133 while (len
>= map_bankwidth(map
) * 2) {
2134 /* We must not cross write block boundaries */
2135 int size
= wbufsize
- (ofs
& (wbufsize
-1));
2139 if (size
% map_bankwidth(map
))
2140 size
-= size
% map_bankwidth(map
);
2142 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
2152 if (ofs
>> cfi
->chipshift
) {
2155 if (chipnum
== cfi
->numchips
)
2161 size_t retlen_dregs
= 0;
2163 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
2164 len
, &retlen_dregs
, buf
);
2166 *retlen
+= retlen_dregs
;
2172 #endif /* !FORCE_WORD_WRITE */
2175 * Wait for the flash chip to become ready to write data
2177 * This is only called during the panic_write() path. When panic_write()
2178 * is called, the kernel is in the process of a panic, and will soon be
2179 * dead. Therefore we don't take any locks, and attempt to get access
2180 * to the chip as soon as possible.
2182 static int cfi_amdstd_panic_wait(struct map_info
*map
, struct flchip
*chip
,
2185 struct cfi_private
*cfi
= map
->fldrv_priv
;
2190 * If the driver thinks the chip is idle, and no toggle bits
2191 * are changing, then the chip is actually idle for sure.
2193 if (chip
->state
== FL_READY
&& chip_ready(map
, chip
, adr
))
2197 * Try several times to reset the chip and then wait for it
2198 * to become idle. The upper limit of a few milliseconds of
2199 * delay isn't a big problem: the kernel is dying anyway. It
2200 * is more important to save the messages.
2202 while (retries
> 0) {
2203 const unsigned long timeo
= (HZ
/ 1000) + 1;
2205 /* send the reset command */
2206 map_write(map
, CMD(0xF0), chip
->start
);
2208 /* wait for the chip to become ready */
2209 for (i
= 0; i
< jiffies_to_usecs(timeo
); i
++) {
2210 if (chip_ready(map
, chip
, adr
))
2219 /* the chip never became ready */
2224 * Write out one word of data to a single flash chip during a kernel panic
2226 * This is only called during the panic_write() path. When panic_write()
2227 * is called, the kernel is in the process of a panic, and will soon be
2228 * dead. Therefore we don't take any locks, and attempt to get access
2229 * to the chip as soon as possible.
2231 * The implementation of this routine is intentionally similar to
2232 * do_write_oneword(), in order to ease code maintenance.
2234 static int do_panic_write_oneword(struct map_info
*map
, struct flchip
*chip
,
2235 unsigned long adr
, map_word datum
)
2237 const unsigned long uWriteTimeout
= (HZ
/ 1000) + 1;
2238 struct cfi_private
*cfi
= map
->fldrv_priv
;
2246 ret
= cfi_amdstd_panic_wait(map
, chip
, adr
);
2250 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2251 __func__
, adr
, datum
.x
[0]);
2254 * Check for a NOP for the case when the datum to write is already
2255 * present - it saves time and works around buggy chips that corrupt
2256 * data at other locations when 0xff is written to a location that
2257 * already contains 0xff.
2259 oldd
= map_read(map
, adr
);
2260 if (map_word_equal(map
, oldd
, datum
)) {
2261 pr_debug("MTD %s(): NOP\n", __func__
);
2268 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2269 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2270 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2271 map_write(map
, datum
, adr
);
2273 for (i
= 0; i
< jiffies_to_usecs(uWriteTimeout
); i
++) {
2274 if (chip_ready(map
, chip
, adr
))
2280 if (!chip_good(map
, chip
, adr
, datum
) ||
2281 cfi_check_err_status(map
, chip
, adr
)) {
2282 /* reset on all failures. */
2283 map_write(map
, CMD(0xF0), chip
->start
);
2284 /* FIXME - should have reset delay before continuing */
2286 if (++retry_cnt
<= MAX_RETRIES
)
2298 * Write out some data during a kernel panic
2300 * This is used by the mtdoops driver to save the dying messages from a
2301 * kernel which has panic'd.
2303 * This routine ignores all of the locking used throughout the rest of the
2304 * driver, in order to ensure that the data gets written out no matter what
2305 * state this driver (and the flash chip itself) was in when the kernel crashed.
2307 * The implementation of this routine is intentionally similar to
2308 * cfi_amdstd_write_words(), in order to ease code maintenance.
2310 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2311 size_t *retlen
, const u_char
*buf
)
2313 struct map_info
*map
= mtd
->priv
;
2314 struct cfi_private
*cfi
= map
->fldrv_priv
;
2315 unsigned long ofs
, chipstart
;
2319 chipnum
= to
>> cfi
->chipshift
;
2320 ofs
= to
- (chipnum
<< cfi
->chipshift
);
2321 chipstart
= cfi
->chips
[chipnum
].start
;
2323 /* If it's not bus aligned, do the first byte write */
2324 if (ofs
& (map_bankwidth(map
) - 1)) {
2325 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
) - 1);
2326 int i
= ofs
- bus_ofs
;
2330 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], bus_ofs
);
2334 /* Load 'tmp_buf' with old contents of flash */
2335 tmp_buf
= map_read(map
, bus_ofs
+ chipstart
);
2337 /* Number of bytes to copy from buffer */
2338 n
= min_t(int, len
, map_bankwidth(map
) - i
);
2340 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
2342 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2352 if (ofs
>> cfi
->chipshift
) {
2355 if (chipnum
== cfi
->numchips
)
2360 /* We are now aligned, write as much as possible */
2361 while (len
>= map_bankwidth(map
)) {
2364 datum
= map_word_load(map
, buf
);
2366 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2371 ofs
+= map_bankwidth(map
);
2372 buf
+= map_bankwidth(map
);
2373 (*retlen
) += map_bankwidth(map
);
2374 len
-= map_bankwidth(map
);
2376 if (ofs
>> cfi
->chipshift
) {
2379 if (chipnum
== cfi
->numchips
)
2382 chipstart
= cfi
->chips
[chipnum
].start
;
2386 /* Write the trailing bytes if any */
2387 if (len
& (map_bankwidth(map
) - 1)) {
2390 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], ofs
);
2394 tmp_buf
= map_read(map
, ofs
+ chipstart
);
2396 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
2398 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2411 * Handle devices with one erase region, that only implement
2412 * the chip erase command.
2414 static int __xipram
do_erase_chip(struct map_info
*map
, struct flchip
*chip
)
2416 struct cfi_private
*cfi
= map
->fldrv_priv
;
2417 unsigned long timeo
= jiffies
+ HZ
;
2418 unsigned long int adr
;
2419 DECLARE_WAITQUEUE(wait
, current
);
2423 adr
= cfi
->addr_unlock1
;
2425 mutex_lock(&chip
->mutex
);
2426 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
2428 mutex_unlock(&chip
->mutex
);
2432 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2433 __func__
, chip
->start
);
2435 XIP_INVAL_CACHED_RANGE(map
, adr
, map
->size
);
2437 xip_disable(map
, chip
, adr
);
2440 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2441 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2442 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2443 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2444 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2445 cfi_send_gen_cmd(0x10, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2447 chip
->state
= FL_ERASING
;
2448 chip
->erase_suspended
= 0;
2449 chip
->in_progress_block_addr
= adr
;
2450 chip
->in_progress_block_mask
= ~(map
->size
- 1);
2452 INVALIDATE_CACHE_UDELAY(map
, chip
,
2454 chip
->erase_time
*500);
2456 timeo
= jiffies
+ (HZ
*20);
2459 if (chip
->state
!= FL_ERASING
) {
2460 /* Someone's suspended the erase. Sleep */
2461 set_current_state(TASK_UNINTERRUPTIBLE
);
2462 add_wait_queue(&chip
->wq
, &wait
);
2463 mutex_unlock(&chip
->mutex
);
2465 remove_wait_queue(&chip
->wq
, &wait
);
2466 mutex_lock(&chip
->mutex
);
2469 if (chip
->erase_suspended
) {
2470 /* This erase was suspended and resumed.
2471 Adjust the timeout */
2472 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2473 chip
->erase_suspended
= 0;
2476 if (chip_good(map
, chip
, adr
, map_word_ff(map
))) {
2477 if (cfi_check_err_status(map
, chip
, adr
))
2482 if (time_after(jiffies
, timeo
)) {
2483 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2489 /* Latency issues. Drop the lock, wait a while and retry */
2490 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2492 /* Did we succeed? */
2494 /* reset on all failures. */
2495 map_write(map
, CMD(0xF0), chip
->start
);
2496 /* FIXME - should have reset delay before continuing */
2498 if (++retry_cnt
<= MAX_RETRIES
) {
2504 chip
->state
= FL_READY
;
2505 xip_enable(map
, chip
, adr
);
2507 put_chip(map
, chip
, adr
);
2508 mutex_unlock(&chip
->mutex
);
2514 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int len
, void *thunk
)
2516 struct cfi_private
*cfi
= map
->fldrv_priv
;
2517 unsigned long timeo
= jiffies
+ HZ
;
2518 DECLARE_WAITQUEUE(wait
, current
);
2524 mutex_lock(&chip
->mutex
);
2525 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
2527 mutex_unlock(&chip
->mutex
);
2531 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2534 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
2536 xip_disable(map
, chip
, adr
);
2539 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2540 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2541 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2542 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2543 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2544 map_write(map
, cfi
->sector_erase_cmd
, adr
);
2546 chip
->state
= FL_ERASING
;
2547 chip
->erase_suspended
= 0;
2548 chip
->in_progress_block_addr
= adr
;
2549 chip
->in_progress_block_mask
= ~(len
- 1);
2551 INVALIDATE_CACHE_UDELAY(map
, chip
,
2553 chip
->erase_time
*500);
2555 timeo
= jiffies
+ (HZ
*20);
2558 if (chip
->state
!= FL_ERASING
) {
2559 /* Someone's suspended the erase. Sleep */
2560 set_current_state(TASK_UNINTERRUPTIBLE
);
2561 add_wait_queue(&chip
->wq
, &wait
);
2562 mutex_unlock(&chip
->mutex
);
2564 remove_wait_queue(&chip
->wq
, &wait
);
2565 mutex_lock(&chip
->mutex
);
2568 if (chip
->erase_suspended
) {
2569 /* This erase was suspended and resumed.
2570 Adjust the timeout */
2571 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2572 chip
->erase_suspended
= 0;
2575 if (chip_good(map
, chip
, adr
, map_word_ff(map
))) {
2576 if (cfi_check_err_status(map
, chip
, adr
))
2581 if (time_after(jiffies
, timeo
)) {
2582 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2588 /* Latency issues. Drop the lock, wait a while and retry */
2589 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2591 /* Did we succeed? */
2593 /* reset on all failures. */
2594 map_write(map
, CMD(0xF0), chip
->start
);
2595 /* FIXME - should have reset delay before continuing */
2597 if (++retry_cnt
<= MAX_RETRIES
) {
2603 chip
->state
= FL_READY
;
2604 xip_enable(map
, chip
, adr
);
2606 put_chip(map
, chip
, adr
);
2607 mutex_unlock(&chip
->mutex
);
2612 static int cfi_amdstd_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2614 return cfi_varsize_frob(mtd
, do_erase_oneblock
, instr
->addr
,
2619 static int cfi_amdstd_erase_chip(struct mtd_info
*mtd
, struct erase_info
*instr
)
2621 struct map_info
*map
= mtd
->priv
;
2622 struct cfi_private
*cfi
= map
->fldrv_priv
;
2624 if (instr
->addr
!= 0)
2627 if (instr
->len
!= mtd
->size
)
2630 return do_erase_chip(map
, &cfi
->chips
[0]);
2633 static int do_atmel_lock(struct map_info
*map
, struct flchip
*chip
,
2634 unsigned long adr
, int len
, void *thunk
)
2636 struct cfi_private
*cfi
= map
->fldrv_priv
;
2639 mutex_lock(&chip
->mutex
);
2640 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
2643 chip
->state
= FL_LOCKING
;
2645 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2647 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2648 cfi
->device_type
, NULL
);
2649 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2650 cfi
->device_type
, NULL
);
2651 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2652 cfi
->device_type
, NULL
);
2653 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2654 cfi
->device_type
, NULL
);
2655 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2656 cfi
->device_type
, NULL
);
2657 map_write(map
, CMD(0x40), chip
->start
+ adr
);
2659 chip
->state
= FL_READY
;
2660 put_chip(map
, chip
, adr
+ chip
->start
);
2664 mutex_unlock(&chip
->mutex
);
2668 static int do_atmel_unlock(struct map_info
*map
, struct flchip
*chip
,
2669 unsigned long adr
, int len
, void *thunk
)
2671 struct cfi_private
*cfi
= map
->fldrv_priv
;
2674 mutex_lock(&chip
->mutex
);
2675 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_UNLOCKING
);
2678 chip
->state
= FL_UNLOCKING
;
2680 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2682 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2683 cfi
->device_type
, NULL
);
2684 map_write(map
, CMD(0x70), adr
);
2686 chip
->state
= FL_READY
;
2687 put_chip(map
, chip
, adr
+ chip
->start
);
2691 mutex_unlock(&chip
->mutex
);
2695 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2697 return cfi_varsize_frob(mtd
, do_atmel_lock
, ofs
, len
, NULL
);
2700 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2702 return cfi_varsize_frob(mtd
, do_atmel_unlock
, ofs
, len
, NULL
);
2706 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2710 struct flchip
*chip
;
2715 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2716 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2717 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2719 static int __maybe_unused
do_ppb_xxlock(struct map_info
*map
,
2720 struct flchip
*chip
,
2721 unsigned long adr
, int len
, void *thunk
)
2723 struct cfi_private
*cfi
= map
->fldrv_priv
;
2724 unsigned long timeo
;
2728 mutex_lock(&chip
->mutex
);
2729 ret
= get_chip(map
, chip
, adr
, FL_LOCKING
);
2731 mutex_unlock(&chip
->mutex
);
2735 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2737 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2738 cfi
->device_type
, NULL
);
2739 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2740 cfi
->device_type
, NULL
);
2741 /* PPB entry command */
2742 cfi_send_gen_cmd(0xC0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2743 cfi
->device_type
, NULL
);
2745 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2746 chip
->state
= FL_LOCKING
;
2747 map_write(map
, CMD(0xA0), adr
);
2748 map_write(map
, CMD(0x00), adr
);
2749 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2751 * Unlocking of one specific sector is not supported, so we
2752 * have to unlock all sectors of this device instead
2754 chip
->state
= FL_UNLOCKING
;
2755 map_write(map
, CMD(0x80), chip
->start
);
2756 map_write(map
, CMD(0x30), chip
->start
);
2757 } else if (thunk
== DO_XXLOCK_ONEBLOCK_GETLOCK
) {
2758 chip
->state
= FL_JEDEC_QUERY
;
2759 /* Return locked status: 0->locked, 1->unlocked */
2760 ret
= !cfi_read_query(map
, adr
);
2765 * Wait for some time as unlocking of all sectors takes quite long
2767 timeo
= jiffies
+ msecs_to_jiffies(2000); /* 2s max (un)locking */
2769 if (chip_ready(map
, chip
, adr
))
2772 if (time_after(jiffies
, timeo
)) {
2773 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
2778 UDELAY(map
, chip
, adr
, 1);
2781 /* Exit BC commands */
2782 map_write(map
, CMD(0x90), chip
->start
);
2783 map_write(map
, CMD(0x00), chip
->start
);
2785 chip
->state
= FL_READY
;
2786 put_chip(map
, chip
, adr
);
2787 mutex_unlock(&chip
->mutex
);
2792 static int __maybe_unused
cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
,
2795 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2796 DO_XXLOCK_ONEBLOCK_LOCK
);
2799 static int __maybe_unused
cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
,
2802 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
2803 struct map_info
*map
= mtd
->priv
;
2804 struct cfi_private
*cfi
= map
->fldrv_priv
;
2805 struct ppb_lock
*sect
;
2816 * PPB unlocking always unlocks all sectors of the flash chip.
2817 * We need to re-lock all previously locked sectors. So lets
2818 * first check the locking status of all sectors and save
2819 * it for future use.
2822 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
2823 max_sectors
+= regions
[i
].numblocks
;
2825 sect
= kcalloc(max_sectors
, sizeof(struct ppb_lock
), GFP_KERNEL
);
2830 * This code to walk all sectors is a slightly modified version
2831 * of the cfi_varsize_frob() code.
2841 int size
= regions
[i
].erasesize
;
2844 * Only test sectors that shall not be unlocked. The other
2845 * sectors shall be unlocked, so lets keep their locking
2846 * status at "unlocked" (locked=0) for the final re-locking.
2848 if ((offset
< ofs
) || (offset
>= (ofs
+ len
))) {
2849 sect
[sectors
].chip
= &cfi
->chips
[chipnum
];
2850 sect
[sectors
].adr
= adr
;
2851 sect
[sectors
].locked
= do_ppb_xxlock(
2852 map
, &cfi
->chips
[chipnum
], adr
, 0,
2853 DO_XXLOCK_ONEBLOCK_GETLOCK
);
2860 if (offset
== regions
[i
].offset
+ size
* regions
[i
].numblocks
)
2863 if (adr
>> cfi
->chipshift
) {
2864 if (offset
>= (ofs
+ len
))
2869 if (chipnum
>= cfi
->numchips
)
2874 if (sectors
>= max_sectors
) {
2875 printk(KERN_ERR
"Only %d sectors for PPB locking supported!\n",
2882 /* Now unlock the whole chip */
2883 ret
= cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2884 DO_XXLOCK_ONEBLOCK_UNLOCK
);
2891 * PPB unlocking always unlocks all sectors of the flash chip.
2892 * We need to re-lock all previously locked sectors.
2894 for (i
= 0; i
< sectors
; i
++) {
2896 do_ppb_xxlock(map
, sect
[i
].chip
, sect
[i
].adr
, 0,
2897 DO_XXLOCK_ONEBLOCK_LOCK
);
2904 static int __maybe_unused
cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2907 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2908 DO_XXLOCK_ONEBLOCK_GETLOCK
) ? 1 : 0;
2911 static void cfi_amdstd_sync (struct mtd_info
*mtd
)
2913 struct map_info
*map
= mtd
->priv
;
2914 struct cfi_private
*cfi
= map
->fldrv_priv
;
2916 struct flchip
*chip
;
2918 DECLARE_WAITQUEUE(wait
, current
);
2920 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2921 chip
= &cfi
->chips
[i
];
2924 mutex_lock(&chip
->mutex
);
2926 switch(chip
->state
) {
2930 case FL_JEDEC_QUERY
:
2931 chip
->oldstate
= chip
->state
;
2932 chip
->state
= FL_SYNCING
;
2933 /* No need to wake_up() on this state change -
2934 * as the whole point is that nobody can do anything
2935 * with the chip now anyway.
2939 mutex_unlock(&chip
->mutex
);
2943 /* Not an idle state */
2944 set_current_state(TASK_UNINTERRUPTIBLE
);
2945 add_wait_queue(&chip
->wq
, &wait
);
2947 mutex_unlock(&chip
->mutex
);
2951 remove_wait_queue(&chip
->wq
, &wait
);
2957 /* Unlock the chips again */
2959 for (i
--; i
>=0; i
--) {
2960 chip
= &cfi
->chips
[i
];
2962 mutex_lock(&chip
->mutex
);
2964 if (chip
->state
== FL_SYNCING
) {
2965 chip
->state
= chip
->oldstate
;
2968 mutex_unlock(&chip
->mutex
);
2973 static int cfi_amdstd_suspend(struct mtd_info
*mtd
)
2975 struct map_info
*map
= mtd
->priv
;
2976 struct cfi_private
*cfi
= map
->fldrv_priv
;
2978 struct flchip
*chip
;
2981 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2982 chip
= &cfi
->chips
[i
];
2984 mutex_lock(&chip
->mutex
);
2986 switch(chip
->state
) {
2990 case FL_JEDEC_QUERY
:
2991 chip
->oldstate
= chip
->state
;
2992 chip
->state
= FL_PM_SUSPENDED
;
2993 /* No need to wake_up() on this state change -
2994 * as the whole point is that nobody can do anything
2995 * with the chip now anyway.
2997 case FL_PM_SUSPENDED
:
3004 mutex_unlock(&chip
->mutex
);
3007 /* Unlock the chips again */
3010 for (i
--; i
>=0; i
--) {
3011 chip
= &cfi
->chips
[i
];
3013 mutex_lock(&chip
->mutex
);
3015 if (chip
->state
== FL_PM_SUSPENDED
) {
3016 chip
->state
= chip
->oldstate
;
3019 mutex_unlock(&chip
->mutex
);
3027 static void cfi_amdstd_resume(struct mtd_info
*mtd
)
3029 struct map_info
*map
= mtd
->priv
;
3030 struct cfi_private
*cfi
= map
->fldrv_priv
;
3032 struct flchip
*chip
;
3034 for (i
=0; i
<cfi
->numchips
; i
++) {
3036 chip
= &cfi
->chips
[i
];
3038 mutex_lock(&chip
->mutex
);
3040 if (chip
->state
== FL_PM_SUSPENDED
) {
3041 chip
->state
= FL_READY
;
3042 map_write(map
, CMD(0xF0), chip
->start
);
3046 printk(KERN_ERR
"Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3048 mutex_unlock(&chip
->mutex
);
3054 * Ensure that the flash device is put back into read array mode before
3055 * unloading the driver or rebooting. On some systems, rebooting while
3056 * the flash is in query/program/erase mode will prevent the CPU from
3057 * fetching the bootloader code, requiring a hard reset or power cycle.
3059 static int cfi_amdstd_reset(struct mtd_info
*mtd
)
3061 struct map_info
*map
= mtd
->priv
;
3062 struct cfi_private
*cfi
= map
->fldrv_priv
;
3064 struct flchip
*chip
;
3066 for (i
= 0; i
< cfi
->numchips
; i
++) {
3068 chip
= &cfi
->chips
[i
];
3070 mutex_lock(&chip
->mutex
);
3072 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
3074 map_write(map
, CMD(0xF0), chip
->start
);
3075 chip
->state
= FL_SHUTDOWN
;
3076 put_chip(map
, chip
, chip
->start
);
3079 mutex_unlock(&chip
->mutex
);
3086 static int cfi_amdstd_reboot(struct notifier_block
*nb
, unsigned long val
,
3089 struct mtd_info
*mtd
;
3091 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
3092 cfi_amdstd_reset(mtd
);
3097 static void cfi_amdstd_destroy(struct mtd_info
*mtd
)
3099 struct map_info
*map
= mtd
->priv
;
3100 struct cfi_private
*cfi
= map
->fldrv_priv
;
3102 cfi_amdstd_reset(mtd
);
3103 unregister_reboot_notifier(&mtd
->reboot_notifier
);
3104 kfree(cfi
->cmdset_priv
);
3107 kfree(mtd
->eraseregions
);
3110 MODULE_LICENSE("GPL");
3111 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3112 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3113 MODULE_ALIAS("cfi_cmdset_0006");
3114 MODULE_ALIAS("cfi_cmdset_0701");