Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / arasan-nand-controller.c
blob549aac00228ebf5a1a2ab78b1dc2c5fab2e4481b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arasan NAND Flash Controller Driver
5 * Copyright (C) 2014 - 2020 Xilinx, Inc.
6 * Author:
7 * Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (fully rewritten):
9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 * Naga Sureshkumar Relli <nagasure@xilinx.com>
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
28 #define PKT_REG 0x00
29 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
30 #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
32 #define MEM_ADDR1_REG 0x04
34 #define MEM_ADDR2_REG 0x08
35 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
36 #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
38 #define CMD_REG 0x0C
39 #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
40 #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
41 #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
42 #define CMD_DMA_ENABLE BIT(27)
43 #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
44 #define CMD_ECC_ENABLE BIT(31)
46 #define PROG_REG 0x10
47 #define PROG_PGRD BIT(0)
48 #define PROG_ERASE BIT(2)
49 #define PROG_STATUS BIT(3)
50 #define PROG_PGPROG BIT(4)
51 #define PROG_RDID BIT(6)
52 #define PROG_RDPARAM BIT(7)
53 #define PROG_RST BIT(8)
54 #define PROG_GET_FEATURE BIT(9)
55 #define PROG_SET_FEATURE BIT(10)
57 #define INTR_STS_EN_REG 0x14
58 #define INTR_SIG_EN_REG 0x18
59 #define INTR_STS_REG 0x1C
60 #define WRITE_READY BIT(0)
61 #define READ_READY BIT(1)
62 #define XFER_COMPLETE BIT(2)
63 #define DMA_BOUNDARY BIT(6)
64 #define EVENT_MASK GENMASK(7, 0)
66 #define READY_STS_REG 0x20
68 #define DMA_ADDR0_REG 0x50
69 #define DMA_ADDR1_REG 0x24
71 #define FLASH_STS_REG 0x28
73 #define DATA_PORT_REG 0x30
75 #define ECC_CONF_REG 0x34
76 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
77 #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
78 #define ECC_CONF_BCH_EN BIT(27)
80 #define ECC_ERR_CNT_REG 0x38
81 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
82 #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
84 #define ECC_SP_REG 0x3C
85 #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
86 #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
87 #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
89 #define ECC_1ERR_CNT_REG 0x40
90 #define ECC_2ERR_CNT_REG 0x44
92 #define DATA_INTERFACE_REG 0x6C
93 #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
94 #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (X))
95 #define DIFACE_SDR 0
96 #define DIFACE_NVDDR BIT(9)
98 #define ANFC_MAX_CS 2
99 #define ANFC_DFLT_TIMEOUT_US 1000000
100 #define ANFC_MAX_CHUNK_SIZE SZ_1M
101 #define ANFC_MAX_PARAM_SIZE SZ_4K
102 #define ANFC_MAX_STEPS SZ_2K
103 #define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC 5U
105 #define ANFC_RSVD_ECC_BYTES 21
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
111 * struct anfc_op - Defines how to execute an operation
112 * @pkt_reg: Packet register
113 * @addr1_reg: Memory address 1 register
114 * @addr2_reg: Memory address 2 register
115 * @cmd_reg: Command register
116 * @prog_reg: Program register
117 * @steps: Number of "packets" to read/write
118 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119 * @len: Data transfer length
120 * @read: Data transfer direction from the controller point of view
121 * @buf: Data buffer
123 struct anfc_op {
124 u32 pkt_reg;
125 u32 addr1_reg;
126 u32 addr2_reg;
127 u32 cmd_reg;
128 u32 prog_reg;
129 int steps;
130 unsigned int rdy_timeout_ms;
131 unsigned int len;
132 bool read;
133 u8 *buf;
137 * struct anand - Defines the NAND chip related information
138 * @node: Used to store NAND chips into a list
139 * @chip: NAND chip information structure
140 * @cs: Chip select line
141 * @rb: Ready-busy line
142 * @page_sz: Register value of the page_sz field to use
143 * @clk: Expected clock frequency to use
144 * @timings: Data interface timing mode to use
145 * @ecc_conf: Hardware ECC configuration value
146 * @strength: Register value of the ECC strength
147 * @raddr_cycles: Row address cycle information
148 * @caddr_cycles: Column address cycle information
149 * @ecc_bits: Exact number of ECC bits per syndrome
150 * @ecc_total: Total number of ECC bytes
151 * @errloc: Array of errors located with soft BCH
152 * @hw_ecc: Buffer to store syndromes computed by hardware
153 * @bch: BCH structure
155 struct anand {
156 struct list_head node;
157 struct nand_chip chip;
158 unsigned int cs;
159 unsigned int rb;
160 unsigned int page_sz;
161 unsigned long clk;
162 u32 timings;
163 u32 ecc_conf;
164 u32 strength;
165 u16 raddr_cycles;
166 u16 caddr_cycles;
167 unsigned int ecc_bits;
168 unsigned int ecc_total;
169 unsigned int *errloc;
170 u8 *hw_ecc;
171 struct bch_control *bch;
175 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
176 * @dev: Pointer to the device structure
177 * @base: Remapped register area
178 * @controller_clk: Pointer to the system clock
179 * @bus_clk: Pointer to the flash clock
180 * @controller: Base controller structure
181 * @chips: List of all NAND chips attached to the controller
182 * @assigned_cs: Bitmask describing already assigned CS lines
183 * @cur_clk: Current clock rate
185 struct arasan_nfc {
186 struct device *dev;
187 void __iomem *base;
188 struct clk *controller_clk;
189 struct clk *bus_clk;
190 struct nand_controller controller;
191 struct list_head chips;
192 unsigned long assigned_cs;
193 unsigned int cur_clk;
196 static struct anand *to_anand(struct nand_chip *nand)
198 return container_of(nand, struct anand, chip);
201 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
203 return container_of(ctrl, struct arasan_nfc, controller);
206 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
208 u32 val;
209 int ret;
211 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
212 val & event, 0,
213 ANFC_DFLT_TIMEOUT_US);
214 if (ret) {
215 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
216 return -ETIMEDOUT;
219 writel_relaxed(event, nfc->base + INTR_STS_REG);
221 return 0;
224 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
225 unsigned int timeout_ms)
227 struct anand *anand = to_anand(chip);
228 u32 val;
229 int ret;
231 /* There is no R/B interrupt, we must poll a register */
232 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
233 val & BIT(anand->rb),
234 1, timeout_ms * 1000);
235 if (ret) {
236 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
237 readl_relaxed(nfc->base + READY_STS_REG));
238 return -ETIMEDOUT;
241 return 0;
244 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
246 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
247 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
248 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
249 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
250 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
253 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
254 unsigned int *pktsize)
256 unsigned int nb, sz;
258 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
259 sz = len / nb;
260 if (sz <= ANFC_MAX_PKT_SIZE)
261 break;
264 if (sz * nb != len)
265 return -ENOTSUPP;
267 if (steps)
268 *steps = nb;
270 if (pktsize)
271 *pktsize = sz;
273 return 0;
277 * When using the embedded hardware ECC engine, the controller is in charge of
278 * feeding the engine with, first, the ECC residue present in the data array.
279 * A typical read operation is:
280 * 1/ Assert the read operation by sending the relevant command/address cycles
281 * but targeting the column of the first ECC bytes in the OOB area instead of
282 * the main data directly.
283 * 2/ After having read the relevant number of ECC bytes, the controller uses
284 * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
285 * Register" to move the pointer back at the beginning of the main data.
286 * 3/ It will read the content of the main area for a given size (pktsize) and
287 * will feed the ECC engine with this buffer again.
288 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
289 * with the ones already received. It eventually trigger status flags and
290 * then set the "Buffer Read Ready" flag.
291 * 5/ The corrected data is then available for reading from the data port
292 * register.
294 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
295 * reports uncorrectable errors. Because of this bug, we have to use the
296 * software BCH implementation in the read path.
298 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
299 int oob_required, int page)
301 struct arasan_nfc *nfc = to_anfc(chip->controller);
302 struct mtd_info *mtd = nand_to_mtd(chip);
303 struct anand *anand = to_anand(chip);
304 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
305 unsigned int max_bitflips = 0;
306 dma_addr_t dma_addr;
307 int step, ret;
308 struct anfc_op nfc_op = {
309 .pkt_reg =
310 PKT_SIZE(chip->ecc.size) |
311 PKT_STEPS(chip->ecc.steps),
312 .addr1_reg =
313 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
314 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
315 .addr2_reg =
316 ((page >> 16) & 0xFF) |
317 ADDR2_STRENGTH(anand->strength) |
318 ADDR2_CS(anand->cs),
319 .cmd_reg =
320 CMD_1(NAND_CMD_READ0) |
321 CMD_2(NAND_CMD_READSTART) |
322 CMD_PAGE_SIZE(anand->page_sz) |
323 CMD_DMA_ENABLE |
324 CMD_NADDRS(anand->caddr_cycles +
325 anand->raddr_cycles),
326 .prog_reg = PROG_PGRD,
329 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
330 if (dma_mapping_error(nfc->dev, dma_addr)) {
331 dev_err(nfc->dev, "Buffer mapping error");
332 return -EIO;
335 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
336 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
338 anfc_trigger_op(nfc, &nfc_op);
340 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
341 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
342 if (ret) {
343 dev_err(nfc->dev, "Error reading page %d\n", page);
344 return ret;
347 /* Store the raw OOB bytes as well */
348 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
349 mtd->oobsize, 0);
350 if (ret)
351 return ret;
354 * For each step, compute by softare the BCH syndrome over the raw data.
355 * Compare the theoretical amount of errors and compare with the
356 * hardware engine feedback.
358 for (step = 0; step < chip->ecc.steps; step++) {
359 u8 *raw_buf = &buf[step * chip->ecc.size];
360 unsigned int bit, byte;
361 int bf, i;
363 /* Extract the syndrome, it is not necessarily aligned */
364 memset(anand->hw_ecc, 0, chip->ecc.bytes);
365 nand_extract_bits(anand->hw_ecc, 0,
366 &chip->oob_poi[mtd->oobsize - anand->ecc_total],
367 anand->ecc_bits * step, anand->ecc_bits);
369 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
370 anand->hw_ecc, NULL, NULL, anand->errloc);
371 if (!bf) {
372 continue;
373 } else if (bf > 0) {
374 for (i = 0; i < bf; i++) {
375 /* Only correct the data, not the syndrome */
376 if (anand->errloc[i] < (chip->ecc.size * 8)) {
377 bit = BIT(anand->errloc[i] & 7);
378 byte = anand->errloc[i] >> 3;
379 raw_buf[byte] ^= bit;
383 mtd->ecc_stats.corrected += bf;
384 max_bitflips = max_t(unsigned int, max_bitflips, bf);
386 continue;
389 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
390 NULL, 0, NULL, 0,
391 chip->ecc.strength);
392 if (bf > 0) {
393 mtd->ecc_stats.corrected += bf;
394 max_bitflips = max_t(unsigned int, max_bitflips, bf);
395 memset(raw_buf, 0xFF, chip->ecc.size);
396 } else if (bf < 0) {
397 mtd->ecc_stats.failed++;
401 return 0;
404 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
405 int oob_required, int page)
407 struct anand *anand = to_anand(chip);
408 struct arasan_nfc *nfc = to_anfc(chip->controller);
409 struct mtd_info *mtd = nand_to_mtd(chip);
410 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
411 dma_addr_t dma_addr;
412 int ret;
413 struct anfc_op nfc_op = {
414 .pkt_reg =
415 PKT_SIZE(chip->ecc.size) |
416 PKT_STEPS(chip->ecc.steps),
417 .addr1_reg =
418 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
419 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
420 .addr2_reg =
421 ((page >> 16) & 0xFF) |
422 ADDR2_STRENGTH(anand->strength) |
423 ADDR2_CS(anand->cs),
424 .cmd_reg =
425 CMD_1(NAND_CMD_SEQIN) |
426 CMD_2(NAND_CMD_PAGEPROG) |
427 CMD_PAGE_SIZE(anand->page_sz) |
428 CMD_DMA_ENABLE |
429 CMD_NADDRS(anand->caddr_cycles +
430 anand->raddr_cycles) |
431 CMD_ECC_ENABLE,
432 .prog_reg = PROG_PGPROG,
435 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
436 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
437 ECC_SP_ADDRS(anand->caddr_cycles),
438 nfc->base + ECC_SP_REG);
440 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
441 if (dma_mapping_error(nfc->dev, dma_addr)) {
442 dev_err(nfc->dev, "Buffer mapping error");
443 return -EIO;
446 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
447 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
449 anfc_trigger_op(nfc, &nfc_op);
450 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
451 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
452 if (ret) {
453 dev_err(nfc->dev, "Error writing page %d\n", page);
454 return ret;
457 /* Spare data is not protected */
458 if (oob_required)
459 ret = nand_write_oob_std(chip, page);
461 return ret;
464 /* NAND framework ->exec_op() hooks and related helpers */
465 static int anfc_parse_instructions(struct nand_chip *chip,
466 const struct nand_subop *subop,
467 struct anfc_op *nfc_op)
469 struct anand *anand = to_anand(chip);
470 const struct nand_op_instr *instr = NULL;
471 bool first_cmd = true;
472 unsigned int op_id;
473 int ret, i;
475 memset(nfc_op, 0, sizeof(*nfc_op));
476 nfc_op->addr2_reg = ADDR2_CS(anand->cs);
477 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
479 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
480 unsigned int offset, naddrs, pktsize;
481 const u8 *addrs;
482 u8 *buf;
484 instr = &subop->instrs[op_id];
486 switch (instr->type) {
487 case NAND_OP_CMD_INSTR:
488 if (first_cmd)
489 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
490 else
491 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
493 first_cmd = false;
494 break;
496 case NAND_OP_ADDR_INSTR:
497 offset = nand_subop_get_addr_start_off(subop, op_id);
498 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
499 addrs = &instr->ctx.addr.addrs[offset];
500 nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
502 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
503 if (i < 4)
504 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
505 else
506 nfc_op->addr2_reg |= addrs[i];
509 break;
510 case NAND_OP_DATA_IN_INSTR:
511 nfc_op->read = true;
512 fallthrough;
513 case NAND_OP_DATA_OUT_INSTR:
514 offset = nand_subop_get_data_start_off(subop, op_id);
515 buf = instr->ctx.data.buf.in;
516 nfc_op->buf = &buf[offset];
517 nfc_op->len = nand_subop_get_data_len(subop, op_id);
518 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
519 &pktsize);
520 if (ret)
521 return ret;
524 * Number of DATA cycles must be aligned on 4, this
525 * means the controller might read/write more than
526 * requested. This is harmless most of the time as extra
527 * DATA are discarded in the write path and read pointer
528 * adjusted in the read path.
530 * FIXME: The core should mark operations where
531 * reading/writing more is allowed so the exec_op()
532 * implementation can take the right decision when the
533 * alignment constraint is not met: adjust the number of
534 * DATA cycles when it's allowed, reject the operation
535 * otherwise.
537 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
538 PKT_STEPS(nfc_op->steps);
539 break;
540 case NAND_OP_WAITRDY_INSTR:
541 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
542 break;
546 return 0;
549 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
551 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
552 unsigned int last_len = nfc_op->len % 4;
553 unsigned int offset, dir;
554 u8 *buf = nfc_op->buf;
555 int ret, i;
557 for (i = 0; i < nfc_op->steps; i++) {
558 dir = nfc_op->read ? READ_READY : WRITE_READY;
559 ret = anfc_wait_for_event(nfc, dir);
560 if (ret) {
561 dev_err(nfc->dev, "PIO %s ready signal not received\n",
562 nfc_op->read ? "Read" : "Write");
563 return ret;
566 offset = i * (dwords * 4);
567 if (nfc_op->read)
568 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
569 dwords);
570 else
571 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
572 dwords);
575 if (last_len) {
576 u32 remainder;
578 offset = nfc_op->len - last_len;
580 if (nfc_op->read) {
581 remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
582 memcpy(&buf[offset], &remainder, last_len);
583 } else {
584 memcpy(&remainder, &buf[offset], last_len);
585 writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
589 return anfc_wait_for_event(nfc, XFER_COMPLETE);
592 static int anfc_misc_data_type_exec(struct nand_chip *chip,
593 const struct nand_subop *subop,
594 u32 prog_reg)
596 struct arasan_nfc *nfc = to_anfc(chip->controller);
597 struct anfc_op nfc_op = {};
598 int ret;
600 ret = anfc_parse_instructions(chip, subop, &nfc_op);
601 if (ret)
602 return ret;
604 nfc_op.prog_reg = prog_reg;
605 anfc_trigger_op(nfc, &nfc_op);
607 if (nfc_op.rdy_timeout_ms) {
608 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
609 if (ret)
610 return ret;
613 return anfc_rw_pio_op(nfc, &nfc_op);
616 static int anfc_param_read_type_exec(struct nand_chip *chip,
617 const struct nand_subop *subop)
619 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
622 static int anfc_data_read_type_exec(struct nand_chip *chip,
623 const struct nand_subop *subop)
625 return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
628 static int anfc_param_write_type_exec(struct nand_chip *chip,
629 const struct nand_subop *subop)
631 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
634 static int anfc_data_write_type_exec(struct nand_chip *chip,
635 const struct nand_subop *subop)
637 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
640 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
641 const struct nand_subop *subop,
642 u32 prog_reg)
644 struct arasan_nfc *nfc = to_anfc(chip->controller);
645 struct anfc_op nfc_op = {};
646 int ret;
648 ret = anfc_parse_instructions(chip, subop, &nfc_op);
649 if (ret)
650 return ret;
652 nfc_op.prog_reg = prog_reg;
653 anfc_trigger_op(nfc, &nfc_op);
655 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
656 if (ret)
657 return ret;
659 if (nfc_op.rdy_timeout_ms)
660 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
662 return ret;
665 static int anfc_status_type_exec(struct nand_chip *chip,
666 const struct nand_subop *subop)
668 struct arasan_nfc *nfc = to_anfc(chip->controller);
669 u32 tmp;
670 int ret;
672 /* See anfc_check_op() for details about this constraint */
673 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
674 return -ENOTSUPP;
676 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
677 if (ret)
678 return ret;
680 tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
681 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
683 return 0;
686 static int anfc_reset_type_exec(struct nand_chip *chip,
687 const struct nand_subop *subop)
689 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
692 static int anfc_erase_type_exec(struct nand_chip *chip,
693 const struct nand_subop *subop)
695 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
698 static int anfc_wait_type_exec(struct nand_chip *chip,
699 const struct nand_subop *subop)
701 struct arasan_nfc *nfc = to_anfc(chip->controller);
702 struct anfc_op nfc_op = {};
703 int ret;
705 ret = anfc_parse_instructions(chip, subop, &nfc_op);
706 if (ret)
707 return ret;
709 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
712 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
713 NAND_OP_PARSER_PATTERN(
714 anfc_param_read_type_exec,
715 NAND_OP_PARSER_PAT_CMD_ELEM(false),
716 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
717 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
718 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
719 NAND_OP_PARSER_PATTERN(
720 anfc_param_write_type_exec,
721 NAND_OP_PARSER_PAT_CMD_ELEM(false),
722 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
723 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
724 NAND_OP_PARSER_PATTERN(
725 anfc_data_read_type_exec,
726 NAND_OP_PARSER_PAT_CMD_ELEM(false),
727 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
728 NAND_OP_PARSER_PAT_CMD_ELEM(false),
729 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
730 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
731 NAND_OP_PARSER_PATTERN(
732 anfc_data_write_type_exec,
733 NAND_OP_PARSER_PAT_CMD_ELEM(false),
734 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
735 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
736 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
737 NAND_OP_PARSER_PATTERN(
738 anfc_reset_type_exec,
739 NAND_OP_PARSER_PAT_CMD_ELEM(false),
740 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
741 NAND_OP_PARSER_PATTERN(
742 anfc_erase_type_exec,
743 NAND_OP_PARSER_PAT_CMD_ELEM(false),
744 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
745 NAND_OP_PARSER_PAT_CMD_ELEM(false),
746 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
747 NAND_OP_PARSER_PATTERN(
748 anfc_status_type_exec,
749 NAND_OP_PARSER_PAT_CMD_ELEM(false),
750 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
751 NAND_OP_PARSER_PATTERN(
752 anfc_wait_type_exec,
753 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
756 static int anfc_select_target(struct nand_chip *chip, int target)
758 struct anand *anand = to_anand(chip);
759 struct arasan_nfc *nfc = to_anfc(chip->controller);
760 int ret;
762 /* Update the controller timings and the potential ECC configuration */
763 writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
765 /* Update clock frequency */
766 if (nfc->cur_clk != anand->clk) {
767 clk_disable_unprepare(nfc->controller_clk);
768 ret = clk_set_rate(nfc->controller_clk, anand->clk);
769 if (ret) {
770 dev_err(nfc->dev, "Failed to change clock rate\n");
771 return ret;
774 ret = clk_prepare_enable(nfc->controller_clk);
775 if (ret) {
776 dev_err(nfc->dev,
777 "Failed to re-enable the controller clock\n");
778 return ret;
781 nfc->cur_clk = anand->clk;
784 return 0;
787 static int anfc_check_op(struct nand_chip *chip,
788 const struct nand_operation *op)
790 const struct nand_op_instr *instr;
791 int op_id;
794 * The controller abstracts all the NAND operations and do not support
795 * data only operations.
797 * TODO: The nand_op_parser framework should be extended to
798 * support custom checks on DATA instructions.
800 for (op_id = 0; op_id < op->ninstrs; op_id++) {
801 instr = &op->instrs[op_id];
803 switch (instr->type) {
804 case NAND_OP_ADDR_INSTR:
805 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
806 return -ENOTSUPP;
808 break;
809 case NAND_OP_DATA_IN_INSTR:
810 case NAND_OP_DATA_OUT_INSTR:
811 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
812 return -ENOTSUPP;
814 if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
815 return -ENOTSUPP;
817 break;
818 default:
819 break;
824 * The controller does not allow to proceed with a CMD+DATA_IN cycle
825 * manually on the bus by reading data from the data register. Instead,
826 * the controller abstract a status read operation with its own status
827 * register after ordering a read status operation. Hence, we cannot
828 * support any CMD+DATA_IN operation other than a READ STATUS.
830 * TODO: The nand_op_parser() framework should be extended to describe
831 * fixed patterns instead of open-coding this check here.
833 if (op->ninstrs == 2 &&
834 op->instrs[0].type == NAND_OP_CMD_INSTR &&
835 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
836 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
837 return -ENOTSUPP;
839 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
842 static int anfc_exec_op(struct nand_chip *chip,
843 const struct nand_operation *op,
844 bool check_only)
846 int ret;
848 if (check_only)
849 return anfc_check_op(chip, op);
851 ret = anfc_select_target(chip, op->cs);
852 if (ret)
853 return ret;
855 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
858 static int anfc_setup_interface(struct nand_chip *chip, int target,
859 const struct nand_interface_config *conf)
861 struct anand *anand = to_anand(chip);
862 struct arasan_nfc *nfc = to_anfc(chip->controller);
863 struct device_node *np = nfc->dev->of_node;
865 if (target < 0)
866 return 0;
868 anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode);
869 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
872 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
873 * with f > 90MHz (default clock is 100MHz) but signals are unstable
874 * with higher modes. Hence we decrease a little bit the clock rate to
875 * 80MHz when using modes 2-5 with this SoC.
877 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
878 conf->timings.mode >= 2)
879 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
881 return 0;
884 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
886 unsigned int bch_gf_mag, ecc_bits;
888 switch (step_size) {
889 case SZ_512:
890 bch_gf_mag = 13;
891 break;
892 case SZ_1K:
893 bch_gf_mag = 14;
894 break;
895 default:
896 return -EINVAL;
899 ecc_bits = bch_gf_mag * strength;
901 return DIV_ROUND_UP(ecc_bits, 8);
904 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
906 static const int anfc_hw_ecc_1024_strengths[] = {24};
908 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
910 .stepsize = SZ_512,
911 .strengths = anfc_hw_ecc_512_strengths,
912 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
915 .stepsize = SZ_1K,
916 .strengths = anfc_hw_ecc_1024_strengths,
917 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
921 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
922 .stepinfos = anfc_hw_ecc_step_infos,
923 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
924 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
927 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
928 struct nand_chip *chip)
930 struct anand *anand = to_anand(chip);
931 struct mtd_info *mtd = nand_to_mtd(chip);
932 struct nand_ecc_ctrl *ecc = &chip->ecc;
933 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
934 int ret;
936 switch (mtd->writesize) {
937 case SZ_512:
938 case SZ_2K:
939 case SZ_4K:
940 case SZ_8K:
941 case SZ_16K:
942 break;
943 default:
944 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
945 return -EINVAL;
948 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
949 if (ret)
950 return ret;
952 switch (ecc->strength) {
953 case 12:
954 anand->strength = 0x1;
955 break;
956 case 8:
957 anand->strength = 0x2;
958 break;
959 case 4:
960 anand->strength = 0x3;
961 break;
962 case 24:
963 anand->strength = 0x4;
964 break;
965 default:
966 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
967 return -EINVAL;
970 switch (ecc->size) {
971 case SZ_512:
972 bch_gf_mag = 13;
973 bch_prim_poly = 0x201b;
974 break;
975 case SZ_1K:
976 bch_gf_mag = 14;
977 bch_prim_poly = 0x4443;
978 break;
979 default:
980 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
981 return -EINVAL;
984 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
986 ecc->steps = mtd->writesize / ecc->size;
987 ecc->algo = NAND_ECC_ALGO_BCH;
988 anand->ecc_bits = bch_gf_mag * ecc->strength;
989 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
990 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
991 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
992 anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
993 ECC_CONF_LEN(anand->ecc_total) |
994 ECC_CONF_BCH_EN;
996 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
997 sizeof(*anand->errloc), GFP_KERNEL);
998 if (!anand->errloc)
999 return -ENOMEM;
1001 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1002 if (!anand->hw_ecc)
1003 return -ENOMEM;
1005 /* Enforce bit swapping to fit the hardware */
1006 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1007 if (!anand->bch)
1008 return -EINVAL;
1010 ecc->read_page = anfc_read_page_hw_ecc;
1011 ecc->write_page = anfc_write_page_hw_ecc;
1013 return 0;
1016 static int anfc_attach_chip(struct nand_chip *chip)
1018 struct anand *anand = to_anand(chip);
1019 struct arasan_nfc *nfc = to_anfc(chip->controller);
1020 struct mtd_info *mtd = nand_to_mtd(chip);
1021 int ret = 0;
1023 if (mtd->writesize <= SZ_512)
1024 anand->caddr_cycles = 1;
1025 else
1026 anand->caddr_cycles = 2;
1028 if (chip->options & NAND_ROW_ADDR_3)
1029 anand->raddr_cycles = 3;
1030 else
1031 anand->raddr_cycles = 2;
1033 switch (mtd->writesize) {
1034 case 512:
1035 anand->page_sz = 0;
1036 break;
1037 case 1024:
1038 anand->page_sz = 5;
1039 break;
1040 case 2048:
1041 anand->page_sz = 1;
1042 break;
1043 case 4096:
1044 anand->page_sz = 2;
1045 break;
1046 case 8192:
1047 anand->page_sz = 3;
1048 break;
1049 case 16384:
1050 anand->page_sz = 4;
1051 break;
1052 default:
1053 return -EINVAL;
1056 /* These hooks are valid for all ECC providers */
1057 chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1058 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1060 switch (chip->ecc.engine_type) {
1061 case NAND_ECC_ENGINE_TYPE_NONE:
1062 case NAND_ECC_ENGINE_TYPE_SOFT:
1063 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1064 break;
1065 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1066 ret = anfc_init_hw_ecc_controller(nfc, chip);
1067 break;
1068 default:
1069 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1070 chip->ecc.engine_type);
1071 return -EINVAL;
1074 return ret;
1077 static void anfc_detach_chip(struct nand_chip *chip)
1079 struct anand *anand = to_anand(chip);
1081 if (anand->bch)
1082 bch_free(anand->bch);
1085 static const struct nand_controller_ops anfc_ops = {
1086 .exec_op = anfc_exec_op,
1087 .setup_interface = anfc_setup_interface,
1088 .attach_chip = anfc_attach_chip,
1089 .detach_chip = anfc_detach_chip,
1092 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1094 struct anand *anand;
1095 struct nand_chip *chip;
1096 struct mtd_info *mtd;
1097 int cs, rb, ret;
1099 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1100 if (!anand)
1101 return -ENOMEM;
1103 /* We do not support multiple CS per chip yet */
1104 if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1105 dev_err(nfc->dev, "Invalid reg property\n");
1106 return -EINVAL;
1109 ret = of_property_read_u32(np, "reg", &cs);
1110 if (ret)
1111 return ret;
1113 ret = of_property_read_u32(np, "nand-rb", &rb);
1114 if (ret)
1115 return ret;
1117 if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1118 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1119 return -EINVAL;
1122 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1123 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1124 return -EINVAL;
1127 anand->cs = cs;
1128 anand->rb = rb;
1130 chip = &anand->chip;
1131 mtd = nand_to_mtd(chip);
1132 mtd->dev.parent = nfc->dev;
1133 chip->controller = &nfc->controller;
1134 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1135 NAND_USES_DMA;
1137 nand_set_flash_node(chip, np);
1138 if (!mtd->name) {
1139 dev_err(nfc->dev, "NAND label property is mandatory\n");
1140 return -EINVAL;
1143 ret = nand_scan(chip, 1);
1144 if (ret) {
1145 dev_err(nfc->dev, "Scan operation failed\n");
1146 return ret;
1149 ret = mtd_device_register(mtd, NULL, 0);
1150 if (ret) {
1151 nand_cleanup(chip);
1152 return ret;
1155 list_add_tail(&anand->node, &nfc->chips);
1157 return 0;
1160 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1162 struct anand *anand, *tmp;
1163 struct nand_chip *chip;
1164 int ret;
1166 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1167 chip = &anand->chip;
1168 ret = mtd_device_unregister(nand_to_mtd(chip));
1169 WARN_ON(ret);
1170 nand_cleanup(chip);
1171 list_del(&anand->node);
1175 static int anfc_chips_init(struct arasan_nfc *nfc)
1177 struct device_node *np = nfc->dev->of_node, *nand_np;
1178 int nchips = of_get_child_count(np);
1179 int ret;
1181 if (!nchips || nchips > ANFC_MAX_CS) {
1182 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1183 nchips);
1184 return -EINVAL;
1187 for_each_child_of_node(np, nand_np) {
1188 ret = anfc_chip_init(nfc, nand_np);
1189 if (ret) {
1190 of_node_put(nand_np);
1191 anfc_chips_cleanup(nfc);
1192 break;
1196 return ret;
1199 static void anfc_reset(struct arasan_nfc *nfc)
1201 /* Disable interrupt signals */
1202 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1204 /* Enable interrupt status */
1205 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1208 static int anfc_probe(struct platform_device *pdev)
1210 struct arasan_nfc *nfc;
1211 int ret;
1213 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1214 if (!nfc)
1215 return -ENOMEM;
1217 nfc->dev = &pdev->dev;
1218 nand_controller_init(&nfc->controller);
1219 nfc->controller.ops = &anfc_ops;
1220 INIT_LIST_HEAD(&nfc->chips);
1222 nfc->base = devm_platform_ioremap_resource(pdev, 0);
1223 if (IS_ERR(nfc->base))
1224 return PTR_ERR(nfc->base);
1226 anfc_reset(nfc);
1228 nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1229 if (IS_ERR(nfc->controller_clk))
1230 return PTR_ERR(nfc->controller_clk);
1232 nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1233 if (IS_ERR(nfc->bus_clk))
1234 return PTR_ERR(nfc->bus_clk);
1236 ret = clk_prepare_enable(nfc->controller_clk);
1237 if (ret)
1238 return ret;
1240 ret = clk_prepare_enable(nfc->bus_clk);
1241 if (ret)
1242 goto disable_controller_clk;
1244 ret = anfc_chips_init(nfc);
1245 if (ret)
1246 goto disable_bus_clk;
1248 platform_set_drvdata(pdev, nfc);
1250 return 0;
1252 disable_bus_clk:
1253 clk_disable_unprepare(nfc->bus_clk);
1255 disable_controller_clk:
1256 clk_disable_unprepare(nfc->controller_clk);
1258 return ret;
1261 static int anfc_remove(struct platform_device *pdev)
1263 struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1265 anfc_chips_cleanup(nfc);
1267 clk_disable_unprepare(nfc->bus_clk);
1268 clk_disable_unprepare(nfc->controller_clk);
1270 return 0;
1273 static const struct of_device_id anfc_ids[] = {
1275 .compatible = "xlnx,zynqmp-nand-controller",
1278 .compatible = "arasan,nfc-v3p10",
1282 MODULE_DEVICE_TABLE(of, anfc_ids);
1284 static struct platform_driver anfc_driver = {
1285 .driver = {
1286 .name = "arasan-nand-controller",
1287 .of_match_table = anfc_ids,
1289 .probe = anfc_probe,
1290 .remove = anfc_remove,
1292 module_platform_driver(anfc_driver);
1294 MODULE_LICENSE("GPL v2");
1295 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1296 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1297 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1298 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");