1 // SPDX-License-Identifier: GPL-2.0
3 * NAND Flash Controller Device Driver
4 * Copyright © 2009-2010, Intel Corporation and its suppliers.
6 * Copyright (c) 2017-2019 Socionext Inc.
7 * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
10 #include <linux/bitfield.h>
11 #include <linux/completion.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
23 #define DENALI_NAND_NAME "denali-nand"
25 /* for Indexed Addressing */
26 #define DENALI_INDEXED_CTRL 0x00
27 #define DENALI_INDEXED_DATA 0x10
29 #define DENALI_MAP00 (0 << 26) /* direct access to buffer */
30 #define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
31 #define DENALI_MAP10 (2 << 26) /* high-level control plane */
32 #define DENALI_MAP11 (3 << 26) /* direct controller access */
34 /* MAP11 access cycle type */
35 #define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
36 #define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
37 #define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
39 #define DENALI_BANK(denali) ((denali)->active_bank << 24)
41 #define DENALI_INVALID_BANK -1
43 static struct denali_chip
*to_denali_chip(struct nand_chip
*chip
)
45 return container_of(chip
, struct denali_chip
, chip
);
48 static struct denali_controller
*to_denali_controller(struct nand_chip
*chip
)
50 return container_of(chip
->controller
, struct denali_controller
,
55 * Direct Addressing - the slave address forms the control information (command
56 * type, bank, block, and page address). The slave data is the actual data to
57 * be transferred. This mode requires 28 bits of address region allocated.
59 static u32
denali_direct_read(struct denali_controller
*denali
, u32 addr
)
61 return ioread32(denali
->host
+ addr
);
64 static void denali_direct_write(struct denali_controller
*denali
, u32 addr
,
67 iowrite32(data
, denali
->host
+ addr
);
71 * Indexed Addressing - address translation module intervenes in passing the
72 * control information. This mode reduces the required address range. The
73 * control information and transferred data are latched by the registers in
74 * the translation module.
76 static u32
denali_indexed_read(struct denali_controller
*denali
, u32 addr
)
78 iowrite32(addr
, denali
->host
+ DENALI_INDEXED_CTRL
);
79 return ioread32(denali
->host
+ DENALI_INDEXED_DATA
);
82 static void denali_indexed_write(struct denali_controller
*denali
, u32 addr
,
85 iowrite32(addr
, denali
->host
+ DENALI_INDEXED_CTRL
);
86 iowrite32(data
, denali
->host
+ DENALI_INDEXED_DATA
);
89 static void denali_enable_irq(struct denali_controller
*denali
)
93 for (i
= 0; i
< denali
->nbanks
; i
++)
94 iowrite32(U32_MAX
, denali
->reg
+ INTR_EN(i
));
95 iowrite32(GLOBAL_INT_EN_FLAG
, denali
->reg
+ GLOBAL_INT_ENABLE
);
98 static void denali_disable_irq(struct denali_controller
*denali
)
102 for (i
= 0; i
< denali
->nbanks
; i
++)
103 iowrite32(0, denali
->reg
+ INTR_EN(i
));
104 iowrite32(0, denali
->reg
+ GLOBAL_INT_ENABLE
);
107 static void denali_clear_irq(struct denali_controller
*denali
,
108 int bank
, u32 irq_status
)
110 /* write one to clear bits */
111 iowrite32(irq_status
, denali
->reg
+ INTR_STATUS(bank
));
114 static void denali_clear_irq_all(struct denali_controller
*denali
)
118 for (i
= 0; i
< denali
->nbanks
; i
++)
119 denali_clear_irq(denali
, i
, U32_MAX
);
122 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
124 struct denali_controller
*denali
= dev_id
;
125 irqreturn_t ret
= IRQ_NONE
;
129 spin_lock(&denali
->irq_lock
);
131 for (i
= 0; i
< denali
->nbanks
; i
++) {
132 irq_status
= ioread32(denali
->reg
+ INTR_STATUS(i
));
136 denali_clear_irq(denali
, i
, irq_status
);
138 if (i
!= denali
->active_bank
)
141 denali
->irq_status
|= irq_status
;
143 if (denali
->irq_status
& denali
->irq_mask
)
144 complete(&denali
->complete
);
147 spin_unlock(&denali
->irq_lock
);
152 static void denali_reset_irq(struct denali_controller
*denali
)
156 spin_lock_irqsave(&denali
->irq_lock
, flags
);
157 denali
->irq_status
= 0;
158 denali
->irq_mask
= 0;
159 spin_unlock_irqrestore(&denali
->irq_lock
, flags
);
162 static u32
denali_wait_for_irq(struct denali_controller
*denali
, u32 irq_mask
)
164 unsigned long time_left
, flags
;
167 spin_lock_irqsave(&denali
->irq_lock
, flags
);
169 irq_status
= denali
->irq_status
;
171 if (irq_mask
& irq_status
) {
172 /* return immediately if the IRQ has already happened. */
173 spin_unlock_irqrestore(&denali
->irq_lock
, flags
);
177 denali
->irq_mask
= irq_mask
;
178 reinit_completion(&denali
->complete
);
179 spin_unlock_irqrestore(&denali
->irq_lock
, flags
);
181 time_left
= wait_for_completion_timeout(&denali
->complete
,
182 msecs_to_jiffies(1000));
184 dev_err(denali
->dev
, "timeout while waiting for irq 0x%x\n",
189 return denali
->irq_status
;
192 static void denali_select_target(struct nand_chip
*chip
, int cs
)
194 struct denali_controller
*denali
= to_denali_controller(chip
);
195 struct denali_chip_sel
*sel
= &to_denali_chip(chip
)->sels
[cs
];
196 struct mtd_info
*mtd
= nand_to_mtd(chip
);
198 denali
->active_bank
= sel
->bank
;
200 iowrite32(1 << (chip
->phys_erase_shift
- chip
->page_shift
),
201 denali
->reg
+ PAGES_PER_BLOCK
);
202 iowrite32(chip
->options
& NAND_BUSWIDTH_16
? 1 : 0,
203 denali
->reg
+ DEVICE_WIDTH
);
204 iowrite32(mtd
->writesize
, denali
->reg
+ DEVICE_MAIN_AREA_SIZE
);
205 iowrite32(mtd
->oobsize
, denali
->reg
+ DEVICE_SPARE_AREA_SIZE
);
206 iowrite32(chip
->options
& NAND_ROW_ADDR_3
?
207 0 : TWO_ROW_ADDR_CYCLES__FLAG
,
208 denali
->reg
+ TWO_ROW_ADDR_CYCLES
);
209 iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD
, 1) |
210 FIELD_PREP(ECC_CORRECTION__VALUE
, chip
->ecc
.strength
),
211 denali
->reg
+ ECC_CORRECTION
);
212 iowrite32(chip
->ecc
.size
, denali
->reg
+ CFG_DATA_BLOCK_SIZE
);
213 iowrite32(chip
->ecc
.size
, denali
->reg
+ CFG_LAST_DATA_BLOCK_SIZE
);
214 iowrite32(chip
->ecc
.steps
, denali
->reg
+ CFG_NUM_DATA_BLOCKS
);
216 if (chip
->options
& NAND_KEEP_TIMINGS
)
219 /* update timing registers unless NAND_KEEP_TIMINGS is set */
220 iowrite32(sel
->hwhr2_and_we_2_re
, denali
->reg
+ TWHR2_AND_WE_2_RE
);
221 iowrite32(sel
->tcwaw_and_addr_2_data
,
222 denali
->reg
+ TCWAW_AND_ADDR_2_DATA
);
223 iowrite32(sel
->re_2_we
, denali
->reg
+ RE_2_WE
);
224 iowrite32(sel
->acc_clks
, denali
->reg
+ ACC_CLKS
);
225 iowrite32(sel
->rdwr_en_lo_cnt
, denali
->reg
+ RDWR_EN_LO_CNT
);
226 iowrite32(sel
->rdwr_en_hi_cnt
, denali
->reg
+ RDWR_EN_HI_CNT
);
227 iowrite32(sel
->cs_setup_cnt
, denali
->reg
+ CS_SETUP_CNT
);
228 iowrite32(sel
->re_2_re
, denali
->reg
+ RE_2_RE
);
231 static int denali_change_column(struct nand_chip
*chip
, unsigned int offset
,
232 void *buf
, unsigned int len
, bool write
)
235 return nand_change_write_column_op(chip
, offset
, buf
, len
,
238 return nand_change_read_column_op(chip
, offset
, buf
, len
,
242 static int denali_payload_xfer(struct nand_chip
*chip
, void *buf
, bool write
)
244 struct denali_controller
*denali
= to_denali_controller(chip
);
245 struct mtd_info
*mtd
= nand_to_mtd(chip
);
246 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
247 int writesize
= mtd
->writesize
;
248 int oob_skip
= denali
->oob_skip_bytes
;
249 int ret
, i
, pos
, len
;
251 for (i
= 0; i
< ecc
->steps
; i
++) {
252 pos
= i
* (ecc
->size
+ ecc
->bytes
);
255 if (pos
>= writesize
) {
257 } else if (pos
+ len
> writesize
) {
258 /* This chunk overwraps the BBM area. Must be split */
259 ret
= denali_change_column(chip
, pos
, buf
,
260 writesize
- pos
, write
);
264 buf
+= writesize
- pos
;
265 len
-= writesize
- pos
;
266 pos
= writesize
+ oob_skip
;
269 ret
= denali_change_column(chip
, pos
, buf
, len
, write
);
279 static int denali_oob_xfer(struct nand_chip
*chip
, void *buf
, bool write
)
281 struct denali_controller
*denali
= to_denali_controller(chip
);
282 struct mtd_info
*mtd
= nand_to_mtd(chip
);
283 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
284 int writesize
= mtd
->writesize
;
285 int oobsize
= mtd
->oobsize
;
286 int oob_skip
= denali
->oob_skip_bytes
;
287 int ret
, i
, pos
, len
;
289 /* BBM at the beginning of the OOB area */
290 ret
= denali_change_column(chip
, writesize
, buf
, oob_skip
, write
);
296 for (i
= 0; i
< ecc
->steps
; i
++) {
297 pos
= ecc
->size
+ i
* (ecc
->size
+ ecc
->bytes
);
299 if (i
== ecc
->steps
- 1)
300 /* The last chunk includes OOB free */
301 len
= writesize
+ oobsize
- pos
- oob_skip
;
305 if (pos
>= writesize
) {
307 } else if (pos
+ len
> writesize
) {
308 /* This chunk overwraps the BBM area. Must be split */
309 ret
= denali_change_column(chip
, pos
, buf
,
310 writesize
- pos
, write
);
314 buf
+= writesize
- pos
;
315 len
-= writesize
- pos
;
316 pos
= writesize
+ oob_skip
;
319 ret
= denali_change_column(chip
, pos
, buf
, len
, write
);
329 static int denali_read_raw(struct nand_chip
*chip
, void *buf
, void *oob_buf
,
334 if (!buf
&& !oob_buf
)
337 ret
= nand_read_page_op(chip
, page
, 0, NULL
, 0);
342 ret
= denali_payload_xfer(chip
, buf
, false);
348 ret
= denali_oob_xfer(chip
, oob_buf
, false);
356 static int denali_write_raw(struct nand_chip
*chip
, const void *buf
,
357 const void *oob_buf
, int page
)
361 if (!buf
&& !oob_buf
)
364 ret
= nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
369 ret
= denali_payload_xfer(chip
, (void *)buf
, true);
375 ret
= denali_oob_xfer(chip
, (void *)oob_buf
, true);
380 return nand_prog_page_end_op(chip
);
383 static int denali_read_page_raw(struct nand_chip
*chip
, u8
*buf
,
384 int oob_required
, int page
)
386 return denali_read_raw(chip
, buf
, oob_required
? chip
->oob_poi
: NULL
,
390 static int denali_write_page_raw(struct nand_chip
*chip
, const u8
*buf
,
391 int oob_required
, int page
)
393 return denali_write_raw(chip
, buf
, oob_required
? chip
->oob_poi
: NULL
,
397 static int denali_read_oob(struct nand_chip
*chip
, int page
)
399 return denali_read_raw(chip
, NULL
, chip
->oob_poi
, page
);
402 static int denali_write_oob(struct nand_chip
*chip
, int page
)
404 return denali_write_raw(chip
, NULL
, chip
->oob_poi
, page
);
407 static int denali_check_erased_page(struct nand_chip
*chip
, u8
*buf
,
408 unsigned long uncor_ecc_flags
,
409 unsigned int max_bitflips
)
411 struct denali_controller
*denali
= to_denali_controller(chip
);
412 struct mtd_ecc_stats
*ecc_stats
= &nand_to_mtd(chip
)->ecc_stats
;
413 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
414 u8
*ecc_code
= chip
->oob_poi
+ denali
->oob_skip_bytes
;
417 for (i
= 0; i
< ecc
->steps
; i
++) {
418 if (!(uncor_ecc_flags
& BIT(i
)))
421 stat
= nand_check_erased_ecc_chunk(buf
, ecc
->size
, ecc_code
,
427 ecc_stats
->corrected
+= stat
;
428 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
432 ecc_code
+= ecc
->bytes
;
438 static int denali_hw_ecc_fixup(struct nand_chip
*chip
,
439 unsigned long *uncor_ecc_flags
)
441 struct denali_controller
*denali
= to_denali_controller(chip
);
442 struct mtd_ecc_stats
*ecc_stats
= &nand_to_mtd(chip
)->ecc_stats
;
443 int bank
= denali
->active_bank
;
445 unsigned int max_bitflips
;
447 ecc_cor
= ioread32(denali
->reg
+ ECC_COR_INFO(bank
));
448 ecc_cor
>>= ECC_COR_INFO__SHIFT(bank
);
450 if (ecc_cor
& ECC_COR_INFO__UNCOR_ERR
) {
452 * This flag is set when uncorrectable error occurs at least in
453 * one ECC sector. We can not know "how many sectors", or
454 * "which sector(s)". We need erase-page check for all sectors.
456 *uncor_ecc_flags
= GENMASK(chip
->ecc
.steps
- 1, 0);
460 max_bitflips
= FIELD_GET(ECC_COR_INFO__MAX_ERRORS
, ecc_cor
);
463 * The register holds the maximum of per-sector corrected bitflips.
464 * This is suitable for the return value of the ->read_page() callback.
465 * Unfortunately, we can not know the total number of corrected bits in
466 * the page. Increase the stats by max_bitflips. (compromised solution)
468 ecc_stats
->corrected
+= max_bitflips
;
473 static int denali_sw_ecc_fixup(struct nand_chip
*chip
,
474 unsigned long *uncor_ecc_flags
, u8
*buf
)
476 struct denali_controller
*denali
= to_denali_controller(chip
);
477 struct mtd_ecc_stats
*ecc_stats
= &nand_to_mtd(chip
)->ecc_stats
;
478 unsigned int ecc_size
= chip
->ecc
.size
;
479 unsigned int bitflips
= 0;
480 unsigned int max_bitflips
= 0;
481 u32 err_addr
, err_cor_info
;
482 unsigned int err_byte
, err_sector
, err_device
;
484 unsigned int prev_sector
= 0;
487 denali_reset_irq(denali
);
490 err_addr
= ioread32(denali
->reg
+ ECC_ERROR_ADDRESS
);
491 err_sector
= FIELD_GET(ECC_ERROR_ADDRESS__SECTOR
, err_addr
);
492 err_byte
= FIELD_GET(ECC_ERROR_ADDRESS__OFFSET
, err_addr
);
494 err_cor_info
= ioread32(denali
->reg
+ ERR_CORRECTION_INFO
);
495 err_cor_value
= FIELD_GET(ERR_CORRECTION_INFO__BYTE
,
497 err_device
= FIELD_GET(ERR_CORRECTION_INFO__DEVICE
,
500 /* reset the bitflip counter when crossing ECC sector */
501 if (err_sector
!= prev_sector
)
504 if (err_cor_info
& ERR_CORRECTION_INFO__UNCOR
) {
506 * Check later if this is a real ECC error, or
509 *uncor_ecc_flags
|= BIT(err_sector
);
510 } else if (err_byte
< ecc_size
) {
512 * If err_byte is larger than ecc_size, means error
513 * happened in OOB, so we ignore it. It's no need for
514 * us to correct it err_device is represented the NAND
515 * error bits are happened in if there are more than
516 * one NAND connected.
519 unsigned int flips_in_byte
;
521 offset
= (err_sector
* ecc_size
+ err_byte
) *
522 denali
->devs_per_cs
+ err_device
;
524 /* correct the ECC error */
525 flips_in_byte
= hweight8(buf
[offset
] ^ err_cor_value
);
526 buf
[offset
] ^= err_cor_value
;
527 ecc_stats
->corrected
+= flips_in_byte
;
528 bitflips
+= flips_in_byte
;
530 max_bitflips
= max(max_bitflips
, bitflips
);
533 prev_sector
= err_sector
;
534 } while (!(err_cor_info
& ERR_CORRECTION_INFO__LAST_ERR
));
537 * Once handle all ECC errors, controller will trigger an
538 * ECC_TRANSACTION_DONE interrupt.
540 irq_status
= denali_wait_for_irq(denali
, INTR__ECC_TRANSACTION_DONE
);
541 if (!(irq_status
& INTR__ECC_TRANSACTION_DONE
))
547 static void denali_setup_dma64(struct denali_controller
*denali
,
548 dma_addr_t dma_addr
, int page
, bool write
)
551 const int page_count
= 1;
553 mode
= DENALI_MAP10
| DENALI_BANK(denali
) | page
;
555 /* DMA is a three step process */
558 * 1. setup transfer type, interrupt when complete,
559 * burst len = 64 bytes, the number of pages
561 denali
->host_write(denali
, mode
,
562 0x01002000 | (64 << 16) |
563 (write
? BIT(8) : 0) | page_count
);
565 /* 2. set memory low address */
566 denali
->host_write(denali
, mode
, lower_32_bits(dma_addr
));
568 /* 3. set memory high address */
569 denali
->host_write(denali
, mode
, upper_32_bits(dma_addr
));
572 static void denali_setup_dma32(struct denali_controller
*denali
,
573 dma_addr_t dma_addr
, int page
, bool write
)
576 const int page_count
= 1;
578 mode
= DENALI_MAP10
| DENALI_BANK(denali
);
580 /* DMA is a four step process */
582 /* 1. setup transfer type and # of pages */
583 denali
->host_write(denali
, mode
| page
,
584 0x2000 | (write
? BIT(8) : 0) | page_count
);
586 /* 2. set memory high address bits 23:8 */
587 denali
->host_write(denali
, mode
| ((dma_addr
>> 16) << 8), 0x2200);
589 /* 3. set memory low address bits 23:8 */
590 denali
->host_write(denali
, mode
| ((dma_addr
& 0xffff) << 8), 0x2300);
592 /* 4. interrupt when complete, burst len = 64 bytes */
593 denali
->host_write(denali
, mode
| 0x14000, 0x2400);
596 static int denali_pio_read(struct denali_controller
*denali
, u32
*buf
,
597 size_t size
, int page
)
599 u32 addr
= DENALI_MAP01
| DENALI_BANK(denali
) | page
;
600 u32 irq_status
, ecc_err_mask
;
603 if (denali
->caps
& DENALI_CAP_HW_ECC_FIXUP
)
604 ecc_err_mask
= INTR__ECC_UNCOR_ERR
;
606 ecc_err_mask
= INTR__ECC_ERR
;
608 denali_reset_irq(denali
);
610 for (i
= 0; i
< size
/ 4; i
++)
611 buf
[i
] = denali
->host_read(denali
, addr
);
613 irq_status
= denali_wait_for_irq(denali
, INTR__PAGE_XFER_INC
);
614 if (!(irq_status
& INTR__PAGE_XFER_INC
))
617 if (irq_status
& INTR__ERASED_PAGE
)
618 memset(buf
, 0xff, size
);
620 return irq_status
& ecc_err_mask
? -EBADMSG
: 0;
623 static int denali_pio_write(struct denali_controller
*denali
, const u32
*buf
,
624 size_t size
, int page
)
626 u32 addr
= DENALI_MAP01
| DENALI_BANK(denali
) | page
;
630 denali_reset_irq(denali
);
632 for (i
= 0; i
< size
/ 4; i
++)
633 denali
->host_write(denali
, addr
, buf
[i
]);
635 irq_status
= denali_wait_for_irq(denali
,
638 if (!(irq_status
& INTR__PROGRAM_COMP
))
644 static int denali_pio_xfer(struct denali_controller
*denali
, void *buf
,
645 size_t size
, int page
, bool write
)
648 return denali_pio_write(denali
, buf
, size
, page
);
650 return denali_pio_read(denali
, buf
, size
, page
);
653 static int denali_dma_xfer(struct denali_controller
*denali
, void *buf
,
654 size_t size
, int page
, bool write
)
657 u32 irq_mask
, irq_status
, ecc_err_mask
;
658 enum dma_data_direction dir
= write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
661 dma_addr
= dma_map_single(denali
->dev
, buf
, size
, dir
);
662 if (dma_mapping_error(denali
->dev
, dma_addr
)) {
663 dev_dbg(denali
->dev
, "Failed to DMA-map buffer. Trying PIO.\n");
664 return denali_pio_xfer(denali
, buf
, size
, page
, write
);
669 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
670 * We can use INTR__DMA_CMD_COMP instead. This flag is asserted
671 * when the page program is completed.
673 irq_mask
= INTR__DMA_CMD_COMP
| INTR__PROGRAM_FAIL
;
675 } else if (denali
->caps
& DENALI_CAP_HW_ECC_FIXUP
) {
676 irq_mask
= INTR__DMA_CMD_COMP
;
677 ecc_err_mask
= INTR__ECC_UNCOR_ERR
;
679 irq_mask
= INTR__DMA_CMD_COMP
;
680 ecc_err_mask
= INTR__ECC_ERR
;
683 iowrite32(DMA_ENABLE__FLAG
, denali
->reg
+ DMA_ENABLE
);
685 * The ->setup_dma() hook kicks DMA by using the data/command
686 * interface, which belongs to a different AXI port from the
687 * register interface. Read back the register to avoid a race.
689 ioread32(denali
->reg
+ DMA_ENABLE
);
691 denali_reset_irq(denali
);
692 denali
->setup_dma(denali
, dma_addr
, page
, write
);
694 irq_status
= denali_wait_for_irq(denali
, irq_mask
);
695 if (!(irq_status
& INTR__DMA_CMD_COMP
))
697 else if (irq_status
& ecc_err_mask
)
700 iowrite32(0, denali
->reg
+ DMA_ENABLE
);
702 dma_unmap_single(denali
->dev
, dma_addr
, size
, dir
);
704 if (irq_status
& INTR__ERASED_PAGE
)
705 memset(buf
, 0xff, size
);
710 static int denali_page_xfer(struct nand_chip
*chip
, void *buf
, size_t size
,
711 int page
, bool write
)
713 struct denali_controller
*denali
= to_denali_controller(chip
);
715 denali_select_target(chip
, chip
->cur_cs
);
717 if (denali
->dma_avail
)
718 return denali_dma_xfer(denali
, buf
, size
, page
, write
);
720 return denali_pio_xfer(denali
, buf
, size
, page
, write
);
723 static int denali_read_page(struct nand_chip
*chip
, u8
*buf
,
724 int oob_required
, int page
)
726 struct denali_controller
*denali
= to_denali_controller(chip
);
727 struct mtd_info
*mtd
= nand_to_mtd(chip
);
728 unsigned long uncor_ecc_flags
= 0;
732 ret
= denali_page_xfer(chip
, buf
, mtd
->writesize
, page
, false);
733 if (ret
&& ret
!= -EBADMSG
)
736 if (denali
->caps
& DENALI_CAP_HW_ECC_FIXUP
)
737 stat
= denali_hw_ecc_fixup(chip
, &uncor_ecc_flags
);
738 else if (ret
== -EBADMSG
)
739 stat
= denali_sw_ecc_fixup(chip
, &uncor_ecc_flags
, buf
);
744 if (uncor_ecc_flags
) {
745 ret
= denali_read_oob(chip
, page
);
749 stat
= denali_check_erased_page(chip
, buf
,
750 uncor_ecc_flags
, stat
);
756 static int denali_write_page(struct nand_chip
*chip
, const u8
*buf
,
757 int oob_required
, int page
)
759 struct mtd_info
*mtd
= nand_to_mtd(chip
);
761 return denali_page_xfer(chip
, (void *)buf
, mtd
->writesize
, page
, true);
764 static int denali_setup_interface(struct nand_chip
*chip
, int chipnr
,
765 const struct nand_interface_config
*conf
)
767 static const unsigned int data_setup_on_host
= 10000;
768 struct denali_controller
*denali
= to_denali_controller(chip
);
769 struct denali_chip_sel
*sel
;
770 const struct nand_sdr_timings
*timings
;
771 unsigned long t_x
, mult_x
;
772 int acc_clks
, re_2_we
, re_2_re
, we_2_re
, addr_2_data
;
773 int rdwr_en_lo
, rdwr_en_hi
, rdwr_en_lo_hi
, cs_setup
;
774 int addr_2_data_mask
;
777 timings
= nand_get_sdr_timings(conf
);
779 return PTR_ERR(timings
);
781 /* clk_x period in picoseconds */
782 t_x
= DIV_ROUND_DOWN_ULL(1000000000000ULL, denali
->clk_x_rate
);
787 * The bus interface clock, clk_x, is phase aligned with the core clock.
788 * The clk_x is an integral multiple N of the core clk. The value N is
789 * configured at IP delivery time, and its available value is 4, 5, 6.
791 mult_x
= DIV_ROUND_CLOSEST_ULL(denali
->clk_x_rate
, denali
->clk_rate
);
792 if (mult_x
< 4 || mult_x
> 6)
795 if (chipnr
== NAND_DATA_IFACE_CHECK_ONLY
)
798 sel
= &to_denali_chip(chip
)->sels
[chipnr
];
800 /* tRWH -> RE_2_WE */
801 re_2_we
= DIV_ROUND_UP(timings
->tRHW_min
, t_x
);
802 re_2_we
= min_t(int, re_2_we
, RE_2_WE__VALUE
);
804 tmp
= ioread32(denali
->reg
+ RE_2_WE
);
805 tmp
&= ~RE_2_WE__VALUE
;
806 tmp
|= FIELD_PREP(RE_2_WE__VALUE
, re_2_we
);
809 /* tRHZ -> RE_2_RE */
810 re_2_re
= DIV_ROUND_UP(timings
->tRHZ_max
, t_x
);
811 re_2_re
= min_t(int, re_2_re
, RE_2_RE__VALUE
);
813 tmp
= ioread32(denali
->reg
+ RE_2_RE
);
814 tmp
&= ~RE_2_RE__VALUE
;
815 tmp
|= FIELD_PREP(RE_2_RE__VALUE
, re_2_re
);
819 * tCCS, tWHR -> WE_2_RE
821 * With WE_2_RE properly set, the Denali controller automatically takes
822 * care of the delay; the driver need not set NAND_WAIT_TCCS.
824 we_2_re
= DIV_ROUND_UP(max(timings
->tCCS_min
, timings
->tWHR_min
), t_x
);
825 we_2_re
= min_t(int, we_2_re
, TWHR2_AND_WE_2_RE__WE_2_RE
);
827 tmp
= ioread32(denali
->reg
+ TWHR2_AND_WE_2_RE
);
828 tmp
&= ~TWHR2_AND_WE_2_RE__WE_2_RE
;
829 tmp
|= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE
, we_2_re
);
830 sel
->hwhr2_and_we_2_re
= tmp
;
832 /* tADL -> ADDR_2_DATA */
834 /* for older versions, ADDR_2_DATA is only 6 bit wide */
835 addr_2_data_mask
= TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA
;
836 if (denali
->revision
< 0x0501)
837 addr_2_data_mask
>>= 1;
839 addr_2_data
= DIV_ROUND_UP(timings
->tADL_min
, t_x
);
840 addr_2_data
= min_t(int, addr_2_data
, addr_2_data_mask
);
842 tmp
= ioread32(denali
->reg
+ TCWAW_AND_ADDR_2_DATA
);
843 tmp
&= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA
;
844 tmp
|= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA
, addr_2_data
);
845 sel
->tcwaw_and_addr_2_data
= tmp
;
847 /* tREH, tWH -> RDWR_EN_HI_CNT */
848 rdwr_en_hi
= DIV_ROUND_UP(max(timings
->tREH_min
, timings
->tWH_min
),
850 rdwr_en_hi
= min_t(int, rdwr_en_hi
, RDWR_EN_HI_CNT__VALUE
);
852 tmp
= ioread32(denali
->reg
+ RDWR_EN_HI_CNT
);
853 tmp
&= ~RDWR_EN_HI_CNT__VALUE
;
854 tmp
|= FIELD_PREP(RDWR_EN_HI_CNT__VALUE
, rdwr_en_hi
);
855 sel
->rdwr_en_hi_cnt
= tmp
;
859 * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT
863 * Determine the minimum of acc_clks to meet the setup timing when
864 * capturing the incoming data.
866 * The delay on the chip side is well-defined as tREA, but we need to
867 * take additional delay into account. This includes a certain degree
868 * of unknowledge, such as signal propagation delays on the PCB and
869 * in the SoC, load capacity of the I/O pins, etc.
871 acc_clks
= DIV_ROUND_UP(timings
->tREA_max
+ data_setup_on_host
, t_x
);
873 /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */
874 rdwr_en_lo
= DIV_ROUND_UP(max(timings
->tRP_min
, timings
->tWP_min
), t_x
);
876 /* Extend rdwr_en_lo to meet the data hold timing */
877 rdwr_en_lo
= max_t(int, rdwr_en_lo
,
878 acc_clks
- timings
->tRHOH_min
/ t_x
);
880 /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */
881 rdwr_en_lo_hi
= DIV_ROUND_UP(max(timings
->tRC_min
, timings
->tWC_min
),
883 rdwr_en_lo
= max(rdwr_en_lo
, rdwr_en_lo_hi
- rdwr_en_hi
);
884 rdwr_en_lo
= min_t(int, rdwr_en_lo
, RDWR_EN_LO_CNT__VALUE
);
886 /* Center the data latch timing for extra safety */
887 acc_clks
= (acc_clks
+ rdwr_en_lo
+
888 DIV_ROUND_UP(timings
->tRHOH_min
, t_x
)) / 2;
889 acc_clks
= min_t(int, acc_clks
, ACC_CLKS__VALUE
);
891 tmp
= ioread32(denali
->reg
+ ACC_CLKS
);
892 tmp
&= ~ACC_CLKS__VALUE
;
893 tmp
|= FIELD_PREP(ACC_CLKS__VALUE
, acc_clks
);
896 tmp
= ioread32(denali
->reg
+ RDWR_EN_LO_CNT
);
897 tmp
&= ~RDWR_EN_LO_CNT__VALUE
;
898 tmp
|= FIELD_PREP(RDWR_EN_LO_CNT__VALUE
, rdwr_en_lo
);
899 sel
->rdwr_en_lo_cnt
= tmp
;
901 /* tCS, tCEA -> CS_SETUP_CNT */
902 cs_setup
= max3((int)DIV_ROUND_UP(timings
->tCS_min
, t_x
) - rdwr_en_lo
,
903 (int)DIV_ROUND_UP(timings
->tCEA_max
, t_x
) - acc_clks
,
905 cs_setup
= min_t(int, cs_setup
, CS_SETUP_CNT__VALUE
);
907 tmp
= ioread32(denali
->reg
+ CS_SETUP_CNT
);
908 tmp
&= ~CS_SETUP_CNT__VALUE
;
909 tmp
|= FIELD_PREP(CS_SETUP_CNT__VALUE
, cs_setup
);
910 sel
->cs_setup_cnt
= tmp
;
915 int denali_calc_ecc_bytes(int step_size
, int strength
)
917 /* BCH code. Denali requires ecc.bytes to be multiple of 2 */
918 return DIV_ROUND_UP(strength
* fls(step_size
* 8), 16) * 2;
920 EXPORT_SYMBOL(denali_calc_ecc_bytes
);
922 static int denali_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
923 struct mtd_oob_region
*oobregion
)
925 struct nand_chip
*chip
= mtd_to_nand(mtd
);
926 struct denali_controller
*denali
= to_denali_controller(chip
);
931 oobregion
->offset
= denali
->oob_skip_bytes
;
932 oobregion
->length
= chip
->ecc
.total
;
937 static int denali_ooblayout_free(struct mtd_info
*mtd
, int section
,
938 struct mtd_oob_region
*oobregion
)
940 struct nand_chip
*chip
= mtd_to_nand(mtd
);
941 struct denali_controller
*denali
= to_denali_controller(chip
);
946 oobregion
->offset
= chip
->ecc
.total
+ denali
->oob_skip_bytes
;
947 oobregion
->length
= mtd
->oobsize
- oobregion
->offset
;
952 static const struct mtd_ooblayout_ops denali_ooblayout_ops
= {
953 .ecc
= denali_ooblayout_ecc
,
954 .free
= denali_ooblayout_free
,
957 static int denali_multidev_fixup(struct nand_chip
*chip
)
959 struct denali_controller
*denali
= to_denali_controller(chip
);
960 struct mtd_info
*mtd
= nand_to_mtd(chip
);
961 struct nand_memory_organization
*memorg
;
963 memorg
= nanddev_get_memorg(&chip
->base
);
966 * Support for multi device:
967 * When the IP configuration is x16 capable and two x8 chips are
968 * connected in parallel, DEVICES_CONNECTED should be set to 2.
969 * In this case, the core framework knows nothing about this fact,
970 * so we should tell it the _logical_ pagesize and anything necessary.
972 denali
->devs_per_cs
= ioread32(denali
->reg
+ DEVICES_CONNECTED
);
975 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
976 * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
978 if (denali
->devs_per_cs
== 0) {
979 denali
->devs_per_cs
= 1;
980 iowrite32(1, denali
->reg
+ DEVICES_CONNECTED
);
983 if (denali
->devs_per_cs
== 1)
986 if (denali
->devs_per_cs
!= 2) {
987 dev_err(denali
->dev
, "unsupported number of devices %d\n",
988 denali
->devs_per_cs
);
992 /* 2 chips in parallel */
993 memorg
->pagesize
<<= 1;
994 memorg
->oobsize
<<= 1;
996 mtd
->erasesize
<<= 1;
997 mtd
->writesize
<<= 1;
999 chip
->page_shift
+= 1;
1000 chip
->phys_erase_shift
+= 1;
1001 chip
->bbt_erase_shift
+= 1;
1002 chip
->chip_shift
+= 1;
1003 chip
->pagemask
<<= 1;
1004 chip
->ecc
.size
<<= 1;
1005 chip
->ecc
.bytes
<<= 1;
1006 chip
->ecc
.strength
<<= 1;
1007 denali
->oob_skip_bytes
<<= 1;
1012 static int denali_attach_chip(struct nand_chip
*chip
)
1014 struct denali_controller
*denali
= to_denali_controller(chip
);
1015 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1018 ret
= nand_ecc_choose_conf(chip
, denali
->ecc_caps
,
1019 mtd
->oobsize
- denali
->oob_skip_bytes
);
1021 dev_err(denali
->dev
, "Failed to setup ECC settings.\n");
1025 dev_dbg(denali
->dev
,
1026 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1027 chip
->ecc
.size
, chip
->ecc
.strength
, chip
->ecc
.bytes
);
1029 ret
= denali_multidev_fixup(chip
);
1036 static void denali_exec_in8(struct denali_controller
*denali
, u32 type
,
1037 u8
*buf
, unsigned int len
)
1041 for (i
= 0; i
< len
; i
++)
1042 buf
[i
] = denali
->host_read(denali
, type
| DENALI_BANK(denali
));
1045 static void denali_exec_in16(struct denali_controller
*denali
, u32 type
,
1046 u8
*buf
, unsigned int len
)
1051 for (i
= 0; i
< len
; i
+= 2) {
1052 data
= denali
->host_read(denali
, type
| DENALI_BANK(denali
));
1053 /* bit 31:24 and 15:8 are used for DDR */
1055 buf
[i
+ 1] = data
>> 16;
1059 static void denali_exec_in(struct denali_controller
*denali
, u32 type
,
1060 u8
*buf
, unsigned int len
, bool width16
)
1063 denali_exec_in16(denali
, type
, buf
, len
);
1065 denali_exec_in8(denali
, type
, buf
, len
);
1068 static void denali_exec_out8(struct denali_controller
*denali
, u32 type
,
1069 const u8
*buf
, unsigned int len
)
1073 for (i
= 0; i
< len
; i
++)
1074 denali
->host_write(denali
, type
| DENALI_BANK(denali
), buf
[i
]);
1077 static void denali_exec_out16(struct denali_controller
*denali
, u32 type
,
1078 const u8
*buf
, unsigned int len
)
1082 for (i
= 0; i
< len
; i
+= 2)
1083 denali
->host_write(denali
, type
| DENALI_BANK(denali
),
1084 buf
[i
+ 1] << 16 | buf
[i
]);
1087 static void denali_exec_out(struct denali_controller
*denali
, u32 type
,
1088 const u8
*buf
, unsigned int len
, bool width16
)
1091 denali_exec_out16(denali
, type
, buf
, len
);
1093 denali_exec_out8(denali
, type
, buf
, len
);
1096 static int denali_exec_waitrdy(struct denali_controller
*denali
)
1100 /* R/B# pin transitioned from low to high? */
1101 irq_stat
= denali_wait_for_irq(denali
, INTR__INT_ACT
);
1103 /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1104 denali_reset_irq(denali
);
1106 return irq_stat
& INTR__INT_ACT
? 0 : -EIO
;
1109 static int denali_exec_instr(struct nand_chip
*chip
,
1110 const struct nand_op_instr
*instr
)
1112 struct denali_controller
*denali
= to_denali_controller(chip
);
1114 switch (instr
->type
) {
1115 case NAND_OP_CMD_INSTR
:
1116 denali_exec_out8(denali
, DENALI_MAP11_CMD
,
1117 &instr
->ctx
.cmd
.opcode
, 1);
1119 case NAND_OP_ADDR_INSTR
:
1120 denali_exec_out8(denali
, DENALI_MAP11_ADDR
,
1121 instr
->ctx
.addr
.addrs
,
1122 instr
->ctx
.addr
.naddrs
);
1124 case NAND_OP_DATA_IN_INSTR
:
1125 denali_exec_in(denali
, DENALI_MAP11_DATA
,
1126 instr
->ctx
.data
.buf
.in
,
1127 instr
->ctx
.data
.len
,
1128 !instr
->ctx
.data
.force_8bit
&&
1129 chip
->options
& NAND_BUSWIDTH_16
);
1131 case NAND_OP_DATA_OUT_INSTR
:
1132 denali_exec_out(denali
, DENALI_MAP11_DATA
,
1133 instr
->ctx
.data
.buf
.out
,
1134 instr
->ctx
.data
.len
,
1135 !instr
->ctx
.data
.force_8bit
&&
1136 chip
->options
& NAND_BUSWIDTH_16
);
1138 case NAND_OP_WAITRDY_INSTR
:
1139 return denali_exec_waitrdy(denali
);
1141 WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1148 static int denali_exec_op(struct nand_chip
*chip
,
1149 const struct nand_operation
*op
, bool check_only
)
1156 denali_select_target(chip
, op
->cs
);
1159 * Some commands contain NAND_OP_WAITRDY_INSTR.
1160 * irq must be cleared here to catch the R/B# interrupt there.
1162 denali_reset_irq(to_denali_controller(chip
));
1164 for (i
= 0; i
< op
->ninstrs
; i
++) {
1165 ret
= denali_exec_instr(chip
, &op
->instrs
[i
]);
1173 static const struct nand_controller_ops denali_controller_ops
= {
1174 .attach_chip
= denali_attach_chip
,
1175 .exec_op
= denali_exec_op
,
1176 .setup_interface
= denali_setup_interface
,
1179 int denali_chip_init(struct denali_controller
*denali
,
1180 struct denali_chip
*dchip
)
1182 struct nand_chip
*chip
= &dchip
->chip
;
1183 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1184 struct denali_chip
*dchip2
;
1187 chip
->controller
= &denali
->controller
;
1189 /* sanity checks for bank numbers */
1190 for (i
= 0; i
< dchip
->nsels
; i
++) {
1191 unsigned int bank
= dchip
->sels
[i
].bank
;
1193 if (bank
>= denali
->nbanks
) {
1194 dev_err(denali
->dev
, "unsupported bank %d\n", bank
);
1198 for (j
= 0; j
< i
; j
++) {
1199 if (bank
== dchip
->sels
[j
].bank
) {
1200 dev_err(denali
->dev
,
1201 "bank %d is assigned twice in the same chip\n",
1207 list_for_each_entry(dchip2
, &denali
->chips
, node
) {
1208 for (j
= 0; j
< dchip2
->nsels
; j
++) {
1209 if (bank
== dchip2
->sels
[j
].bank
) {
1210 dev_err(denali
->dev
,
1211 "bank %d is already used\n",
1219 mtd
->dev
.parent
= denali
->dev
;
1222 * Fallback to the default name if DT did not give "label" property.
1223 * Use "label" property if multiple chips are connected.
1225 if (!mtd
->name
&& list_empty(&denali
->chips
))
1226 mtd
->name
= "denali-nand";
1228 if (denali
->dma_avail
) {
1229 chip
->options
|= NAND_USES_DMA
;
1230 chip
->buf_align
= 16;
1233 /* clk rate info is needed for setup_interface */
1234 if (!denali
->clk_rate
|| !denali
->clk_x_rate
)
1235 chip
->options
|= NAND_KEEP_TIMINGS
;
1237 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
1238 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
1239 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1240 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
1241 chip
->ecc
.placement
= NAND_ECC_PLACEMENT_INTERLEAVED
;
1242 chip
->ecc
.read_page
= denali_read_page
;
1243 chip
->ecc
.write_page
= denali_write_page
;
1244 chip
->ecc
.read_page_raw
= denali_read_page_raw
;
1245 chip
->ecc
.write_page_raw
= denali_write_page_raw
;
1246 chip
->ecc
.read_oob
= denali_read_oob
;
1247 chip
->ecc
.write_oob
= denali_write_oob
;
1249 mtd_set_ooblayout(mtd
, &denali_ooblayout_ops
);
1251 ret
= nand_scan(chip
, dchip
->nsels
);
1255 ret
= mtd_device_register(mtd
, NULL
, 0);
1257 dev_err(denali
->dev
, "Failed to register MTD: %d\n", ret
);
1261 list_add_tail(&dchip
->node
, &denali
->chips
);
1270 EXPORT_SYMBOL_GPL(denali_chip_init
);
1272 int denali_init(struct denali_controller
*denali
)
1274 u32 features
= ioread32(denali
->reg
+ FEATURES
);
1277 nand_controller_init(&denali
->controller
);
1278 denali
->controller
.ops
= &denali_controller_ops
;
1279 init_completion(&denali
->complete
);
1280 spin_lock_init(&denali
->irq_lock
);
1281 INIT_LIST_HEAD(&denali
->chips
);
1282 denali
->active_bank
= DENALI_INVALID_BANK
;
1285 * The REVISION register may not be reliable. Platforms are allowed to
1288 if (!denali
->revision
)
1289 denali
->revision
= swab16(ioread32(denali
->reg
+ REVISION
));
1291 denali
->nbanks
= 1 << FIELD_GET(FEATURES__N_BANKS
, features
);
1293 /* the encoding changed from rev 5.0 to 5.1 */
1294 if (denali
->revision
< 0x0501)
1295 denali
->nbanks
<<= 1;
1297 if (features
& FEATURES__DMA
)
1298 denali
->dma_avail
= true;
1300 if (denali
->dma_avail
) {
1301 int dma_bit
= denali
->caps
& DENALI_CAP_DMA_64BIT
? 64 : 32;
1303 ret
= dma_set_mask(denali
->dev
, DMA_BIT_MASK(dma_bit
));
1305 dev_info(denali
->dev
,
1306 "Failed to set DMA mask. Disabling DMA.\n");
1307 denali
->dma_avail
= false;
1311 if (denali
->dma_avail
) {
1312 if (denali
->caps
& DENALI_CAP_DMA_64BIT
)
1313 denali
->setup_dma
= denali_setup_dma64
;
1315 denali
->setup_dma
= denali_setup_dma32
;
1318 if (features
& FEATURES__INDEX_ADDR
) {
1319 denali
->host_read
= denali_indexed_read
;
1320 denali
->host_write
= denali_indexed_write
;
1322 denali
->host_read
= denali_direct_read
;
1323 denali
->host_write
= denali_direct_write
;
1327 * Set how many bytes should be skipped before writing data in OOB.
1328 * If a platform requests a non-zero value, set it to the register.
1329 * Otherwise, read the value out, expecting it has already been set up
1332 if (denali
->oob_skip_bytes
)
1333 iowrite32(denali
->oob_skip_bytes
,
1334 denali
->reg
+ SPARE_AREA_SKIP_BYTES
);
1336 denali
->oob_skip_bytes
= ioread32(denali
->reg
+
1337 SPARE_AREA_SKIP_BYTES
);
1339 iowrite32(0, denali
->reg
+ TRANSFER_SPARE_REG
);
1340 iowrite32(GENMASK(denali
->nbanks
- 1, 0), denali
->reg
+ RB_PIN_ENABLED
);
1341 iowrite32(CHIP_EN_DONT_CARE__FLAG
, denali
->reg
+ CHIP_ENABLE_DONT_CARE
);
1342 iowrite32(ECC_ENABLE__FLAG
, denali
->reg
+ ECC_ENABLE
);
1343 iowrite32(0xffff, denali
->reg
+ SPARE_AREA_MARKER
);
1344 iowrite32(WRITE_PROTECT__FLAG
, denali
->reg
+ WRITE_PROTECT
);
1346 denali_clear_irq_all(denali
);
1348 ret
= devm_request_irq(denali
->dev
, denali
->irq
, denali_isr
,
1349 IRQF_SHARED
, DENALI_NAND_NAME
, denali
);
1351 dev_err(denali
->dev
, "Unable to request IRQ\n");
1355 denali_enable_irq(denali
);
1359 EXPORT_SYMBOL(denali_init
);
1361 void denali_remove(struct denali_controller
*denali
)
1363 struct denali_chip
*dchip
, *tmp
;
1364 struct nand_chip
*chip
;
1367 list_for_each_entry_safe(dchip
, tmp
, &denali
->chips
, node
) {
1368 chip
= &dchip
->chip
;
1369 ret
= mtd_device_unregister(nand_to_mtd(chip
));
1372 list_del(&dchip
->node
);
1375 denali_disable_irq(denali
);
1377 EXPORT_SYMBOL(denali_remove
);
1379 MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1380 MODULE_AUTHOR("Intel Corporation and its suppliers");
1381 MODULE_LICENSE("GPL v2");