Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / intel-nand-controller.c
blobfdb112e8a90d294e64632782eacad0010184d2cb
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2020 Intel Corporation. */
4 #include <linux/clk.h>
5 #include <linux/completion.h>
6 #include <linux/dmaengine.h>
7 #include <linux/dma-direction.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/iopoll.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/nand.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/types.h>
23 #include <asm/unaligned.h>
25 #define EBU_CLC 0x000
26 #define EBU_CLC_RST 0x00000000u
28 #define EBU_ADDR_SEL(n) (0x020 + (n) * 4)
29 /* 5 bits 26:22 included for comparison in the ADDR_SELx */
30 #define EBU_ADDR_MASK(x) ((x) << 4)
31 #define EBU_ADDR_SEL_REGEN 0x1
33 #define EBU_BUSCON(n) (0x060 + (n) * 4)
34 #define EBU_BUSCON_CMULT_V4 0x1
35 #define EBU_BUSCON_RECOVC(n) ((n) << 2)
36 #define EBU_BUSCON_HOLDC(n) ((n) << 4)
37 #define EBU_BUSCON_WAITRDC(n) ((n) << 6)
38 #define EBU_BUSCON_WAITWRC(n) ((n) << 8)
39 #define EBU_BUSCON_BCGEN_CS 0x0
40 #define EBU_BUSCON_SETUP_EN BIT(22)
41 #define EBU_BUSCON_ALEC 0xC000
43 #define EBU_CON 0x0B0
44 #define EBU_CON_NANDM_EN BIT(0)
45 #define EBU_CON_NANDM_DIS 0x0
46 #define EBU_CON_CSMUX_E_EN BIT(1)
47 #define EBU_CON_ALE_P_LOW BIT(2)
48 #define EBU_CON_CLE_P_LOW BIT(3)
49 #define EBU_CON_CS_P_LOW BIT(4)
50 #define EBU_CON_SE_P_LOW BIT(5)
51 #define EBU_CON_WP_P_LOW BIT(6)
52 #define EBU_CON_PRE_P_LOW BIT(7)
53 #define EBU_CON_IN_CS_S(n) ((n) << 8)
54 #define EBU_CON_OUT_CS_S(n) ((n) << 10)
55 #define EBU_CON_LAT_EN_CS_P ((0x3D) << 18)
57 #define EBU_WAIT 0x0B4
58 #define EBU_WAIT_RDBY BIT(0)
59 #define EBU_WAIT_WR_C BIT(3)
61 #define HSNAND_CTL1 0x110
62 #define HSNAND_CTL1_ADDR_SHIFT 24
64 #define HSNAND_CTL2 0x114
65 #define HSNAND_CTL2_ADDR_SHIFT 8
66 #define HSNAND_CTL2_CYC_N_V5 (0x2 << 16)
68 #define HSNAND_INT_MSK_CTL 0x124
69 #define HSNAND_INT_MSK_CTL_WR_C BIT(4)
71 #define HSNAND_INT_STA 0x128
72 #define HSNAND_INT_STA_WR_C BIT(4)
74 #define HSNAND_CTL 0x130
75 #define HSNAND_CTL_ENABLE_ECC BIT(0)
76 #define HSNAND_CTL_GO BIT(2)
77 #define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n))
78 #define HSNAND_CTL_RW_READ 0x0
79 #define HSNAND_CTL_RW_WRITE BIT(10)
80 #define HSNAND_CTL_ECC_OFF_V8TH BIT(11)
81 #define HSNAND_CTL_CKFF_EN 0x0
82 #define HSNAND_CTL_MSG_EN BIT(17)
84 #define HSNAND_PARA0 0x13c
85 #define HSNAND_PARA0_PAGE_V8192 0x3
86 #define HSNAND_PARA0_PIB_V256 (0x3 << 4)
87 #define HSNAND_PARA0_BYP_EN_NP 0x0
88 #define HSNAND_PARA0_BYP_DEC_NP 0x0
89 #define HSNAND_PARA0_TYPE_ONFI BIT(18)
90 #define HSNAND_PARA0_ADEP_EN BIT(21)
92 #define HSNAND_CMSG_0 0x150
93 #define HSNAND_CMSG_1 0x154
95 #define HSNAND_ALE_OFFS BIT(2)
96 #define HSNAND_CLE_OFFS BIT(3)
97 #define HSNAND_CS_OFFS BIT(4)
99 #define HSNAND_ECC_OFFSET 0x008
101 #define NAND_DATA_IFACE_CHECK_ONLY -1
103 #define MAX_CS 2
105 #define HZ_PER_MHZ 1000000L
106 #define USEC_PER_SEC 1000000L
108 struct ebu_nand_cs {
109 void __iomem *chipaddr;
110 dma_addr_t nand_pa;
111 u32 addr_sel;
114 struct ebu_nand_controller {
115 struct nand_controller controller;
116 struct nand_chip chip;
117 struct device *dev;
118 void __iomem *ebu;
119 void __iomem *hsnand;
120 struct dma_chan *dma_tx;
121 struct dma_chan *dma_rx;
122 struct completion dma_access_complete;
123 unsigned long clk_rate;
124 struct clk *clk;
125 u32 nd_para0;
126 u8 cs_num;
127 struct ebu_nand_cs cs[MAX_CS];
130 static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip)
132 return container_of(chip, struct ebu_nand_controller, chip);
135 static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms)
137 struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
138 u32 status;
140 return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status,
141 (status & EBU_WAIT_RDBY) ||
142 (status & EBU_WAIT_WR_C), 20, timeout_ms);
145 static u8 ebu_nand_readb(struct nand_chip *chip)
147 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
148 u8 cs_num = ebu_host->cs_num;
149 u8 val;
151 val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS);
152 ebu_nand_waitrdy(chip, 1000);
153 return val;
156 static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value)
158 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
159 u8 cs_num = ebu_host->cs_num;
161 writeb(value, ebu_host->cs[cs_num].chipaddr + offset);
162 ebu_nand_waitrdy(chip, 1000);
165 static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len)
167 int i;
169 for (i = 0; i < len; i++)
170 buf[i] = ebu_nand_readb(chip);
173 static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len)
175 int i;
177 for (i = 0; i < len; i++)
178 ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]);
181 static void ebu_nand_disable(struct nand_chip *chip)
183 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
185 writel(0, ebu_host->ebu + EBU_CON);
188 static void ebu_select_chip(struct nand_chip *chip)
190 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
191 void __iomem *nand_con = ebu_host->ebu + EBU_CON;
192 u32 cs = ebu_host->cs_num;
194 writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW |
195 EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW |
196 EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) |
197 EBU_CON_LAT_EN_CS_P, nand_con);
200 static int ebu_nand_set_timings(struct nand_chip *chip, int csline,
201 const struct nand_interface_config *conf)
203 struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
204 unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ;
205 unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate);
206 const struct nand_sdr_timings *timings;
207 u32 trecov, thold, twrwait, trdwait;
208 u32 reg = 0;
210 timings = nand_get_sdr_timings(conf);
211 if (IS_ERR(timings))
212 return PTR_ERR(timings);
214 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
215 return 0;
217 trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min),
218 period);
219 reg |= EBU_BUSCON_RECOVC(trecov);
221 thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period);
222 reg |= EBU_BUSCON_HOLDC(thold);
224 trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min),
225 period);
226 reg |= EBU_BUSCON_WAITRDC(trdwait);
228 twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period);
229 reg |= EBU_BUSCON_WAITWRC(twrwait);
231 reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC |
232 EBU_BUSCON_SETUP_EN;
234 writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num));
236 return 0;
239 static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
240 struct mtd_oob_region *oobregion)
242 struct nand_chip *chip = mtd_to_nand(mtd);
244 if (section)
245 return -ERANGE;
247 oobregion->offset = HSNAND_ECC_OFFSET;
248 oobregion->length = chip->ecc.total;
250 return 0;
253 static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section,
254 struct mtd_oob_region *oobregion)
256 struct nand_chip *chip = mtd_to_nand(mtd);
258 if (section)
259 return -ERANGE;
261 oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET;
262 oobregion->length = mtd->oobsize - oobregion->offset;
264 return 0;
267 static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = {
268 .ecc = ebu_nand_ooblayout_ecc,
269 .free = ebu_nand_ooblayout_free,
272 static void ebu_dma_rx_callback(void *cookie)
274 struct ebu_nand_controller *ebu_host = cookie;
276 dmaengine_terminate_async(ebu_host->dma_rx);
278 complete(&ebu_host->dma_access_complete);
281 static void ebu_dma_tx_callback(void *cookie)
283 struct ebu_nand_controller *ebu_host = cookie;
285 dmaengine_terminate_async(ebu_host->dma_tx);
287 complete(&ebu_host->dma_access_complete);
290 static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
291 const u8 *buf, u32 len)
293 struct dma_async_tx_descriptor *tx;
294 struct completion *dma_completion;
295 dma_async_tx_callback callback;
296 struct dma_chan *chan;
297 dma_cookie_t cookie;
298 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
299 dma_addr_t buf_dma;
300 int ret;
301 u32 timeout;
303 if (dir == DMA_DEV_TO_MEM) {
304 chan = ebu_host->dma_rx;
305 dma_completion = &ebu_host->dma_access_complete;
306 callback = ebu_dma_rx_callback;
307 } else {
308 chan = ebu_host->dma_tx;
309 dma_completion = &ebu_host->dma_access_complete;
310 callback = ebu_dma_tx_callback;
313 buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir);
314 if (dma_mapping_error(chan->device->dev, buf_dma)) {
315 dev_err(ebu_host->dev, "Failed to map DMA buffer\n");
316 ret = -EIO;
317 goto err_unmap;
320 tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
321 if (!tx)
322 return -ENXIO;
324 tx->callback = callback;
325 tx->callback_param = ebu_host;
326 cookie = tx->tx_submit(tx);
328 ret = dma_submit_error(cookie);
329 if (ret) {
330 dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie);
331 ret = -EIO;
332 goto err_unmap;
335 init_completion(dma_completion);
336 dma_async_issue_pending(chan);
338 /* Wait DMA to finish the data transfer.*/
339 timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
340 if (!timeout) {
341 dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n",
342 dmaengine_tx_status(chan, cookie, NULL));
343 dmaengine_terminate_sync(chan);
344 ret = -ETIMEDOUT;
345 goto err_unmap;
348 return 0;
350 err_unmap:
351 dma_unmap_single(ebu_host->dev, buf_dma, len, dir);
353 return ret;
356 static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host,
357 int page, u32 cmd)
359 unsigned int val;
361 val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT;
362 writel(val, ebu_host->hsnand + HSNAND_CTL1);
363 val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5;
364 writel(val, ebu_host->hsnand + HSNAND_CTL2);
366 writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0);
368 /* clear first, will update later */
369 writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0);
370 writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1);
372 writel(HSNAND_INT_MSK_CTL_WR_C,
373 ebu_host->hsnand + HSNAND_INT_MSK_CTL);
375 if (!cmd)
376 val = HSNAND_CTL_RW_READ;
377 else
378 val = HSNAND_CTL_RW_WRITE;
380 writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN |
381 HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) |
382 HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val,
383 ebu_host->hsnand + HSNAND_CTL);
386 static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
387 int oob_required, int page)
389 struct mtd_info *mtd = nand_to_mtd(chip);
390 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
391 int ret, reg_data;
393 ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0);
395 ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize);
396 if (ret)
397 return ret;
399 if (oob_required)
400 chip->ecc.read_oob(chip, page);
402 reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
403 reg_data &= ~HSNAND_CTL_GO;
404 writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
406 return 0;
409 static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
410 int oob_required, int page)
412 struct mtd_info *mtd = nand_to_mtd(chip);
413 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
414 void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA;
415 int reg_data, ret, val;
416 u32 reg;
418 ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN);
420 ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize);
421 if (ret)
422 return ret;
424 if (oob_required) {
425 reg = get_unaligned_le32(chip->oob_poi);
426 writel(reg, ebu_host->hsnand + HSNAND_CMSG_0);
428 reg = get_unaligned_le32(chip->oob_poi + 4);
429 writel(reg, ebu_host->hsnand + HSNAND_CMSG_1);
432 ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C),
433 10, 1000);
434 if (ret)
435 return ret;
437 reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
438 reg_data &= ~HSNAND_CTL_GO;
439 writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
441 return 0;
444 static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, };
446 static int ebu_nand_attach_chip(struct nand_chip *chip)
448 struct mtd_info *mtd = nand_to_mtd(chip);
449 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
450 u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk;
451 u32 ecc_strength_ds = chip->ecc.strength;
452 u32 ecc_size = chip->ecc.size;
453 u32 writesize = mtd->writesize;
454 u32 blocksize = mtd->erasesize;
455 int bch_algo, start, val;
457 /* Default to an ECC size of 512 */
458 if (!chip->ecc.size)
459 chip->ecc.size = 512;
461 switch (ecc_size) {
462 case 512:
463 start = 1;
464 if (!ecc_strength_ds)
465 ecc_strength_ds = 4;
466 break;
467 case 1024:
468 start = 4;
469 if (!ecc_strength_ds)
470 ecc_strength_ds = 32;
471 break;
472 default:
473 return -EINVAL;
476 /* BCH ECC algorithm Settings for number of bits per 512B/1024B */
477 bch_algo = round_up(start + 1, 4);
478 for (val = start; val < bch_algo; val++) {
479 if (ecc_strength_ds == ecc_strength[val])
480 break;
482 if (val == bch_algo)
483 return -EINVAL;
485 if (ecc_strength_ds == 8)
486 ecc_bytes = 14;
487 else
488 ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8);
490 ecc_steps = writesize / ecc_size;
491 ecc_total = ecc_steps * ecc_bytes;
492 if ((ecc_total + 8) > mtd->oobsize)
493 return -ERANGE;
495 chip->ecc.total = ecc_total;
496 pagesize = fls(writesize >> 11);
497 if (pagesize > HSNAND_PARA0_PAGE_V8192)
498 return -ERANGE;
500 pg_per_blk = fls((blocksize / writesize) >> 6) / 8;
501 if (pg_per_blk > HSNAND_PARA0_PIB_V256)
502 return -ERANGE;
504 ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP |
505 HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN |
506 HSNAND_PARA0_TYPE_ONFI | (val << 29);
508 mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops);
509 chip->ecc.read_page = ebu_nand_read_page_hwecc;
510 chip->ecc.write_page = ebu_nand_write_page_hwecc;
512 return 0;
515 static int ebu_nand_exec_op(struct nand_chip *chip,
516 const struct nand_operation *op, bool check_only)
518 const struct nand_op_instr *instr = NULL;
519 unsigned int op_id;
520 int i, timeout_ms, ret = 0;
522 if (check_only)
523 return 0;
525 ebu_select_chip(chip);
526 for (op_id = 0; op_id < op->ninstrs; op_id++) {
527 instr = &op->instrs[op_id];
529 switch (instr->type) {
530 case NAND_OP_CMD_INSTR:
531 ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS,
532 instr->ctx.cmd.opcode);
533 break;
535 case NAND_OP_ADDR_INSTR:
536 for (i = 0; i < instr->ctx.addr.naddrs; i++)
537 ebu_nand_writeb(chip,
538 HSNAND_ALE_OFFS | HSNAND_CS_OFFS,
539 instr->ctx.addr.addrs[i]);
540 break;
542 case NAND_OP_DATA_IN_INSTR:
543 ebu_read_buf(chip, instr->ctx.data.buf.in,
544 instr->ctx.data.len);
545 break;
547 case NAND_OP_DATA_OUT_INSTR:
548 ebu_write_buf(chip, instr->ctx.data.buf.out,
549 instr->ctx.data.len);
550 break;
552 case NAND_OP_WAITRDY_INSTR:
553 timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000;
554 ret = ebu_nand_waitrdy(chip, timeout_ms);
555 break;
559 return ret;
562 static const struct nand_controller_ops ebu_nand_controller_ops = {
563 .attach_chip = ebu_nand_attach_chip,
564 .setup_interface = ebu_nand_set_timings,
565 .exec_op = ebu_nand_exec_op,
568 static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host)
570 if (ebu_host->dma_rx)
571 dma_release_channel(ebu_host->dma_rx);
573 if (ebu_host->dma_tx)
574 dma_release_channel(ebu_host->dma_tx);
577 static int ebu_nand_probe(struct platform_device *pdev)
579 struct device *dev = &pdev->dev;
580 struct ebu_nand_controller *ebu_host;
581 struct nand_chip *nand;
582 struct mtd_info *mtd = NULL;
583 struct resource *res;
584 char *resname;
585 int ret;
586 u32 cs;
588 ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL);
589 if (!ebu_host)
590 return -ENOMEM;
592 ebu_host->dev = dev;
593 nand_controller_init(&ebu_host->controller);
595 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ebunand");
596 ebu_host->ebu = devm_ioremap_resource(&pdev->dev, res);
597 if (IS_ERR(ebu_host->ebu))
598 return PTR_ERR(ebu_host->ebu);
600 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hsnand");
601 ebu_host->hsnand = devm_ioremap_resource(&pdev->dev, res);
602 if (IS_ERR(ebu_host->hsnand))
603 return PTR_ERR(ebu_host->hsnand);
605 ret = device_property_read_u32(dev, "reg", &cs);
606 if (ret) {
607 dev_err(dev, "failed to get chip select: %d\n", ret);
608 return ret;
610 ebu_host->cs_num = cs;
612 resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs);
613 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
614 ebu_host->cs[cs].chipaddr = devm_ioremap_resource(dev, res);
615 ebu_host->cs[cs].nand_pa = res->start;
616 if (IS_ERR(ebu_host->cs[cs].chipaddr))
617 return PTR_ERR(ebu_host->cs[cs].chipaddr);
619 ebu_host->clk = devm_clk_get(dev, NULL);
620 if (IS_ERR(ebu_host->clk))
621 return dev_err_probe(dev, PTR_ERR(ebu_host->clk),
622 "failed to get clock\n");
624 ret = clk_prepare_enable(ebu_host->clk);
625 if (ret) {
626 dev_err(dev, "failed to enable clock: %d\n", ret);
627 return ret;
629 ebu_host->clk_rate = clk_get_rate(ebu_host->clk);
631 ebu_host->dma_tx = dma_request_chan(dev, "tx");
632 if (IS_ERR(ebu_host->dma_tx))
633 return dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx),
634 "failed to request DMA tx chan!.\n");
636 ebu_host->dma_rx = dma_request_chan(dev, "rx");
637 if (IS_ERR(ebu_host->dma_rx))
638 return dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx),
639 "failed to request DMA rx chan!.\n");
641 resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs);
642 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
643 if (!res)
644 return -EINVAL;
645 ebu_host->cs[cs].addr_sel = res->start;
646 writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN,
647 ebu_host->ebu + EBU_ADDR_SEL(cs));
649 nand_set_flash_node(&ebu_host->chip, dev->of_node);
650 if (!mtd->name) {
651 dev_err(ebu_host->dev, "NAND label property is mandatory\n");
652 return -EINVAL;
655 mtd = nand_to_mtd(&ebu_host->chip);
656 mtd->dev.parent = dev;
657 ebu_host->dev = dev;
659 platform_set_drvdata(pdev, ebu_host);
660 nand_set_controller_data(&ebu_host->chip, ebu_host);
662 nand = &ebu_host->chip;
663 nand->controller = &ebu_host->controller;
664 nand->controller->ops = &ebu_nand_controller_ops;
666 /* Scan to find existence of the device */
667 ret = nand_scan(&ebu_host->chip, 1);
668 if (ret)
669 goto err_cleanup_dma;
671 ret = mtd_device_register(mtd, NULL, 0);
672 if (ret)
673 goto err_clean_nand;
675 return 0;
677 err_clean_nand:
678 nand_cleanup(&ebu_host->chip);
679 err_cleanup_dma:
680 ebu_dma_cleanup(ebu_host);
681 clk_disable_unprepare(ebu_host->clk);
683 return ret;
686 static int ebu_nand_remove(struct platform_device *pdev)
688 struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev);
689 int ret;
691 ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip));
692 WARN_ON(ret);
693 nand_cleanup(&ebu_host->chip);
694 ebu_nand_disable(&ebu_host->chip);
695 ebu_dma_cleanup(ebu_host);
696 clk_disable_unprepare(ebu_host->clk);
698 return 0;
701 static const struct of_device_id ebu_nand_match[] = {
702 { .compatible = "intel,nand-controller" },
703 { .compatible = "intel,lgm-ebunand" },
706 MODULE_DEVICE_TABLE(of, ebu_nand_match);
708 static struct platform_driver ebu_nand_driver = {
709 .probe = ebu_nand_probe,
710 .remove = ebu_nand_remove,
711 .driver = {
712 .name = "intel-nand-controller",
713 .of_match_table = ebu_nand_match,
717 module_platform_driver(ebu_nand_driver);
719 MODULE_LICENSE("GPL v2");
720 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
721 MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");