1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
29 #include <linux/of_device.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/partitions.h>
35 #include <linux/platform_data/mtd-nand-s3c2410.h>
37 #define S3C2410_NFREG(x) (x)
39 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
40 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
41 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
42 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
43 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
44 #define S3C2410_NFECC S3C2410_NFREG(0x14)
45 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
46 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
47 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
48 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
49 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
50 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
51 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
52 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
53 #define S3C2410_NFCONF_EN (1<<15)
54 #define S3C2410_NFCONF_INITECC (1<<12)
55 #define S3C2410_NFCONF_nFCE (1<<11)
56 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
57 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
58 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
59 #define S3C2410_NFSTAT_BUSY (1<<0)
60 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
61 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
62 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
63 #define S3C2440_NFCONT_INITECC (1<<4)
64 #define S3C2440_NFCONT_nFCE (1<<1)
65 #define S3C2440_NFCONT_ENABLE (1<<0)
66 #define S3C2440_NFSTAT_READY (1<<0)
67 #define S3C2412_NFCONF_NANDBOOT (1<<31)
68 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
69 #define S3C2412_NFCONT_nFCE0 (1<<1)
70 #define S3C2412_NFSTAT_READY (1<<0)
72 /* new oob placement block for use with hardware ecc generation
74 static int s3c2410_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
75 struct mtd_oob_region
*oobregion
)
80 oobregion
->offset
= 0;
81 oobregion
->length
= 3;
86 static int s3c2410_ooblayout_free(struct mtd_info
*mtd
, int section
,
87 struct mtd_oob_region
*oobregion
)
92 oobregion
->offset
= 8;
93 oobregion
->length
= 8;
98 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops
= {
99 .ecc
= s3c2410_ooblayout_ecc
,
100 .free
= s3c2410_ooblayout_free
,
103 /* controller and mtd information */
105 struct s3c2410_nand_info
;
108 * struct s3c2410_nand_mtd - driver MTD structure
109 * @mtd: The MTD instance to pass to the MTD layer.
110 * @chip: The NAND chip information.
111 * @set: The platform information supplied for this set of NAND chips.
112 * @info: Link back to the hardware information.
114 struct s3c2410_nand_mtd
{
115 struct nand_chip chip
;
116 struct s3c2410_nand_set
*set
;
117 struct s3c2410_nand_info
*info
;
126 enum s3c_nand_clk_state
{
132 /* overview of the s3c2410 nand state */
135 * struct s3c2410_nand_info - NAND controller state.
136 * @controller: Base controller structure.
137 * @mtds: An array of MTD instances on this controller.
138 * @platform: The platform data for this board.
139 * @device: The platform device we bound to.
140 * @clk: The clock resource for this controller.
141 * @regs: The area mapped for the hardware registers.
142 * @sel_reg: Pointer to the register controlling the NAND selection.
143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
144 * @mtd_count: The number of MTDs created from this controller.
145 * @save_sel: The contents of @sel_reg to be saved over suspend.
146 * @clk_rate: The clock rate from @clk.
147 * @clk_state: The current clock state.
148 * @cpu_type: The exact type of this controller.
149 * @freq_transition: CPUFreq notifier block
151 struct s3c2410_nand_info
{
153 struct nand_controller controller
;
154 struct s3c2410_nand_mtd
*mtds
;
155 struct s3c2410_platform_nand
*platform
;
158 struct device
*device
;
161 void __iomem
*sel_reg
;
164 unsigned long save_sel
;
165 unsigned long clk_rate
;
166 enum s3c_nand_clk_state clk_state
;
168 enum s3c_cpu_type cpu_type
;
170 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
171 struct notifier_block freq_transition
;
175 struct s3c24XX_nand_devtype_data
{
176 enum s3c_cpu_type type
;
179 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data
= {
180 .type
= TYPE_S3C2410
,
183 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data
= {
184 .type
= TYPE_S3C2412
,
187 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data
= {
188 .type
= TYPE_S3C2440
,
191 /* conversion functions */
193 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
195 return container_of(mtd_to_nand(mtd
), struct s3c2410_nand_mtd
,
199 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
201 return s3c2410_nand_mtd_toours(mtd
)->info
;
204 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
206 return platform_get_drvdata(dev
);
209 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
211 return dev_get_platdata(&dev
->dev
);
214 static inline int allow_clk_suspend(struct s3c2410_nand_info
*info
)
216 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
224 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
225 * @info: The controller instance.
226 * @new_state: State to which clock should be set.
228 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info
*info
,
229 enum s3c_nand_clk_state new_state
)
231 if (!allow_clk_suspend(info
) && new_state
== CLOCK_SUSPEND
)
234 if (info
->clk_state
== CLOCK_ENABLE
) {
235 if (new_state
!= CLOCK_ENABLE
)
236 clk_disable_unprepare(info
->clk
);
238 if (new_state
== CLOCK_ENABLE
)
239 clk_prepare_enable(info
->clk
);
242 info
->clk_state
= new_state
;
245 /* timing calculations */
247 #define NS_IN_KHZ 1000000
250 * s3c_nand_calc_rate - calculate timing data.
251 * @wanted: The cycle time in nanoseconds.
252 * @clk: The clock rate in kHz.
253 * @max: The maximum divider value.
255 * Calculate the timing value from the given parameters.
257 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
261 result
= DIV_ROUND_UP((wanted
* clk
), NS_IN_KHZ
);
263 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
266 pr_err("%d ns is too big for current clock rate %ld\n",
277 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
279 /* controller setup */
282 * s3c2410_nand_setrate - setup controller timing information.
283 * @info: The controller instance.
285 * Given the information supplied by the platform, calculate and set
286 * the necessary timing registers in the hardware to generate the
287 * necessary timing cycles to the hardware.
289 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
291 struct s3c2410_platform_nand
*plat
= info
->platform
;
292 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
293 int tacls
, twrph0
, twrph1
;
294 unsigned long clkrate
= clk_get_rate(info
->clk
);
295 unsigned long set
, cfg
, mask
;
298 /* calculate the timing information for the controller */
300 info
->clk_rate
= clkrate
;
301 clkrate
/= 1000; /* turn clock into kHz for ease of use */
304 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
305 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
306 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
308 /* default timings */
314 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
315 dev_err(info
->device
, "cannot get suitable timings\n");
319 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
320 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
),
321 twrph1
, to_ns(twrph1
, clkrate
));
323 switch (info
->cpu_type
) {
325 mask
= (S3C2410_NFCONF_TACLS(3) |
326 S3C2410_NFCONF_TWRPH0(7) |
327 S3C2410_NFCONF_TWRPH1(7));
328 set
= S3C2410_NFCONF_EN
;
329 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
330 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
331 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
336 mask
= (S3C2440_NFCONF_TACLS(tacls_max
- 1) |
337 S3C2440_NFCONF_TWRPH0(7) |
338 S3C2440_NFCONF_TWRPH1(7));
340 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
341 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
342 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
349 local_irq_save(flags
);
351 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
354 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
356 local_irq_restore(flags
);
358 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
364 * s3c2410_nand_inithw - basic hardware initialisation
365 * @info: The hardware state.
367 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
368 * to setup the hardware access speeds and set the controller to be enabled.
370 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
374 ret
= s3c2410_nand_setrate(info
);
378 switch (info
->cpu_type
) {
385 /* enable the controller and de-assert nFCE */
387 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
394 * s3c2410_nand_select_chip - select the given nand chip
395 * @this: NAND chip object.
396 * @chip: The chip number.
398 * This is called by the MTD layer to either select a given chip for the
399 * @mtd instance, or to indicate that the access has finished and the
400 * chip can be de-selected.
402 * The routine ensures that the nFCE line is correctly setup, and any
403 * platform specific selection code is called to route nFCE to the specific
406 static void s3c2410_nand_select_chip(struct nand_chip
*this, int chip
)
408 struct s3c2410_nand_info
*info
;
409 struct s3c2410_nand_mtd
*nmtd
;
412 nmtd
= nand_get_controller_data(this);
416 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
418 cur
= readl(info
->sel_reg
);
421 cur
|= info
->sel_bit
;
423 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
424 dev_err(info
->device
, "invalid chip %d\n", chip
);
428 if (info
->platform
!= NULL
) {
429 if (info
->platform
->select_chip
!= NULL
)
430 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
433 cur
&= ~info
->sel_bit
;
436 writel(cur
, info
->sel_reg
);
439 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
442 /* s3c2410_nand_hwcontrol
444 * Issue command and address cycles to the chip
447 static void s3c2410_nand_hwcontrol(struct nand_chip
*chip
, int cmd
,
450 struct mtd_info
*mtd
= nand_to_mtd(chip
);
451 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
453 if (cmd
== NAND_CMD_NONE
)
457 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
459 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
462 /* command and control functions */
464 static void s3c2440_nand_hwcontrol(struct nand_chip
*chip
, int cmd
,
467 struct mtd_info
*mtd
= nand_to_mtd(chip
);
468 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
470 if (cmd
== NAND_CMD_NONE
)
474 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
476 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
479 /* s3c2410_nand_devready()
481 * returns 0 if the nand is busy, 1 if it is ready
484 static int s3c2410_nand_devready(struct nand_chip
*chip
)
486 struct mtd_info
*mtd
= nand_to_mtd(chip
);
487 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
488 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
491 static int s3c2440_nand_devready(struct nand_chip
*chip
)
493 struct mtd_info
*mtd
= nand_to_mtd(chip
);
494 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
495 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
498 static int s3c2412_nand_devready(struct nand_chip
*chip
)
500 struct mtd_info
*mtd
= nand_to_mtd(chip
);
501 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
502 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
505 /* ECC handling functions */
507 static int s3c2410_nand_correct_data(struct nand_chip
*chip
, u_char
*dat
,
508 u_char
*read_ecc
, u_char
*calc_ecc
)
510 struct mtd_info
*mtd
= nand_to_mtd(chip
);
511 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
512 unsigned int diff0
, diff1
, diff2
;
513 unsigned int bit
, byte
;
515 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
517 diff0
= read_ecc
[0] ^ calc_ecc
[0];
518 diff1
= read_ecc
[1] ^ calc_ecc
[1];
519 diff2
= read_ecc
[2] ^ calc_ecc
[2];
521 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
522 __func__
, 3, read_ecc
, 3, calc_ecc
,
523 diff0
, diff1
, diff2
);
525 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
526 return 0; /* ECC is ok */
528 /* sometimes people do not think about using the ECC, so check
529 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
530 * the error, on the assumption that this is an un-eccd page.
532 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
533 && info
->platform
->ignore_unset_ecc
)
536 /* Can we correct this ECC (ie, one row and column change).
537 * Note, this is similar to the 256 error code on smartmedia */
539 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
540 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
541 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
542 /* calculate the bit position of the error */
544 bit
= ((diff2
>> 3) & 1) |
548 /* calculate the byte position of the error */
550 byte
= ((diff2
<< 7) & 0x100) |
551 ((diff1
<< 0) & 0x80) |
552 ((diff1
<< 1) & 0x40) |
553 ((diff1
<< 2) & 0x20) |
554 ((diff1
<< 3) & 0x10) |
555 ((diff0
>> 4) & 0x08) |
556 ((diff0
>> 3) & 0x04) |
557 ((diff0
>> 2) & 0x02) |
558 ((diff0
>> 1) & 0x01);
560 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
563 dat
[byte
] ^= (1 << bit
);
567 /* if there is only one bit difference in the ECC, then
568 * one of only a row or column parity has changed, which
569 * means the error is most probably in the ECC itself */
571 diff0
|= (diff1
<< 8);
572 diff0
|= (diff2
<< 16);
574 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
575 if ((diff0
& (diff0
- 1)) == 0)
583 * These allow the s3c2410 and s3c2440 to use the controller's ECC
584 * generator block to ECC the data as it passes through]
587 static void s3c2410_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
589 struct s3c2410_nand_info
*info
;
592 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
593 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
594 ctrl
|= S3C2410_NFCONF_INITECC
;
595 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
598 static void s3c2412_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
600 struct s3c2410_nand_info
*info
;
603 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
604 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
605 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
,
606 info
->regs
+ S3C2440_NFCONT
);
609 static void s3c2440_nand_enable_hwecc(struct nand_chip
*chip
, int mode
)
611 struct s3c2410_nand_info
*info
;
614 info
= s3c2410_nand_mtd_toinfo(nand_to_mtd(chip
));
615 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
616 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
619 static int s3c2410_nand_calculate_ecc(struct nand_chip
*chip
,
620 const u_char
*dat
, u_char
*ecc_code
)
622 struct mtd_info
*mtd
= nand_to_mtd(chip
);
623 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
625 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
626 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
627 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
629 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
634 static int s3c2412_nand_calculate_ecc(struct nand_chip
*chip
,
635 const u_char
*dat
, u_char
*ecc_code
)
637 struct mtd_info
*mtd
= nand_to_mtd(chip
);
638 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
639 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
642 ecc_code
[1] = ecc
>> 8;
643 ecc_code
[2] = ecc
>> 16;
645 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
650 static int s3c2440_nand_calculate_ecc(struct nand_chip
*chip
,
651 const u_char
*dat
, u_char
*ecc_code
)
653 struct mtd_info
*mtd
= nand_to_mtd(chip
);
654 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
655 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
658 ecc_code
[1] = ecc
>> 8;
659 ecc_code
[2] = ecc
>> 16;
661 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
666 /* over-ride the standard functions for a little more speed. We can
667 * use read/write block to move the data buffers to/from the controller
670 static void s3c2410_nand_read_buf(struct nand_chip
*this, u_char
*buf
, int len
)
672 readsb(this->legacy
.IO_ADDR_R
, buf
, len
);
675 static void s3c2440_nand_read_buf(struct nand_chip
*this, u_char
*buf
, int len
)
677 struct mtd_info
*mtd
= nand_to_mtd(this);
678 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
680 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
682 /* cleanup if we've got less than a word to do */
686 for (; len
& 3; len
--)
687 *buf
++ = readb(info
->regs
+ S3C2440_NFDATA
);
691 static void s3c2410_nand_write_buf(struct nand_chip
*this, const u_char
*buf
,
694 writesb(this->legacy
.IO_ADDR_W
, buf
, len
);
697 static void s3c2440_nand_write_buf(struct nand_chip
*this, const u_char
*buf
,
700 struct mtd_info
*mtd
= nand_to_mtd(this);
701 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
703 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
705 /* cleanup any fractional write */
709 for (; len
& 3; len
--, buf
++)
710 writeb(*buf
, info
->regs
+ S3C2440_NFDATA
);
714 /* cpufreq driver support */
716 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
718 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
719 unsigned long val
, void *data
)
721 struct s3c2410_nand_info
*info
;
722 unsigned long newclk
;
724 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
725 newclk
= clk_get_rate(info
->clk
);
727 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
728 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
729 s3c2410_nand_setrate(info
);
735 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
737 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
739 return cpufreq_register_notifier(&info
->freq_transition
,
740 CPUFREQ_TRANSITION_NOTIFIER
);
744 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
746 cpufreq_unregister_notifier(&info
->freq_transition
,
747 CPUFREQ_TRANSITION_NOTIFIER
);
751 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
757 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
762 /* device management functions */
764 static int s3c24xx_nand_remove(struct platform_device
*pdev
)
766 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
771 s3c2410_nand_cpufreq_deregister(info
);
773 /* Release all our mtds and their partitions, then go through
774 * freeing the resources used
777 if (info
->mtds
!= NULL
) {
778 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
781 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
782 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
783 WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr
->chip
)));
784 nand_cleanup(&ptr
->chip
);
788 /* free the common resources */
790 if (!IS_ERR(info
->clk
))
791 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
797 struct s3c2410_nand_mtd
*mtd
,
798 struct s3c2410_nand_set
*set
)
801 struct mtd_info
*mtdinfo
= nand_to_mtd(&mtd
->chip
);
803 mtdinfo
->name
= set
->name
;
805 return mtd_device_register(mtdinfo
, set
->partitions
,
812 static int s3c2410_nand_setup_interface(struct nand_chip
*chip
, int csline
,
813 const struct nand_interface_config
*conf
)
815 struct mtd_info
*mtd
= nand_to_mtd(chip
);
816 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
817 struct s3c2410_platform_nand
*pdata
= info
->platform
;
818 const struct nand_sdr_timings
*timings
;
821 timings
= nand_get_sdr_timings(conf
);
825 tacls
= timings
->tCLS_min
- timings
->tWP_min
;
829 pdata
->tacls
= DIV_ROUND_UP(tacls
, 1000);
830 pdata
->twrph0
= DIV_ROUND_UP(timings
->tWP_min
, 1000);
831 pdata
->twrph1
= DIV_ROUND_UP(timings
->tCLH_min
, 1000);
833 return s3c2410_nand_setrate(info
);
837 * s3c2410_nand_init_chip - initialise a single instance of an chip
838 * @info: The base NAND controller the chip is on.
839 * @nmtd: The new controller MTD instance to fill in.
840 * @set: The information passed from the board specific platform data.
842 * Initialise the given @nmtd from the information in @info and @set. This
843 * readies the structure for use with the MTD layer functions by ensuring
844 * all pointers are setup and the necessary control routines selected.
846 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
847 struct s3c2410_nand_mtd
*nmtd
,
848 struct s3c2410_nand_set
*set
)
850 struct device_node
*np
= info
->device
->of_node
;
851 struct nand_chip
*chip
= &nmtd
->chip
;
852 void __iomem
*regs
= info
->regs
;
854 nand_set_flash_node(chip
, set
->of_node
);
856 chip
->legacy
.write_buf
= s3c2410_nand_write_buf
;
857 chip
->legacy
.read_buf
= s3c2410_nand_read_buf
;
858 chip
->legacy
.select_chip
= s3c2410_nand_select_chip
;
859 chip
->legacy
.chip_delay
= 50;
860 nand_set_controller_data(chip
, nmtd
);
861 chip
->options
= set
->options
;
862 chip
->controller
= &info
->controller
;
865 * let's keep behavior unchanged for legacy boards booting via pdata and
866 * auto-detect timings only when booting with a device tree.
869 chip
->options
|= NAND_KEEP_TIMINGS
;
871 switch (info
->cpu_type
) {
873 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
874 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
875 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
876 chip
->legacy
.cmd_ctrl
= s3c2410_nand_hwcontrol
;
877 chip
->legacy
.dev_ready
= s3c2410_nand_devready
;
881 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
882 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
883 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
884 chip
->legacy
.cmd_ctrl
= s3c2440_nand_hwcontrol
;
885 chip
->legacy
.dev_ready
= s3c2440_nand_devready
;
886 chip
->legacy
.read_buf
= s3c2440_nand_read_buf
;
887 chip
->legacy
.write_buf
= s3c2440_nand_write_buf
;
891 chip
->legacy
.IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
892 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
893 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
894 chip
->legacy
.cmd_ctrl
= s3c2440_nand_hwcontrol
;
895 chip
->legacy
.dev_ready
= s3c2412_nand_devready
;
897 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
898 dev_info(info
->device
, "System booted from NAND\n");
903 chip
->legacy
.IO_ADDR_R
= chip
->legacy
.IO_ADDR_W
;
908 chip
->ecc
.engine_type
= info
->platform
->engine_type
;
911 * If you use u-boot BBT creation code, specifying this flag will
912 * let the kernel fish out the BBT from the NAND.
915 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
919 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
920 * @chip: The NAND chip
922 * This hook is called by the core after the identification of the NAND chip,
923 * once the relevant per-chip information is up to date.. This call ensure that
924 * we update the internal state accordingly.
926 * The internal state is currently limited to the ECC state information.
928 static int s3c2410_nand_attach_chip(struct nand_chip
*chip
)
930 struct mtd_info
*mtd
= nand_to_mtd(chip
);
931 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
933 switch (chip
->ecc
.engine_type
) {
935 case NAND_ECC_ENGINE_TYPE_NONE
:
936 dev_info(info
->device
, "ECC disabled\n");
939 case NAND_ECC_ENGINE_TYPE_SOFT
:
941 * This driver expects Hamming based ECC when engine_type is set
942 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
943 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
944 * to s3c2410_platform_nand.
946 chip
->ecc
.algo
= NAND_ECC_ALGO_HAMMING
;
947 dev_info(info
->device
, "soft ECC\n");
950 case NAND_ECC_ENGINE_TYPE_ON_HOST
:
951 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
952 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
953 chip
->ecc
.strength
= 1;
955 switch (info
->cpu_type
) {
957 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
958 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
962 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
963 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
967 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
968 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
972 dev_dbg(info
->device
, "chip %p => page shift %d\n",
973 chip
, chip
->page_shift
);
975 /* change the behaviour depending on whether we are using
976 * the large or small page nand device */
977 if (chip
->page_shift
> 10) {
978 chip
->ecc
.size
= 256;
981 chip
->ecc
.size
= 512;
983 mtd_set_ooblayout(nand_to_mtd(chip
),
984 &s3c2410_ooblayout_ops
);
987 dev_info(info
->device
, "hardware ECC\n");
991 dev_err(info
->device
, "invalid ECC mode!\n");
995 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
996 chip
->options
|= NAND_SKIP_BBTSCAN
;
1001 static const struct nand_controller_ops s3c24xx_nand_controller_ops
= {
1002 .attach_chip
= s3c2410_nand_attach_chip
,
1003 .setup_interface
= s3c2410_nand_setup_interface
,
1006 static const struct of_device_id s3c24xx_nand_dt_ids
[] = {
1008 .compatible
= "samsung,s3c2410-nand",
1009 .data
= &s3c2410_nand_devtype_data
,
1011 /* also compatible with s3c6400 */
1012 .compatible
= "samsung,s3c2412-nand",
1013 .data
= &s3c2412_nand_devtype_data
,
1015 .compatible
= "samsung,s3c2440-nand",
1016 .data
= &s3c2440_nand_devtype_data
,
1020 MODULE_DEVICE_TABLE(of
, s3c24xx_nand_dt_ids
);
1022 static int s3c24xx_nand_probe_dt(struct platform_device
*pdev
)
1024 const struct s3c24XX_nand_devtype_data
*devtype_data
;
1025 struct s3c2410_platform_nand
*pdata
;
1026 struct s3c2410_nand_info
*info
= platform_get_drvdata(pdev
);
1027 struct device_node
*np
= pdev
->dev
.of_node
, *child
;
1028 struct s3c2410_nand_set
*sets
;
1030 devtype_data
= of_device_get_match_data(&pdev
->dev
);
1034 info
->cpu_type
= devtype_data
->type
;
1036 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1040 pdev
->dev
.platform_data
= pdata
;
1042 pdata
->nr_sets
= of_get_child_count(np
);
1043 if (!pdata
->nr_sets
)
1046 sets
= devm_kcalloc(&pdev
->dev
, pdata
->nr_sets
, sizeof(*sets
),
1053 for_each_available_child_of_node(np
, child
) {
1054 sets
->name
= (char *)child
->name
;
1055 sets
->of_node
= child
;
1066 static int s3c24xx_nand_probe_pdata(struct platform_device
*pdev
)
1068 struct s3c2410_nand_info
*info
= platform_get_drvdata(pdev
);
1070 info
->cpu_type
= platform_get_device_id(pdev
)->driver_data
;
1075 /* s3c24xx_nand_probe
1077 * called by device layer when it finds a device matching
1078 * one our driver can handled. This code checks to see if
1079 * it can allocate all necessary resources then calls the
1080 * nand layer to look for devices
1082 static int s3c24xx_nand_probe(struct platform_device
*pdev
)
1084 struct s3c2410_platform_nand
*plat
;
1085 struct s3c2410_nand_info
*info
;
1086 struct s3c2410_nand_mtd
*nmtd
;
1087 struct s3c2410_nand_set
*sets
;
1088 struct resource
*res
;
1094 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
1100 platform_set_drvdata(pdev
, info
);
1102 nand_controller_init(&info
->controller
);
1103 info
->controller
.ops
= &s3c24xx_nand_controller_ops
;
1105 /* get the clock source and enable it */
1107 info
->clk
= devm_clk_get(&pdev
->dev
, "nand");
1108 if (IS_ERR(info
->clk
)) {
1109 dev_err(&pdev
->dev
, "failed to get clock\n");
1114 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1116 if (pdev
->dev
.of_node
)
1117 err
= s3c24xx_nand_probe_dt(pdev
);
1119 err
= s3c24xx_nand_probe_pdata(pdev
);
1124 plat
= to_nand_plat(pdev
);
1126 /* allocate and map the resource */
1128 /* currently we assume we have the one resource */
1129 res
= pdev
->resource
;
1130 size
= resource_size(res
);
1132 info
->device
= &pdev
->dev
;
1133 info
->platform
= plat
;
1135 info
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
1136 if (IS_ERR(info
->regs
)) {
1137 err
= PTR_ERR(info
->regs
);
1141 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
1143 if (!plat
->sets
|| plat
->nr_sets
< 1) {
1149 nr_sets
= plat
->nr_sets
;
1151 info
->mtd_count
= nr_sets
;
1153 /* allocate our information */
1155 size
= nr_sets
* sizeof(*info
->mtds
);
1156 info
->mtds
= devm_kzalloc(&pdev
->dev
, size
, GFP_KERNEL
);
1157 if (info
->mtds
== NULL
) {
1162 /* initialise all possible chips */
1166 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++, sets
++) {
1167 struct mtd_info
*mtd
= nand_to_mtd(&nmtd
->chip
);
1169 pr_debug("initialising set %d (%p, info %p)\n",
1172 mtd
->dev
.parent
= &pdev
->dev
;
1173 s3c2410_nand_init_chip(info
, nmtd
, sets
);
1175 err
= nand_scan(&nmtd
->chip
, sets
? sets
->nr_chips
: 1);
1179 s3c2410_nand_add_partition(info
, nmtd
, sets
);
1182 /* initialise the hardware */
1183 err
= s3c2410_nand_inithw(info
);
1187 err
= s3c2410_nand_cpufreq_register(info
);
1189 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
1193 if (allow_clk_suspend(info
)) {
1194 dev_info(&pdev
->dev
, "clock idle support enabled\n");
1195 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1201 s3c24xx_nand_remove(pdev
);
1211 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
1213 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1216 info
->save_sel
= readl(info
->sel_reg
);
1218 /* For the moment, we must ensure nFCE is high during
1219 * the time we are suspended. This really should be
1220 * handled by suspending the MTDs we are using, but
1221 * that is currently not the case. */
1223 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
1225 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
1231 static int s3c24xx_nand_resume(struct platform_device
*dev
)
1233 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1237 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1238 s3c2410_nand_inithw(info
);
1240 /* Restore the state of the nFCE line. */
1242 sel
= readl(info
->sel_reg
);
1243 sel
&= ~info
->sel_bit
;
1244 sel
|= info
->save_sel
& info
->sel_bit
;
1245 writel(sel
, info
->sel_reg
);
1247 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1254 #define s3c24xx_nand_suspend NULL
1255 #define s3c24xx_nand_resume NULL
1258 /* driver device registration */
1260 static const struct platform_device_id s3c24xx_driver_ids
[] = {
1262 .name
= "s3c2410-nand",
1263 .driver_data
= TYPE_S3C2410
,
1265 .name
= "s3c2440-nand",
1266 .driver_data
= TYPE_S3C2440
,
1268 .name
= "s3c2412-nand",
1269 .driver_data
= TYPE_S3C2412
,
1271 .name
= "s3c6400-nand",
1272 .driver_data
= TYPE_S3C2412
, /* compatible with 2412 */
1277 MODULE_DEVICE_TABLE(platform
, s3c24xx_driver_ids
);
1279 static struct platform_driver s3c24xx_nand_driver
= {
1280 .probe
= s3c24xx_nand_probe
,
1281 .remove
= s3c24xx_nand_remove
,
1282 .suspend
= s3c24xx_nand_suspend
,
1283 .resume
= s3c24xx_nand_resume
,
1284 .id_table
= s3c24xx_driver_ids
,
1286 .name
= "s3c24xx-nand",
1287 .of_match_table
= s3c24xx_nand_dt_ids
,
1291 module_platform_driver(s3c24xx_nand_driver
);
1293 MODULE_LICENSE("GPL");
1294 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");