Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / raw / xway_nand.c
blob26751976e50264aae741942a96b4d28bb524bdd4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
4 * Copyright © 2012 John Crispin <john@phrozen.org>
5 * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
6 */
8 #include <linux/mtd/rawnand.h>
9 #include <linux/of_gpio.h>
10 #include <linux/of_platform.h>
12 #include <lantiq_soc.h>
14 /* nand registers */
15 #define EBU_ADDSEL1 0x24
16 #define EBU_NAND_CON 0xB0
17 #define EBU_NAND_WAIT 0xB4
18 #define NAND_WAIT_RD BIT(0) /* NAND flash status output */
19 #define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */
20 #define EBU_NAND_ECC0 0xB8
21 #define EBU_NAND_ECC_AC 0xBC
24 * nand commands
25 * The pins of the NAND chip are selected based on the address bits of the
26 * "register" read and write. There are no special registers, but an
27 * address range and the lower address bits are used to activate the
28 * correct line. For example when the bit (1 << 2) is set in the address
29 * the ALE pin will be activated.
31 #define NAND_CMD_ALE BIT(2) /* address latch enable */
32 #define NAND_CMD_CLE BIT(3) /* command latch enable */
33 #define NAND_CMD_CS BIT(4) /* chip select */
34 #define NAND_CMD_SE BIT(5) /* spare area access latch */
35 #define NAND_CMD_WP BIT(6) /* write protect */
36 #define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE)
37 #define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE)
38 #define NAND_WRITE_DATA (NAND_CMD_CS)
39 #define NAND_READ_DATA (NAND_CMD_CS)
41 /* we need to tel the ebu which addr we mapped the nand to */
42 #define ADDSEL1_MASK(x) (x << 4)
43 #define ADDSEL1_REGEN 1
45 /* we need to tell the EBU that we have nand attached and set it up properly */
46 #define BUSCON1_SETUP (1 << 22)
47 #define BUSCON1_BCGEN_RES (0x3 << 12)
48 #define BUSCON1_WAITWRC2 (2 << 8)
49 #define BUSCON1_WAITRDC2 (2 << 6)
50 #define BUSCON1_HOLDC1 (1 << 4)
51 #define BUSCON1_RECOVC1 (1 << 2)
52 #define BUSCON1_CMULT4 1
54 #define NAND_CON_CE (1 << 20)
55 #define NAND_CON_OUT_CS1 (1 << 10)
56 #define NAND_CON_IN_CS1 (1 << 8)
57 #define NAND_CON_PRE_P (1 << 7)
58 #define NAND_CON_WP_P (1 << 6)
59 #define NAND_CON_SE_P (1 << 5)
60 #define NAND_CON_CS_P (1 << 4)
61 #define NAND_CON_CSMUX (1 << 1)
62 #define NAND_CON_NANDM 1
64 struct xway_nand_data {
65 struct nand_controller controller;
66 struct nand_chip chip;
67 unsigned long csflags;
68 void __iomem *nandaddr;
71 static u8 xway_readb(struct mtd_info *mtd, int op)
73 struct nand_chip *chip = mtd_to_nand(mtd);
74 struct xway_nand_data *data = nand_get_controller_data(chip);
76 return readb(data->nandaddr + op);
79 static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
81 struct nand_chip *chip = mtd_to_nand(mtd);
82 struct xway_nand_data *data = nand_get_controller_data(chip);
84 writeb(value, data->nandaddr + op);
87 static void xway_select_chip(struct nand_chip *chip, int select)
89 struct xway_nand_data *data = nand_get_controller_data(chip);
91 switch (select) {
92 case -1:
93 ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
94 ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
95 spin_unlock_irqrestore(&ebu_lock, data->csflags);
96 break;
97 case 0:
98 spin_lock_irqsave(&ebu_lock, data->csflags);
99 ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
100 ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
101 break;
102 default:
103 BUG();
107 static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
109 struct mtd_info *mtd = nand_to_mtd(chip);
111 if (cmd == NAND_CMD_NONE)
112 return;
114 if (ctrl & NAND_CLE)
115 xway_writeb(mtd, NAND_WRITE_CMD, cmd);
116 else if (ctrl & NAND_ALE)
117 xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
119 while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
123 static int xway_dev_ready(struct nand_chip *chip)
125 return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
128 static unsigned char xway_read_byte(struct nand_chip *chip)
130 return xway_readb(nand_to_mtd(chip), NAND_READ_DATA);
133 static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len)
135 int i;
137 for (i = 0; i < len; i++)
138 buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA);
141 static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len)
143 int i;
145 for (i = 0; i < len; i++)
146 xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]);
149 static int xway_attach_chip(struct nand_chip *chip)
151 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
153 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
154 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
156 return 0;
159 static const struct nand_controller_ops xway_nand_ops = {
160 .attach_chip = xway_attach_chip,
164 * Probe for the NAND device.
166 static int xway_nand_probe(struct platform_device *pdev)
168 struct xway_nand_data *data;
169 struct mtd_info *mtd;
170 struct resource *res;
171 int err;
172 u32 cs;
173 u32 cs_flag = 0;
175 /* Allocate memory for the device structure (and zero it) */
176 data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
177 GFP_KERNEL);
178 if (!data)
179 return -ENOMEM;
181 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
182 data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
183 if (IS_ERR(data->nandaddr))
184 return PTR_ERR(data->nandaddr);
186 nand_set_flash_node(&data->chip, pdev->dev.of_node);
187 mtd = nand_to_mtd(&data->chip);
188 mtd->dev.parent = &pdev->dev;
190 data->chip.legacy.cmd_ctrl = xway_cmd_ctrl;
191 data->chip.legacy.dev_ready = xway_dev_ready;
192 data->chip.legacy.select_chip = xway_select_chip;
193 data->chip.legacy.write_buf = xway_write_buf;
194 data->chip.legacy.read_buf = xway_read_buf;
195 data->chip.legacy.read_byte = xway_read_byte;
196 data->chip.legacy.chip_delay = 30;
198 nand_controller_init(&data->controller);
199 data->controller.ops = &xway_nand_ops;
200 data->chip.controller = &data->controller;
202 platform_set_drvdata(pdev, data);
203 nand_set_controller_data(&data->chip, data);
205 /* load our CS from the DT. Either we find a valid 1 or default to 0 */
206 err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
207 if (!err && cs == 1)
208 cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
210 /* setup the EBU to run in NAND mode on our base addr */
211 ltq_ebu_w32(CPHYSADDR(data->nandaddr)
212 | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
214 ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
215 | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
216 | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
218 ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
219 | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
220 | cs_flag, EBU_NAND_CON);
222 /* Scan to find existence of the device */
223 err = nand_scan(&data->chip, 1);
224 if (err)
225 return err;
227 err = mtd_device_register(mtd, NULL, 0);
228 if (err)
229 nand_cleanup(&data->chip);
231 return err;
235 * Remove a NAND device.
237 static int xway_nand_remove(struct platform_device *pdev)
239 struct xway_nand_data *data = platform_get_drvdata(pdev);
240 struct nand_chip *chip = &data->chip;
241 int ret;
243 ret = mtd_device_unregister(nand_to_mtd(chip));
244 WARN_ON(ret);
245 nand_cleanup(chip);
247 return 0;
250 static const struct of_device_id xway_nand_match[] = {
251 { .compatible = "lantiq,nand-xway" },
255 static struct platform_driver xway_nand_driver = {
256 .probe = xway_nand_probe,
257 .remove = xway_nand_remove,
258 .driver = {
259 .name = "lantiq,nand-xway",
260 .of_match_table = xway_nand_match,
264 builtin_platform_driver(xway_nand_driver);