Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / mtd / nand / spi / toshiba.c
blob7380b1ebaccd55d32c32c2502c63d6ae352b9e13
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018 exceet electronics GmbH
4 * Copyright (c) 2018 Kontron Electronics GmbH
6 * Author: Frieder Schrempf <frieder.schrempf@kontron.de>
7 */
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/mtd/spinand.h>
13 /* Kioxia is new name of Toshiba memory. */
14 #define SPINAND_MFR_TOSHIBA 0x98
15 #define TOSH_STATUS_ECC_HAS_BITFLIPS_T (3 << 4)
17 static SPINAND_OP_VARIANTS(read_cache_variants,
18 SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
19 SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
20 SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
21 SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
23 static SPINAND_OP_VARIANTS(write_cache_x4_variants,
24 SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
25 SPINAND_PROG_LOAD(true, 0, NULL, 0));
27 static SPINAND_OP_VARIANTS(update_cache_x4_variants,
28 SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
29 SPINAND_PROG_LOAD(false, 0, NULL, 0));
32 * Backward compatibility for 1st generation Serial NAND devices
33 * which don't support Quad Program Load operation.
35 static SPINAND_OP_VARIANTS(write_cache_variants,
36 SPINAND_PROG_LOAD(true, 0, NULL, 0));
38 static SPINAND_OP_VARIANTS(update_cache_variants,
39 SPINAND_PROG_LOAD(false, 0, NULL, 0));
41 static int tx58cxgxsxraix_ooblayout_ecc(struct mtd_info *mtd, int section,
42 struct mtd_oob_region *region)
44 if (section > 0)
45 return -ERANGE;
47 region->offset = mtd->oobsize / 2;
48 region->length = mtd->oobsize / 2;
50 return 0;
53 static int tx58cxgxsxraix_ooblayout_free(struct mtd_info *mtd, int section,
54 struct mtd_oob_region *region)
56 if (section > 0)
57 return -ERANGE;
59 /* 2 bytes reserved for BBM */
60 region->offset = 2;
61 region->length = (mtd->oobsize / 2) - 2;
63 return 0;
66 static const struct mtd_ooblayout_ops tx58cxgxsxraix_ooblayout = {
67 .ecc = tx58cxgxsxraix_ooblayout_ecc,
68 .free = tx58cxgxsxraix_ooblayout_free,
71 static int tx58cxgxsxraix_ecc_get_status(struct spinand_device *spinand,
72 u8 status)
74 struct nand_device *nand = spinand_to_nand(spinand);
75 u8 mbf = 0;
76 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, &mbf);
78 switch (status & STATUS_ECC_MASK) {
79 case STATUS_ECC_NO_BITFLIPS:
80 return 0;
82 case STATUS_ECC_UNCOR_ERROR:
83 return -EBADMSG;
85 case STATUS_ECC_HAS_BITFLIPS:
86 case TOSH_STATUS_ECC_HAS_BITFLIPS_T:
88 * Let's try to retrieve the real maximum number of bitflips
89 * in order to avoid forcing the wear-leveling layer to move
90 * data around if it's not necessary.
92 if (spi_mem_exec_op(spinand->spimem, &op))
93 return nanddev_get_ecc_conf(nand)->strength;
95 mbf >>= 4;
97 if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf))
98 return nanddev_get_ecc_conf(nand)->strength;
100 return mbf;
102 default:
103 break;
106 return -EINVAL;
109 static const struct spinand_info toshiba_spinand_table[] = {
110 /* 3.3V 1Gb (1st generation) */
111 SPINAND_INFO("TC58CVG0S3HRAIG",
112 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xC2),
113 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
114 NAND_ECCREQ(8, 512),
115 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
116 &write_cache_variants,
117 &update_cache_variants),
119 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
120 tx58cxgxsxraix_ecc_get_status)),
121 /* 3.3V 2Gb (1st generation) */
122 SPINAND_INFO("TC58CVG1S3HRAIG",
123 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCB),
124 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
125 NAND_ECCREQ(8, 512),
126 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
127 &write_cache_variants,
128 &update_cache_variants),
130 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
131 tx58cxgxsxraix_ecc_get_status)),
132 /* 3.3V 4Gb (1st generation) */
133 SPINAND_INFO("TC58CVG2S0HRAIG",
134 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCD),
135 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
136 NAND_ECCREQ(8, 512),
137 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
138 &write_cache_variants,
139 &update_cache_variants),
141 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
142 tx58cxgxsxraix_ecc_get_status)),
143 /* 1.8V 1Gb (1st generation) */
144 SPINAND_INFO("TC58CYG0S3HRAIG",
145 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xB2),
146 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
147 NAND_ECCREQ(8, 512),
148 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
149 &write_cache_variants,
150 &update_cache_variants),
152 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
153 tx58cxgxsxraix_ecc_get_status)),
154 /* 1.8V 2Gb (1st generation) */
155 SPINAND_INFO("TC58CYG1S3HRAIG",
156 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBB),
157 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
158 NAND_ECCREQ(8, 512),
159 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
160 &write_cache_variants,
161 &update_cache_variants),
163 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
164 tx58cxgxsxraix_ecc_get_status)),
165 /* 1.8V 4Gb (1st generation) */
166 SPINAND_INFO("TC58CYG2S0HRAIG",
167 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBD),
168 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
169 NAND_ECCREQ(8, 512),
170 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
171 &write_cache_variants,
172 &update_cache_variants),
174 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
175 tx58cxgxsxraix_ecc_get_status)),
178 * 2nd generation serial nand has HOLD_D which is equivalent to
179 * QE_BIT.
181 /* 3.3V 1Gb (2nd generation) */
182 SPINAND_INFO("TC58CVG0S3HRAIJ",
183 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE2),
184 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
185 NAND_ECCREQ(8, 512),
186 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
187 &write_cache_x4_variants,
188 &update_cache_x4_variants),
189 SPINAND_HAS_QE_BIT,
190 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
191 tx58cxgxsxraix_ecc_get_status)),
192 /* 3.3V 2Gb (2nd generation) */
193 SPINAND_INFO("TC58CVG1S3HRAIJ",
194 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xEB),
195 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
196 NAND_ECCREQ(8, 512),
197 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
198 &write_cache_x4_variants,
199 &update_cache_x4_variants),
200 SPINAND_HAS_QE_BIT,
201 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
202 tx58cxgxsxraix_ecc_get_status)),
203 /* 3.3V 4Gb (2nd generation) */
204 SPINAND_INFO("TC58CVG2S0HRAIJ",
205 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xED),
206 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
207 NAND_ECCREQ(8, 512),
208 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
209 &write_cache_x4_variants,
210 &update_cache_x4_variants),
211 SPINAND_HAS_QE_BIT,
212 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
213 tx58cxgxsxraix_ecc_get_status)),
214 /* 3.3V 8Gb (2nd generation) */
215 SPINAND_INFO("TH58CVG3S0HRAIJ",
216 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4),
217 NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1),
218 NAND_ECCREQ(8, 512),
219 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
220 &write_cache_x4_variants,
221 &update_cache_x4_variants),
222 SPINAND_HAS_QE_BIT,
223 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
224 tx58cxgxsxraix_ecc_get_status)),
225 /* 1.8V 1Gb (2nd generation) */
226 SPINAND_INFO("TC58CYG0S3HRAIJ",
227 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD2),
228 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
229 NAND_ECCREQ(8, 512),
230 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
231 &write_cache_x4_variants,
232 &update_cache_x4_variants),
233 SPINAND_HAS_QE_BIT,
234 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
235 tx58cxgxsxraix_ecc_get_status)),
236 /* 1.8V 2Gb (2nd generation) */
237 SPINAND_INFO("TC58CYG1S3HRAIJ",
238 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDB),
239 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
240 NAND_ECCREQ(8, 512),
241 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
242 &write_cache_x4_variants,
243 &update_cache_x4_variants),
244 SPINAND_HAS_QE_BIT,
245 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
246 tx58cxgxsxraix_ecc_get_status)),
247 /* 1.8V 4Gb (2nd generation) */
248 SPINAND_INFO("TC58CYG2S0HRAIJ",
249 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDD),
250 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
251 NAND_ECCREQ(8, 512),
252 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
253 &write_cache_x4_variants,
254 &update_cache_x4_variants),
255 SPINAND_HAS_QE_BIT,
256 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
257 tx58cxgxsxraix_ecc_get_status)),
258 /* 1.8V 8Gb (2nd generation) */
259 SPINAND_INFO("TH58CYG3S0HRAIJ",
260 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD4),
261 NAND_MEMORG(1, 4096, 256, 64, 4096, 80, 1, 1, 1),
262 NAND_ECCREQ(8, 512),
263 SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
264 &write_cache_x4_variants,
265 &update_cache_x4_variants),
266 SPINAND_HAS_QE_BIT,
267 SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
268 tx58cxgxsxraix_ecc_get_status)),
271 static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = {
274 const struct spinand_manufacturer toshiba_spinand_manufacturer = {
275 .id = SPINAND_MFR_TOSHIBA,
276 .name = "Toshiba",
277 .chips = toshiba_spinand_table,
278 .nchips = ARRAY_SIZE(toshiba_spinand_table),
279 .ops = &toshiba_spinand_manuf_ops,