1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
6 * Author: Artem Bityutskiy (Битюцкий Артём)
10 * This file includes volume table manipulation code. The volume table is an
11 * on-flash table containing volume meta-data like name, number of reserved
12 * physical eraseblocks, type, etc. The volume table is stored in the so-called
15 * The layout volume is an internal volume which is organized as follows. It
16 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
17 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
18 * other. This redundancy guarantees robustness to unclean reboots. The volume
19 * table is basically an array of volume table records. Each record contains
20 * full information about the volume and protected by a CRC checksum. Note,
21 * nowadays we use the atomic LEB change operation when updating the volume
22 * table, so we do not really need 2 LEBs anymore, but we preserve the older
23 * design for the backward compatibility reasons.
25 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
26 * erased, and the updated volume table is written back to LEB 0. Then same for
27 * LEB 1. This scheme guarantees recoverability from unclean reboots.
29 * In this UBI implementation the on-flash volume table does not contain any
30 * information about how much data static volumes contain.
32 * But it would still be beneficial to store this information in the volume
33 * table. For example, suppose we have a static volume X, and all its physical
34 * eraseblocks became bad for some reasons. Suppose we are attaching the
35 * corresponding MTD device, for some reason we find no logical eraseblocks
36 * corresponding to the volume X. According to the volume table volume X does
37 * exist. So we don't know whether it is just empty or all its physical
38 * eraseblocks went bad. So we cannot alarm the user properly.
40 * The volume table also stores so-called "update marker", which is used for
41 * volume updates. Before updating the volume, the update marker is set, and
42 * after the update operation is finished, the update marker is cleared. So if
43 * the update operation was interrupted (e.g. by an unclean reboot) - the
44 * update marker is still there and we know that the volume's contents is
48 #include <linux/crc32.h>
49 #include <linux/err.h>
50 #include <linux/slab.h>
51 #include <asm/div64.h>
54 static void self_vtbl_check(const struct ubi_device
*ubi
);
56 /* Empty volume table record */
57 static struct ubi_vtbl_record empty_vtbl_record
;
60 * ubi_update_layout_vol - helper for updatting layout volumes on flash
61 * @ubi: UBI device description object
63 static int ubi_update_layout_vol(struct ubi_device
*ubi
)
65 struct ubi_volume
*layout_vol
;
68 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
69 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
70 err
= ubi_eba_atomic_leb_change(ubi
, layout_vol
, i
, ubi
->vtbl
,
80 * ubi_change_vtbl_record - change volume table record.
81 * @ubi: UBI device description object
82 * @idx: table index to change
83 * @vtbl_rec: new volume table record
85 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
86 * volume table record is written. The caller does not have to calculate CRC of
87 * the record as it is done by this function. Returns zero in case of success
88 * and a negative error code in case of failure.
90 int ubi_change_vtbl_record(struct ubi_device
*ubi
, int idx
,
91 struct ubi_vtbl_record
*vtbl_rec
)
96 ubi_assert(idx
>= 0 && idx
< ubi
->vtbl_slots
);
99 vtbl_rec
= &empty_vtbl_record
;
101 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
, UBI_VTBL_RECORD_SIZE_CRC
);
102 vtbl_rec
->crc
= cpu_to_be32(crc
);
105 memcpy(&ubi
->vtbl
[idx
], vtbl_rec
, sizeof(struct ubi_vtbl_record
));
106 err
= ubi_update_layout_vol(ubi
);
108 self_vtbl_check(ubi
);
109 return err
? err
: 0;
113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
114 * @ubi: UBI device description object
115 * @rename_list: list of &struct ubi_rename_entry objects
117 * This function re-names multiple volumes specified in @req in the volume
118 * table. Returns zero in case of success and a negative error code in case of
121 int ubi_vtbl_rename_volumes(struct ubi_device
*ubi
,
122 struct list_head
*rename_list
)
124 struct ubi_rename_entry
*re
;
126 list_for_each_entry(re
, rename_list
, list
) {
128 struct ubi_volume
*vol
= re
->desc
->vol
;
129 struct ubi_vtbl_record
*vtbl_rec
= &ubi
->vtbl
[vol
->vol_id
];
132 memcpy(vtbl_rec
, &empty_vtbl_record
,
133 sizeof(struct ubi_vtbl_record
));
137 vtbl_rec
->name_len
= cpu_to_be16(re
->new_name_len
);
138 memcpy(vtbl_rec
->name
, re
->new_name
, re
->new_name_len
);
139 memset(vtbl_rec
->name
+ re
->new_name_len
, 0,
140 UBI_VOL_NAME_MAX
+ 1 - re
->new_name_len
);
141 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
,
142 UBI_VTBL_RECORD_SIZE_CRC
);
143 vtbl_rec
->crc
= cpu_to_be32(crc
);
146 return ubi_update_layout_vol(ubi
);
150 * vtbl_check - check if volume table is not corrupted and sensible.
151 * @ubi: UBI device description object
152 * @vtbl: volume table
154 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
155 * and %-EINVAL if it contains inconsistent data.
157 static int vtbl_check(const struct ubi_device
*ubi
,
158 const struct ubi_vtbl_record
*vtbl
)
160 int i
, n
, reserved_pebs
, alignment
, data_pad
, vol_type
, name_len
;
165 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
168 reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
169 alignment
= be32_to_cpu(vtbl
[i
].alignment
);
170 data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
171 upd_marker
= vtbl
[i
].upd_marker
;
172 vol_type
= vtbl
[i
].vol_type
;
173 name_len
= be16_to_cpu(vtbl
[i
].name_len
);
174 name
= &vtbl
[i
].name
[0];
176 crc
= crc32(UBI_CRC32_INIT
, &vtbl
[i
], UBI_VTBL_RECORD_SIZE_CRC
);
177 if (be32_to_cpu(vtbl
[i
].crc
) != crc
) {
178 ubi_err(ubi
, "bad CRC at record %u: %#08x, not %#08x",
179 i
, crc
, be32_to_cpu(vtbl
[i
].crc
));
180 ubi_dump_vtbl_record(&vtbl
[i
], i
);
184 if (reserved_pebs
== 0) {
185 if (memcmp(&vtbl
[i
], &empty_vtbl_record
,
186 UBI_VTBL_RECORD_SIZE
)) {
193 if (reserved_pebs
< 0 || alignment
< 0 || data_pad
< 0 ||
199 if (alignment
> ubi
->leb_size
|| alignment
== 0) {
204 n
= alignment
& (ubi
->min_io_size
- 1);
205 if (alignment
!= 1 && n
) {
210 n
= ubi
->leb_size
% alignment
;
212 ubi_err(ubi
, "bad data_pad, has to be %d", n
);
217 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
222 if (upd_marker
!= 0 && upd_marker
!= 1) {
227 if (reserved_pebs
> ubi
->good_peb_count
) {
228 ubi_err(ubi
, "too large reserved_pebs %d, good PEBs %d",
229 reserved_pebs
, ubi
->good_peb_count
);
234 if (name_len
> UBI_VOL_NAME_MAX
) {
239 if (name
[0] == '\0') {
244 if (name_len
!= strnlen(name
, name_len
+ 1)) {
250 /* Checks that all names are unique */
251 for (i
= 0; i
< ubi
->vtbl_slots
- 1; i
++) {
252 for (n
= i
+ 1; n
< ubi
->vtbl_slots
; n
++) {
253 int len1
= be16_to_cpu(vtbl
[i
].name_len
);
254 int len2
= be16_to_cpu(vtbl
[n
].name_len
);
256 if (len1
> 0 && len1
== len2
&&
257 !strncmp(vtbl
[i
].name
, vtbl
[n
].name
, len1
)) {
258 ubi_err(ubi
, "volumes %d and %d have the same name \"%s\"",
260 ubi_dump_vtbl_record(&vtbl
[i
], i
);
261 ubi_dump_vtbl_record(&vtbl
[n
], n
);
270 ubi_err(ubi
, "volume table check failed: record %d, error %d", i
, err
);
271 ubi_dump_vtbl_record(&vtbl
[i
], i
);
276 * create_vtbl - create a copy of volume table.
277 * @ubi: UBI device description object
278 * @ai: attaching information
279 * @copy: number of the volume table copy
280 * @vtbl: contents of the volume table
282 * This function returns zero in case of success and a negative error code in
285 static int create_vtbl(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
286 int copy
, void *vtbl
)
289 struct ubi_vid_io_buf
*vidb
;
290 struct ubi_vid_hdr
*vid_hdr
;
291 struct ubi_ainf_peb
*new_aeb
;
293 dbg_gen("create volume table (copy #%d)", copy
+ 1);
295 vidb
= ubi_alloc_vid_buf(ubi
, GFP_KERNEL
);
299 vid_hdr
= ubi_get_vid_hdr(vidb
);
302 new_aeb
= ubi_early_get_peb(ubi
, ai
);
303 if (IS_ERR(new_aeb
)) {
304 err
= PTR_ERR(new_aeb
);
308 vid_hdr
->vol_type
= UBI_LAYOUT_VOLUME_TYPE
;
309 vid_hdr
->vol_id
= cpu_to_be32(UBI_LAYOUT_VOLUME_ID
);
310 vid_hdr
->compat
= UBI_LAYOUT_VOLUME_COMPAT
;
311 vid_hdr
->data_size
= vid_hdr
->used_ebs
=
312 vid_hdr
->data_pad
= cpu_to_be32(0);
313 vid_hdr
->lnum
= cpu_to_be32(copy
);
314 vid_hdr
->sqnum
= cpu_to_be64(++ai
->max_sqnum
);
316 /* The EC header is already there, write the VID header */
317 err
= ubi_io_write_vid_hdr(ubi
, new_aeb
->pnum
, vidb
);
321 /* Write the layout volume contents */
322 err
= ubi_io_write_data(ubi
, vtbl
, new_aeb
->pnum
, 0, ubi
->vtbl_size
);
327 * And add it to the attaching information. Don't delete the old version
328 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
330 err
= ubi_add_to_av(ubi
, ai
, new_aeb
->pnum
, new_aeb
->ec
, vid_hdr
, 0);
331 ubi_free_aeb(ai
, new_aeb
);
332 ubi_free_vid_buf(vidb
);
336 if (err
== -EIO
&& ++tries
<= 5) {
338 * Probably this physical eraseblock went bad, try to pick
341 list_add(&new_aeb
->u
.list
, &ai
->erase
);
344 ubi_free_aeb(ai
, new_aeb
);
346 ubi_free_vid_buf(vidb
);
352 * process_lvol - process the layout volume.
353 * @ubi: UBI device description object
354 * @ai: attaching information
355 * @av: layout volume attaching information
357 * This function is responsible for reading the layout volume, ensuring it is
358 * not corrupted, and recovering from corruptions if needed. Returns volume
359 * table in case of success and a negative error code in case of failure.
361 static struct ubi_vtbl_record
*process_lvol(struct ubi_device
*ubi
,
362 struct ubi_attach_info
*ai
,
363 struct ubi_ainf_volume
*av
)
367 struct ubi_ainf_peb
*aeb
;
368 struct ubi_vtbl_record
*leb
[UBI_LAYOUT_VOLUME_EBS
] = { NULL
, NULL
};
369 int leb_corrupted
[UBI_LAYOUT_VOLUME_EBS
] = {1, 1};
372 * UBI goes through the following steps when it changes the layout
375 * b. write new data to LEB 0;
377 * d. write new data to LEB 1.
379 * Before the change, both LEBs contain the same data.
381 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
382 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
383 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
384 * finally, unclean reboots may result in a situation when neither LEB
385 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
386 * 0 contains more recent information.
388 * So the plan is to first check LEB 0. Then
389 * a. if LEB 0 is OK, it must be containing the most recent data; then
390 * we compare it with LEB 1, and if they are different, we copy LEB
392 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
396 dbg_gen("check layout volume");
398 /* Read both LEB 0 and LEB 1 into memory */
399 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
400 leb
[aeb
->lnum
] = vzalloc(ubi
->vtbl_size
);
401 if (!leb
[aeb
->lnum
]) {
406 err
= ubi_io_read_data(ubi
, leb
[aeb
->lnum
], aeb
->pnum
, 0,
408 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
))
410 * Scrub the PEB later. Note, -EBADMSG indicates an
411 * uncorrectable ECC error, but we have our own CRC and
412 * the data will be checked later. If the data is OK,
413 * the PEB will be scrubbed (because we set
414 * aeb->scrub). If the data is not OK, the contents of
415 * the PEB will be recovered from the second copy, and
416 * aeb->scrub will be cleared in
426 leb_corrupted
[0] = vtbl_check(ubi
, leb
[0]);
427 if (leb_corrupted
[0] < 0)
431 if (!leb_corrupted
[0]) {
434 leb_corrupted
[1] = memcmp(leb
[0], leb
[1],
436 if (leb_corrupted
[1]) {
437 ubi_warn(ubi
, "volume table copy #2 is corrupted");
438 err
= create_vtbl(ubi
, ai
, 1, leb
[0]);
441 ubi_msg(ubi
, "volume table was restored");
444 /* Both LEB 1 and LEB 2 are OK and consistent */
448 /* LEB 0 is corrupted or does not exist */
450 leb_corrupted
[1] = vtbl_check(ubi
, leb
[1]);
451 if (leb_corrupted
[1] < 0)
454 if (leb_corrupted
[1]) {
455 /* Both LEB 0 and LEB 1 are corrupted */
456 ubi_err(ubi
, "both volume tables are corrupted");
460 ubi_warn(ubi
, "volume table copy #1 is corrupted");
461 err
= create_vtbl(ubi
, ai
, 0, leb
[1]);
464 ubi_msg(ubi
, "volume table was restored");
477 * create_empty_lvol - create empty layout volume.
478 * @ubi: UBI device description object
479 * @ai: attaching information
481 * This function returns volume table contents in case of success and a
482 * negative error code in case of failure.
484 static struct ubi_vtbl_record
*create_empty_lvol(struct ubi_device
*ubi
,
485 struct ubi_attach_info
*ai
)
488 struct ubi_vtbl_record
*vtbl
;
490 vtbl
= vzalloc(ubi
->vtbl_size
);
492 return ERR_PTR(-ENOMEM
);
494 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
495 memcpy(&vtbl
[i
], &empty_vtbl_record
, UBI_VTBL_RECORD_SIZE
);
497 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
500 err
= create_vtbl(ubi
, ai
, i
, vtbl
);
511 * init_volumes - initialize volume information for existing volumes.
512 * @ubi: UBI device description object
513 * @ai: scanning information
514 * @vtbl: volume table
516 * This function allocates volume description objects for existing volumes.
517 * Returns zero in case of success and a negative error code in case of
520 static int init_volumes(struct ubi_device
*ubi
,
521 const struct ubi_attach_info
*ai
,
522 const struct ubi_vtbl_record
*vtbl
)
524 int i
, err
, reserved_pebs
= 0;
525 struct ubi_ainf_volume
*av
;
526 struct ubi_volume
*vol
;
528 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
531 if (be32_to_cpu(vtbl
[i
].reserved_pebs
) == 0)
532 continue; /* Empty record */
534 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
538 vol
->reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
539 vol
->alignment
= be32_to_cpu(vtbl
[i
].alignment
);
540 vol
->data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
541 vol
->upd_marker
= vtbl
[i
].upd_marker
;
542 vol
->vol_type
= vtbl
[i
].vol_type
== UBI_VID_DYNAMIC
?
543 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
544 vol
->name_len
= be16_to_cpu(vtbl
[i
].name_len
);
545 vol
->usable_leb_size
= ubi
->leb_size
- vol
->data_pad
;
546 memcpy(vol
->name
, vtbl
[i
].name
, vol
->name_len
);
547 vol
->name
[vol
->name_len
] = '\0';
550 if (vtbl
[i
].flags
& UBI_VTBL_SKIP_CRC_CHECK_FLG
)
553 if (vtbl
[i
].flags
& UBI_VTBL_AUTORESIZE_FLG
) {
554 /* Auto re-size flag may be set only for one volume */
555 if (ubi
->autoresize_vol_id
!= -1) {
556 ubi_err(ubi
, "more than one auto-resize volume (%d and %d)",
557 ubi
->autoresize_vol_id
, i
);
562 ubi
->autoresize_vol_id
= i
;
565 ubi_assert(!ubi
->volumes
[i
]);
566 ubi
->volumes
[i
] = vol
;
569 reserved_pebs
+= vol
->reserved_pebs
;
572 * We use ubi->peb_count and not vol->reserved_pebs because
573 * we want to keep the code simple. Otherwise we'd have to
574 * resize/check the bitmap upon volume resize too.
575 * Allocating a few bytes more does not hurt.
577 err
= ubi_fastmap_init_checkmap(vol
, ubi
->peb_count
);
582 * In case of dynamic volume UBI knows nothing about how many
583 * data is stored there. So assume the whole volume is used.
585 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
) {
586 vol
->used_ebs
= vol
->reserved_pebs
;
587 vol
->last_eb_bytes
= vol
->usable_leb_size
;
589 (long long)vol
->used_ebs
* vol
->usable_leb_size
;
593 /* Static volumes only */
594 av
= ubi_find_av(ai
, i
);
595 if (!av
|| !av
->leb_count
) {
597 * No eraseblocks belonging to this volume found. We
598 * don't actually know whether this static volume is
599 * completely corrupted or just contains no data. And
600 * we cannot know this as long as data size is not
601 * stored on flash. So we just assume the volume is
602 * empty. FIXME: this should be handled.
607 if (av
->leb_count
!= av
->used_ebs
) {
609 * We found a static volume which misses several
610 * eraseblocks. Treat it as corrupted.
612 ubi_warn(ubi
, "static volume %d misses %d LEBs - corrupted",
613 av
->vol_id
, av
->used_ebs
- av
->leb_count
);
618 vol
->used_ebs
= av
->used_ebs
;
620 (long long)(vol
->used_ebs
- 1) * vol
->usable_leb_size
;
621 vol
->used_bytes
+= av
->last_data_size
;
622 vol
->last_eb_bytes
= av
->last_data_size
;
625 /* And add the layout volume */
626 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
630 vol
->reserved_pebs
= UBI_LAYOUT_VOLUME_EBS
;
631 vol
->alignment
= UBI_LAYOUT_VOLUME_ALIGN
;
632 vol
->vol_type
= UBI_DYNAMIC_VOLUME
;
633 vol
->name_len
= sizeof(UBI_LAYOUT_VOLUME_NAME
) - 1;
634 memcpy(vol
->name
, UBI_LAYOUT_VOLUME_NAME
, vol
->name_len
+ 1);
635 vol
->usable_leb_size
= ubi
->leb_size
;
636 vol
->used_ebs
= vol
->reserved_pebs
;
637 vol
->last_eb_bytes
= vol
->reserved_pebs
;
639 (long long)vol
->used_ebs
* (ubi
->leb_size
- vol
->data_pad
);
640 vol
->vol_id
= UBI_LAYOUT_VOLUME_ID
;
643 ubi_assert(!ubi
->volumes
[i
]);
644 ubi
->volumes
[vol_id2idx(ubi
, vol
->vol_id
)] = vol
;
645 reserved_pebs
+= vol
->reserved_pebs
;
648 err
= ubi_fastmap_init_checkmap(vol
, UBI_LAYOUT_VOLUME_EBS
);
652 if (reserved_pebs
> ubi
->avail_pebs
) {
653 ubi_err(ubi
, "not enough PEBs, required %d, available %d",
654 reserved_pebs
, ubi
->avail_pebs
);
655 if (ubi
->corr_peb_count
)
656 ubi_err(ubi
, "%d PEBs are corrupted and not used",
657 ubi
->corr_peb_count
);
660 ubi
->rsvd_pebs
+= reserved_pebs
;
661 ubi
->avail_pebs
-= reserved_pebs
;
667 * check_av - check volume attaching information.
668 * @vol: UBI volume description object
669 * @av: volume attaching information
671 * This function returns zero if the volume attaching information is consistent
672 * to the data read from the volume tabla, and %-EINVAL if not.
674 static int check_av(const struct ubi_volume
*vol
,
675 const struct ubi_ainf_volume
*av
)
679 if (av
->highest_lnum
>= vol
->reserved_pebs
) {
683 if (av
->leb_count
> vol
->reserved_pebs
) {
687 if (av
->vol_type
!= vol
->vol_type
) {
691 if (av
->used_ebs
> vol
->reserved_pebs
) {
695 if (av
->data_pad
!= vol
->data_pad
) {
702 ubi_err(vol
->ubi
, "bad attaching information, error %d", err
);
704 ubi_dump_vol_info(vol
);
709 * check_attaching_info - check that attaching information.
710 * @ubi: UBI device description object
711 * @ai: attaching information
713 * Even though we protect on-flash data by CRC checksums, we still don't trust
714 * the media. This function ensures that attaching information is consistent to
715 * the information read from the volume table. Returns zero if the attaching
716 * information is OK and %-EINVAL if it is not.
718 static int check_attaching_info(const struct ubi_device
*ubi
,
719 struct ubi_attach_info
*ai
)
722 struct ubi_ainf_volume
*av
;
723 struct ubi_volume
*vol
;
725 if (ai
->vols_found
> UBI_INT_VOL_COUNT
+ ubi
->vtbl_slots
) {
726 ubi_err(ubi
, "found %d volumes while attaching, maximum is %d + %d",
727 ai
->vols_found
, UBI_INT_VOL_COUNT
, ubi
->vtbl_slots
);
731 if (ai
->highest_vol_id
>= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
&&
732 ai
->highest_vol_id
< UBI_INTERNAL_VOL_START
) {
733 ubi_err(ubi
, "too large volume ID %d found",
738 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
741 av
= ubi_find_av(ai
, i
);
742 vol
= ubi
->volumes
[i
];
745 ubi_remove_av(ai
, av
);
749 if (vol
->reserved_pebs
== 0) {
750 ubi_assert(i
< ubi
->vtbl_slots
);
756 * During attaching we found a volume which does not
757 * exist according to the information in the volume
758 * table. This must have happened due to an unclean
759 * reboot while the volume was being removed. Discard
762 ubi_msg(ubi
, "finish volume %d removal", av
->vol_id
);
763 ubi_remove_av(ai
, av
);
765 err
= check_av(vol
, av
);
775 * ubi_read_volume_table - read the volume table.
776 * @ubi: UBI device description object
777 * @ai: attaching information
779 * This function reads volume table, checks it, recover from errors if needed,
780 * or creates it if needed. Returns zero in case of success and a negative
781 * error code in case of failure.
783 int ubi_read_volume_table(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
786 struct ubi_ainf_volume
*av
;
788 empty_vtbl_record
.crc
= cpu_to_be32(0xf116c36b);
791 * The number of supported volumes is limited by the eraseblock size
792 * and by the UBI_MAX_VOLUMES constant.
794 ubi
->vtbl_slots
= ubi
->leb_size
/ UBI_VTBL_RECORD_SIZE
;
795 if (ubi
->vtbl_slots
> UBI_MAX_VOLUMES
)
796 ubi
->vtbl_slots
= UBI_MAX_VOLUMES
;
798 ubi
->vtbl_size
= ubi
->vtbl_slots
* UBI_VTBL_RECORD_SIZE
;
799 ubi
->vtbl_size
= ALIGN(ubi
->vtbl_size
, ubi
->min_io_size
);
801 av
= ubi_find_av(ai
, UBI_LAYOUT_VOLUME_ID
);
804 * No logical eraseblocks belonging to the layout volume were
805 * found. This could mean that the flash is just empty. In
806 * this case we create empty layout volume.
808 * But if flash is not empty this must be a corruption or the
809 * MTD device just contains garbage.
812 ubi
->vtbl
= create_empty_lvol(ubi
, ai
);
813 if (IS_ERR(ubi
->vtbl
))
814 return PTR_ERR(ubi
->vtbl
);
816 ubi_err(ubi
, "the layout volume was not found");
820 if (av
->leb_count
> UBI_LAYOUT_VOLUME_EBS
) {
821 /* This must not happen with proper UBI images */
822 ubi_err(ubi
, "too many LEBs (%d) in layout volume",
827 ubi
->vtbl
= process_lvol(ubi
, ai
, av
);
828 if (IS_ERR(ubi
->vtbl
))
829 return PTR_ERR(ubi
->vtbl
);
832 ubi
->avail_pebs
= ubi
->good_peb_count
- ubi
->corr_peb_count
;
835 * The layout volume is OK, initialize the corresponding in-RAM data
838 err
= init_volumes(ubi
, ai
, ubi
->vtbl
);
843 * Make sure that the attaching information is consistent to the
844 * information stored in the volume table.
846 err
= check_attaching_info(ubi
, ai
);
854 ubi_free_all_volumes(ubi
);
859 * self_vtbl_check - check volume table.
860 * @ubi: UBI device description object
862 static void self_vtbl_check(const struct ubi_device
*ubi
)
864 if (!ubi_dbg_chk_gen(ubi
))
867 if (vtbl_check(ubi
, ubi
->vtbl
)) {
868 ubi_err(ubi
, "self-check failed");