Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / reset.c
blob9fdb5283b39c32c2fb707c7f754669ac57188311
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 /****************************\
23 Reset function and helpers
24 \****************************/
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <asm/unaligned.h>
30 #include <linux/pci.h> /* To determine if a card is pci-e */
31 #include <linux/log2.h>
32 #include <linux/platform_device.h>
33 #include "ath5k.h"
34 #include "reg.h"
35 #include "debug.h"
38 /**
39 * DOC: Reset function and helpers
41 * Here we implement the main reset routine, used to bring the card
42 * to a working state and ready to receive. We also handle routines
43 * that don't fit on other places such as clock, sleep and power control
47 /******************\
48 * Helper functions *
49 \******************/
51 /**
52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
53 * @ah: The &struct ath5k_hw
54 * @reg: The register to read
55 * @flag: The flag/field to check on the register
56 * @val: The field value we expect (if we check a field)
57 * @is_set: Instead of checking if the flag got cleared, check if it got set
59 * Some registers contain flags that indicate that an operation is
60 * running. We use this function to poll these registers and check
61 * if these flags get cleared. We also use it to poll a register
62 * field (containing multiple flags) until it gets a specific value.
64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
66 int
67 ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
68 bool is_set)
70 int i;
71 u32 data;
73 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
74 data = ath5k_hw_reg_read(ah, reg);
75 if (is_set && (data & flag))
76 break;
77 else if ((data & flag) == val)
78 break;
79 udelay(15);
82 return (i <= 0) ? -EAGAIN : 0;
86 /*************************\
87 * Clock related functions *
88 \*************************/
90 /**
91 * ath5k_hw_htoclock() - Translate usec to hw clock units
92 * @ah: The &struct ath5k_hw
93 * @usec: value in microseconds
95 * Translate usecs to hw clock units based on the current
96 * hw clock rate.
98 * Returns number of clock units
100 unsigned int
101 ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
103 struct ath_common *common = ath5k_hw_common(ah);
104 return usec * common->clockrate;
108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
109 * @ah: The &struct ath5k_hw
110 * @clock: value in hw clock units
112 * Translate hw clock units to usecs based on the current
113 * hw clock rate.
115 * Returns number of usecs
117 unsigned int
118 ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
120 struct ath_common *common = ath5k_hw_common(ah);
121 return clock / common->clockrate;
125 * ath5k_hw_init_core_clock() - Initialize core clock
126 * @ah: The &struct ath5k_hw
128 * Initialize core clock parameters (usec, usec32, latencies etc),
129 * based on current bwmode and chipset properties.
131 static void
132 ath5k_hw_init_core_clock(struct ath5k_hw *ah)
134 struct ieee80211_channel *channel = ah->ah_current_channel;
135 struct ath_common *common = ath5k_hw_common(ah);
136 u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
139 * Set core clock frequency
141 switch (channel->hw_value) {
142 case AR5K_MODE_11A:
143 clock = 40;
144 break;
145 case AR5K_MODE_11B:
146 clock = 22;
147 break;
148 case AR5K_MODE_11G:
149 default:
150 clock = 44;
151 break;
154 /* Use clock multiplier for non-default
155 * bwmode */
156 switch (ah->ah_bwmode) {
157 case AR5K_BWMODE_40MHZ:
158 clock *= 2;
159 break;
160 case AR5K_BWMODE_10MHZ:
161 clock /= 2;
162 break;
163 case AR5K_BWMODE_5MHZ:
164 clock /= 4;
165 break;
166 default:
167 break;
170 common->clockrate = clock;
173 * Set USEC parameters
175 /* Set USEC counter on PCU*/
176 usec = clock - 1;
177 usec = AR5K_REG_SM(usec, AR5K_USEC_1);
179 /* Set usec duration on DCU */
180 if (ah->ah_version != AR5K_AR5210)
181 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
182 AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
183 clock);
185 /* Set 32MHz USEC counter */
186 if ((ah->ah_radio == AR5K_RF5112) ||
187 (ah->ah_radio == AR5K_RF2413) ||
188 (ah->ah_radio == AR5K_RF5413) ||
189 (ah->ah_radio == AR5K_RF2316) ||
190 (ah->ah_radio == AR5K_RF2317))
191 /* Remain on 40MHz clock ? */
192 sclock = 40 - 1;
193 else
194 sclock = 32 - 1;
195 sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
198 * Set tx/rx latencies
200 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
201 txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
202 rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
205 * Set default Tx frame to Tx data start delay
207 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
210 * 5210 initvals don't include usec settings
211 * so we need to use magic values here for
212 * tx/rx latencies
214 if (ah->ah_version == AR5K_AR5210) {
215 /* same for turbo */
216 txlat = AR5K_INIT_TX_LATENCY_5210;
217 rxlat = AR5K_INIT_RX_LATENCY_5210;
220 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
221 /* 5311 has different tx/rx latency masks
222 * from 5211, since we deal 5311 the same
223 * as 5211 when setting initvals, shift
224 * values here to their proper locations
226 * Note: Initvals indicate tx/rx/ latencies
227 * are the same for turbo mode */
228 txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
229 rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
230 } else
231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_10MHZ:
233 txlat = AR5K_REG_SM(txlat * 2,
234 AR5K_USEC_TX_LATENCY_5211);
235 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
236 AR5K_USEC_RX_LATENCY_5211);
237 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
238 break;
239 case AR5K_BWMODE_5MHZ:
240 txlat = AR5K_REG_SM(txlat * 4,
241 AR5K_USEC_TX_LATENCY_5211);
242 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
243 AR5K_USEC_RX_LATENCY_5211);
244 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
245 break;
246 case AR5K_BWMODE_40MHZ:
247 txlat = AR5K_INIT_TX_LAT_MIN;
248 rxlat = AR5K_REG_SM(rxlat / 2,
249 AR5K_USEC_RX_LATENCY_5211);
250 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
251 break;
252 default:
253 break;
256 usec_reg = (usec | sclock | txlat | rxlat);
257 ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
259 /* On 5112 set tx frame to tx data start delay */
260 if (ah->ah_radio == AR5K_RF5112) {
261 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
262 AR5K_PHY_RF_CTL2_TXF2TXD_START,
263 txf2txs);
268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
269 * @ah: The &struct ath5k_hw
270 * @enable: Enable sleep clock operation (false to disable)
272 * If there is an external 32KHz crystal available, use it
273 * as ref. clock instead of 32/40MHz clock and baseband clocks
274 * to save power during sleep or restore normal 32/40MHz
275 * operation.
277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
278 * 123 - 127) require delay on access.
280 static void
281 ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
283 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
284 u32 scal, spending, sclock;
286 /* Only set 32KHz settings if we have an external
287 * 32KHz crystal present */
288 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
289 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
290 enable) {
292 /* 1 usec/cycle */
293 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
294 /* Set up tsf increment on each cycle */
295 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
297 /* Set baseband sleep control registers
298 * and sleep control rate */
299 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
301 if ((ah->ah_radio == AR5K_RF5112) ||
302 (ah->ah_radio == AR5K_RF5413) ||
303 (ah->ah_radio == AR5K_RF2316) ||
304 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
305 spending = 0x14;
306 else
307 spending = 0x18;
308 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
310 if ((ah->ah_radio == AR5K_RF5112) ||
311 (ah->ah_radio == AR5K_RF5413) ||
312 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
313 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
314 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
315 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
316 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
317 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
318 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
319 } else {
320 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
321 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
322 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
323 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
324 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
325 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
328 /* Enable sleep clock operation */
329 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
330 AR5K_PCICFG_SLEEP_CLOCK_EN);
332 } else {
334 /* Disable sleep clock operation and
335 * restore default parameters */
336 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
337 AR5K_PCICFG_SLEEP_CLOCK_EN);
339 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
340 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
342 /* Set DAC/ADC delays */
343 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
344 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
346 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
347 scal = AR5K_PHY_SCAL_32MHZ_2417;
348 else if (ee->ee_is_hb63)
349 scal = AR5K_PHY_SCAL_32MHZ_HB63;
350 else
351 scal = AR5K_PHY_SCAL_32MHZ;
352 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
354 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
355 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
357 if ((ah->ah_radio == AR5K_RF5112) ||
358 (ah->ah_radio == AR5K_RF5413) ||
359 (ah->ah_radio == AR5K_RF2316) ||
360 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
361 spending = 0x14;
362 else
363 spending = 0x18;
364 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
366 /* Set up tsf increment on each cycle */
367 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
369 if ((ah->ah_radio == AR5K_RF5112) ||
370 (ah->ah_radio == AR5K_RF5413) ||
371 (ah->ah_radio == AR5K_RF2316) ||
372 (ah->ah_radio == AR5K_RF2317))
373 sclock = 40 - 1;
374 else
375 sclock = 32 - 1;
376 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
381 /*********************\
382 * Reset/Sleep control *
383 \*********************/
386 * ath5k_hw_nic_reset() - Reset the various chipset units
387 * @ah: The &struct ath5k_hw
388 * @val: Mask to indicate what units to reset
390 * To reset the various chipset units we need to write
391 * the mask to AR5K_RESET_CTL and poll the register until
392 * all flags are cleared.
394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
396 static int
397 ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
399 int ret;
400 u32 mask = val ? val : ~0U;
402 /* Read-and-clear RX Descriptor Pointer*/
403 ath5k_hw_reg_read(ah, AR5K_RXDP);
406 * Reset the device and wait until success
408 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
410 /* Wait at least 128 PCI clocks */
411 usleep_range(15, 20);
413 if (ah->ah_version == AR5K_AR5210) {
414 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
415 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
416 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
417 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
418 } else {
419 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
420 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
423 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
426 * Reset configuration register (for hw byte-swap). Note that this
427 * is only set for big endian. We do the necessary magic in
428 * AR5K_INIT_CFG.
430 if ((val & AR5K_RESET_CTL_PCU) == 0)
431 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
433 return ret;
437 * ath5k_hw_wisoc_reset() - Reset AHB chipset
438 * @ah: The &struct ath5k_hw
439 * @flags: Mask to indicate what units to reset
441 * Same as ath5k_hw_nic_reset but for AHB based devices
443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
445 static int
446 ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
448 u32 mask = flags ? flags : ~0U;
449 u32 __iomem *reg;
450 u32 regval;
451 u32 val = 0;
453 /* ah->ah_mac_srev is not available at this point yet */
454 if (ah->devid >= AR5K_SREV_AR2315_R6) {
455 reg = (u32 __iomem *) AR5K_AR2315_RESET;
456 if (mask & AR5K_RESET_CTL_PCU)
457 val |= AR5K_AR2315_RESET_WMAC;
458 if (mask & AR5K_RESET_CTL_BASEBAND)
459 val |= AR5K_AR2315_RESET_BB_WARM;
460 } else {
461 reg = (u32 __iomem *) AR5K_AR5312_RESET;
462 if (to_platform_device(ah->dev)->id == 0) {
463 if (mask & AR5K_RESET_CTL_PCU)
464 val |= AR5K_AR5312_RESET_WMAC0;
465 if (mask & AR5K_RESET_CTL_BASEBAND)
466 val |= AR5K_AR5312_RESET_BB0_COLD |
467 AR5K_AR5312_RESET_BB0_WARM;
468 } else {
469 if (mask & AR5K_RESET_CTL_PCU)
470 val |= AR5K_AR5312_RESET_WMAC1;
471 if (mask & AR5K_RESET_CTL_BASEBAND)
472 val |= AR5K_AR5312_RESET_BB1_COLD |
473 AR5K_AR5312_RESET_BB1_WARM;
477 /* Put BB/MAC into reset */
478 regval = ioread32(reg);
479 iowrite32(regval | val, reg);
480 regval = ioread32(reg);
481 udelay(100); /* NB: should be atomic */
483 /* Bring BB/MAC out of reset */
484 iowrite32(regval & ~val, reg);
485 regval = ioread32(reg);
488 * Reset configuration register (for hw byte-swap). Note that this
489 * is only set for big endian. We do the necessary magic in
490 * AR5K_INIT_CFG.
492 if ((flags & AR5K_RESET_CTL_PCU) == 0)
493 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
495 return 0;
499 * ath5k_hw_set_power_mode() - Set power mode
500 * @ah: The &struct ath5k_hw
501 * @mode: One of enum ath5k_power_mode
502 * @set_chip: Set to true to write sleep control register
503 * @sleep_duration: How much time the device is allowed to sleep
504 * when sleep logic is enabled (in 128 microsecond increments).
506 * This function is used to configure sleep policy and allowed
507 * sleep modes. For more information check out the sleep control
508 * register on reg.h and STA_ID1.
510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
511 * mode is requested.
513 static int
514 ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
515 bool set_chip, u16 sleep_duration)
517 unsigned int i;
518 u32 staid, data;
520 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
522 switch (mode) {
523 case AR5K_PM_AUTO:
524 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
525 fallthrough;
526 case AR5K_PM_NETWORK_SLEEP:
527 if (set_chip)
528 ath5k_hw_reg_write(ah,
529 AR5K_SLEEP_CTL_SLE_ALLOW |
530 sleep_duration,
531 AR5K_SLEEP_CTL);
533 staid |= AR5K_STA_ID1_PWR_SV;
534 break;
536 case AR5K_PM_FULL_SLEEP:
537 if (set_chip)
538 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
539 AR5K_SLEEP_CTL);
541 staid |= AR5K_STA_ID1_PWR_SV;
542 break;
544 case AR5K_PM_AWAKE:
546 staid &= ~AR5K_STA_ID1_PWR_SV;
548 if (!set_chip)
549 goto commit;
551 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
553 /* If card is down we 'll get 0xffff... so we
554 * need to clean this up before we write the register
556 if (data & 0xffc00000)
557 data = 0;
558 else
559 /* Preserve sleep duration etc */
560 data = data & ~AR5K_SLEEP_CTL_SLE;
562 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
563 AR5K_SLEEP_CTL);
564 usleep_range(15, 20);
566 for (i = 200; i > 0; i--) {
567 /* Check if the chip did wake up */
568 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
569 AR5K_PCICFG_SPWR_DN) == 0)
570 break;
572 /* Wait a bit and retry */
573 usleep_range(50, 75);
574 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
575 AR5K_SLEEP_CTL);
578 /* Fail if the chip didn't wake up */
579 if (i == 0)
580 return -EIO;
582 break;
584 default:
585 return -EINVAL;
588 commit:
589 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
591 return 0;
595 * ath5k_hw_on_hold() - Put device on hold
596 * @ah: The &struct ath5k_hw
598 * Put MAC and Baseband on warm reset and keep that state
599 * (don't clean sleep control register). After this MAC
600 * and Baseband are disabled and a full reset is needed
601 * to come back. This way we save as much power as possible
602 * without putting the card on full sleep.
604 * Returns 0 on success or -EIO on error
607 ath5k_hw_on_hold(struct ath5k_hw *ah)
609 struct pci_dev *pdev = ah->pdev;
610 u32 bus_flags;
611 int ret;
613 if (ath5k_get_bus_type(ah) == ATH_AHB)
614 return 0;
616 /* Make sure device is awake */
617 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
618 if (ret) {
619 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
620 return ret;
624 * Put chipset on warm reset...
626 * Note: putting PCI core on warm reset on PCI-E cards
627 * results card to hang and always return 0xffff... so
628 * we ignore that flag for PCI-E cards. On PCI cards
629 * this flag gets cleared after 64 PCI clocks.
631 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
633 if (ah->ah_version == AR5K_AR5210) {
634 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
635 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
636 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
637 usleep_range(2000, 2500);
638 } else {
639 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
640 AR5K_RESET_CTL_BASEBAND | bus_flags);
643 if (ret) {
644 ATH5K_ERR(ah, "failed to put device on warm reset\n");
645 return -EIO;
648 /* ...wakeup again!*/
649 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
650 if (ret) {
651 ATH5K_ERR(ah, "failed to put device on hold\n");
652 return ret;
655 return ret;
659 * ath5k_hw_nic_wakeup() - Force card out of sleep
660 * @ah: The &struct ath5k_hw
661 * @channel: The &struct ieee80211_channel
663 * Bring up MAC + PHY Chips and program PLL
664 * NOTE: Channel is NULL for the initial wakeup.
666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
669 ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
671 struct pci_dev *pdev = ah->pdev;
672 u32 turbo, mode, clock, bus_flags;
673 int ret;
675 turbo = 0;
676 mode = 0;
677 clock = 0;
679 if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
680 /* Wakeup the device */
681 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
682 if (ret) {
683 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
684 return ret;
689 * Put chipset on warm reset...
691 * Note: putting PCI core on warm reset on PCI-E cards
692 * results card to hang and always return 0xffff... so
693 * we ignore that flag for PCI-E cards. On PCI cards
694 * this flag gets cleared after 64 PCI clocks.
696 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
698 if (ah->ah_version == AR5K_AR5210) {
699 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
700 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
701 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
702 usleep_range(2000, 2500);
703 } else {
704 if (ath5k_get_bus_type(ah) == ATH_AHB)
705 ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
706 AR5K_RESET_CTL_BASEBAND);
707 else
708 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
709 AR5K_RESET_CTL_BASEBAND | bus_flags);
712 if (ret) {
713 ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
714 return -EIO;
717 /* ...wakeup again!...*/
718 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
719 if (ret) {
720 ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
721 return ret;
724 /* ...reset configuration register on Wisoc ...
725 * ...clear reset control register and pull device out of
726 * warm reset on others */
727 if (ath5k_get_bus_type(ah) == ATH_AHB)
728 ret = ath5k_hw_wisoc_reset(ah, 0);
729 else
730 ret = ath5k_hw_nic_reset(ah, 0);
732 if (ret) {
733 ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
734 return -EIO;
737 /* On initialization skip PLL programming since we don't have
738 * a channel / mode set yet */
739 if (!channel)
740 return 0;
742 if (ah->ah_version != AR5K_AR5210) {
744 * Get channel mode flags
747 if (ah->ah_radio >= AR5K_RF5112) {
748 mode = AR5K_PHY_MODE_RAD_RF5112;
749 clock = AR5K_PHY_PLL_RF5112;
750 } else {
751 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
752 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
755 if (channel->band == NL80211_BAND_2GHZ) {
756 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
757 clock |= AR5K_PHY_PLL_44MHZ;
759 if (channel->hw_value == AR5K_MODE_11B) {
760 mode |= AR5K_PHY_MODE_MOD_CCK;
761 } else {
762 /* XXX Dynamic OFDM/CCK is not supported by the
763 * AR5211 so we set MOD_OFDM for plain g (no
764 * CCK headers) operation. We need to test
765 * this, 5211 might support ofdm-only g after
766 * all, there are also initial register values
767 * in the code for g mode (see initvals.c).
769 if (ah->ah_version == AR5K_AR5211)
770 mode |= AR5K_PHY_MODE_MOD_OFDM;
771 else
772 mode |= AR5K_PHY_MODE_MOD_DYN;
774 } else if (channel->band == NL80211_BAND_5GHZ) {
775 mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
776 AR5K_PHY_MODE_MOD_OFDM);
778 /* Different PLL setting for 5413 */
779 if (ah->ah_radio == AR5K_RF5413)
780 clock = AR5K_PHY_PLL_40MHZ_5413;
781 else
782 clock |= AR5K_PHY_PLL_40MHZ;
783 } else {
784 ATH5K_ERR(ah, "invalid radio frequency mode\n");
785 return -EINVAL;
788 /*XXX: Can bwmode be used with dynamic mode ?
789 * (I don't think it supports 44MHz) */
790 /* On 2425 initvals TURBO_SHORT is not present */
791 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
792 turbo = AR5K_PHY_TURBO_MODE;
793 if (ah->ah_radio != AR5K_RF2425)
794 turbo |= AR5K_PHY_TURBO_SHORT;
795 } else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
796 if (ah->ah_radio == AR5K_RF5413) {
797 mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
798 AR5K_PHY_MODE_HALF_RATE :
799 AR5K_PHY_MODE_QUARTER_RATE;
800 } else if (ah->ah_version == AR5K_AR5212) {
801 clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
802 AR5K_PHY_PLL_HALF_RATE :
803 AR5K_PHY_PLL_QUARTER_RATE;
807 } else { /* Reset the device */
809 /* ...enable Atheros turbo mode if requested */
810 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
811 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
812 AR5K_PHY_TURBO);
815 if (ah->ah_version != AR5K_AR5210) {
817 /* ...update PLL if needed */
818 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
819 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
820 usleep_range(300, 350);
823 /* ...set the PHY operating mode */
824 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
825 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
828 return 0;
832 /**************************************\
833 * Post-initvals register modifications *
834 \**************************************/
837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
838 * @ah: The &struct ath5k_hw
839 * @channel: The &struct ieee80211_channel
841 * Some settings are not handled on initvals, e.g. bwmode
842 * settings, some phy settings, workarounds etc that in general
843 * don't fit anywhere else or are too small to introduce a separate
844 * function for each one. So we have this function to handle
845 * them all during reset and complete card's initialization.
847 static void
848 ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
849 struct ieee80211_channel *channel)
851 if (ah->ah_version == AR5K_AR5212 &&
852 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
854 /* Setup ADC control */
855 ath5k_hw_reg_write(ah,
856 (AR5K_REG_SM(2,
857 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
858 AR5K_REG_SM(2,
859 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
860 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
861 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
862 AR5K_PHY_ADC_CTL);
866 /* Disable barker RSSI threshold */
867 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
868 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
870 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
871 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
873 /* Set the mute mask */
874 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
877 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
878 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
879 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
881 /* Enable DCU double buffering */
882 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
883 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
884 AR5K_TXCFG_DCU_DBL_BUF_DIS);
886 /* Set fast ADC */
887 if ((ah->ah_radio == AR5K_RF5413) ||
888 (ah->ah_radio == AR5K_RF2317) ||
889 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
890 u32 fast_adc = true;
892 if (channel->center_freq == 2462 ||
893 channel->center_freq == 2467)
894 fast_adc = 0;
896 /* Only update if needed */
897 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
898 ath5k_hw_reg_write(ah, fast_adc,
899 AR5K_PHY_FAST_ADC);
902 /* Fix for first revision of the RF5112 RF chipset */
903 if (ah->ah_radio == AR5K_RF5112 &&
904 ah->ah_radio_5ghz_revision <
905 AR5K_SREV_RAD_5112A) {
906 u32 data;
907 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
908 AR5K_PHY_CCKTXCTL);
909 if (channel->band == NL80211_BAND_5GHZ)
910 data = 0xffb81020;
911 else
912 data = 0xffb80d20;
913 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
916 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
917 /* Clear QCU/DCU clock gating register */
918 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
919 /* Set DAC/ADC delays */
920 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
921 AR5K_PHY_SCAL);
922 /* Enable PCU FIFO corruption ECO */
923 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
924 AR5K_DIAG_SW_ECO_ENABLE);
927 if (ah->ah_bwmode) {
928 /* Increase PHY switch and AGC settling time
929 * on turbo mode (ath5k_hw_commit_eeprom_settings
930 * will override settling time if available) */
931 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
933 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
934 AR5K_PHY_SETTLING_AGC,
935 AR5K_AGC_SETTLING_TURBO);
937 /* XXX: Initvals indicate we only increase
938 * switch time on AR5212, 5211 and 5210
939 * only change agc time (bug?) */
940 if (ah->ah_version == AR5K_AR5212)
941 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
942 AR5K_PHY_SETTLING_SWITCH,
943 AR5K_SWITCH_SETTLING_TURBO);
945 if (ah->ah_version == AR5K_AR5210) {
946 /* Set Frame Control Register */
947 ath5k_hw_reg_write(ah,
948 (AR5K_PHY_FRAME_CTL_INI |
949 AR5K_PHY_TURBO_MODE |
950 AR5K_PHY_TURBO_SHORT | 0x2020),
951 AR5K_PHY_FRAME_CTL_5210);
953 /* On 5413 PHY force window length for half/quarter rate*/
954 } else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
955 (ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
956 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
957 AR5K_PHY_FRAME_CTL_WIN_LEN,
960 } else if (ah->ah_version == AR5K_AR5210) {
961 /* Set Frame Control Register for normal operation */
962 ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
963 AR5K_PHY_FRAME_CTL_5210);
968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
969 * @ah: The &struct ath5k_hw
970 * @channel: The &struct ieee80211_channel
972 * Use settings stored on EEPROM to properly initialize the card
973 * based on various infos and per-mode calibration data.
975 static void
976 ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
977 struct ieee80211_channel *channel)
979 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
980 s16 cck_ofdm_pwr_delta;
981 u8 ee_mode;
983 /* TODO: Add support for AR5210 EEPROM */
984 if (ah->ah_version == AR5K_AR5210)
985 return;
987 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
989 /* Adjust power delta for channel 14 */
990 if (channel->center_freq == 2484)
991 cck_ofdm_pwr_delta =
992 ((ee->ee_cck_ofdm_power_delta -
993 ee->ee_scaled_cck_delta) * 2) / 10;
994 else
995 cck_ofdm_pwr_delta =
996 (ee->ee_cck_ofdm_power_delta * 2) / 10;
998 /* Set CCK to OFDM power delta on tx power
999 * adjustment register */
1000 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1001 if (channel->hw_value == AR5K_MODE_11G)
1002 ath5k_hw_reg_write(ah,
1003 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1004 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1005 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1006 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1007 AR5K_PHY_TX_PWR_ADJ);
1008 else
1009 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1010 } else {
1011 /* For older revs we scale power on sw during tx power
1012 * setup */
1013 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1014 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1015 ee->ee_cck_ofdm_gain_delta;
1018 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1019 * too */
1020 ath5k_hw_set_antenna_switch(ah, ee_mode);
1022 /* Noise floor threshold */
1023 ath5k_hw_reg_write(ah,
1024 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1025 AR5K_PHY_NFTHRES);
1027 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1028 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1029 /* Switch settling time (Turbo) */
1030 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1031 AR5K_PHY_SETTLING_SWITCH,
1032 ee->ee_switch_settling_turbo[ee_mode]);
1034 /* Tx/Rx attenuation (Turbo) */
1035 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1036 AR5K_PHY_GAIN_TXRX_ATTEN,
1037 ee->ee_atn_tx_rx_turbo[ee_mode]);
1039 /* ADC/PGA desired size (Turbo) */
1040 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1041 AR5K_PHY_DESIRED_SIZE_ADC,
1042 ee->ee_adc_desired_size_turbo[ee_mode]);
1044 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1045 AR5K_PHY_DESIRED_SIZE_PGA,
1046 ee->ee_pga_desired_size_turbo[ee_mode]);
1048 /* Tx/Rx margin (Turbo) */
1049 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1050 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1051 ee->ee_margin_tx_rx_turbo[ee_mode]);
1053 } else {
1054 /* Switch settling time */
1055 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1056 AR5K_PHY_SETTLING_SWITCH,
1057 ee->ee_switch_settling[ee_mode]);
1059 /* Tx/Rx attenuation */
1060 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1061 AR5K_PHY_GAIN_TXRX_ATTEN,
1062 ee->ee_atn_tx_rx[ee_mode]);
1064 /* ADC/PGA desired size */
1065 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1066 AR5K_PHY_DESIRED_SIZE_ADC,
1067 ee->ee_adc_desired_size[ee_mode]);
1069 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1070 AR5K_PHY_DESIRED_SIZE_PGA,
1071 ee->ee_pga_desired_size[ee_mode]);
1073 /* Tx/Rx margin */
1074 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1075 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1076 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1077 ee->ee_margin_tx_rx[ee_mode]);
1080 /* XPA delays */
1081 ath5k_hw_reg_write(ah,
1082 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1083 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1084 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1085 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1087 /* XLNA delay */
1088 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1089 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1090 ee->ee_tx_end2xlna_enable[ee_mode]);
1092 /* Thresh64 (ANI) */
1093 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1094 AR5K_PHY_NF_THRESH62,
1095 ee->ee_thr_62[ee_mode]);
1097 /* False detect backoff for channels
1098 * that have spur noise. Write the new
1099 * cyclic power RSSI threshold. */
1100 if (ath5k_hw_chan_has_spur_noise(ah, channel))
1101 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1102 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1103 AR5K_INIT_CYCRSSI_THR1 +
1104 ee->ee_false_detect[ee_mode]);
1105 else
1106 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1107 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1108 AR5K_INIT_CYCRSSI_THR1);
1110 /* I/Q correction (set enable bit last to match HAL sources) */
1111 /* TODO: Per channel i/q infos ? */
1112 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1113 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1114 ee->ee_i_cal[ee_mode]);
1115 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1116 ee->ee_q_cal[ee_mode]);
1117 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1120 /* Heavy clipping -disable for now */
1121 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1122 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1126 /*********************\
1127 * Main reset function *
1128 \*********************/
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1143 * on failure.
1146 ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1147 struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1149 u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1150 u8 mode;
1151 int i, ret;
1153 tsf_up = 0;
1154 tsf_lo = 0;
1155 mode = 0;
1158 * Sanity check for fast flag
1159 * Fast channel change only available
1160 * on AR2413/AR5413.
1162 if (fast && (ah->ah_radio != AR5K_RF2413) &&
1163 (ah->ah_radio != AR5K_RF5413))
1164 fast = false;
1166 /* Disable sleep clock operation
1167 * to avoid register access delay on certain
1168 * PHY registers */
1169 if (ah->ah_version == AR5K_AR5212)
1170 ath5k_hw_set_sleep_clock(ah, false);
1172 mode = channel->hw_value;
1173 switch (mode) {
1174 case AR5K_MODE_11A:
1175 break;
1176 case AR5K_MODE_11G:
1177 if (ah->ah_version <= AR5K_AR5211) {
1178 ATH5K_ERR(ah,
1179 "G mode not available on 5210/5211");
1180 return -EINVAL;
1182 break;
1183 case AR5K_MODE_11B:
1184 if (ah->ah_version < AR5K_AR5211) {
1185 ATH5K_ERR(ah,
1186 "B mode not available on 5210");
1187 return -EINVAL;
1189 break;
1190 default:
1191 ATH5K_ERR(ah,
1192 "invalid channel: %d\n", channel->center_freq);
1193 return -EINVAL;
1197 * If driver requested fast channel change and DMA has stopped
1198 * go on. If it fails continue with a normal reset.
1200 if (fast) {
1201 ret = ath5k_hw_phy_init(ah, channel, mode, true);
1202 if (ret) {
1203 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1204 "fast chan change failed, falling back to normal reset\n");
1205 /* Non fatal, can happen eg.
1206 * on mode change */
1207 ret = 0;
1208 } else {
1209 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1210 "fast chan change successful\n");
1211 return 0;
1216 * Save some registers before a reset
1218 if (ah->ah_version != AR5K_AR5210) {
1220 * Save frame sequence count
1221 * For revs. after Oahu, only save
1222 * seq num for DCU 0 (Global seq num)
1224 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1226 for (i = 0; i < 10; i++)
1227 s_seq[i] = ath5k_hw_reg_read(ah,
1228 AR5K_QUEUE_DCU_SEQNUM(i));
1230 } else {
1231 s_seq[0] = ath5k_hw_reg_read(ah,
1232 AR5K_QUEUE_DCU_SEQNUM(0));
1235 /* TSF accelerates on AR5211 during reset
1236 * As a workaround save it here and restore
1237 * it later so that it's back in time after
1238 * reset. This way it'll get re-synced on the
1239 * next beacon without breaking ad-hoc.
1241 * On AR5212 TSF is almost preserved across a
1242 * reset so it stays back in time anyway and
1243 * we don't have to save/restore it.
1245 * XXX: Since this breaks power saving we have
1246 * to disable power saving until we receive the
1247 * next beacon, so we can resync beacon timers */
1248 if (ah->ah_version == AR5K_AR5211) {
1249 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1250 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1255 /*GPIOs*/
1256 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1257 AR5K_PCICFG_LEDSTATE;
1258 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1259 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1263 * Since we are going to write rf buffer
1264 * check if we have any pending gain_F
1265 * optimization settings
1267 if (ah->ah_version == AR5K_AR5212 &&
1268 (ah->ah_radio <= AR5K_RF5112)) {
1269 if (!fast && ah->ah_rf_banks != NULL)
1270 ath5k_hw_gainf_calibrate(ah);
1273 /* Wakeup the device */
1274 ret = ath5k_hw_nic_wakeup(ah, channel);
1275 if (ret)
1276 return ret;
1278 /* PHY access enable */
1279 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1280 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1281 else
1282 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1283 AR5K_PHY(0));
1285 /* Write initial settings */
1286 ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1287 if (ret)
1288 return ret;
1290 /* Initialize core clock settings */
1291 ath5k_hw_init_core_clock(ah);
1294 * Tweak initval settings for revised
1295 * chipsets and add some more config
1296 * bits
1298 ath5k_hw_tweak_initval_settings(ah, channel);
1300 /* Commit values from EEPROM */
1301 ath5k_hw_commit_eeprom_settings(ah, channel);
1305 * Restore saved values
1308 /* Seqnum, TSF */
1309 if (ah->ah_version != AR5K_AR5210) {
1310 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1311 for (i = 0; i < 10; i++)
1312 ath5k_hw_reg_write(ah, s_seq[i],
1313 AR5K_QUEUE_DCU_SEQNUM(i));
1314 } else {
1315 ath5k_hw_reg_write(ah, s_seq[0],
1316 AR5K_QUEUE_DCU_SEQNUM(0));
1319 if (ah->ah_version == AR5K_AR5211) {
1320 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1321 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1325 /* Ledstate */
1326 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1328 /* Gpio settings */
1329 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1330 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1333 * Initialize PCU
1335 ath5k_hw_pcu_init(ah, op_mode);
1338 * Initialize PHY
1340 ret = ath5k_hw_phy_init(ah, channel, mode, false);
1341 if (ret) {
1342 ATH5K_ERR(ah,
1343 "failed to initialize PHY (%i) !\n", ret);
1344 return ret;
1348 * Configure QCUs/DCUs
1350 ret = ath5k_hw_init_queues(ah);
1351 if (ret)
1352 return ret;
1356 * Initialize DMA/Interrupts
1358 ath5k_hw_dma_init(ah);
1362 * Enable 32KHz clock function for AR5212+ chips
1363 * Set clocks to 32KHz operation and use an
1364 * external 32KHz crystal when sleeping if one
1365 * exists.
1366 * Disabled by default because it is also disabled in
1367 * other drivers and it is known to cause stability
1368 * issues on some devices
1370 if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1371 op_mode != NL80211_IFTYPE_AP)
1372 ath5k_hw_set_sleep_clock(ah, true);
1375 * Disable beacons and reset the TSF
1377 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1378 ath5k_hw_reset_tsf(ah);
1379 return 0;