Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / net / wireless / realtek / rtw88 / phy.c
blobd44960cd940c386597aab401b0609567cd15e96d
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
5 #include <linux/bcd.h>
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
13 struct phy_cfg_pair {
14 u32 addr;
15 u32 data;
18 union phy_table_tile {
19 struct rtw_phy_cond cond;
20 struct phy_cfg_pair cfg;
23 static const u32 db_invert_table[12][8] = {
24 {10, 13, 16, 20,
25 25, 32, 40, 50},
26 {64, 80, 101, 128,
27 160, 201, 256, 318},
28 {401, 505, 635, 800,
29 1007, 1268, 1596, 2010},
30 {316, 398, 501, 631,
31 794, 1000, 1259, 1585},
32 {1995, 2512, 3162, 3981,
33 5012, 6310, 7943, 10000},
34 {12589, 15849, 19953, 25119,
35 31623, 39811, 50119, 63098},
36 {79433, 100000, 125893, 158489,
37 199526, 251189, 316228, 398107},
38 {501187, 630957, 794328, 1000000,
39 1258925, 1584893, 1995262, 2511886},
40 {3162278, 3981072, 5011872, 6309573,
41 7943282, 1000000, 12589254, 15848932},
42 {19952623, 25118864, 31622777, 39810717,
43 50118723, 63095734, 79432823, 100000000},
44 {125892541, 158489319, 199526232, 251188643,
45 316227766, 398107171, 501187234, 630957345},
46 {794328235, 1000000000, 1258925412, 1584893192,
47 1995262315, 2511886432U, 3162277660U, 3981071706U}
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
53 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 DESC_RATE48M, DESC_RATE54M
56 u8 rtw_ht_1s_rates[] = {
57 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 DESC_RATEMCS6, DESC_RATEMCS7
61 u8 rtw_ht_2s_rates[] = {
62 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
63 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 DESC_RATEMCS14, DESC_RATEMCS15
66 u8 rtw_vht_1s_rates[] = {
67 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
73 u8 rtw_vht_2s_rates[] = {
74 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 rtw_cck_rates, rtw_ofdm_rates,
82 rtw_ht_1s_rates, rtw_ht_2s_rates,
83 rtw_vht_1s_rates, rtw_vht_2s_rates
85 EXPORT_SYMBOL(rtw_rate_section);
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 ARRAY_SIZE(rtw_cck_rates),
89 ARRAY_SIZE(rtw_ofdm_rates),
90 ARRAY_SIZE(rtw_ht_1s_rates),
91 ARRAY_SIZE(rtw_ht_2s_rates),
92 ARRAY_SIZE(rtw_vht_1s_rates),
93 ARRAY_SIZE(rtw_vht_2s_rates)
95 EXPORT_SYMBOL(rtw_rate_size);
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
104 enum rtw_phy_band_type {
105 PHY_BAND_2G = 0,
106 PHY_BAND_5G = 1,
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
111 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 u8 i, j;
114 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
119 dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
122 void rtw_phy_init(struct rtw_dev *rtwdev)
124 struct rtw_chip_info *chip = rtwdev->chip;
125 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126 u32 addr, mask;
128 dm_info->fa_history[3] = 0;
129 dm_info->fa_history[2] = 0;
130 dm_info->fa_history[1] = 0;
131 dm_info->fa_history[0] = 0;
132 dm_info->igi_bitmap = 0;
133 dm_info->igi_history[3] = 0;
134 dm_info->igi_history[2] = 0;
135 dm_info->igi_history[1] = 0;
137 addr = chip->dig[0].addr;
138 mask = chip->dig[0].mask;
139 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140 rtw_phy_cck_pd_init(rtwdev);
142 dm_info->iqk.done = false;
144 EXPORT_SYMBOL(rtw_phy_init);
146 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
148 struct rtw_chip_info *chip = rtwdev->chip;
149 struct rtw_hal *hal = &rtwdev->hal;
150 u32 addr, mask;
151 u8 path;
153 if (chip->dig_cck) {
154 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
155 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
158 for (path = 0; path < hal->rf_path_num; path++) {
159 addr = chip->dig[path].addr;
160 mask = chip->dig[path].mask;
161 rtw_write32_mask(rtwdev, addr, mask, igi);
165 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
167 struct rtw_chip_info *chip = rtwdev->chip;
169 chip->ops->false_alarm_statistics(rtwdev);
172 #define RA_FLOOR_TABLE_SIZE 7
173 #define RA_FLOOR_UP_GAP 3
175 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
177 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
178 u8 new_level = 0;
179 int i;
181 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
182 if (i >= old_level)
183 table[i] += RA_FLOOR_UP_GAP;
185 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
186 if (rssi < table[i]) {
187 new_level = i;
188 break;
192 return new_level;
195 struct rtw_phy_stat_iter_data {
196 struct rtw_dev *rtwdev;
197 u8 min_rssi;
200 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
202 struct rtw_phy_stat_iter_data *iter_data = data;
203 struct rtw_dev *rtwdev = iter_data->rtwdev;
204 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
205 u8 rssi;
207 rssi = ewma_rssi_read(&si->avg_rssi);
208 si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
210 rtw_fw_send_rssi_info(rtwdev, si);
212 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
215 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
217 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
218 struct rtw_phy_stat_iter_data data = {};
220 data.rtwdev = rtwdev;
221 data.min_rssi = U8_MAX;
222 rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
224 dm_info->pre_min_rssi = dm_info->min_rssi;
225 dm_info->min_rssi = data.min_rssi;
228 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
230 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
232 dm_info->last_pkt_count = dm_info->cur_pkt_count;
233 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
236 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
238 rtw_phy_stat_rssi(rtwdev);
239 rtw_phy_stat_false_alarm(rtwdev);
240 rtw_phy_stat_rate_cnt(rtwdev);
243 #define DIG_PERF_FA_TH_LOW 250
244 #define DIG_PERF_FA_TH_HIGH 500
245 #define DIG_PERF_FA_TH_EXTRA_HIGH 750
246 #define DIG_PERF_MAX 0x5a
247 #define DIG_PERF_MID 0x40
248 #define DIG_CVRG_FA_TH_LOW 2000
249 #define DIG_CVRG_FA_TH_HIGH 4000
250 #define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
251 #define DIG_CVRG_MAX 0x2a
252 #define DIG_CVRG_MID 0x26
253 #define DIG_CVRG_MIN 0x1c
254 #define DIG_RSSI_GAIN_OFFSET 15
256 static bool
257 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
259 u16 fa_lo = DIG_PERF_FA_TH_LOW;
260 u16 fa_hi = DIG_PERF_FA_TH_HIGH;
261 u16 *fa_history;
262 u8 *igi_history;
263 u8 damping_rssi;
264 u8 min_rssi;
265 u8 diff;
266 u8 igi_bitmap;
267 bool damping = false;
269 min_rssi = dm_info->min_rssi;
270 if (dm_info->damping) {
271 damping_rssi = dm_info->damping_rssi;
272 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
273 damping_rssi - min_rssi;
274 if (diff > 3 || dm_info->damping_cnt++ > 20) {
275 dm_info->damping = false;
276 return false;
279 return true;
282 igi_history = dm_info->igi_history;
283 fa_history = dm_info->fa_history;
284 igi_bitmap = dm_info->igi_bitmap & 0xf;
285 switch (igi_bitmap) {
286 case 5:
287 /* down -> up -> down -> up */
288 if (igi_history[0] > igi_history[1] &&
289 igi_history[2] > igi_history[3] &&
290 igi_history[0] - igi_history[1] >= 2 &&
291 igi_history[2] - igi_history[3] >= 2 &&
292 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
293 fa_history[2] > fa_hi && fa_history[3] < fa_lo)
294 damping = true;
295 break;
296 case 9:
297 /* up -> down -> down -> up */
298 if (igi_history[0] > igi_history[1] &&
299 igi_history[3] > igi_history[2] &&
300 igi_history[0] - igi_history[1] >= 4 &&
301 igi_history[3] - igi_history[2] >= 2 &&
302 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
303 fa_history[2] < fa_lo && fa_history[3] > fa_hi)
304 damping = true;
305 break;
306 default:
307 return false;
310 if (damping) {
311 dm_info->damping = true;
312 dm_info->damping_cnt = 0;
313 dm_info->damping_rssi = min_rssi;
316 return damping;
319 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
320 u8 *upper, u8 *lower, bool linked)
322 u8 dig_max, dig_min, dig_mid;
323 u8 min_rssi;
325 if (linked) {
326 dig_max = DIG_PERF_MAX;
327 dig_mid = DIG_PERF_MID;
328 /* 22B=0x1c, 22C=0x20 */
329 dig_min = 0x1c;
330 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
331 } else {
332 dig_max = DIG_CVRG_MAX;
333 dig_mid = DIG_CVRG_MID;
334 dig_min = DIG_CVRG_MIN;
335 min_rssi = dig_min;
338 /* DIG MAX should be bounded by minimum RSSI with offset +15 */
339 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
341 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
342 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
345 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
346 u16 *fa_th, u8 *step, bool linked)
348 u8 min_rssi, pre_min_rssi;
350 min_rssi = dm_info->min_rssi;
351 pre_min_rssi = dm_info->pre_min_rssi;
352 step[0] = 4;
353 step[1] = 3;
354 step[2] = 2;
356 if (linked) {
357 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
358 fa_th[1] = DIG_PERF_FA_TH_HIGH;
359 fa_th[2] = DIG_PERF_FA_TH_LOW;
360 if (pre_min_rssi > min_rssi) {
361 step[0] = 6;
362 step[1] = 4;
363 step[2] = 2;
365 } else {
366 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
367 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
368 fa_th[2] = DIG_CVRG_FA_TH_LOW;
372 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
374 u8 *igi_history;
375 u16 *fa_history;
376 u8 igi_bitmap;
377 bool up;
379 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
380 igi_history = dm_info->igi_history;
381 fa_history = dm_info->fa_history;
383 up = igi > igi_history[0];
384 igi_bitmap |= up;
386 igi_history[3] = igi_history[2];
387 igi_history[2] = igi_history[1];
388 igi_history[1] = igi_history[0];
389 igi_history[0] = igi;
391 fa_history[3] = fa_history[2];
392 fa_history[2] = fa_history[1];
393 fa_history[1] = fa_history[0];
394 fa_history[0] = fa;
396 dm_info->igi_bitmap = igi_bitmap;
399 static void rtw_phy_dig(struct rtw_dev *rtwdev)
401 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
402 u8 upper_bound, lower_bound;
403 u8 pre_igi, cur_igi;
404 u16 fa_th[3], fa_cnt;
405 u8 level;
406 u8 step[3];
407 bool linked;
409 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
410 return;
412 if (rtw_phy_dig_check_damping(dm_info))
413 return;
415 linked = !!rtwdev->sta_cnt;
417 fa_cnt = dm_info->total_fa_cnt;
418 pre_igi = dm_info->igi_history[0];
420 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
422 /* test the false alarm count from the highest threshold level first,
423 * and increase it by corresponding step size
425 * note that the step size is offset by -2, compensate it afterall
427 cur_igi = pre_igi;
428 for (level = 0; level < 3; level++) {
429 if (fa_cnt > fa_th[level]) {
430 cur_igi += step[level];
431 break;
434 cur_igi -= 2;
436 /* calculate the upper/lower bound by the minimum rssi we have among
437 * the peers connected with us, meanwhile make sure the igi value does
438 * not beyond the hardware limitation
440 rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
441 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
443 /* record current igi value and false alarm statistics for further
444 * damping checks, and record the trend of igi values
446 rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
448 if (cur_igi != pre_igi)
449 rtw_phy_dig_write(rtwdev, cur_igi);
452 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
454 struct rtw_dev *rtwdev = data;
455 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
457 rtw_update_sta_info(rtwdev, si);
460 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
462 if (rtwdev->watch_dog_cnt & 0x3)
463 return;
465 rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
468 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
470 struct rtw_chip_info *chip = rtwdev->chip;
472 if (chip->ops->dpk_track)
473 chip->ops->dpk_track(rtwdev);
476 #define CCK_PD_FA_LV1_MIN 1000
477 #define CCK_PD_FA_LV0_MAX 500
479 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
481 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
482 u32 cck_fa_avg = dm_info->cck_fa_avg;
484 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
485 return CCK_PD_LV1;
487 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
488 return CCK_PD_LV0;
490 return CCK_PD_LV_MAX;
493 #define CCK_PD_IGI_LV4_VAL 0x38
494 #define CCK_PD_IGI_LV3_VAL 0x2a
495 #define CCK_PD_IGI_LV2_VAL 0x24
496 #define CCK_PD_RSSI_LV4_VAL 32
497 #define CCK_PD_RSSI_LV3_VAL 32
498 #define CCK_PD_RSSI_LV2_VAL 24
500 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
502 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
503 u8 igi = dm_info->igi_history[0];
504 u8 rssi = dm_info->min_rssi;
505 u32 cck_fa_avg = dm_info->cck_fa_avg;
507 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
508 return CCK_PD_LV4;
509 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
510 return CCK_PD_LV3;
511 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
512 return CCK_PD_LV2;
513 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
514 return CCK_PD_LV1;
515 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
516 return CCK_PD_LV0;
518 return CCK_PD_LV_MAX;
521 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
523 if (!rtw_is_assoc(rtwdev))
524 return rtw_phy_cck_pd_lv_unlink(rtwdev);
525 else
526 return rtw_phy_cck_pd_lv_link(rtwdev);
529 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
531 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
532 struct rtw_chip_info *chip = rtwdev->chip;
533 u32 cck_fa = dm_info->cck_fa_cnt;
534 u8 level;
536 if (rtwdev->hal.current_band_type != RTW_BAND_2G)
537 return;
539 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
540 dm_info->cck_fa_avg = cck_fa;
541 else
542 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
544 rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
545 dm_info->igi_history[0], dm_info->min_rssi,
546 dm_info->fa_history[0]);
547 rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
548 dm_info->cck_fa_avg, dm_info->cck_pd_default);
550 level = rtw_phy_cck_pd_lv(rtwdev);
552 if (level >= CCK_PD_LV_MAX)
553 return;
555 if (chip->ops->cck_pd_set)
556 chip->ops->cck_pd_set(rtwdev, level);
559 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
561 rtwdev->chip->ops->pwr_track(rtwdev);
564 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
566 /* for further calculation */
567 rtw_phy_statistics(rtwdev);
568 rtw_phy_dig(rtwdev);
569 rtw_phy_cck_pd(rtwdev);
570 rtw_phy_ra_info_update(rtwdev);
571 rtw_phy_dpk_track(rtwdev);
572 rtw_phy_pwr_track(rtwdev);
575 #define FRAC_BITS 3
577 static u8 rtw_phy_power_2_db(s8 power)
579 if (power <= -100 || power >= 20)
580 return 0;
581 else if (power >= 0)
582 return 100;
583 else
584 return 100 + power;
587 static u64 rtw_phy_db_2_linear(u8 power_db)
589 u8 i, j;
590 u64 linear;
592 if (power_db > 96)
593 power_db = 96;
594 else if (power_db < 1)
595 return 1;
597 /* 1dB ~ 96dB */
598 i = (power_db - 1) >> 3;
599 j = (power_db - 1) - (i << 3);
601 linear = db_invert_table[i][j];
602 linear = i > 2 ? linear << FRAC_BITS : linear;
604 return linear;
607 static u8 rtw_phy_linear_2_db(u64 linear)
609 u8 i;
610 u8 j;
611 u32 dB;
613 if (linear >= db_invert_table[11][7])
614 return 96; /* maximum 96 dB */
616 for (i = 0; i < 12; i++) {
617 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
618 break;
619 else if (i > 2 && linear <= db_invert_table[i][7])
620 break;
623 for (j = 0; j < 8; j++) {
624 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
625 break;
626 else if (i > 2 && linear <= db_invert_table[i][j])
627 break;
630 if (j == 0 && i == 0)
631 goto end;
633 if (j == 0) {
634 if (i != 3) {
635 if (db_invert_table[i][0] - linear >
636 linear - db_invert_table[i - 1][7]) {
637 i = i - 1;
638 j = 7;
640 } else {
641 if (db_invert_table[3][0] - linear >
642 linear - db_invert_table[2][7]) {
643 i = 2;
644 j = 7;
647 } else {
648 if (db_invert_table[i][j] - linear >
649 linear - db_invert_table[i][j - 1]) {
650 j = j - 1;
653 end:
654 dB = (i << 3) + j + 1;
656 return dB;
659 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
661 s8 power;
662 u8 power_db;
663 u64 linear;
664 u64 sum = 0;
665 u8 path;
667 for (path = 0; path < path_num; path++) {
668 power = rf_power[path];
669 power_db = rtw_phy_power_2_db(power);
670 linear = rtw_phy_db_2_linear(power_db);
671 sum += linear;
674 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
675 switch (path_num) {
676 case 2:
677 sum >>= 1;
678 break;
679 case 3:
680 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
681 break;
682 case 4:
683 sum >>= 2;
684 break;
685 default:
686 break;
689 return rtw_phy_linear_2_db(sum);
691 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
693 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
694 u32 addr, u32 mask)
696 struct rtw_hal *hal = &rtwdev->hal;
697 struct rtw_chip_info *chip = rtwdev->chip;
698 const u32 *base_addr = chip->rf_base_addr;
699 u32 val, direct_addr;
701 if (rf_path >= hal->rf_phy_num) {
702 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
703 return INV_RF_DATA;
706 addr &= 0xff;
707 direct_addr = base_addr[rf_path] + (addr << 2);
708 mask &= RFREG_MASK;
710 val = rtw_read32_mask(rtwdev, direct_addr, mask);
712 return val;
714 EXPORT_SYMBOL(rtw_phy_read_rf);
716 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
717 u32 addr, u32 mask)
719 struct rtw_hal *hal = &rtwdev->hal;
720 struct rtw_chip_info *chip = rtwdev->chip;
721 const struct rtw_rf_sipi_addr *rf_sipi_addr;
722 const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
723 u32 val32;
724 u32 en_pi;
725 u32 r_addr;
726 u32 shift;
728 if (rf_path >= hal->rf_phy_num) {
729 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
730 return INV_RF_DATA;
733 if (!chip->rf_sipi_read_addr) {
734 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
735 return INV_RF_DATA;
738 rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
739 rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
741 addr &= 0xff;
743 val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
744 val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
745 rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
747 /* toggle read edge of path A */
748 val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
749 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
750 rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
752 udelay(120);
754 en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
755 r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
757 val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
759 shift = __ffs(mask);
761 return (val32 & mask) >> shift;
763 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
765 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
766 u32 addr, u32 mask, u32 data)
768 struct rtw_hal *hal = &rtwdev->hal;
769 struct rtw_chip_info *chip = rtwdev->chip;
770 u32 *sipi_addr = chip->rf_sipi_addr;
771 u32 data_and_addr;
772 u32 old_data = 0;
773 u32 shift;
775 if (rf_path >= hal->rf_phy_num) {
776 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
777 return false;
780 addr &= 0xff;
781 mask &= RFREG_MASK;
783 if (mask != RFREG_MASK) {
784 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
786 if (old_data == INV_RF_DATA) {
787 rtw_err(rtwdev, "Write fail, rf is disabled\n");
788 return false;
791 shift = __ffs(mask);
792 data = ((old_data) & (~mask)) | (data << shift);
795 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
797 rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
799 udelay(13);
801 return true;
803 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
805 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
806 u32 addr, u32 mask, u32 data)
808 struct rtw_hal *hal = &rtwdev->hal;
809 struct rtw_chip_info *chip = rtwdev->chip;
810 const u32 *base_addr = chip->rf_base_addr;
811 u32 direct_addr;
813 if (rf_path >= hal->rf_phy_num) {
814 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
815 return false;
818 addr &= 0xff;
819 direct_addr = base_addr[rf_path] + (addr << 2);
820 mask &= RFREG_MASK;
822 rtw_write32_mask(rtwdev, direct_addr, mask, data);
824 udelay(1);
826 return true;
829 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
830 u32 addr, u32 mask, u32 data)
832 if (addr != 0x00)
833 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
835 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
837 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
839 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
841 struct rtw_hal *hal = &rtwdev->hal;
842 struct rtw_efuse *efuse = &rtwdev->efuse;
843 struct rtw_phy_cond cond = {0};
845 cond.cut = hal->cut_version ? hal->cut_version : 15;
846 cond.pkg = pkg ? pkg : 15;
847 cond.plat = 0x04;
848 cond.rfe = efuse->rfe_option;
850 switch (rtw_hci_type(rtwdev)) {
851 case RTW_HCI_TYPE_USB:
852 cond.intf = INTF_USB;
853 break;
854 case RTW_HCI_TYPE_SDIO:
855 cond.intf = INTF_SDIO;
856 break;
857 case RTW_HCI_TYPE_PCIE:
858 default:
859 cond.intf = INTF_PCIE;
860 break;
863 hal->phy_cond = cond;
865 rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
868 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
870 struct rtw_hal *hal = &rtwdev->hal;
871 struct rtw_phy_cond drv_cond = hal->phy_cond;
873 if (cond.cut && cond.cut != drv_cond.cut)
874 return false;
876 if (cond.pkg && cond.pkg != drv_cond.pkg)
877 return false;
879 if (cond.intf && cond.intf != drv_cond.intf)
880 return false;
882 if (cond.rfe != drv_cond.rfe)
883 return false;
885 return true;
888 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
890 const union phy_table_tile *p = tbl->data;
891 const union phy_table_tile *end = p + tbl->size / 2;
892 struct rtw_phy_cond pos_cond = {0};
893 bool is_matched = true, is_skipped = false;
895 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
897 for (; p < end; p++) {
898 if (p->cond.pos) {
899 switch (p->cond.branch) {
900 case BRANCH_ENDIF:
901 is_matched = true;
902 is_skipped = false;
903 break;
904 case BRANCH_ELSE:
905 is_matched = is_skipped ? false : true;
906 break;
907 case BRANCH_IF:
908 case BRANCH_ELIF:
909 default:
910 pos_cond = p->cond;
911 break;
913 } else if (p->cond.neg) {
914 if (!is_skipped) {
915 if (check_positive(rtwdev, pos_cond)) {
916 is_matched = true;
917 is_skipped = true;
918 } else {
919 is_matched = false;
920 is_skipped = false;
922 } else {
923 is_matched = false;
925 } else if (is_matched) {
926 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
930 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
932 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
934 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
936 if (rtwdev->chip->is_pwr_by_rate_dec)
937 return bcd_to_dec_pwr_by_rate(hex, i);
939 return (hex >> (i * 8)) & 0xFF;
942 static void
943 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
944 u32 addr, u32 mask, u32 val, u8 *rate,
945 u8 *pwr_by_rate, u8 *rate_num)
947 int i;
949 switch (addr) {
950 case 0xE00:
951 case 0x830:
952 rate[0] = DESC_RATE6M;
953 rate[1] = DESC_RATE9M;
954 rate[2] = DESC_RATE12M;
955 rate[3] = DESC_RATE18M;
956 for (i = 0; i < 4; ++i)
957 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
958 *rate_num = 4;
959 break;
960 case 0xE04:
961 case 0x834:
962 rate[0] = DESC_RATE24M;
963 rate[1] = DESC_RATE36M;
964 rate[2] = DESC_RATE48M;
965 rate[3] = DESC_RATE54M;
966 for (i = 0; i < 4; ++i)
967 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
968 *rate_num = 4;
969 break;
970 case 0xE08:
971 rate[0] = DESC_RATE1M;
972 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
973 *rate_num = 1;
974 break;
975 case 0x86C:
976 if (mask == 0xffffff00) {
977 rate[0] = DESC_RATE2M;
978 rate[1] = DESC_RATE5_5M;
979 rate[2] = DESC_RATE11M;
980 for (i = 1; i < 4; ++i)
981 pwr_by_rate[i - 1] =
982 tbl_to_dec_pwr_by_rate(rtwdev, val, i);
983 *rate_num = 3;
984 } else if (mask == 0x000000ff) {
985 rate[0] = DESC_RATE11M;
986 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
987 *rate_num = 1;
989 break;
990 case 0xE10:
991 case 0x83C:
992 rate[0] = DESC_RATEMCS0;
993 rate[1] = DESC_RATEMCS1;
994 rate[2] = DESC_RATEMCS2;
995 rate[3] = DESC_RATEMCS3;
996 for (i = 0; i < 4; ++i)
997 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
998 *rate_num = 4;
999 break;
1000 case 0xE14:
1001 case 0x848:
1002 rate[0] = DESC_RATEMCS4;
1003 rate[1] = DESC_RATEMCS5;
1004 rate[2] = DESC_RATEMCS6;
1005 rate[3] = DESC_RATEMCS7;
1006 for (i = 0; i < 4; ++i)
1007 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1008 *rate_num = 4;
1009 break;
1010 case 0xE18:
1011 case 0x84C:
1012 rate[0] = DESC_RATEMCS8;
1013 rate[1] = DESC_RATEMCS9;
1014 rate[2] = DESC_RATEMCS10;
1015 rate[3] = DESC_RATEMCS11;
1016 for (i = 0; i < 4; ++i)
1017 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1018 *rate_num = 4;
1019 break;
1020 case 0xE1C:
1021 case 0x868:
1022 rate[0] = DESC_RATEMCS12;
1023 rate[1] = DESC_RATEMCS13;
1024 rate[2] = DESC_RATEMCS14;
1025 rate[3] = DESC_RATEMCS15;
1026 for (i = 0; i < 4; ++i)
1027 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1028 *rate_num = 4;
1029 break;
1030 case 0x838:
1031 rate[0] = DESC_RATE1M;
1032 rate[1] = DESC_RATE2M;
1033 rate[2] = DESC_RATE5_5M;
1034 for (i = 1; i < 4; ++i)
1035 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1036 val, i);
1037 *rate_num = 3;
1038 break;
1039 case 0xC20:
1040 case 0xE20:
1041 case 0x1820:
1042 case 0x1A20:
1043 rate[0] = DESC_RATE1M;
1044 rate[1] = DESC_RATE2M;
1045 rate[2] = DESC_RATE5_5M;
1046 rate[3] = DESC_RATE11M;
1047 for (i = 0; i < 4; ++i)
1048 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1049 *rate_num = 4;
1050 break;
1051 case 0xC24:
1052 case 0xE24:
1053 case 0x1824:
1054 case 0x1A24:
1055 rate[0] = DESC_RATE6M;
1056 rate[1] = DESC_RATE9M;
1057 rate[2] = DESC_RATE12M;
1058 rate[3] = DESC_RATE18M;
1059 for (i = 0; i < 4; ++i)
1060 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1061 *rate_num = 4;
1062 break;
1063 case 0xC28:
1064 case 0xE28:
1065 case 0x1828:
1066 case 0x1A28:
1067 rate[0] = DESC_RATE24M;
1068 rate[1] = DESC_RATE36M;
1069 rate[2] = DESC_RATE48M;
1070 rate[3] = DESC_RATE54M;
1071 for (i = 0; i < 4; ++i)
1072 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1073 *rate_num = 4;
1074 break;
1075 case 0xC2C:
1076 case 0xE2C:
1077 case 0x182C:
1078 case 0x1A2C:
1079 rate[0] = DESC_RATEMCS0;
1080 rate[1] = DESC_RATEMCS1;
1081 rate[2] = DESC_RATEMCS2;
1082 rate[3] = DESC_RATEMCS3;
1083 for (i = 0; i < 4; ++i)
1084 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1085 *rate_num = 4;
1086 break;
1087 case 0xC30:
1088 case 0xE30:
1089 case 0x1830:
1090 case 0x1A30:
1091 rate[0] = DESC_RATEMCS4;
1092 rate[1] = DESC_RATEMCS5;
1093 rate[2] = DESC_RATEMCS6;
1094 rate[3] = DESC_RATEMCS7;
1095 for (i = 0; i < 4; ++i)
1096 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1097 *rate_num = 4;
1098 break;
1099 case 0xC34:
1100 case 0xE34:
1101 case 0x1834:
1102 case 0x1A34:
1103 rate[0] = DESC_RATEMCS8;
1104 rate[1] = DESC_RATEMCS9;
1105 rate[2] = DESC_RATEMCS10;
1106 rate[3] = DESC_RATEMCS11;
1107 for (i = 0; i < 4; ++i)
1108 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1109 *rate_num = 4;
1110 break;
1111 case 0xC38:
1112 case 0xE38:
1113 case 0x1838:
1114 case 0x1A38:
1115 rate[0] = DESC_RATEMCS12;
1116 rate[1] = DESC_RATEMCS13;
1117 rate[2] = DESC_RATEMCS14;
1118 rate[3] = DESC_RATEMCS15;
1119 for (i = 0; i < 4; ++i)
1120 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1121 *rate_num = 4;
1122 break;
1123 case 0xC3C:
1124 case 0xE3C:
1125 case 0x183C:
1126 case 0x1A3C:
1127 rate[0] = DESC_RATEVHT1SS_MCS0;
1128 rate[1] = DESC_RATEVHT1SS_MCS1;
1129 rate[2] = DESC_RATEVHT1SS_MCS2;
1130 rate[3] = DESC_RATEVHT1SS_MCS3;
1131 for (i = 0; i < 4; ++i)
1132 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1133 *rate_num = 4;
1134 break;
1135 case 0xC40:
1136 case 0xE40:
1137 case 0x1840:
1138 case 0x1A40:
1139 rate[0] = DESC_RATEVHT1SS_MCS4;
1140 rate[1] = DESC_RATEVHT1SS_MCS5;
1141 rate[2] = DESC_RATEVHT1SS_MCS6;
1142 rate[3] = DESC_RATEVHT1SS_MCS7;
1143 for (i = 0; i < 4; ++i)
1144 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1145 *rate_num = 4;
1146 break;
1147 case 0xC44:
1148 case 0xE44:
1149 case 0x1844:
1150 case 0x1A44:
1151 rate[0] = DESC_RATEVHT1SS_MCS8;
1152 rate[1] = DESC_RATEVHT1SS_MCS9;
1153 rate[2] = DESC_RATEVHT2SS_MCS0;
1154 rate[3] = DESC_RATEVHT2SS_MCS1;
1155 for (i = 0; i < 4; ++i)
1156 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1157 *rate_num = 4;
1158 break;
1159 case 0xC48:
1160 case 0xE48:
1161 case 0x1848:
1162 case 0x1A48:
1163 rate[0] = DESC_RATEVHT2SS_MCS2;
1164 rate[1] = DESC_RATEVHT2SS_MCS3;
1165 rate[2] = DESC_RATEVHT2SS_MCS4;
1166 rate[3] = DESC_RATEVHT2SS_MCS5;
1167 for (i = 0; i < 4; ++i)
1168 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169 *rate_num = 4;
1170 break;
1171 case 0xC4C:
1172 case 0xE4C:
1173 case 0x184C:
1174 case 0x1A4C:
1175 rate[0] = DESC_RATEVHT2SS_MCS6;
1176 rate[1] = DESC_RATEVHT2SS_MCS7;
1177 rate[2] = DESC_RATEVHT2SS_MCS8;
1178 rate[3] = DESC_RATEVHT2SS_MCS9;
1179 for (i = 0; i < 4; ++i)
1180 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1181 *rate_num = 4;
1182 break;
1183 case 0xCD8:
1184 case 0xED8:
1185 case 0x18D8:
1186 case 0x1AD8:
1187 rate[0] = DESC_RATEMCS16;
1188 rate[1] = DESC_RATEMCS17;
1189 rate[2] = DESC_RATEMCS18;
1190 rate[3] = DESC_RATEMCS19;
1191 for (i = 0; i < 4; ++i)
1192 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1193 *rate_num = 4;
1194 break;
1195 case 0xCDC:
1196 case 0xEDC:
1197 case 0x18DC:
1198 case 0x1ADC:
1199 rate[0] = DESC_RATEMCS20;
1200 rate[1] = DESC_RATEMCS21;
1201 rate[2] = DESC_RATEMCS22;
1202 rate[3] = DESC_RATEMCS23;
1203 for (i = 0; i < 4; ++i)
1204 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1205 *rate_num = 4;
1206 break;
1207 case 0xCE0:
1208 case 0xEE0:
1209 case 0x18E0:
1210 case 0x1AE0:
1211 rate[0] = DESC_RATEVHT3SS_MCS0;
1212 rate[1] = DESC_RATEVHT3SS_MCS1;
1213 rate[2] = DESC_RATEVHT3SS_MCS2;
1214 rate[3] = DESC_RATEVHT3SS_MCS3;
1215 for (i = 0; i < 4; ++i)
1216 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1217 *rate_num = 4;
1218 break;
1219 case 0xCE4:
1220 case 0xEE4:
1221 case 0x18E4:
1222 case 0x1AE4:
1223 rate[0] = DESC_RATEVHT3SS_MCS4;
1224 rate[1] = DESC_RATEVHT3SS_MCS5;
1225 rate[2] = DESC_RATEVHT3SS_MCS6;
1226 rate[3] = DESC_RATEVHT3SS_MCS7;
1227 for (i = 0; i < 4; ++i)
1228 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1229 *rate_num = 4;
1230 break;
1231 case 0xCE8:
1232 case 0xEE8:
1233 case 0x18E8:
1234 case 0x1AE8:
1235 rate[0] = DESC_RATEVHT3SS_MCS8;
1236 rate[1] = DESC_RATEVHT3SS_MCS9;
1237 for (i = 0; i < 2; ++i)
1238 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1239 *rate_num = 2;
1240 break;
1241 default:
1242 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1243 break;
1247 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1248 u32 band, u32 rfpath, u32 txnum,
1249 u32 regaddr, u32 bitmask, u32 data)
1251 struct rtw_hal *hal = &rtwdev->hal;
1252 u8 rate_num = 0;
1253 u8 rate;
1254 u8 rates[RTW_RF_PATH_MAX] = {0};
1255 s8 offset;
1256 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1257 int i;
1259 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1260 rates, pwr_by_rate, &rate_num);
1262 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1263 (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1264 rate_num > RTW_RF_PATH_MAX))
1265 return;
1267 for (i = 0; i < rate_num; i++) {
1268 offset = pwr_by_rate[i];
1269 rate = rates[i];
1270 if (band == PHY_BAND_2G)
1271 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1272 else if (band == PHY_BAND_5G)
1273 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1274 else
1275 continue;
1279 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1281 const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1282 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1284 for (; p < end; p++) {
1285 if (p->addr == 0xfe || p->addr == 0xffe) {
1286 msleep(50);
1287 continue;
1289 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1290 p->tx_num, p->addr, p->bitmask,
1291 p->data);
1294 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1296 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1297 36, 38, 40, 42, 44, 46, 48, /* Band 1 */
1298 52, 54, 56, 58, 60, 62, 64, /* Band 2 */
1299 100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1300 116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1301 132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1302 149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1303 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1305 static int rtw_channel_to_idx(u8 band, u8 channel)
1307 int ch_idx;
1308 u8 n_channel;
1310 if (band == PHY_BAND_2G) {
1311 ch_idx = channel - 1;
1312 n_channel = RTW_MAX_CHANNEL_NUM_2G;
1313 } else if (band == PHY_BAND_5G) {
1314 n_channel = RTW_MAX_CHANNEL_NUM_5G;
1315 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1316 if (rtw_channel_idx_5g[ch_idx] == channel)
1317 break;
1318 } else {
1319 return -1;
1322 if (ch_idx >= n_channel)
1323 return -1;
1325 return ch_idx;
1328 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1329 u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1331 struct rtw_hal *hal = &rtwdev->hal;
1332 u8 max_power_index = rtwdev->chip->max_power_index;
1333 s8 ww;
1334 int ch_idx;
1336 pwr_limit = clamp_t(s8, pwr_limit,
1337 -max_power_index, max_power_index);
1338 ch_idx = rtw_channel_to_idx(band, ch);
1340 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1341 rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1342 WARN(1,
1343 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1344 regd, band, bw, rs, ch_idx, pwr_limit);
1345 return;
1348 if (band == PHY_BAND_2G) {
1349 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1350 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1351 ww = min_t(s8, ww, pwr_limit);
1352 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1353 } else if (band == PHY_BAND_5G) {
1354 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1355 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1356 ww = min_t(s8, ww, pwr_limit);
1357 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1361 /* cross-reference 5G power limits if values are not assigned */
1362 static void
1363 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1364 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1366 struct rtw_hal *hal = &rtwdev->hal;
1367 u8 max_power_index = rtwdev->chip->max_power_index;
1368 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1369 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1371 if (lmt_ht == lmt_vht)
1372 return;
1374 if (lmt_ht == max_power_index)
1375 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1377 else if (lmt_vht == max_power_index)
1378 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1381 /* cross-reference power limits for ht and vht */
1382 static void
1383 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1385 u8 rs_idx, rs_ht, rs_vht;
1386 u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1387 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1389 for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1390 rs_ht = rs_cmp[rs_idx][0];
1391 rs_vht = rs_cmp[rs_idx][1];
1393 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1397 /* cross-reference power limits for 5G channels */
1398 static void
1399 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1401 u8 ch_idx;
1403 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1404 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1407 /* cross-reference power limits for 20/40M bandwidth */
1408 static void
1409 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1411 u8 bw;
1413 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1414 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1417 /* cross-reference power limits */
1418 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1420 u8 regd;
1422 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1423 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1426 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1427 const struct rtw_table *tbl)
1429 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1430 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1432 for (; p < end; p++) {
1433 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1434 p->bw, p->rs, p->ch, p->txpwr_lmt);
1437 rtw_xref_txpwr_lmt(rtwdev);
1439 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1441 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1442 u32 addr, u32 data)
1444 rtw_write8(rtwdev, addr, data);
1446 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1448 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1449 u32 addr, u32 data)
1451 rtw_write32(rtwdev, addr, data);
1453 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1455 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1456 u32 addr, u32 data)
1458 if (addr == 0xfe)
1459 msleep(50);
1460 else if (addr == 0xfd)
1461 mdelay(5);
1462 else if (addr == 0xfc)
1463 mdelay(1);
1464 else if (addr == 0xfb)
1465 usleep_range(50, 60);
1466 else if (addr == 0xfa)
1467 udelay(5);
1468 else if (addr == 0xf9)
1469 udelay(1);
1470 else
1471 rtw_write32(rtwdev, addr, data);
1473 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1475 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1476 u32 addr, u32 data)
1478 if (addr == 0xffe) {
1479 msleep(50);
1480 } else if (addr == 0xfe) {
1481 usleep_range(100, 110);
1482 } else {
1483 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1484 udelay(1);
1487 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1489 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1491 struct rtw_chip_info *chip = rtwdev->chip;
1492 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1494 if (!chip->rfk_init_tbl)
1495 return;
1497 rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1498 rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1499 rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1500 rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1501 rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1503 rtw_load_table(rtwdev, chip->rfk_init_tbl);
1505 dpk_info->is_dpk_pwr_on = true;
1508 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1510 struct rtw_chip_info *chip = rtwdev->chip;
1511 u8 rf_path;
1513 rtw_load_table(rtwdev, chip->mac_tbl);
1514 rtw_load_table(rtwdev, chip->bb_tbl);
1515 rtw_load_table(rtwdev, chip->agc_tbl);
1516 rtw_load_rfk_table(rtwdev);
1518 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1519 const struct rtw_table *tbl;
1521 tbl = chip->rf_tbl[rf_path];
1522 rtw_load_table(rtwdev, tbl);
1525 EXPORT_SYMBOL(rtw_phy_load_tables);
1527 static u8 rtw_get_channel_group(u8 channel)
1529 switch (channel) {
1530 default:
1531 WARN_ON(1);
1532 fallthrough;
1533 case 1:
1534 case 2:
1535 case 36:
1536 case 38:
1537 case 40:
1538 case 42:
1539 return 0;
1540 case 3:
1541 case 4:
1542 case 5:
1543 case 44:
1544 case 46:
1545 case 48:
1546 case 50:
1547 return 1;
1548 case 6:
1549 case 7:
1550 case 8:
1551 case 52:
1552 case 54:
1553 case 56:
1554 case 58:
1555 return 2;
1556 case 9:
1557 case 10:
1558 case 11:
1559 case 60:
1560 case 62:
1561 case 64:
1562 return 3;
1563 case 12:
1564 case 13:
1565 case 100:
1566 case 102:
1567 case 104:
1568 case 106:
1569 return 4;
1570 case 14:
1571 case 108:
1572 case 110:
1573 case 112:
1574 case 114:
1575 return 5;
1576 case 116:
1577 case 118:
1578 case 120:
1579 case 122:
1580 return 6;
1581 case 124:
1582 case 126:
1583 case 128:
1584 case 130:
1585 return 7;
1586 case 132:
1587 case 134:
1588 case 136:
1589 case 138:
1590 return 8;
1591 case 140:
1592 case 142:
1593 case 144:
1594 return 9;
1595 case 149:
1596 case 151:
1597 case 153:
1598 case 155:
1599 return 10;
1600 case 157:
1601 case 159:
1602 case 161:
1603 return 11;
1604 case 165:
1605 case 167:
1606 case 169:
1607 case 171:
1608 return 12;
1609 case 173:
1610 case 175:
1611 case 177:
1612 return 13;
1616 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1618 struct rtw_chip_info *chip = rtwdev->chip;
1619 s8 dpd_diff = 0;
1621 if (!chip->en_dis_dpd)
1622 return 0;
1624 #define RTW_DPD_RATE_CHECK(_rate) \
1625 case DESC_RATE ## _rate: \
1626 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
1627 dpd_diff = -6 * chip->txgi_factor; \
1628 break
1630 switch (rate) {
1631 RTW_DPD_RATE_CHECK(6M);
1632 RTW_DPD_RATE_CHECK(9M);
1633 RTW_DPD_RATE_CHECK(MCS0);
1634 RTW_DPD_RATE_CHECK(MCS1);
1635 RTW_DPD_RATE_CHECK(MCS8);
1636 RTW_DPD_RATE_CHECK(MCS9);
1637 RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1638 RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1639 RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1640 RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1642 #undef RTW_DPD_RATE_CHECK
1644 return dpd_diff;
1647 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1648 struct rtw_2g_txpwr_idx *pwr_idx_2g,
1649 enum rtw_bandwidth bandwidth,
1650 u8 rate, u8 group)
1652 struct rtw_chip_info *chip = rtwdev->chip;
1653 u8 tx_power;
1654 bool mcs_rate;
1655 bool above_2ss;
1656 u8 factor = chip->txgi_factor;
1658 if (rate <= DESC_RATE11M)
1659 tx_power = pwr_idx_2g->cck_base[group];
1660 else
1661 tx_power = pwr_idx_2g->bw40_base[group];
1663 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1664 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1666 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1667 (rate >= DESC_RATEVHT1SS_MCS0 &&
1668 rate <= DESC_RATEVHT2SS_MCS9);
1669 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1670 (rate >= DESC_RATEVHT2SS_MCS0);
1672 if (!mcs_rate)
1673 return tx_power;
1675 switch (bandwidth) {
1676 default:
1677 WARN_ON(1);
1678 fallthrough;
1679 case RTW_CHANNEL_WIDTH_20:
1680 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1681 if (above_2ss)
1682 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1683 break;
1684 case RTW_CHANNEL_WIDTH_40:
1685 /* bw40 is the base power */
1686 if (above_2ss)
1687 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1688 break;
1691 return tx_power;
1694 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1695 struct rtw_5g_txpwr_idx *pwr_idx_5g,
1696 enum rtw_bandwidth bandwidth,
1697 u8 rate, u8 group)
1699 struct rtw_chip_info *chip = rtwdev->chip;
1700 u8 tx_power;
1701 u8 upper, lower;
1702 bool mcs_rate;
1703 bool above_2ss;
1704 u8 factor = chip->txgi_factor;
1706 tx_power = pwr_idx_5g->bw40_base[group];
1708 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1709 (rate >= DESC_RATEVHT1SS_MCS0 &&
1710 rate <= DESC_RATEVHT2SS_MCS9);
1711 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1712 (rate >= DESC_RATEVHT2SS_MCS0);
1714 if (!mcs_rate) {
1715 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1716 return tx_power;
1719 switch (bandwidth) {
1720 default:
1721 WARN_ON(1);
1722 fallthrough;
1723 case RTW_CHANNEL_WIDTH_20:
1724 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1725 if (above_2ss)
1726 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1727 break;
1728 case RTW_CHANNEL_WIDTH_40:
1729 /* bw40 is the base power */
1730 if (above_2ss)
1731 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1732 break;
1733 case RTW_CHANNEL_WIDTH_80:
1734 /* the base idx of bw80 is the average of bw40+/bw40- */
1735 lower = pwr_idx_5g->bw40_base[group];
1736 upper = pwr_idx_5g->bw40_base[group + 1];
1738 tx_power = (lower + upper) / 2;
1739 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1740 if (above_2ss)
1741 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1742 break;
1745 return tx_power;
1748 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1749 enum rtw_bandwidth bw, u8 rf_path,
1750 u8 rate, u8 channel, u8 regd)
1752 struct rtw_hal *hal = &rtwdev->hal;
1753 u8 *cch_by_bw = hal->cch_by_bw;
1754 s8 power_limit = (s8)rtwdev->chip->max_power_index;
1755 u8 rs;
1756 int ch_idx;
1757 u8 cur_bw, cur_ch;
1758 s8 cur_lmt;
1760 if (regd > RTW_REGD_WW)
1761 return power_limit;
1763 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1764 rs = RTW_RATE_SECTION_CCK;
1765 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1766 rs = RTW_RATE_SECTION_OFDM;
1767 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1768 rs = RTW_RATE_SECTION_HT_1S;
1769 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1770 rs = RTW_RATE_SECTION_HT_2S;
1771 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1772 rs = RTW_RATE_SECTION_VHT_1S;
1773 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1774 rs = RTW_RATE_SECTION_VHT_2S;
1775 else
1776 goto err;
1778 /* only 20M BW with cck and ofdm */
1779 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1780 bw = RTW_CHANNEL_WIDTH_20;
1782 /* only 20/40M BW with ht */
1783 if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1784 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1786 /* select min power limit among [20M BW ~ current BW] */
1787 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1788 cur_ch = cch_by_bw[cur_bw];
1790 ch_idx = rtw_channel_to_idx(band, cur_ch);
1791 if (ch_idx < 0)
1792 goto err;
1794 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1795 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1796 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1798 power_limit = min_t(s8, cur_lmt, power_limit);
1801 return power_limit;
1803 err:
1804 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1805 band, bw, rf_path, rate, channel);
1806 return (s8)rtwdev->chip->max_power_index;
1809 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1810 u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1812 struct rtw_hal *hal = &rtwdev->hal;
1813 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1814 struct rtw_txpwr_idx *pwr_idx;
1815 u8 group, band;
1816 u8 *base = &pwr_param->pwr_base;
1817 s8 *offset = &pwr_param->pwr_offset;
1818 s8 *limit = &pwr_param->pwr_limit;
1819 s8 *remnant = &pwr_param->pwr_remnant;
1821 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1822 group = rtw_get_channel_group(ch);
1824 /* base power index for 2.4G/5G */
1825 if (IS_CH_2G_BAND(ch)) {
1826 band = PHY_BAND_2G;
1827 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
1828 &pwr_idx->pwr_idx_2g,
1829 bw, rate, group);
1830 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1831 } else {
1832 band = PHY_BAND_5G;
1833 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
1834 &pwr_idx->pwr_idx_5g,
1835 bw, rate, group);
1836 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1839 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1840 rate, ch, regd);
1841 *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1842 dm_info->txagc_remnant_ofdm);
1846 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1847 enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1849 struct rtw_power_params pwr_param = {0};
1850 u8 tx_power;
1851 s8 offset;
1853 rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1854 channel, regd, &pwr_param);
1856 tx_power = pwr_param.pwr_base;
1857 offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1859 if (rtwdev->chip->en_dis_dpd)
1860 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1862 tx_power += offset + pwr_param.pwr_remnant;
1864 if (tx_power > rtwdev->chip->max_power_index)
1865 tx_power = rtwdev->chip->max_power_index;
1867 return tx_power;
1869 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1871 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1872 u8 ch, u8 path, u8 rs)
1874 struct rtw_hal *hal = &rtwdev->hal;
1875 u8 regd = rtwdev->regd.txpwr_regd;
1876 u8 *rates;
1877 u8 size;
1878 u8 rate;
1879 u8 pwr_idx;
1880 u8 bw;
1881 int i;
1883 if (rs >= RTW_RATE_SECTION_MAX)
1884 return;
1886 rates = rtw_rate_section[rs];
1887 size = rtw_rate_size[rs];
1888 bw = hal->current_band_width;
1889 for (i = 0; i < size; i++) {
1890 rate = rates[i];
1891 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1892 bw, ch, regd);
1893 hal->tx_pwr_tbl[path][rate] = pwr_idx;
1897 /* set tx power level by path for each rates, note that the order of the rates
1898 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1899 * power index into a four-byte power index register, and calls set_tx_agc to
1900 * write these values into hardware
1902 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1903 u8 ch, u8 path)
1905 struct rtw_hal *hal = &rtwdev->hal;
1906 u8 rs;
1908 /* do not need cck rates if we are not in 2.4G */
1909 if (hal->current_band_type == RTW_BAND_2G)
1910 rs = RTW_RATE_SECTION_CCK;
1911 else
1912 rs = RTW_RATE_SECTION_OFDM;
1914 for (; rs < RTW_RATE_SECTION_MAX; rs++)
1915 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1918 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1920 struct rtw_chip_info *chip = rtwdev->chip;
1921 struct rtw_hal *hal = &rtwdev->hal;
1922 u8 path;
1924 mutex_lock(&hal->tx_power_mutex);
1926 for (path = 0; path < hal->rf_path_num; path++)
1927 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1929 chip->ops->set_tx_power_index(rtwdev);
1930 mutex_unlock(&hal->tx_power_mutex);
1932 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1934 static void
1935 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1936 u8 rs, u8 size, u8 *rates)
1938 u8 rate;
1939 u8 base_idx, rate_idx;
1940 s8 base_2g, base_5g;
1942 if (rs >= RTW_RATE_SECTION_VHT_1S)
1943 base_idx = rates[size - 3];
1944 else
1945 base_idx = rates[size - 1];
1946 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1947 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1948 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1949 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1950 for (rate = 0; rate < size; rate++) {
1951 rate_idx = rates[rate];
1952 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1953 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1957 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1959 u8 path;
1961 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1962 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1963 RTW_RATE_SECTION_CCK,
1964 rtw_cck_size, rtw_cck_rates);
1965 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1966 RTW_RATE_SECTION_OFDM,
1967 rtw_ofdm_size, rtw_ofdm_rates);
1968 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1969 RTW_RATE_SECTION_HT_1S,
1970 rtw_ht_1s_size, rtw_ht_1s_rates);
1971 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1972 RTW_RATE_SECTION_HT_2S,
1973 rtw_ht_2s_size, rtw_ht_2s_rates);
1974 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1975 RTW_RATE_SECTION_VHT_1S,
1976 rtw_vht_1s_size, rtw_vht_1s_rates);
1977 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1978 RTW_RATE_SECTION_VHT_2S,
1979 rtw_vht_2s_size, rtw_vht_2s_rates);
1983 static void
1984 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1986 s8 base;
1987 u8 ch;
1989 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1990 base = hal->tx_pwr_by_rate_base_2g[0][rs];
1991 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1994 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1995 base = hal->tx_pwr_by_rate_base_5g[0][rs];
1996 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2000 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2002 u8 regd, bw, rs;
2004 /* default at channel 1 */
2005 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2007 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2008 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2009 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2010 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2013 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2014 u8 regd, u8 bw, u8 rs)
2016 struct rtw_hal *hal = &rtwdev->hal;
2017 s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2018 u8 ch;
2020 /* 2.4G channels */
2021 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2022 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2024 /* 5G channels */
2025 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2026 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2029 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2031 struct rtw_hal *hal = &rtwdev->hal;
2032 u8 regd, path, rate, rs, bw;
2034 /* init tx power by rate offset */
2035 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2036 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2037 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2038 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2042 /* init tx power limit */
2043 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2044 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2045 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2046 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2047 rs);
2050 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2051 struct rtw_swing_table *swing_table)
2053 const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2054 u8 channel = rtwdev->hal.current_channel;
2056 if (IS_CH_2G_BAND(channel)) {
2057 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2058 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2059 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2060 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2061 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2062 } else {
2063 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2064 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2065 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2066 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2068 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2069 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2070 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2071 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2072 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2073 } else if (IS_CH_5G_BAND_3(channel)) {
2074 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2075 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2076 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2077 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2078 } else if (IS_CH_5G_BAND_4(channel)) {
2079 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2080 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2081 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2082 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2083 } else {
2084 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2085 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2086 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2087 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2090 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2092 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2094 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2096 ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2097 dm_info->thermal_avg[path] =
2098 ewma_thermal_read(&dm_info->avg_thermal[path]);
2100 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2102 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2103 u8 path)
2105 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2106 u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2108 if (avg == thermal)
2109 return false;
2111 return true;
2113 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2115 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2117 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2118 u8 therm_avg, therm_efuse, therm_delta;
2120 therm_avg = dm_info->thermal_avg[path];
2121 therm_efuse = rtwdev->efuse.thermal_meter[path];
2122 therm_delta = abs(therm_avg - therm_efuse);
2124 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2126 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2128 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2129 struct rtw_swing_table *swing_table,
2130 u8 tbl_path, u8 therm_path, u8 delta)
2132 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2133 const u8 *delta_swing_table_idx_pos;
2134 const u8 *delta_swing_table_idx_neg;
2136 if (delta >= RTW_PWR_TRK_TBL_SZ) {
2137 rtw_warn(rtwdev, "power track table overflow\n");
2138 return 0;
2141 if (!swing_table) {
2142 rtw_warn(rtwdev, "swing table not configured\n");
2143 return 0;
2146 delta_swing_table_idx_pos = swing_table->p[tbl_path];
2147 delta_swing_table_idx_neg = swing_table->n[tbl_path];
2149 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2150 rtw_warn(rtwdev, "invalid swing table index\n");
2151 return 0;
2154 if (dm_info->thermal_avg[therm_path] >
2155 rtwdev->efuse.thermal_meter[therm_path])
2156 return delta_swing_table_idx_pos[delta];
2157 else
2158 return -delta_swing_table_idx_neg[delta];
2160 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2162 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2164 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2165 u8 delta_iqk;
2167 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2168 if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2169 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2170 return true;
2172 return false;
2174 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);