Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / nvdimm / pmem.c
blob875076b0ea6c13b5b19a9ff908139d670a1ea375
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Persistent Memory Driver
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
10 #include <linux/blkdev.h>
11 #include <linux/hdreg.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/set_memory.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/badblocks.h>
18 #include <linux/memremap.h>
19 #include <linux/vmalloc.h>
20 #include <linux/blk-mq.h>
21 #include <linux/pfn_t.h>
22 #include <linux/slab.h>
23 #include <linux/uio.h>
24 #include <linux/dax.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "pfn.h"
31 #include "nd.h"
33 static struct device *to_dev(struct pmem_device *pmem)
36 * nvdimm bus services need a 'dev' parameter, and we record the device
37 * at init in bb.dev.
39 return pmem->bb.dev;
42 static struct nd_region *to_region(struct pmem_device *pmem)
44 return to_nd_region(to_dev(pmem)->parent);
47 static void hwpoison_clear(struct pmem_device *pmem,
48 phys_addr_t phys, unsigned int len)
50 unsigned long pfn_start, pfn_end, pfn;
52 /* only pmem in the linear map supports HWPoison */
53 if (is_vmalloc_addr(pmem->virt_addr))
54 return;
56 pfn_start = PHYS_PFN(phys);
57 pfn_end = pfn_start + PHYS_PFN(len);
58 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59 struct page *page = pfn_to_page(pfn);
62 * Note, no need to hold a get_dev_pagemap() reference
63 * here since we're in the driver I/O path and
64 * outstanding I/O requests pin the dev_pagemap.
66 if (test_and_clear_pmem_poison(page))
67 clear_mce_nospec(pfn);
71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72 phys_addr_t offset, unsigned int len)
74 struct device *dev = to_dev(pmem);
75 sector_t sector;
76 long cleared;
77 blk_status_t rc = BLK_STS_OK;
79 sector = (offset - pmem->data_offset) / 512;
81 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82 if (cleared < len)
83 rc = BLK_STS_IOERR;
84 if (cleared > 0 && cleared / 512) {
85 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86 cleared /= 512;
87 dev_dbg(dev, "%#llx clear %ld sector%s\n",
88 (unsigned long long) sector, cleared,
89 cleared > 1 ? "s" : "");
90 badblocks_clear(&pmem->bb, sector, cleared);
91 if (pmem->bb_state)
92 sysfs_notify_dirent(pmem->bb_state);
95 arch_invalidate_pmem(pmem->virt_addr + offset, len);
97 return rc;
100 static void write_pmem(void *pmem_addr, struct page *page,
101 unsigned int off, unsigned int len)
103 unsigned int chunk;
104 void *mem;
106 while (len) {
107 mem = kmap_atomic(page);
108 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109 memcpy_flushcache(pmem_addr, mem + off, chunk);
110 kunmap_atomic(mem);
111 len -= chunk;
112 off = 0;
113 page++;
114 pmem_addr += chunk;
118 static blk_status_t read_pmem(struct page *page, unsigned int off,
119 void *pmem_addr, unsigned int len)
121 unsigned int chunk;
122 unsigned long rem;
123 void *mem;
125 while (len) {
126 mem = kmap_atomic(page);
127 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
129 kunmap_atomic(mem);
130 if (rem)
131 return BLK_STS_IOERR;
132 len -= chunk;
133 off = 0;
134 page++;
135 pmem_addr += chunk;
137 return BLK_STS_OK;
140 static blk_status_t pmem_do_read(struct pmem_device *pmem,
141 struct page *page, unsigned int page_off,
142 sector_t sector, unsigned int len)
144 blk_status_t rc;
145 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 void *pmem_addr = pmem->virt_addr + pmem_off;
148 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 return BLK_STS_IOERR;
151 rc = read_pmem(page, page_off, pmem_addr, len);
152 flush_dcache_page(page);
153 return rc;
156 static blk_status_t pmem_do_write(struct pmem_device *pmem,
157 struct page *page, unsigned int page_off,
158 sector_t sector, unsigned int len)
160 blk_status_t rc = BLK_STS_OK;
161 bool bad_pmem = false;
162 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163 void *pmem_addr = pmem->virt_addr + pmem_off;
165 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166 bad_pmem = true;
169 * Note that we write the data both before and after
170 * clearing poison. The write before clear poison
171 * handles situations where the latest written data is
172 * preserved and the clear poison operation simply marks
173 * the address range as valid without changing the data.
174 * In this case application software can assume that an
175 * interrupted write will either return the new good
176 * data or an error.
178 * However, if pmem_clear_poison() leaves the data in an
179 * indeterminate state we need to perform the write
180 * after clear poison.
182 flush_dcache_page(page);
183 write_pmem(pmem_addr, page, page_off, len);
184 if (unlikely(bad_pmem)) {
185 rc = pmem_clear_poison(pmem, pmem_off, len);
186 write_pmem(pmem_addr, page, page_off, len);
189 return rc;
192 static blk_qc_t pmem_submit_bio(struct bio *bio)
194 int ret = 0;
195 blk_status_t rc = 0;
196 bool do_acct;
197 unsigned long start;
198 struct bio_vec bvec;
199 struct bvec_iter iter;
200 struct pmem_device *pmem = bio->bi_disk->private_data;
201 struct nd_region *nd_region = to_region(pmem);
203 if (bio->bi_opf & REQ_PREFLUSH)
204 ret = nvdimm_flush(nd_region, bio);
206 do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207 if (do_acct)
208 start = bio_start_io_acct(bio);
209 bio_for_each_segment(bvec, bio, iter) {
210 if (op_is_write(bio_op(bio)))
211 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212 iter.bi_sector, bvec.bv_len);
213 else
214 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215 iter.bi_sector, bvec.bv_len);
216 if (rc) {
217 bio->bi_status = rc;
218 break;
221 if (do_acct)
222 bio_end_io_acct(bio, start);
224 if (bio->bi_opf & REQ_FUA)
225 ret = nvdimm_flush(nd_region, bio);
227 if (ret)
228 bio->bi_status = errno_to_blk_status(ret);
230 bio_endio(bio);
231 return BLK_QC_T_NONE;
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235 struct page *page, unsigned int op)
237 struct pmem_device *pmem = bdev->bd_disk->private_data;
238 blk_status_t rc;
240 if (op_is_write(op))
241 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242 else
243 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
245 * The ->rw_page interface is subtle and tricky. The core
246 * retries on any error, so we can only invoke page_endio() in
247 * the successful completion case. Otherwise, we'll see crashes
248 * caused by double completion.
250 if (rc == 0)
251 page_endio(page, op_is_write(op), 0);
253 return blk_status_to_errno(rc);
256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258 long nr_pages, void **kaddr, pfn_t *pfn)
260 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
262 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263 PFN_PHYS(nr_pages))))
264 return -EIO;
266 if (kaddr)
267 *kaddr = pmem->virt_addr + offset;
268 if (pfn)
269 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
272 * If badblocks are present, limit known good range to the
273 * requested range.
275 if (unlikely(pmem->bb.count))
276 return nr_pages;
277 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
280 static const struct block_device_operations pmem_fops = {
281 .owner = THIS_MODULE,
282 .submit_bio = pmem_submit_bio,
283 .rw_page = pmem_rw_page,
286 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
287 size_t nr_pages)
289 struct pmem_device *pmem = dax_get_private(dax_dev);
291 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
292 PFN_PHYS(pgoff) >> SECTOR_SHIFT,
293 PAGE_SIZE));
296 static long pmem_dax_direct_access(struct dax_device *dax_dev,
297 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299 struct pmem_device *pmem = dax_get_private(dax_dev);
301 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
305 * Use the 'no check' versions of copy_from_iter_flushcache() and
306 * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
307 * checking, both file offset and device offset, is handled by
308 * dax_iomap_actor()
310 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
311 void *addr, size_t bytes, struct iov_iter *i)
313 return _copy_from_iter_flushcache(addr, bytes, i);
316 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
317 void *addr, size_t bytes, struct iov_iter *i)
319 return _copy_mc_to_iter(addr, bytes, i);
322 static const struct dax_operations pmem_dax_ops = {
323 .direct_access = pmem_dax_direct_access,
324 .dax_supported = generic_fsdax_supported,
325 .copy_from_iter = pmem_copy_from_iter,
326 .copy_to_iter = pmem_copy_to_iter,
327 .zero_page_range = pmem_dax_zero_page_range,
330 static const struct attribute_group *pmem_attribute_groups[] = {
331 &dax_attribute_group,
332 NULL,
335 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
337 struct request_queue *q =
338 container_of(pgmap->ref, struct request_queue, q_usage_counter);
340 blk_cleanup_queue(q);
343 static void pmem_release_queue(void *pgmap)
345 pmem_pagemap_cleanup(pgmap);
348 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
350 struct request_queue *q =
351 container_of(pgmap->ref, struct request_queue, q_usage_counter);
353 blk_freeze_queue_start(q);
356 static void pmem_release_disk(void *__pmem)
358 struct pmem_device *pmem = __pmem;
360 kill_dax(pmem->dax_dev);
361 put_dax(pmem->dax_dev);
362 del_gendisk(pmem->disk);
363 put_disk(pmem->disk);
366 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
367 .kill = pmem_pagemap_kill,
368 .cleanup = pmem_pagemap_cleanup,
371 static int pmem_attach_disk(struct device *dev,
372 struct nd_namespace_common *ndns)
374 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
375 struct nd_region *nd_region = to_nd_region(dev->parent);
376 int nid = dev_to_node(dev), fua;
377 struct resource *res = &nsio->res;
378 struct range bb_range;
379 struct nd_pfn *nd_pfn = NULL;
380 struct dax_device *dax_dev;
381 struct nd_pfn_sb *pfn_sb;
382 struct pmem_device *pmem;
383 struct request_queue *q;
384 struct device *gendev;
385 struct gendisk *disk;
386 void *addr;
387 int rc;
388 unsigned long flags = 0UL;
390 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
391 if (!pmem)
392 return -ENOMEM;
394 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
395 if (rc)
396 return rc;
398 /* while nsio_rw_bytes is active, parse a pfn info block if present */
399 if (is_nd_pfn(dev)) {
400 nd_pfn = to_nd_pfn(dev);
401 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
402 if (rc)
403 return rc;
406 /* we're attaching a block device, disable raw namespace access */
407 devm_namespace_disable(dev, ndns);
409 dev_set_drvdata(dev, pmem);
410 pmem->phys_addr = res->start;
411 pmem->size = resource_size(res);
412 fua = nvdimm_has_flush(nd_region);
413 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
414 dev_warn(dev, "unable to guarantee persistence of writes\n");
415 fua = 0;
418 if (!devm_request_mem_region(dev, res->start, resource_size(res),
419 dev_name(&ndns->dev))) {
420 dev_warn(dev, "could not reserve region %pR\n", res);
421 return -EBUSY;
424 q = blk_alloc_queue(dev_to_node(dev));
425 if (!q)
426 return -ENOMEM;
428 pmem->pfn_flags = PFN_DEV;
429 pmem->pgmap.ref = &q->q_usage_counter;
430 if (is_nd_pfn(dev)) {
431 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
432 pmem->pgmap.ops = &fsdax_pagemap_ops;
433 addr = devm_memremap_pages(dev, &pmem->pgmap);
434 pfn_sb = nd_pfn->pfn_sb;
435 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
436 pmem->pfn_pad = resource_size(res) -
437 range_len(&pmem->pgmap.range);
438 pmem->pfn_flags |= PFN_MAP;
439 bb_range = pmem->pgmap.range;
440 bb_range.start += pmem->data_offset;
441 } else if (pmem_should_map_pages(dev)) {
442 pmem->pgmap.range.start = res->start;
443 pmem->pgmap.range.end = res->end;
444 pmem->pgmap.nr_range = 1;
445 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
446 pmem->pgmap.ops = &fsdax_pagemap_ops;
447 addr = devm_memremap_pages(dev, &pmem->pgmap);
448 pmem->pfn_flags |= PFN_MAP;
449 bb_range = pmem->pgmap.range;
450 } else {
451 if (devm_add_action_or_reset(dev, pmem_release_queue,
452 &pmem->pgmap))
453 return -ENOMEM;
454 addr = devm_memremap(dev, pmem->phys_addr,
455 pmem->size, ARCH_MEMREMAP_PMEM);
456 bb_range.start = res->start;
457 bb_range.end = res->end;
460 if (IS_ERR(addr))
461 return PTR_ERR(addr);
462 pmem->virt_addr = addr;
464 blk_queue_write_cache(q, true, fua);
465 blk_queue_physical_block_size(q, PAGE_SIZE);
466 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
467 blk_queue_max_hw_sectors(q, UINT_MAX);
468 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
469 if (pmem->pfn_flags & PFN_MAP)
470 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
472 disk = alloc_disk_node(0, nid);
473 if (!disk)
474 return -ENOMEM;
475 pmem->disk = disk;
477 disk->fops = &pmem_fops;
478 disk->queue = q;
479 disk->flags = GENHD_FL_EXT_DEVT;
480 disk->private_data = pmem;
481 nvdimm_namespace_disk_name(ndns, disk->disk_name);
482 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
483 / 512);
484 if (devm_init_badblocks(dev, &pmem->bb))
485 return -ENOMEM;
486 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
487 disk->bb = &pmem->bb;
489 if (is_nvdimm_sync(nd_region))
490 flags = DAXDEV_F_SYNC;
491 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
492 if (IS_ERR(dax_dev)) {
493 put_disk(disk);
494 return PTR_ERR(dax_dev);
496 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
497 pmem->dax_dev = dax_dev;
498 gendev = disk_to_dev(disk);
499 gendev->groups = pmem_attribute_groups;
501 device_add_disk(dev, disk, NULL);
502 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
503 return -ENOMEM;
505 nvdimm_check_and_set_ro(disk);
507 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
508 "badblocks");
509 if (!pmem->bb_state)
510 dev_warn(dev, "'badblocks' notification disabled\n");
512 return 0;
515 static int nd_pmem_probe(struct device *dev)
517 int ret;
518 struct nd_namespace_common *ndns;
520 ndns = nvdimm_namespace_common_probe(dev);
521 if (IS_ERR(ndns))
522 return PTR_ERR(ndns);
524 if (is_nd_btt(dev))
525 return nvdimm_namespace_attach_btt(ndns);
527 if (is_nd_pfn(dev))
528 return pmem_attach_disk(dev, ndns);
530 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
531 if (ret)
532 return ret;
534 ret = nd_btt_probe(dev, ndns);
535 if (ret == 0)
536 return -ENXIO;
539 * We have two failure conditions here, there is no
540 * info reserver block or we found a valid info reserve block
541 * but failed to initialize the pfn superblock.
543 * For the first case consider namespace as a raw pmem namespace
544 * and attach a disk.
546 * For the latter, consider this a success and advance the namespace
547 * seed.
549 ret = nd_pfn_probe(dev, ndns);
550 if (ret == 0)
551 return -ENXIO;
552 else if (ret == -EOPNOTSUPP)
553 return ret;
555 ret = nd_dax_probe(dev, ndns);
556 if (ret == 0)
557 return -ENXIO;
558 else if (ret == -EOPNOTSUPP)
559 return ret;
561 /* probe complete, attach handles namespace enabling */
562 devm_namespace_disable(dev, ndns);
564 return pmem_attach_disk(dev, ndns);
567 static int nd_pmem_remove(struct device *dev)
569 struct pmem_device *pmem = dev_get_drvdata(dev);
571 if (is_nd_btt(dev))
572 nvdimm_namespace_detach_btt(to_nd_btt(dev));
573 else {
575 * Note, this assumes nd_device_lock() context to not
576 * race nd_pmem_notify()
578 sysfs_put(pmem->bb_state);
579 pmem->bb_state = NULL;
581 nvdimm_flush(to_nd_region(dev->parent), NULL);
583 return 0;
586 static void nd_pmem_shutdown(struct device *dev)
588 nvdimm_flush(to_nd_region(dev->parent), NULL);
591 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
593 struct nd_region *nd_region;
594 resource_size_t offset = 0, end_trunc = 0;
595 struct nd_namespace_common *ndns;
596 struct nd_namespace_io *nsio;
597 struct badblocks *bb;
598 struct range range;
599 struct kernfs_node *bb_state;
601 if (event != NVDIMM_REVALIDATE_POISON)
602 return;
604 if (is_nd_btt(dev)) {
605 struct nd_btt *nd_btt = to_nd_btt(dev);
607 ndns = nd_btt->ndns;
608 nd_region = to_nd_region(ndns->dev.parent);
609 nsio = to_nd_namespace_io(&ndns->dev);
610 bb = &nsio->bb;
611 bb_state = NULL;
612 } else {
613 struct pmem_device *pmem = dev_get_drvdata(dev);
615 nd_region = to_region(pmem);
616 bb = &pmem->bb;
617 bb_state = pmem->bb_state;
619 if (is_nd_pfn(dev)) {
620 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
623 ndns = nd_pfn->ndns;
624 offset = pmem->data_offset +
625 __le32_to_cpu(pfn_sb->start_pad);
626 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627 } else {
628 ndns = to_ndns(dev);
631 nsio = to_nd_namespace_io(&ndns->dev);
634 range.start = nsio->res.start + offset;
635 range.end = nsio->res.end - end_trunc;
636 nvdimm_badblocks_populate(nd_region, bb, &range);
637 if (bb_state)
638 sysfs_notify_dirent(bb_state);
641 MODULE_ALIAS("pmem");
642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
643 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
644 static struct nd_device_driver nd_pmem_driver = {
645 .probe = nd_pmem_probe,
646 .remove = nd_pmem_remove,
647 .notify = nd_pmem_notify,
648 .shutdown = nd_pmem_shutdown,
649 .drv = {
650 .name = "nd_pmem",
652 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
655 module_nd_driver(nd_pmem_driver);
657 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
658 MODULE_LICENSE("GPL v2");