Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / nvmem / sprd-efuse.c
blob59523245db8a54f1825acaba2386b91b50b8e244
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2019 Spreadtrum Communications Inc.
4 #include <linux/clk.h>
5 #include <linux/delay.h>
6 #include <linux/hwspinlock.h>
7 #include <linux/io.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-provider.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
13 #define SPRD_EFUSE_ENABLE 0x20
14 #define SPRD_EFUSE_ERR_FLAG 0x24
15 #define SPRD_EFUSE_ERR_CLR 0x28
16 #define SPRD_EFUSE_MAGIC_NUM 0x2c
17 #define SPRD_EFUSE_FW_CFG 0x50
18 #define SPRD_EFUSE_PW_SWT 0x54
19 #define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2))
21 #define SPRD_EFUSE_VDD_EN BIT(0)
22 #define SPRD_EFUSE_AUTO_CHECK_EN BIT(1)
23 #define SPRD_EFUSE_DOUBLE_EN BIT(2)
24 #define SPRD_EFUSE_MARGIN_RD_EN BIT(3)
25 #define SPRD_EFUSE_LOCK_WR_EN BIT(4)
27 #define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0)
29 #define SPRD_EFUSE_ENK1_ON BIT(0)
30 #define SPRD_EFUSE_ENK2_ON BIT(1)
31 #define SPRD_EFUSE_PROG_EN BIT(2)
33 #define SPRD_EFUSE_MAGIC_NUMBER 0x8810
35 /* Block width (bytes) definitions */
36 #define SPRD_EFUSE_BLOCK_WIDTH 4
39 * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse,
40 * and we can only access the normal efuse in kernel. So define the normal
41 * block offset index and normal block numbers.
43 #define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24
44 #define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72
46 /* Timeout (ms) for the trylock of hardware spinlocks */
47 #define SPRD_EFUSE_HWLOCK_TIMEOUT 5000
50 * Since different Spreadtrum SoC chip can have different normal block numbers
51 * and offset. And some SoC can support block double feature, which means
52 * when reading or writing data to efuse memory, the controller can save double
53 * data in case one data become incorrect after a long period.
55 * Thus we should save them in the device data structure.
57 struct sprd_efuse_variant_data {
58 u32 blk_nums;
59 u32 blk_offset;
60 bool blk_double;
63 struct sprd_efuse {
64 struct device *dev;
65 struct clk *clk;
66 struct hwspinlock *hwlock;
67 struct mutex mutex;
68 void __iomem *base;
69 const struct sprd_efuse_variant_data *data;
72 static const struct sprd_efuse_variant_data ums312_data = {
73 .blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS,
74 .blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET,
75 .blk_double = false,
79 * On Spreadtrum platform, we have multi-subsystems will access the unique
80 * efuse controller, so we need one hardware spinlock to synchronize between
81 * the multiple subsystems.
83 static int sprd_efuse_lock(struct sprd_efuse *efuse)
85 int ret;
87 mutex_lock(&efuse->mutex);
89 ret = hwspin_lock_timeout_raw(efuse->hwlock,
90 SPRD_EFUSE_HWLOCK_TIMEOUT);
91 if (ret) {
92 dev_err(efuse->dev, "timeout get the hwspinlock\n");
93 mutex_unlock(&efuse->mutex);
94 return ret;
97 return 0;
100 static void sprd_efuse_unlock(struct sprd_efuse *efuse)
102 hwspin_unlock_raw(efuse->hwlock);
103 mutex_unlock(&efuse->mutex);
106 static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en)
108 u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
110 if (en)
111 val &= ~SPRD_EFUSE_ENK2_ON;
112 else
113 val &= ~SPRD_EFUSE_ENK1_ON;
115 writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
117 /* Open or close efuse power need wait 1000us to make power stable. */
118 usleep_range(1000, 1200);
120 if (en)
121 val |= SPRD_EFUSE_ENK1_ON;
122 else
123 val |= SPRD_EFUSE_ENK2_ON;
125 writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
127 /* Open or close efuse power need wait 1000us to make power stable. */
128 usleep_range(1000, 1200);
131 static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en)
133 u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
135 if (en)
136 val |= SPRD_EFUSE_VDD_EN;
137 else
138 val &= ~SPRD_EFUSE_VDD_EN;
140 writel(val, efuse->base + SPRD_EFUSE_ENABLE);
142 /* Open or close efuse power need wait 1000us to make power stable. */
143 usleep_range(1000, 1200);
146 static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en)
148 u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
150 if (en)
151 val |= SPRD_EFUSE_LOCK_WR_EN;
152 else
153 val &= ~SPRD_EFUSE_LOCK_WR_EN;
155 writel(val, efuse->base + SPRD_EFUSE_ENABLE);
158 static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en)
160 u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
162 if (en)
163 val |= SPRD_EFUSE_AUTO_CHECK_EN;
164 else
165 val &= ~SPRD_EFUSE_AUTO_CHECK_EN;
167 writel(val, efuse->base + SPRD_EFUSE_ENABLE);
170 static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en)
172 u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
174 if (en)
175 val |= SPRD_EFUSE_DOUBLE_EN;
176 else
177 val &= ~SPRD_EFUSE_DOUBLE_EN;
179 writel(val, efuse->base + SPRD_EFUSE_ENABLE);
182 static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en)
184 u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
186 if (en)
187 val |= SPRD_EFUSE_PROG_EN;
188 else
189 val &= ~SPRD_EFUSE_PROG_EN;
191 writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
194 static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub,
195 bool lock, u32 *data)
197 u32 status;
198 int ret = 0;
201 * We need set the correct magic number before writing the efuse to
202 * allow programming, and block other programming until we clear the
203 * magic number.
205 writel(SPRD_EFUSE_MAGIC_NUMBER,
206 efuse->base + SPRD_EFUSE_MAGIC_NUM);
209 * Power on the efuse, enable programme and enable double data
210 * if asked.
212 sprd_efuse_set_prog_power(efuse, true);
213 sprd_efuse_set_prog_en(efuse, true);
214 sprd_efuse_set_data_double(efuse, doub);
217 * Enable the auto-check function to validate if the programming is
218 * successful.
220 if (lock)
221 sprd_efuse_set_auto_check(efuse, true);
223 writel(*data, efuse->base + SPRD_EFUSE_MEM(blk));
225 /* Disable auto-check and data double after programming */
226 if (lock)
227 sprd_efuse_set_auto_check(efuse, false);
228 sprd_efuse_set_data_double(efuse, false);
231 * Check the efuse error status, if the programming is successful,
232 * we should lock this efuse block to avoid programming again.
234 status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
235 if (status) {
236 dev_err(efuse->dev,
237 "write error status %d of block %d\n", ret, blk);
239 writel(SPRD_EFUSE_ERR_CLR_MASK,
240 efuse->base + SPRD_EFUSE_ERR_CLR);
241 ret = -EBUSY;
242 } else if (lock) {
243 sprd_efuse_set_prog_lock(efuse, lock);
244 writel(0, efuse->base + SPRD_EFUSE_MEM(blk));
245 sprd_efuse_set_prog_lock(efuse, false);
248 sprd_efuse_set_prog_power(efuse, false);
249 writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM);
251 return ret;
254 static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val,
255 bool doub)
257 u32 status;
260 * Need power on the efuse before reading data from efuse, and will
261 * power off the efuse after reading process.
263 sprd_efuse_set_read_power(efuse, true);
265 /* Enable double data if asked */
266 sprd_efuse_set_data_double(efuse, doub);
268 /* Start to read data from efuse block */
269 *val = readl(efuse->base + SPRD_EFUSE_MEM(blk));
271 /* Disable double data */
272 sprd_efuse_set_data_double(efuse, false);
274 /* Power off the efuse */
275 sprd_efuse_set_read_power(efuse, false);
278 * Check the efuse error status and clear them if there are some
279 * errors occurred.
281 status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
282 if (status) {
283 dev_err(efuse->dev,
284 "read error status %d of block %d\n", status, blk);
286 writel(SPRD_EFUSE_ERR_CLR_MASK,
287 efuse->base + SPRD_EFUSE_ERR_CLR);
288 return -EBUSY;
291 return 0;
294 static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes)
296 struct sprd_efuse *efuse = context;
297 bool blk_double = efuse->data->blk_double;
298 u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset;
299 u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE;
300 u32 data;
301 int ret;
303 ret = sprd_efuse_lock(efuse);
304 if (ret)
305 return ret;
307 ret = clk_prepare_enable(efuse->clk);
308 if (ret)
309 goto unlock;
311 ret = sprd_efuse_raw_read(efuse, index, &data, blk_double);
312 if (!ret) {
313 data >>= blk_offset;
314 memcpy(val, &data, bytes);
317 clk_disable_unprepare(efuse->clk);
319 unlock:
320 sprd_efuse_unlock(efuse);
321 return ret;
324 static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes)
326 struct sprd_efuse *efuse = context;
327 bool blk_double = efuse->data->blk_double;
328 bool lock;
329 int ret;
331 ret = sprd_efuse_lock(efuse);
332 if (ret)
333 return ret;
335 ret = clk_prepare_enable(efuse->clk);
336 if (ret)
337 goto unlock;
340 * If the writing bytes are equal with the block width, which means the
341 * whole block will be programmed. For this case, we should not allow
342 * this block to be programmed again by locking this block.
344 * If the block was programmed partially, we should allow this block to
345 * be programmed again.
347 if (bytes < SPRD_EFUSE_BLOCK_WIDTH)
348 lock = false;
349 else
350 lock = true;
352 ret = sprd_efuse_raw_prog(efuse, offset, blk_double, lock, val);
354 clk_disable_unprepare(efuse->clk);
356 unlock:
357 sprd_efuse_unlock(efuse);
358 return ret;
361 static int sprd_efuse_probe(struct platform_device *pdev)
363 struct device_node *np = pdev->dev.of_node;
364 struct nvmem_device *nvmem;
365 struct nvmem_config econfig = { };
366 struct sprd_efuse *efuse;
367 const struct sprd_efuse_variant_data *pdata;
368 int ret;
370 pdata = of_device_get_match_data(&pdev->dev);
371 if (!pdata) {
372 dev_err(&pdev->dev, "No matching driver data found\n");
373 return -EINVAL;
376 efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL);
377 if (!efuse)
378 return -ENOMEM;
380 efuse->base = devm_platform_ioremap_resource(pdev, 0);
381 if (IS_ERR(efuse->base))
382 return PTR_ERR(efuse->base);
384 ret = of_hwspin_lock_get_id(np, 0);
385 if (ret < 0) {
386 dev_err(&pdev->dev, "failed to get hwlock id\n");
387 return ret;
390 efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret);
391 if (!efuse->hwlock) {
392 dev_err(&pdev->dev, "failed to request hwlock\n");
393 return -ENXIO;
396 efuse->clk = devm_clk_get(&pdev->dev, "enable");
397 if (IS_ERR(efuse->clk)) {
398 dev_err(&pdev->dev, "failed to get enable clock\n");
399 return PTR_ERR(efuse->clk);
402 mutex_init(&efuse->mutex);
403 efuse->dev = &pdev->dev;
404 efuse->data = pdata;
406 econfig.stride = 1;
407 econfig.word_size = 1;
408 econfig.read_only = false;
409 econfig.name = "sprd-efuse";
410 econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH;
411 econfig.reg_read = sprd_efuse_read;
412 econfig.reg_write = sprd_efuse_write;
413 econfig.priv = efuse;
414 econfig.dev = &pdev->dev;
415 nvmem = devm_nvmem_register(&pdev->dev, &econfig);
416 if (IS_ERR(nvmem)) {
417 dev_err(&pdev->dev, "failed to register nvmem\n");
418 return PTR_ERR(nvmem);
421 return 0;
424 static const struct of_device_id sprd_efuse_of_match[] = {
425 { .compatible = "sprd,ums312-efuse", .data = &ums312_data },
429 static struct platform_driver sprd_efuse_driver = {
430 .probe = sprd_efuse_probe,
431 .driver = {
432 .name = "sprd-efuse",
433 .of_match_table = sprd_efuse_of_match,
437 module_platform_driver(sprd_efuse_driver);
439 MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
440 MODULE_DESCRIPTION("Spreadtrum AP efuse driver");
441 MODULE_LICENSE("GPL v2");