Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / pwm / pwm-dwc.c
blobf6c98e0d57c209c549401e98c420011c909dd369
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DesignWare PWM Controller driver
5 * Copyright (C) 2018-2020 Intel Corporation
7 * Author: Felipe Balbi (Intel)
8 * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9 * Author: Raymond Tan <raymond.tan@intel.com>
11 * Limitations:
12 * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
13 * periods are one or more input clock periods long.
16 #include <linux/bitops.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
24 #define DWC_TIM_LD_CNT(n) ((n) * 0x14)
25 #define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
26 #define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
27 #define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
28 #define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
29 #define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
31 #define DWC_TIMERS_INT_STS 0xa0
32 #define DWC_TIMERS_EOI 0xa4
33 #define DWC_TIMERS_RAW_INT_STS 0xa8
34 #define DWC_TIMERS_COMP_VERSION 0xac
36 #define DWC_TIMERS_TOTAL 8
37 #define DWC_CLK_PERIOD_NS 10
39 /* Timer Control Register */
40 #define DWC_TIM_CTRL_EN BIT(0)
41 #define DWC_TIM_CTRL_MODE BIT(1)
42 #define DWC_TIM_CTRL_MODE_FREE (0 << 1)
43 #define DWC_TIM_CTRL_MODE_USER (1 << 1)
44 #define DWC_TIM_CTRL_INT_MASK BIT(2)
45 #define DWC_TIM_CTRL_PWM BIT(3)
47 struct dwc_pwm_ctx {
48 u32 cnt;
49 u32 cnt2;
50 u32 ctrl;
53 struct dwc_pwm {
54 struct pwm_chip chip;
55 void __iomem *base;
56 struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
58 #define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
60 static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
62 return readl(dwc->base + offset);
65 static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
67 writel(value, dwc->base + offset);
70 static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
72 u32 reg;
74 reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
76 if (enabled)
77 reg |= DWC_TIM_CTRL_EN;
78 else
79 reg &= ~DWC_TIM_CTRL_EN;
81 dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
84 static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
85 struct pwm_device *pwm,
86 const struct pwm_state *state)
88 u64 tmp;
89 u32 ctrl;
90 u32 high;
91 u32 low;
94 * Calculate width of low and high period in terms of input clock
95 * periods and check are the result within HW limits between 1 and
96 * 2^32 periods.
98 tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
99 if (tmp < 1 || tmp > (1ULL << 32))
100 return -ERANGE;
101 low = tmp - 1;
103 tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
104 DWC_CLK_PERIOD_NS);
105 if (tmp < 1 || tmp > (1ULL << 32))
106 return -ERANGE;
107 high = tmp - 1;
110 * Specification says timer usage flow is to disable timer, then
111 * program it followed by enable. It also says Load Count is loaded
112 * into timer after it is enabled - either after a disable or
113 * a reset. Based on measurements it happens also without disable
114 * whenever Load Count is updated. But follow the specification.
116 __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
119 * Write Load Count and Load Count 2 registers. Former defines the
120 * width of low period and latter the width of high period in terms
121 * multiple of input clock periods:
122 * Width = ((Count + 1) * input clock period).
124 dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
125 dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
128 * Set user-defined mode, timer reloads from Load Count registers
129 * when it counts down to 0.
130 * Set PWM mode, it makes output to toggle and width of low and high
131 * periods are set by Load Count registers.
133 ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
134 dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
137 * Enable timer. Output starts from low period.
139 __dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
141 return 0;
144 static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
145 const struct pwm_state *state)
147 struct dwc_pwm *dwc = to_dwc_pwm(chip);
149 if (state->polarity != PWM_POLARITY_INVERSED)
150 return -EINVAL;
152 if (state->enabled) {
153 if (!pwm->state.enabled)
154 pm_runtime_get_sync(chip->dev);
155 return __dwc_pwm_configure_timer(dwc, pwm, state);
156 } else {
157 if (pwm->state.enabled) {
158 __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
159 pm_runtime_put_sync(chip->dev);
163 return 0;
166 static void dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167 struct pwm_state *state)
169 struct dwc_pwm *dwc = to_dwc_pwm(chip);
170 u64 duty, period;
172 pm_runtime_get_sync(chip->dev);
174 state->enabled = !!(dwc_pwm_readl(dwc,
175 DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
177 duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
178 duty += 1;
179 duty *= DWC_CLK_PERIOD_NS;
180 state->duty_cycle = duty;
182 period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
183 period += 1;
184 period *= DWC_CLK_PERIOD_NS;
185 period += duty;
186 state->period = period;
188 state->polarity = PWM_POLARITY_INVERSED;
190 pm_runtime_put_sync(chip->dev);
193 static const struct pwm_ops dwc_pwm_ops = {
194 .apply = dwc_pwm_apply,
195 .get_state = dwc_pwm_get_state,
196 .owner = THIS_MODULE,
199 static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
201 struct device *dev = &pci->dev;
202 struct dwc_pwm *dwc;
203 int ret;
205 dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
206 if (!dwc)
207 return -ENOMEM;
209 ret = pcim_enable_device(pci);
210 if (ret) {
211 dev_err(&pci->dev,
212 "Failed to enable device (%pe)\n", ERR_PTR(ret));
213 return ret;
216 pci_set_master(pci);
218 ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
219 if (ret) {
220 dev_err(&pci->dev,
221 "Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
222 return ret;
225 dwc->base = pcim_iomap_table(pci)[0];
226 if (!dwc->base) {
227 dev_err(&pci->dev, "Base address missing\n");
228 return -ENOMEM;
231 pci_set_drvdata(pci, dwc);
233 dwc->chip.dev = dev;
234 dwc->chip.ops = &dwc_pwm_ops;
235 dwc->chip.npwm = DWC_TIMERS_TOTAL;
236 dwc->chip.base = -1;
238 ret = pwmchip_add(&dwc->chip);
239 if (ret)
240 return ret;
242 pm_runtime_put(dev);
243 pm_runtime_allow(dev);
245 return 0;
248 static void dwc_pwm_remove(struct pci_dev *pci)
250 struct dwc_pwm *dwc = pci_get_drvdata(pci);
252 pm_runtime_forbid(&pci->dev);
253 pm_runtime_get_noresume(&pci->dev);
255 pwmchip_remove(&dwc->chip);
258 #ifdef CONFIG_PM_SLEEP
259 static int dwc_pwm_suspend(struct device *dev)
261 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
262 struct dwc_pwm *dwc = pci_get_drvdata(pdev);
263 int i;
265 for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
266 if (dwc->chip.pwms[i].state.enabled) {
267 dev_err(dev, "PWM %u in use by consumer (%s)\n",
268 i, dwc->chip.pwms[i].label);
269 return -EBUSY;
271 dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
272 dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
273 dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
276 return 0;
279 static int dwc_pwm_resume(struct device *dev)
281 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
282 struct dwc_pwm *dwc = pci_get_drvdata(pdev);
283 int i;
285 for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
286 dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
287 dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
288 dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
291 return 0;
293 #endif
295 static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
297 static const struct pci_device_id dwc_pwm_id_table[] = {
298 { PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
299 { } /* Terminating Entry */
301 MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
303 static struct pci_driver dwc_pwm_driver = {
304 .name = "pwm-dwc",
305 .probe = dwc_pwm_probe,
306 .remove = dwc_pwm_remove,
307 .id_table = dwc_pwm_id_table,
308 .driver = {
309 .pm = &dwc_pwm_pm_ops,
313 module_pci_driver(dwc_pwm_driver);
315 MODULE_AUTHOR("Felipe Balbi (Intel)");
316 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
317 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
318 MODULE_DESCRIPTION("DesignWare PWM Controller");
319 MODULE_LICENSE("GPL");