1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2016
5 * Author: Gerald Baeza <gerald.baeza@st.com>
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 * pwm-atmel.c from Bo Shen
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK 0xFF
21 #define MAX_BREAKINPUT 2
23 struct stm32_breakinput
{
31 struct mutex lock
; /* protect pwm config/enable */
33 struct regmap
*regmap
;
35 bool have_complementary_output
;
36 struct stm32_breakinput breakinputs
[MAX_BREAKINPUT
];
37 unsigned int num_breakinputs
;
38 u32 capture
[4] ____cacheline_aligned
; /* DMA'able buffer */
41 static inline struct stm32_pwm
*to_stm32_pwm_dev(struct pwm_chip
*chip
)
43 return container_of(chip
, struct stm32_pwm
, chip
);
46 static u32
active_channels(struct stm32_pwm
*dev
)
50 regmap_read(dev
->regmap
, TIM_CCER
, &ccer
);
52 return ccer
& TIM_CCER_CCXE
;
55 static int write_ccrx(struct stm32_pwm
*dev
, int ch
, u32 value
)
59 return regmap_write(dev
->regmap
, TIM_CCR1
, value
);
61 return regmap_write(dev
->regmap
, TIM_CCR2
, value
);
63 return regmap_write(dev
->regmap
, TIM_CCR3
, value
);
65 return regmap_write(dev
->regmap
, TIM_CCR4
, value
);
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
76 * Capture using PWM input mode:
78 * TI[1, 2, 3 or 4]: ........._| |________|
85 * COUNTER: ______XXXXX . . . |_XXX
90 * CCR1/CCR3: tx..........t0...........t2
91 * CCR2/CCR4: tx..............t1.........
93 * DMA burst transfer: | |
95 * DMA buffer: { t0, tx } { t2, t1 }
98 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
106 * - Duty cycle = t1 - t0
108 static int stm32_pwm_raw_capture(struct stm32_pwm
*priv
, struct pwm_device
*pwm
,
109 unsigned long tmo_ms
, u32
*raw_prd
,
112 struct device
*parent
= priv
->chip
.dev
->parent
;
113 enum stm32_timers_dmas dma_id
;
117 /* Ensure registers have been updated, enable counter and capture */
118 regmap_update_bits(priv
->regmap
, TIM_EGR
, TIM_EGR_UG
, TIM_EGR_UG
);
119 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, TIM_CR1_CEN
);
121 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122 dma_id
= pwm
->hwpwm
< 2 ? STM32_TIMERS_DMA_CH1
: STM32_TIMERS_DMA_CH3
;
123 ccen
= pwm
->hwpwm
< 2 ? TIM_CCER_CC12E
: TIM_CCER_CC34E
;
124 ccr
= pwm
->hwpwm
< 2 ? TIM_CCR1
: TIM_CCR3
;
125 regmap_update_bits(priv
->regmap
, TIM_CCER
, ccen
, ccen
);
128 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131 * or { CCR3, CCR4 }, { CCR3, CCR4 }
133 ret
= stm32_timers_dma_burst_read(parent
, priv
->capture
, dma_id
, ccr
, 2,
138 /* Period: t2 - t0 (take care of counter overflow) */
139 if (priv
->capture
[0] <= priv
->capture
[2])
140 *raw_prd
= priv
->capture
[2] - priv
->capture
[0];
142 *raw_prd
= priv
->max_arr
- priv
->capture
[0] + priv
->capture
[2];
144 /* Duty cycle capture requires at least two capture units */
145 if (pwm
->chip
->npwm
< 2)
147 else if (priv
->capture
[0] <= priv
->capture
[3])
148 *raw_dty
= priv
->capture
[3] - priv
->capture
[0];
150 *raw_dty
= priv
->max_arr
- priv
->capture
[0] + priv
->capture
[3];
152 if (*raw_dty
> *raw_prd
) {
154 * Race beetween PWM input and DMA: it may happen
155 * falling edge triggers new capture on TI2/4 before DMA
156 * had a chance to read CCR2/4. It means capture[1]
157 * contains period + duty_cycle. So, subtract period.
159 *raw_dty
-= *raw_prd
;
163 regmap_update_bits(priv
->regmap
, TIM_CCER
, ccen
, 0);
164 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, 0);
169 static int stm32_pwm_capture(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
170 struct pwm_capture
*result
, unsigned long tmo_ms
)
172 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
173 unsigned long long prd
, div
, dty
;
175 unsigned int psc
= 0, icpsc
, scale
;
176 u32 raw_prd
= 0, raw_dty
= 0;
179 mutex_lock(&priv
->lock
);
181 if (active_channels(priv
)) {
186 ret
= clk_enable(priv
->clk
);
188 dev_err(priv
->chip
.dev
, "failed to enable counter clock\n");
192 rate
= clk_get_rate(priv
->clk
);
198 /* prescaler: fit timeout window provided by upper layer */
199 div
= (unsigned long long)rate
* (unsigned long long)tmo_ms
;
200 do_div(div
, MSEC_PER_SEC
);
202 while ((div
> priv
->max_arr
) && (psc
< MAX_TIM_PSC
)) {
205 do_div(div
, psc
+ 1);
207 regmap_write(priv
->regmap
, TIM_ARR
, priv
->max_arr
);
208 regmap_write(priv
->regmap
, TIM_PSC
, psc
);
210 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
211 regmap_update_bits(priv
->regmap
,
212 pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
,
213 TIM_CCMR_CC1S
| TIM_CCMR_CC2S
, pwm
->hwpwm
& 0x1 ?
214 TIM_CCMR_CC1S_TI2
| TIM_CCMR_CC2S_TI2
:
215 TIM_CCMR_CC1S_TI1
| TIM_CCMR_CC2S_TI1
);
217 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
218 regmap_update_bits(priv
->regmap
, TIM_CCER
, pwm
->hwpwm
< 2 ?
219 TIM_CCER_CC12P
: TIM_CCER_CC34P
, pwm
->hwpwm
< 2 ?
220 TIM_CCER_CC2P
: TIM_CCER_CC4P
);
222 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
, &raw_dty
);
227 * Got a capture. Try to improve accuracy at high rates:
228 * - decrease counter clock prescaler, scale up to max rate.
229 * - use input prescaler, capture once every /2 /4 or /8 edges.
232 u32 max_arr
= priv
->max_arr
- 0x1000; /* arbitrary margin */
234 scale
= max_arr
/ min(max_arr
, raw_prd
);
236 scale
= priv
->max_arr
; /* bellow resolution, use max scale */
239 if (psc
&& scale
> 1) {
240 /* 2nd measure with new scale */
242 regmap_write(priv
->regmap
, TIM_PSC
, psc
);
243 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
,
249 /* Compute intermediate period not to exceed timeout at low rates */
250 prd
= (unsigned long long)raw_prd
* (psc
+ 1) * NSEC_PER_SEC
;
253 for (icpsc
= 0; icpsc
< MAX_TIM_ICPSC
; icpsc
++) {
254 /* input prescaler: also keep arbitrary margin */
255 if (raw_prd
>= (priv
->max_arr
- 0x1000) >> (icpsc
+ 1))
257 if (prd
>= (tmo_ms
* NSEC_PER_MSEC
) >> (icpsc
+ 2))
264 /* Last chance to improve period accuracy, using input prescaler */
265 regmap_update_bits(priv
->regmap
,
266 pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
,
267 TIM_CCMR_IC1PSC
| TIM_CCMR_IC2PSC
,
268 FIELD_PREP(TIM_CCMR_IC1PSC
, icpsc
) |
269 FIELD_PREP(TIM_CCMR_IC2PSC
, icpsc
));
271 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
, &raw_dty
);
275 if (raw_dty
>= (raw_prd
>> icpsc
)) {
277 * We may fall here using input prescaler, when input
278 * capture starts on high side (before falling edge).
279 * Example with icpsc to capture on each 4 events:
281 * start 1st capture 2nd capture
283 * ___ _____ _____ _____ _____ ____
284 * TI1..4 |__| |__| |__| |__| |__|
286 * icpsc1/3: . 0 . 1 . 2 . 3 . 0
287 * icpsc2/4: 0 1 2 3 0
289 * CCR1/3 ......t0..............................t2
290 * CCR2/4 ..t1..............................t1'...
292 * Capture0: .<----------------------------->.
293 * Capture1: .<-------------------------->. .
295 * Period: .<------> . .
299 * - Period = Capture0 / icpsc
300 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
302 raw_dty
= (raw_prd
>> icpsc
) - (raw_prd
- raw_dty
);
306 prd
= (unsigned long long)raw_prd
* (psc
+ 1) * NSEC_PER_SEC
;
307 result
->period
= DIV_ROUND_UP_ULL(prd
, rate
<< icpsc
);
308 dty
= (unsigned long long)raw_dty
* (psc
+ 1) * NSEC_PER_SEC
;
309 result
->duty_cycle
= DIV_ROUND_UP_ULL(dty
, rate
);
311 regmap_write(priv
->regmap
, TIM_CCER
, 0);
312 regmap_write(priv
->regmap
, pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
, 0);
313 regmap_write(priv
->regmap
, TIM_PSC
, 0);
315 clk_disable(priv
->clk
);
317 mutex_unlock(&priv
->lock
);
322 static int stm32_pwm_config(struct stm32_pwm
*priv
, int ch
,
323 int duty_ns
, int period_ns
)
325 unsigned long long prd
, div
, dty
;
326 unsigned int prescaler
= 0;
327 u32 ccmr
, mask
, shift
;
329 /* Period and prescaler values depends on clock rate */
330 div
= (unsigned long long)clk_get_rate(priv
->clk
) * period_ns
;
332 do_div(div
, NSEC_PER_SEC
);
335 while (div
> priv
->max_arr
) {
338 do_div(div
, prescaler
+ 1);
343 if (prescaler
> MAX_TIM_PSC
)
347 * All channels share the same prescaler and counter so when two
348 * channels are active at the same time we can't change them
350 if (active_channels(priv
) & ~(1 << ch
* 4)) {
353 regmap_read(priv
->regmap
, TIM_PSC
, &psc
);
354 regmap_read(priv
->regmap
, TIM_ARR
, &arr
);
356 if ((psc
!= prescaler
) || (arr
!= prd
- 1))
360 regmap_write(priv
->regmap
, TIM_PSC
, prescaler
);
361 regmap_write(priv
->regmap
, TIM_ARR
, prd
- 1);
362 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_ARPE
, TIM_CR1_ARPE
);
364 /* Calculate the duty cycles */
366 do_div(dty
, period_ns
);
368 write_ccrx(priv
, ch
, dty
);
370 /* Configure output mode */
371 shift
= (ch
& 0x1) * CCMR_CHANNEL_SHIFT
;
372 ccmr
= (TIM_CCMR_PE
| TIM_CCMR_M1
) << shift
;
373 mask
= CCMR_CHANNEL_MASK
<< shift
;
376 regmap_update_bits(priv
->regmap
, TIM_CCMR1
, mask
, ccmr
);
378 regmap_update_bits(priv
->regmap
, TIM_CCMR2
, mask
, ccmr
);
380 regmap_update_bits(priv
->regmap
, TIM_BDTR
, TIM_BDTR_MOE
, TIM_BDTR_MOE
);
385 static int stm32_pwm_set_polarity(struct stm32_pwm
*priv
, int ch
,
386 enum pwm_polarity polarity
)
390 mask
= TIM_CCER_CC1P
<< (ch
* 4);
391 if (priv
->have_complementary_output
)
392 mask
|= TIM_CCER_CC1NP
<< (ch
* 4);
394 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
,
395 polarity
== PWM_POLARITY_NORMAL
? 0 : mask
);
400 static int stm32_pwm_enable(struct stm32_pwm
*priv
, int ch
)
405 ret
= clk_enable(priv
->clk
);
410 mask
= TIM_CCER_CC1E
<< (ch
* 4);
411 if (priv
->have_complementary_output
)
412 mask
|= TIM_CCER_CC1NE
<< (ch
* 4);
414 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
, mask
);
416 /* Make sure that registers are updated */
417 regmap_update_bits(priv
->regmap
, TIM_EGR
, TIM_EGR_UG
, TIM_EGR_UG
);
419 /* Enable controller */
420 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, TIM_CR1_CEN
);
425 static void stm32_pwm_disable(struct stm32_pwm
*priv
, int ch
)
429 /* Disable channel */
430 mask
= TIM_CCER_CC1E
<< (ch
* 4);
431 if (priv
->have_complementary_output
)
432 mask
|= TIM_CCER_CC1NE
<< (ch
* 4);
434 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
, 0);
436 /* When all channels are disabled, we can disable the controller */
437 if (!active_channels(priv
))
438 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, 0);
440 clk_disable(priv
->clk
);
443 static int stm32_pwm_apply(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
444 const struct pwm_state
*state
)
447 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
450 enabled
= pwm
->state
.enabled
;
452 if (enabled
&& !state
->enabled
) {
453 stm32_pwm_disable(priv
, pwm
->hwpwm
);
457 if (state
->polarity
!= pwm
->state
.polarity
)
458 stm32_pwm_set_polarity(priv
, pwm
->hwpwm
, state
->polarity
);
460 ret
= stm32_pwm_config(priv
, pwm
->hwpwm
,
461 state
->duty_cycle
, state
->period
);
465 if (!enabled
&& state
->enabled
)
466 ret
= stm32_pwm_enable(priv
, pwm
->hwpwm
);
471 static int stm32_pwm_apply_locked(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
472 const struct pwm_state
*state
)
474 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
477 /* protect common prescaler for all active channels */
478 mutex_lock(&priv
->lock
);
479 ret
= stm32_pwm_apply(chip
, pwm
, state
);
480 mutex_unlock(&priv
->lock
);
485 static const struct pwm_ops stm32pwm_ops
= {
486 .owner
= THIS_MODULE
,
487 .apply
= stm32_pwm_apply_locked
,
488 .capture
= IS_ENABLED(CONFIG_DMA_ENGINE
) ? stm32_pwm_capture
: NULL
,
491 static int stm32_pwm_set_breakinput(struct stm32_pwm
*priv
,
492 const struct stm32_breakinput
*bi
)
494 u32 shift
= TIM_BDTR_BKF_SHIFT(bi
->index
);
495 u32 bke
= TIM_BDTR_BKE(bi
->index
);
496 u32 bkp
= TIM_BDTR_BKP(bi
->index
);
497 u32 bkf
= TIM_BDTR_BKF(bi
->index
);
498 u32 mask
= bkf
| bkp
| bke
;
501 bdtr
= (bi
->filter
& TIM_BDTR_BKF_MASK
) << shift
| bke
;
506 regmap_update_bits(priv
->regmap
, TIM_BDTR
, mask
, bdtr
);
508 regmap_read(priv
->regmap
, TIM_BDTR
, &bdtr
);
510 return (bdtr
& bke
) ? 0 : -EINVAL
;
513 static int stm32_pwm_apply_breakinputs(struct stm32_pwm
*priv
)
518 for (i
= 0; i
< priv
->num_breakinputs
; i
++) {
519 ret
= stm32_pwm_set_breakinput(priv
, &priv
->breakinputs
[i
]);
527 static int stm32_pwm_probe_breakinputs(struct stm32_pwm
*priv
,
528 struct device_node
*np
)
530 int nb
, ret
, array_size
;
533 nb
= of_property_count_elems_of_size(np
, "st,breakinput",
534 sizeof(struct stm32_breakinput
));
537 * Because "st,breakinput" parameter is optional do not make probe
538 * failed if it doesn't exist.
543 if (nb
> MAX_BREAKINPUT
)
546 priv
->num_breakinputs
= nb
;
547 array_size
= nb
* sizeof(struct stm32_breakinput
) / sizeof(u32
);
548 ret
= of_property_read_u32_array(np
, "st,breakinput",
549 (u32
*)priv
->breakinputs
, array_size
);
553 for (i
= 0; i
< priv
->num_breakinputs
; i
++) {
554 if (priv
->breakinputs
[i
].index
> 1 ||
555 priv
->breakinputs
[i
].level
> 1 ||
556 priv
->breakinputs
[i
].filter
> 15)
560 return stm32_pwm_apply_breakinputs(priv
);
563 static void stm32_pwm_detect_complementary(struct stm32_pwm
*priv
)
568 * If complementary bit doesn't exist writing 1 will have no
569 * effect so we can detect it.
571 regmap_update_bits(priv
->regmap
,
572 TIM_CCER
, TIM_CCER_CC1NE
, TIM_CCER_CC1NE
);
573 regmap_read(priv
->regmap
, TIM_CCER
, &ccer
);
574 regmap_update_bits(priv
->regmap
, TIM_CCER
, TIM_CCER_CC1NE
, 0);
576 priv
->have_complementary_output
= (ccer
!= 0);
579 static int stm32_pwm_detect_channels(struct stm32_pwm
*priv
)
585 * If channels enable bits don't exist writing 1 will have no
586 * effect so we can detect and count them.
588 regmap_update_bits(priv
->regmap
,
589 TIM_CCER
, TIM_CCER_CCXE
, TIM_CCER_CCXE
);
590 regmap_read(priv
->regmap
, TIM_CCER
, &ccer
);
591 regmap_update_bits(priv
->regmap
, TIM_CCER
, TIM_CCER_CCXE
, 0);
593 if (ccer
& TIM_CCER_CC1E
)
596 if (ccer
& TIM_CCER_CC2E
)
599 if (ccer
& TIM_CCER_CC3E
)
602 if (ccer
& TIM_CCER_CC4E
)
608 static int stm32_pwm_probe(struct platform_device
*pdev
)
610 struct device
*dev
= &pdev
->dev
;
611 struct device_node
*np
= dev
->of_node
;
612 struct stm32_timers
*ddata
= dev_get_drvdata(pdev
->dev
.parent
);
613 struct stm32_pwm
*priv
;
616 priv
= devm_kzalloc(dev
, sizeof(*priv
), GFP_KERNEL
);
620 mutex_init(&priv
->lock
);
621 priv
->regmap
= ddata
->regmap
;
622 priv
->clk
= ddata
->clk
;
623 priv
->max_arr
= ddata
->max_arr
;
624 priv
->chip
.of_xlate
= of_pwm_xlate_with_flags
;
625 priv
->chip
.of_pwm_n_cells
= 3;
627 if (!priv
->regmap
|| !priv
->clk
)
630 ret
= stm32_pwm_probe_breakinputs(priv
, np
);
634 stm32_pwm_detect_complementary(priv
);
636 priv
->chip
.base
= -1;
637 priv
->chip
.dev
= dev
;
638 priv
->chip
.ops
= &stm32pwm_ops
;
639 priv
->chip
.npwm
= stm32_pwm_detect_channels(priv
);
641 ret
= pwmchip_add(&priv
->chip
);
645 platform_set_drvdata(pdev
, priv
);
650 static int stm32_pwm_remove(struct platform_device
*pdev
)
652 struct stm32_pwm
*priv
= platform_get_drvdata(pdev
);
655 for (i
= 0; i
< priv
->chip
.npwm
; i
++)
656 pwm_disable(&priv
->chip
.pwms
[i
]);
658 pwmchip_remove(&priv
->chip
);
663 static int __maybe_unused
stm32_pwm_suspend(struct device
*dev
)
665 struct stm32_pwm
*priv
= dev_get_drvdata(dev
);
669 /* Look for active channels */
670 ccer
= active_channels(priv
);
672 for (i
= 0; i
< priv
->chip
.npwm
; i
++) {
673 mask
= TIM_CCER_CC1E
<< (i
* 4);
675 dev_err(dev
, "PWM %u still in use by consumer %s\n",
676 i
, priv
->chip
.pwms
[i
].label
);
681 return pinctrl_pm_select_sleep_state(dev
);
684 static int __maybe_unused
stm32_pwm_resume(struct device
*dev
)
686 struct stm32_pwm
*priv
= dev_get_drvdata(dev
);
689 ret
= pinctrl_pm_select_default_state(dev
);
693 /* restore breakinput registers that may have been lost in low power */
694 return stm32_pwm_apply_breakinputs(priv
);
697 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops
, stm32_pwm_suspend
, stm32_pwm_resume
);
699 static const struct of_device_id stm32_pwm_of_match
[] = {
700 { .compatible
= "st,stm32-pwm", },
703 MODULE_DEVICE_TABLE(of
, stm32_pwm_of_match
);
705 static struct platform_driver stm32_pwm_driver
= {
706 .probe
= stm32_pwm_probe
,
707 .remove
= stm32_pwm_remove
,
710 .of_match_table
= stm32_pwm_of_match
,
711 .pm
= &stm32_pwm_pm_ops
,
714 module_platform_driver(stm32_pwm_driver
);
716 MODULE_ALIAS("platform:stm32-pwm");
717 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
718 MODULE_LICENSE("GPL v2");