Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / regulator / helpers.c
blobf42b394a0c46b733ef66599508846238494316d5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c -- Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 #include <linux/kernel.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
16 #include "internal.h"
18 /**
19 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21 * @rdev: regulator to operate on
23 * Regulators that use regmap for their register I/O can set the
24 * enable_reg and enable_mask fields in their descriptor and then use
25 * this as their is_enabled operation, saving some code.
27 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29 unsigned int val;
30 int ret;
32 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 if (ret != 0)
34 return ret;
36 val &= rdev->desc->enable_mask;
38 if (rdev->desc->enable_is_inverted) {
39 if (rdev->desc->enable_val)
40 return val != rdev->desc->enable_val;
41 return val == 0;
42 } else {
43 if (rdev->desc->enable_val)
44 return val == rdev->desc->enable_val;
45 return val != 0;
48 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50 /**
51 * regulator_enable_regmap - standard enable() for regmap users
53 * @rdev: regulator to operate on
55 * Regulators that use regmap for their register I/O can set the
56 * enable_reg and enable_mask fields in their descriptor and then use
57 * this as their enable() operation, saving some code.
59 int regulator_enable_regmap(struct regulator_dev *rdev)
61 unsigned int val;
63 if (rdev->desc->enable_is_inverted) {
64 val = rdev->desc->disable_val;
65 } else {
66 val = rdev->desc->enable_val;
67 if (!val)
68 val = rdev->desc->enable_mask;
71 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 rdev->desc->enable_mask, val);
74 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76 /**
77 * regulator_disable_regmap - standard disable() for regmap users
79 * @rdev: regulator to operate on
81 * Regulators that use regmap for their register I/O can set the
82 * enable_reg and enable_mask fields in their descriptor and then use
83 * this as their disable() operation, saving some code.
85 int regulator_disable_regmap(struct regulator_dev *rdev)
87 unsigned int val;
89 if (rdev->desc->enable_is_inverted) {
90 val = rdev->desc->enable_val;
91 if (!val)
92 val = rdev->desc->enable_mask;
93 } else {
94 val = rdev->desc->disable_val;
97 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 rdev->desc->enable_mask, val);
100 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 unsigned int rval)
105 int i;
107 if (!rdev->desc->linear_range_selectors)
108 return -EINVAL;
110 rval &= rdev->desc->vsel_range_mask;
112 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 if (rdev->desc->linear_range_selectors[i] == rval)
114 return i;
116 return -EINVAL;
120 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
122 * @rdev: regulator to operate on
124 * Regulators that use regmap for their register I/O and use pickable
125 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126 * fields in their descriptor and then use this as their get_voltage_vsel
127 * operation, saving some code.
129 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
131 unsigned int r_val;
132 int range;
133 unsigned int val;
134 int ret;
135 unsigned int voltages = 0;
136 const struct linear_range *r = rdev->desc->linear_ranges;
138 if (!r)
139 return -EINVAL;
141 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142 if (ret != 0)
143 return ret;
145 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146 if (ret != 0)
147 return ret;
149 val &= rdev->desc->vsel_mask;
150 val >>= ffs(rdev->desc->vsel_mask) - 1;
152 range = regulator_range_selector_to_index(rdev, r_val);
153 if (range < 0)
154 return -EINVAL;
156 voltages = linear_range_values_in_range_array(r, range);
158 return val + voltages;
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 unsigned int sel)
176 unsigned int range;
177 int ret, i;
178 unsigned int voltages_in_range = 0;
180 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 const struct linear_range *r;
183 r = &rdev->desc->linear_ranges[i];
184 voltages_in_range = linear_range_values_in_range(r);
186 if (sel < voltages_in_range)
187 break;
188 sel -= voltages_in_range;
191 if (i == rdev->desc->n_linear_ranges)
192 return -EINVAL;
194 sel <<= ffs(rdev->desc->vsel_mask) - 1;
195 sel += rdev->desc->linear_ranges[i].min_sel;
197 range = rdev->desc->linear_range_selectors[i];
199 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200 ret = regmap_update_bits(rdev->regmap,
201 rdev->desc->vsel_reg,
202 rdev->desc->vsel_range_mask |
203 rdev->desc->vsel_mask, sel | range);
204 } else {
205 ret = regmap_update_bits(rdev->regmap,
206 rdev->desc->vsel_range_reg,
207 rdev->desc->vsel_range_mask, range);
208 if (ret)
209 return ret;
211 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212 rdev->desc->vsel_mask, sel);
215 if (ret)
216 return ret;
218 if (rdev->desc->apply_bit)
219 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220 rdev->desc->apply_bit,
221 rdev->desc->apply_bit);
222 return ret;
224 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
227 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
229 * @rdev: regulator to operate on
231 * Regulators that use regmap for their register I/O can set the
232 * vsel_reg and vsel_mask fields in their descriptor and then use this
233 * as their get_voltage_vsel operation, saving some code.
235 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
237 unsigned int val;
238 int ret;
240 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241 if (ret != 0)
242 return ret;
244 val &= rdev->desc->vsel_mask;
245 val >>= ffs(rdev->desc->vsel_mask) - 1;
247 return val;
249 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
252 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
254 * @rdev: regulator to operate on
255 * @sel: Selector to set
257 * Regulators that use regmap for their register I/O can set the
258 * vsel_reg and vsel_mask fields in their descriptor and then use this
259 * as their set_voltage_vsel operation, saving some code.
261 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
263 int ret;
265 sel <<= ffs(rdev->desc->vsel_mask) - 1;
267 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268 rdev->desc->vsel_mask, sel);
269 if (ret)
270 return ret;
272 if (rdev->desc->apply_bit)
273 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274 rdev->desc->apply_bit,
275 rdev->desc->apply_bit);
276 return ret;
278 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
281 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
283 * @rdev: Regulator to operate on
284 * @min_uV: Lower bound for voltage
285 * @max_uV: Upper bound for voltage
287 * Drivers implementing set_voltage_sel() and list_voltage() can use
288 * this as their map_voltage() operation. It will find a suitable
289 * voltage by calling list_voltage() until it gets something in bounds
290 * for the requested voltages.
292 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293 int min_uV, int max_uV)
295 int best_val = INT_MAX;
296 int selector = 0;
297 int i, ret;
299 /* Find the smallest voltage that falls within the specified
300 * range.
302 for (i = 0; i < rdev->desc->n_voltages; i++) {
303 ret = rdev->desc->ops->list_voltage(rdev, i);
304 if (ret < 0)
305 continue;
307 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308 best_val = ret;
309 selector = i;
313 if (best_val != INT_MAX)
314 return selector;
315 else
316 return -EINVAL;
318 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
321 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
323 * @rdev: Regulator to operate on
324 * @min_uV: Lower bound for voltage
325 * @max_uV: Upper bound for voltage
327 * Drivers that have ascendant voltage list can use this as their
328 * map_voltage() operation.
330 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331 int min_uV, int max_uV)
333 int i, ret;
335 for (i = 0; i < rdev->desc->n_voltages; i++) {
336 ret = rdev->desc->ops->list_voltage(rdev, i);
337 if (ret < 0)
338 continue;
340 if (ret > max_uV)
341 break;
343 if (ret >= min_uV && ret <= max_uV)
344 return i;
347 return -EINVAL;
349 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
352 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
354 * @rdev: Regulator to operate on
355 * @min_uV: Lower bound for voltage
356 * @max_uV: Upper bound for voltage
358 * Drivers providing min_uV and uV_step in their regulator_desc can
359 * use this as their map_voltage() operation.
361 int regulator_map_voltage_linear(struct regulator_dev *rdev,
362 int min_uV, int max_uV)
364 int ret, voltage;
366 /* Allow uV_step to be 0 for fixed voltage */
367 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369 return 0;
370 else
371 return -EINVAL;
374 if (!rdev->desc->uV_step) {
375 BUG_ON(!rdev->desc->uV_step);
376 return -EINVAL;
379 if (min_uV < rdev->desc->min_uV)
380 min_uV = rdev->desc->min_uV;
382 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383 if (ret < 0)
384 return ret;
386 ret += rdev->desc->linear_min_sel;
388 /* Map back into a voltage to verify we're still in bounds */
389 voltage = rdev->desc->ops->list_voltage(rdev, ret);
390 if (voltage < min_uV || voltage > max_uV)
391 return -EINVAL;
393 return ret;
395 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
398 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
400 * @rdev: Regulator to operate on
401 * @min_uV: Lower bound for voltage
402 * @max_uV: Upper bound for voltage
404 * Drivers providing linear_ranges in their descriptor can use this as
405 * their map_voltage() callback.
407 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408 int min_uV, int max_uV)
410 const struct linear_range *range;
411 int ret = -EINVAL;
412 unsigned int sel;
413 bool found;
414 int voltage, i;
416 if (!rdev->desc->n_linear_ranges) {
417 BUG_ON(!rdev->desc->n_linear_ranges);
418 return -EINVAL;
421 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 range = &rdev->desc->linear_ranges[i];
424 ret = linear_range_get_selector_high(range, min_uV, &sel,
425 &found);
426 if (ret)
427 continue;
428 ret = sel;
431 * Map back into a voltage to verify we're still in bounds.
432 * If we are not, then continue checking rest of the ranges.
434 voltage = rdev->desc->ops->list_voltage(rdev, sel);
435 if (voltage >= min_uV && voltage <= max_uV)
436 break;
439 if (i == rdev->desc->n_linear_ranges)
440 return -EINVAL;
442 return ret;
444 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
447 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
449 * @rdev: Regulator to operate on
450 * @min_uV: Lower bound for voltage
451 * @max_uV: Upper bound for voltage
453 * Drivers providing pickable linear_ranges in their descriptor can use
454 * this as their map_voltage() callback.
456 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457 int min_uV, int max_uV)
459 const struct linear_range *range;
460 int ret = -EINVAL;
461 int voltage, i;
462 unsigned int selector = 0;
464 if (!rdev->desc->n_linear_ranges) {
465 BUG_ON(!rdev->desc->n_linear_ranges);
466 return -EINVAL;
469 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470 int linear_max_uV;
471 bool found;
472 unsigned int sel;
474 range = &rdev->desc->linear_ranges[i];
475 linear_max_uV = linear_range_get_max_value(range);
477 if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478 selector += linear_range_values_in_range(range);
479 continue;
482 ret = linear_range_get_selector_high(range, min_uV, &sel,
483 &found);
484 if (ret) {
485 selector += linear_range_values_in_range(range);
486 continue;
489 ret = selector + sel - range->min_sel;
491 voltage = rdev->desc->ops->list_voltage(rdev, ret);
494 * Map back into a voltage to verify we're still in bounds.
495 * We may have overlapping voltage ranges. Hence we don't
496 * exit but retry until we have checked all ranges.
498 if (voltage < min_uV || voltage > max_uV)
499 selector += linear_range_values_in_range(range);
500 else
501 break;
504 if (i == rdev->desc->n_linear_ranges)
505 return -EINVAL;
507 return ret;
509 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
512 * regulator_list_voltage_linear - List voltages with simple calculation
514 * @rdev: Regulator device
515 * @selector: Selector to convert into a voltage
517 * Regulators with a simple linear mapping between voltages and
518 * selectors can set min_uV and uV_step in the regulator descriptor
519 * and then use this function as their list_voltage() operation,
521 int regulator_list_voltage_linear(struct regulator_dev *rdev,
522 unsigned int selector)
524 if (selector >= rdev->desc->n_voltages)
525 return -EINVAL;
526 if (selector < rdev->desc->linear_min_sel)
527 return 0;
529 selector -= rdev->desc->linear_min_sel;
531 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
533 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
536 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
538 * @rdev: Regulator device
539 * @selector: Selector to convert into a voltage
541 * list_voltage() operation, intended to be used by drivers utilizing pickable
542 * ranges helpers.
544 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
545 unsigned int selector)
547 const struct linear_range *range;
548 int i;
549 unsigned int all_sels = 0;
551 if (!rdev->desc->n_linear_ranges) {
552 BUG_ON(!rdev->desc->n_linear_ranges);
553 return -EINVAL;
556 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
557 unsigned int sel_indexes;
559 range = &rdev->desc->linear_ranges[i];
561 sel_indexes = linear_range_values_in_range(range) - 1;
563 if (all_sels + sel_indexes >= selector) {
564 selector -= all_sels;
566 * As we see here, pickable ranges work only as
567 * long as the first selector for each pickable
568 * range is 0, and the each subsequent range for
569 * this 'pick' follow immediately at next unused
570 * selector (Eg. there is no gaps between ranges).
571 * I think this is fine but it probably should be
572 * documented. OTOH, whole pickable range stuff
573 * might benefit from some documentation
575 return range->min + (range->step * selector);
578 all_sels += (sel_indexes + 1);
581 return -EINVAL;
583 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
586 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
588 * @desc: Regulator desc for regulator which volatges are to be listed
589 * @selector: Selector to convert into a voltage
591 * Regulators with a series of simple linear mappings between voltages
592 * and selectors who have set linear_ranges in the regulator descriptor
593 * can use this function prior regulator registration to list voltages.
594 * This is useful when voltages need to be listed during device-tree
595 * parsing.
597 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
598 unsigned int selector)
600 unsigned int val;
601 int ret;
603 BUG_ON(!desc->n_linear_ranges);
605 ret = linear_range_get_value_array(desc->linear_ranges,
606 desc->n_linear_ranges, selector,
607 &val);
608 if (ret)
609 return ret;
611 return val;
613 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
616 * regulator_list_voltage_linear_range - List voltages for linear ranges
618 * @rdev: Regulator device
619 * @selector: Selector to convert into a voltage
621 * Regulators with a series of simple linear mappings between voltages
622 * and selectors can set linear_ranges in the regulator descriptor and
623 * then use this function as their list_voltage() operation,
625 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
626 unsigned int selector)
628 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
630 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
633 * regulator_list_voltage_table - List voltages with table based mapping
635 * @rdev: Regulator device
636 * @selector: Selector to convert into a voltage
638 * Regulators with table based mapping between voltages and
639 * selectors can set volt_table in the regulator descriptor
640 * and then use this function as their list_voltage() operation.
642 int regulator_list_voltage_table(struct regulator_dev *rdev,
643 unsigned int selector)
645 if (!rdev->desc->volt_table) {
646 BUG_ON(!rdev->desc->volt_table);
647 return -EINVAL;
650 if (selector >= rdev->desc->n_voltages)
651 return -EINVAL;
652 if (selector < rdev->desc->linear_min_sel)
653 return 0;
655 return rdev->desc->volt_table[selector];
657 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
660 * regulator_set_bypass_regmap - Default set_bypass() using regmap
662 * @rdev: device to operate on.
663 * @enable: state to set.
665 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
667 unsigned int val;
669 if (enable) {
670 val = rdev->desc->bypass_val_on;
671 if (!val)
672 val = rdev->desc->bypass_mask;
673 } else {
674 val = rdev->desc->bypass_val_off;
677 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
678 rdev->desc->bypass_mask, val);
680 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
683 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
685 * @rdev: device to operate on.
687 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
689 unsigned int val;
691 val = rdev->desc->soft_start_val_on;
692 if (!val)
693 val = rdev->desc->soft_start_mask;
695 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
696 rdev->desc->soft_start_mask, val);
698 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
701 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
703 * @rdev: device to operate on.
705 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
707 unsigned int val;
709 val = rdev->desc->pull_down_val_on;
710 if (!val)
711 val = rdev->desc->pull_down_mask;
713 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
714 rdev->desc->pull_down_mask, val);
716 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
719 * regulator_get_bypass_regmap - Default get_bypass() using regmap
721 * @rdev: device to operate on.
722 * @enable: current state.
724 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
726 unsigned int val;
727 unsigned int val_on = rdev->desc->bypass_val_on;
728 int ret;
730 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
731 if (ret != 0)
732 return ret;
734 if (!val_on)
735 val_on = rdev->desc->bypass_mask;
737 *enable = (val & rdev->desc->bypass_mask) == val_on;
739 return 0;
741 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
744 * regulator_set_active_discharge_regmap - Default set_active_discharge()
745 * using regmap
747 * @rdev: device to operate on.
748 * @enable: state to set, 0 to disable and 1 to enable.
750 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
751 bool enable)
753 unsigned int val;
755 if (enable)
756 val = rdev->desc->active_discharge_on;
757 else
758 val = rdev->desc->active_discharge_off;
760 return regmap_update_bits(rdev->regmap,
761 rdev->desc->active_discharge_reg,
762 rdev->desc->active_discharge_mask, val);
764 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
767 * regulator_set_current_limit_regmap - set_current_limit for regmap users
769 * @rdev: regulator to operate on
770 * @min_uA: Lower bound for current limit
771 * @max_uA: Upper bound for current limit
773 * Regulators that use regmap for their register I/O can set curr_table,
774 * csel_reg and csel_mask fields in their descriptor and then use this
775 * as their set_current_limit operation, saving some code.
777 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
778 int min_uA, int max_uA)
780 unsigned int n_currents = rdev->desc->n_current_limits;
781 int i, sel = -1;
783 if (n_currents == 0)
784 return -EINVAL;
786 if (rdev->desc->curr_table) {
787 const unsigned int *curr_table = rdev->desc->curr_table;
788 bool ascend = curr_table[n_currents - 1] > curr_table[0];
790 /* search for closest to maximum */
791 if (ascend) {
792 for (i = n_currents - 1; i >= 0; i--) {
793 if (min_uA <= curr_table[i] &&
794 curr_table[i] <= max_uA) {
795 sel = i;
796 break;
799 } else {
800 for (i = 0; i < n_currents; i++) {
801 if (min_uA <= curr_table[i] &&
802 curr_table[i] <= max_uA) {
803 sel = i;
804 break;
810 if (sel < 0)
811 return -EINVAL;
813 sel <<= ffs(rdev->desc->csel_mask) - 1;
815 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
816 rdev->desc->csel_mask, sel);
818 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
821 * regulator_get_current_limit_regmap - get_current_limit for regmap users
823 * @rdev: regulator to operate on
825 * Regulators that use regmap for their register I/O can set the
826 * csel_reg and csel_mask fields in their descriptor and then use this
827 * as their get_current_limit operation, saving some code.
829 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
831 unsigned int val;
832 int ret;
834 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
835 if (ret != 0)
836 return ret;
838 val &= rdev->desc->csel_mask;
839 val >>= ffs(rdev->desc->csel_mask) - 1;
841 if (rdev->desc->curr_table) {
842 if (val >= rdev->desc->n_current_limits)
843 return -EINVAL;
845 return rdev->desc->curr_table[val];
848 return -EINVAL;
850 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
853 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
854 * of regulator_bulk_data structs
856 * @consumers: array of regulator_bulk_data entries to initialize
857 * @supply_names: array of supply name strings
858 * @num_supplies: number of supply names to initialize
860 * Note: the 'consumers' array must be the size of 'num_supplies'.
862 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
863 const char *const *supply_names,
864 unsigned int num_supplies)
866 unsigned int i;
868 for (i = 0; i < num_supplies; i++)
869 consumers[i].supply = supply_names[i];
871 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
874 * regulator_is_equal - test whether two regulators are the same
876 * @reg1: first regulator to operate on
877 * @reg2: second regulator to operate on
879 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
881 return reg1->rdev == reg2->rdev;
883 EXPORT_SYMBOL_GPL(regulator_is_equal);