Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / remoteproc / ti_k3_r5_remoteproc.c
blob62b5a4c294562a6b365bda60e2467040ff677aa1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI K3 R5F (MCU) Remote Processor driver
5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/omap-mailbox.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/remoteproc.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
25 #include "omap_remoteproc.h"
26 #include "remoteproc_internal.h"
27 #include "ti_sci_proc.h"
29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
30 #define K3_R5_TCM_DEV_ADDR 0x41010000
32 /* R5 TI-SCI Processor Configuration Flags */
33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
41 /* Available from J7200 SoCs onwards */
42 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44 /* R5 TI-SCI Processor Control Flags */
45 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
47 /* R5 TI-SCI Processor Status Flags */
48 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
49 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
50 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
51 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
53 /**
54 * struct k3_r5_mem - internal memory structure
55 * @cpu_addr: MPU virtual address of the memory region
56 * @bus_addr: Bus address used to access the memory region
57 * @dev_addr: Device address from remoteproc view
58 * @size: Size of the memory region
60 struct k3_r5_mem {
61 void __iomem *cpu_addr;
62 phys_addr_t bus_addr;
63 u32 dev_addr;
64 size_t size;
67 enum cluster_mode {
68 CLUSTER_MODE_SPLIT = 0,
69 CLUSTER_MODE_LOCKSTEP,
72 /**
73 * struct k3_r5_soc_data - match data to handle SoC variations
74 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
75 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
77 struct k3_r5_soc_data {
78 bool tcm_is_double;
79 bool tcm_ecc_autoinit;
82 /**
83 * struct k3_r5_cluster - K3 R5F Cluster structure
84 * @dev: cached device pointer
85 * @mode: Mode to configure the Cluster - Split or LockStep
86 * @cores: list of R5 cores within the cluster
87 * @soc_data: SoC-specific feature data for a R5FSS
89 struct k3_r5_cluster {
90 struct device *dev;
91 enum cluster_mode mode;
92 struct list_head cores;
93 const struct k3_r5_soc_data *soc_data;
96 /**
97 * struct k3_r5_core - K3 R5 core structure
98 * @elem: linked list item
99 * @dev: cached device pointer
100 * @rproc: rproc handle representing this core
101 * @mem: internal memory regions data
102 * @sram: on-chip SRAM memory regions data
103 * @num_mems: number of internal memory regions
104 * @num_sram: number of on-chip SRAM memory regions
105 * @reset: reset control handle
106 * @tsp: TI-SCI processor control handle
107 * @ti_sci: TI-SCI handle
108 * @ti_sci_id: TI-SCI device identifier
109 * @atcm_enable: flag to control ATCM enablement
110 * @btcm_enable: flag to control BTCM enablement
111 * @loczrama: flag to dictate which TCM is at device address 0x0
113 struct k3_r5_core {
114 struct list_head elem;
115 struct device *dev;
116 struct rproc *rproc;
117 struct k3_r5_mem *mem;
118 struct k3_r5_mem *sram;
119 int num_mems;
120 int num_sram;
121 struct reset_control *reset;
122 struct ti_sci_proc *tsp;
123 const struct ti_sci_handle *ti_sci;
124 u32 ti_sci_id;
125 u32 atcm_enable;
126 u32 btcm_enable;
127 u32 loczrama;
131 * struct k3_r5_rproc - K3 remote processor state
132 * @dev: cached device pointer
133 * @cluster: cached pointer to parent cluster structure
134 * @mbox: mailbox channel handle
135 * @client: mailbox client to request the mailbox channel
136 * @rproc: rproc handle
137 * @core: cached pointer to r5 core structure being used
138 * @rmem: reserved memory regions data
139 * @num_rmems: number of reserved memory regions
141 struct k3_r5_rproc {
142 struct device *dev;
143 struct k3_r5_cluster *cluster;
144 struct mbox_chan *mbox;
145 struct mbox_client client;
146 struct rproc *rproc;
147 struct k3_r5_core *core;
148 struct k3_r5_mem *rmem;
149 int num_rmems;
153 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
154 * @client: mailbox client pointer used for requesting the mailbox channel
155 * @data: mailbox payload
157 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
158 * message is received. Usually, the mailbox payload simply contains
159 * the index of the virtqueue that is kicked by the remote processor,
160 * and we let remoteproc core handle it.
162 * In addition to virtqueue indices, we also have some out-of-band values
163 * that indicate different events. Those values are deliberately very
164 * large so they don't coincide with virtqueue indices.
166 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
168 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
169 client);
170 struct device *dev = kproc->rproc->dev.parent;
171 const char *name = kproc->rproc->name;
172 u32 msg = omap_mbox_message(data);
174 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
176 switch (msg) {
177 case RP_MBOX_CRASH:
179 * remoteproc detected an exception, but error recovery is not
180 * supported. So, just log this for now
182 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
183 break;
184 case RP_MBOX_ECHO_REPLY:
185 dev_info(dev, "received echo reply from %s\n", name);
186 break;
187 default:
188 /* silently handle all other valid messages */
189 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
190 return;
191 if (msg > kproc->rproc->max_notifyid) {
192 dev_dbg(dev, "dropping unknown message 0x%x", msg);
193 return;
195 /* msg contains the index of the triggered vring */
196 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
197 dev_dbg(dev, "no message was found in vqid %d\n", msg);
201 /* kick a virtqueue */
202 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
204 struct k3_r5_rproc *kproc = rproc->priv;
205 struct device *dev = rproc->dev.parent;
206 mbox_msg_t msg = (mbox_msg_t)vqid;
207 int ret;
209 /* send the index of the triggered virtqueue in the mailbox payload */
210 ret = mbox_send_message(kproc->mbox, (void *)msg);
211 if (ret < 0)
212 dev_err(dev, "failed to send mailbox message, status = %d\n",
213 ret);
216 static int k3_r5_split_reset(struct k3_r5_core *core)
218 int ret;
220 ret = reset_control_assert(core->reset);
221 if (ret) {
222 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
223 ret);
224 return ret;
227 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
228 core->ti_sci_id);
229 if (ret) {
230 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
231 ret);
232 if (reset_control_deassert(core->reset))
233 dev_warn(core->dev, "local-reset deassert back failed\n");
236 return ret;
239 static int k3_r5_split_release(struct k3_r5_core *core)
241 int ret;
243 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
244 core->ti_sci_id);
245 if (ret) {
246 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
247 ret);
248 return ret;
251 ret = reset_control_deassert(core->reset);
252 if (ret) {
253 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
254 ret);
255 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
256 core->ti_sci_id))
257 dev_warn(core->dev, "module-reset assert back failed\n");
260 return ret;
263 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
265 struct k3_r5_core *core;
266 int ret;
268 /* assert local reset on all applicable cores */
269 list_for_each_entry(core, &cluster->cores, elem) {
270 ret = reset_control_assert(core->reset);
271 if (ret) {
272 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
273 ret);
274 core = list_prev_entry(core, elem);
275 goto unroll_local_reset;
279 /* disable PSC modules on all applicable cores */
280 list_for_each_entry(core, &cluster->cores, elem) {
281 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
282 core->ti_sci_id);
283 if (ret) {
284 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
285 ret);
286 goto unroll_module_reset;
290 return 0;
292 unroll_module_reset:
293 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
294 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
295 core->ti_sci_id))
296 dev_warn(core->dev, "module-reset assert back failed\n");
298 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
299 unroll_local_reset:
300 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
301 if (reset_control_deassert(core->reset))
302 dev_warn(core->dev, "local-reset deassert back failed\n");
305 return ret;
308 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
310 struct k3_r5_core *core;
311 int ret;
313 /* enable PSC modules on all applicable cores */
314 list_for_each_entry_reverse(core, &cluster->cores, elem) {
315 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
316 core->ti_sci_id);
317 if (ret) {
318 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
319 ret);
320 core = list_next_entry(core, elem);
321 goto unroll_module_reset;
325 /* deassert local reset on all applicable cores */
326 list_for_each_entry_reverse(core, &cluster->cores, elem) {
327 ret = reset_control_deassert(core->reset);
328 if (ret) {
329 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
330 ret);
331 goto unroll_local_reset;
335 return 0;
337 unroll_local_reset:
338 list_for_each_entry_continue(core, &cluster->cores, elem) {
339 if (reset_control_assert(core->reset))
340 dev_warn(core->dev, "local-reset assert back failed\n");
342 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
343 unroll_module_reset:
344 list_for_each_entry_from(core, &cluster->cores, elem) {
345 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
346 core->ti_sci_id))
347 dev_warn(core->dev, "module-reset assert back failed\n");
350 return ret;
353 static inline int k3_r5_core_halt(struct k3_r5_core *core)
355 return ti_sci_proc_set_control(core->tsp,
356 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
359 static inline int k3_r5_core_run(struct k3_r5_core *core)
361 return ti_sci_proc_set_control(core->tsp,
362 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
366 * The R5F cores have controls for both a reset and a halt/run. The code
367 * execution from DDR requires the initial boot-strapping code to be run
368 * from the internal TCMs. This function is used to release the resets on
369 * applicable cores to allow loading into the TCMs. The .prepare() ops is
370 * invoked by remoteproc core before any firmware loading, and is followed
371 * by the .start() ops after loading to actually let the R5 cores run.
373 static int k3_r5_rproc_prepare(struct rproc *rproc)
375 struct k3_r5_rproc *kproc = rproc->priv;
376 struct k3_r5_cluster *cluster = kproc->cluster;
377 struct k3_r5_core *core = kproc->core;
378 struct device *dev = kproc->dev;
379 u32 ctrl = 0, cfg = 0, stat = 0;
380 u64 boot_vec = 0;
381 bool mem_init_dis;
382 int ret;
384 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
385 if (ret < 0)
386 return ret;
387 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
389 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
390 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
391 if (ret) {
392 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
393 ret);
394 return ret;
398 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
399 * of TCMs, so there is no need to perform the s/w memzero. This bit is
400 * configurable through System Firmware, the default value does perform
401 * auto-init, but account for it in case it is disabled
403 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
404 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
405 return 0;
409 * Zero out both TCMs unconditionally (access from v8 Arm core is not
410 * affected by ATCM & BTCM enable configuration values) so that ECC
411 * can be effective on all TCM addresses.
413 dev_dbg(dev, "zeroing out ATCM memory\n");
414 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
416 dev_dbg(dev, "zeroing out BTCM memory\n");
417 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
419 return 0;
423 * This function implements the .unprepare() ops and performs the complimentary
424 * operations to that of the .prepare() ops. The function is used to assert the
425 * resets on all applicable cores for the rproc device (depending on LockStep
426 * or Split mode). This completes the second portion of powering down the R5F
427 * cores. The cores themselves are only halted in the .stop() ops, and the
428 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
429 * stopped.
431 static int k3_r5_rproc_unprepare(struct rproc *rproc)
433 struct k3_r5_rproc *kproc = rproc->priv;
434 struct k3_r5_cluster *cluster = kproc->cluster;
435 struct k3_r5_core *core = kproc->core;
436 struct device *dev = kproc->dev;
437 int ret;
439 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
440 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
441 if (ret)
442 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
444 return ret;
448 * The R5F start sequence includes two different operations
449 * 1. Configure the boot vector for R5F core(s)
450 * 2. Unhalt/Run the R5F core(s)
452 * The sequence is different between LockStep and Split modes. The LockStep
453 * mode requires the boot vector to be configured only for Core0, and then
454 * unhalt both the cores to start the execution - Core1 needs to be unhalted
455 * first followed by Core0. The Split-mode requires that Core0 to be maintained
456 * always in a higher power state that Core1 (implying Core1 needs to be started
457 * always only after Core0 is started).
459 static int k3_r5_rproc_start(struct rproc *rproc)
461 struct k3_r5_rproc *kproc = rproc->priv;
462 struct k3_r5_cluster *cluster = kproc->cluster;
463 struct mbox_client *client = &kproc->client;
464 struct device *dev = kproc->dev;
465 struct k3_r5_core *core;
466 u32 boot_addr;
467 int ret;
469 client->dev = dev;
470 client->tx_done = NULL;
471 client->rx_callback = k3_r5_rproc_mbox_callback;
472 client->tx_block = false;
473 client->knows_txdone = false;
475 kproc->mbox = mbox_request_channel(client, 0);
476 if (IS_ERR(kproc->mbox)) {
477 ret = -EBUSY;
478 dev_err(dev, "mbox_request_channel failed: %ld\n",
479 PTR_ERR(kproc->mbox));
480 return ret;
484 * Ping the remote processor, this is only for sanity-sake for now;
485 * there is no functional effect whatsoever.
487 * Note that the reply will _not_ arrive immediately: this message
488 * will wait in the mailbox fifo until the remote processor is booted.
490 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
491 if (ret < 0) {
492 dev_err(dev, "mbox_send_message failed: %d\n", ret);
493 goto put_mbox;
496 boot_addr = rproc->bootaddr;
497 /* TODO: add boot_addr sanity checking */
498 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
500 /* boot vector need not be programmed for Core1 in LockStep mode */
501 core = kproc->core;
502 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
503 if (ret)
504 goto put_mbox;
506 /* unhalt/run all applicable cores */
507 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
508 list_for_each_entry_reverse(core, &cluster->cores, elem) {
509 ret = k3_r5_core_run(core);
510 if (ret)
511 goto unroll_core_run;
513 } else {
514 ret = k3_r5_core_run(core);
515 if (ret)
516 goto put_mbox;
519 return 0;
521 unroll_core_run:
522 list_for_each_entry_continue(core, &cluster->cores, elem) {
523 if (k3_r5_core_halt(core))
524 dev_warn(core->dev, "core halt back failed\n");
526 put_mbox:
527 mbox_free_channel(kproc->mbox);
528 return ret;
532 * The R5F stop function includes the following operations
533 * 1. Halt R5F core(s)
535 * The sequence is different between LockStep and Split modes, and the order
536 * of cores the operations are performed are also in general reverse to that
537 * of the start function. The LockStep mode requires each operation to be
538 * performed first on Core0 followed by Core1. The Split-mode requires that
539 * Core0 to be maintained always in a higher power state that Core1 (implying
540 * Core1 needs to be stopped first before Core0).
542 * Note that the R5F halt operation in general is not effective when the R5F
543 * core is running, but is needed to make sure the core won't run after
544 * deasserting the reset the subsequent time. The asserting of reset can
545 * be done here, but is preferred to be done in the .unprepare() ops - this
546 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
547 * and .unprepare() ops, and also balances them well between sysfs 'state'
548 * flow and device bind/unbind or module removal.
550 static int k3_r5_rproc_stop(struct rproc *rproc)
552 struct k3_r5_rproc *kproc = rproc->priv;
553 struct k3_r5_cluster *cluster = kproc->cluster;
554 struct k3_r5_core *core = kproc->core;
555 int ret;
557 /* halt all applicable cores */
558 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
559 list_for_each_entry(core, &cluster->cores, elem) {
560 ret = k3_r5_core_halt(core);
561 if (ret) {
562 core = list_prev_entry(core, elem);
563 goto unroll_core_halt;
566 } else {
567 ret = k3_r5_core_halt(core);
568 if (ret)
569 goto out;
572 mbox_free_channel(kproc->mbox);
574 return 0;
576 unroll_core_halt:
577 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
578 if (k3_r5_core_run(core))
579 dev_warn(core->dev, "core run back failed\n");
581 out:
582 return ret;
586 * Internal Memory translation helper
588 * Custom function implementing the rproc .da_to_va ops to provide address
589 * translation (device address to kernel virtual address) for internal RAMs
590 * present in a DSP or IPU device). The translated addresses can be used
591 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
593 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
595 struct k3_r5_rproc *kproc = rproc->priv;
596 struct k3_r5_core *core = kproc->core;
597 void __iomem *va = NULL;
598 phys_addr_t bus_addr;
599 u32 dev_addr, offset;
600 size_t size;
601 int i;
603 if (len == 0)
604 return NULL;
606 /* handle both R5 and SoC views of ATCM and BTCM */
607 for (i = 0; i < core->num_mems; i++) {
608 bus_addr = core->mem[i].bus_addr;
609 dev_addr = core->mem[i].dev_addr;
610 size = core->mem[i].size;
612 /* handle R5-view addresses of TCMs */
613 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
614 offset = da - dev_addr;
615 va = core->mem[i].cpu_addr + offset;
616 return (__force void *)va;
619 /* handle SoC-view addresses of TCMs */
620 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
621 offset = da - bus_addr;
622 va = core->mem[i].cpu_addr + offset;
623 return (__force void *)va;
627 /* handle any SRAM regions using SoC-view addresses */
628 for (i = 0; i < core->num_sram; i++) {
629 dev_addr = core->sram[i].dev_addr;
630 size = core->sram[i].size;
632 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
633 offset = da - dev_addr;
634 va = core->sram[i].cpu_addr + offset;
635 return (__force void *)va;
639 /* handle static DDR reserved memory regions */
640 for (i = 0; i < kproc->num_rmems; i++) {
641 dev_addr = kproc->rmem[i].dev_addr;
642 size = kproc->rmem[i].size;
644 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
645 offset = da - dev_addr;
646 va = kproc->rmem[i].cpu_addr + offset;
647 return (__force void *)va;
651 return NULL;
654 static const struct rproc_ops k3_r5_rproc_ops = {
655 .prepare = k3_r5_rproc_prepare,
656 .unprepare = k3_r5_rproc_unprepare,
657 .start = k3_r5_rproc_start,
658 .stop = k3_r5_rproc_stop,
659 .kick = k3_r5_rproc_kick,
660 .da_to_va = k3_r5_rproc_da_to_va,
664 * Internal R5F Core configuration
666 * Each R5FSS has a cluster-level setting for configuring the processor
667 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
668 * oriented Split mode. Each R5F core has a number of settings to either
669 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
670 * address 0x0. These settings need to be configured before the resets for the
671 * corresponding core are released. These settings are all protected and managed
672 * by the System Processor.
674 * This function is used to pre-configure these settings for each R5F core, and
675 * the configuration is all done through various ti_sci_proc functions that
676 * communicate with the System Processor. The function also ensures that both
677 * the cores are halted before the .prepare() step.
679 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
680 * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode
681 * is dictated by an eFUSE register bit, and the config settings retrieved from
682 * DT are adjusted accordingly as per the permitted cluster mode. All cluster
683 * level settings like Cluster mode and TEINIT (exception handling state
684 * dictating ARM or Thumb mode) can only be set and retrieved using Core0.
686 * The function behavior is different based on the cluster mode. The R5F cores
687 * are configured independently as per their individual settings in Split mode.
688 * They are identically configured in LockStep mode using the primary Core0
689 * settings. However, some individual settings cannot be set in LockStep mode.
690 * This is overcome by switching to Split-mode initially and then programming
691 * both the cores with the same settings, before reconfiguing again for
692 * LockStep mode.
694 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
696 struct k3_r5_cluster *cluster = kproc->cluster;
697 struct device *dev = kproc->dev;
698 struct k3_r5_core *core0, *core, *temp;
699 u32 ctrl = 0, cfg = 0, stat = 0;
700 u32 set_cfg = 0, clr_cfg = 0;
701 u64 boot_vec = 0;
702 bool lockstep_en;
703 int ret;
705 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
706 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core;
708 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
709 &stat);
710 if (ret < 0)
711 return ret;
713 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
714 boot_vec, cfg, ctrl, stat);
716 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
717 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
718 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
719 cluster->mode = CLUSTER_MODE_SPLIT;
722 /* always enable ARM mode and set boot vector to 0 */
723 boot_vec = 0x0;
724 if (core == core0) {
725 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
727 * LockStep configuration bit is Read-only on Split-mode _only_
728 * devices and system firmware will NACK any requests with the
729 * bit configured, so program it only on permitted devices
731 if (lockstep_en)
732 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
735 if (core->atcm_enable)
736 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
737 else
738 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
740 if (core->btcm_enable)
741 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
742 else
743 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
745 if (core->loczrama)
746 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
747 else
748 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
750 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
752 * work around system firmware limitations to make sure both
753 * cores are programmed symmetrically in LockStep. LockStep
754 * and TEINIT config is only allowed with Core0.
756 list_for_each_entry(temp, &cluster->cores, elem) {
757 ret = k3_r5_core_halt(temp);
758 if (ret)
759 goto out;
761 if (temp != core) {
762 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
763 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
765 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
766 set_cfg, clr_cfg);
767 if (ret)
768 goto out;
771 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
772 clr_cfg = 0;
773 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
774 set_cfg, clr_cfg);
775 } else {
776 ret = k3_r5_core_halt(core);
777 if (ret)
778 goto out;
780 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
781 set_cfg, clr_cfg);
784 out:
785 return ret;
788 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
790 struct device *dev = kproc->dev;
791 struct device_node *np = dev_of_node(dev);
792 struct device_node *rmem_np;
793 struct reserved_mem *rmem;
794 int num_rmems;
795 int ret, i;
797 num_rmems = of_property_count_elems_of_size(np, "memory-region",
798 sizeof(phandle));
799 if (num_rmems <= 0) {
800 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
801 num_rmems);
802 return -EINVAL;
804 if (num_rmems < 2) {
805 dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
806 num_rmems);
807 return -EINVAL;
810 /* use reserved memory region 0 for vring DMA allocations */
811 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
812 if (ret) {
813 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
814 ret);
815 return ret;
818 num_rmems--;
819 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
820 if (!kproc->rmem) {
821 ret = -ENOMEM;
822 goto release_rmem;
825 /* use remaining reserved memory regions for static carveouts */
826 for (i = 0; i < num_rmems; i++) {
827 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
828 if (!rmem_np) {
829 ret = -EINVAL;
830 goto unmap_rmem;
833 rmem = of_reserved_mem_lookup(rmem_np);
834 if (!rmem) {
835 of_node_put(rmem_np);
836 ret = -EINVAL;
837 goto unmap_rmem;
839 of_node_put(rmem_np);
841 kproc->rmem[i].bus_addr = rmem->base;
843 * R5Fs do not have an MMU, but have a Region Address Translator
844 * (RAT) module that provides a fixed entry translation between
845 * the 32-bit processor addresses to 64-bit bus addresses. The
846 * RAT is programmable only by the R5F cores. Support for RAT
847 * is currently not supported, so 64-bit address regions are not
848 * supported. The absence of MMUs implies that the R5F device
849 * addresses/supported memory regions are restricted to 32-bit
850 * bus addresses, and are identical
852 kproc->rmem[i].dev_addr = (u32)rmem->base;
853 kproc->rmem[i].size = rmem->size;
854 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
855 if (!kproc->rmem[i].cpu_addr) {
856 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
857 i + 1, &rmem->base, &rmem->size);
858 ret = -ENOMEM;
859 goto unmap_rmem;
862 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
863 i + 1, &kproc->rmem[i].bus_addr,
864 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
865 kproc->rmem[i].dev_addr);
867 kproc->num_rmems = num_rmems;
869 return 0;
871 unmap_rmem:
872 for (i--; i >= 0; i--)
873 iounmap(kproc->rmem[i].cpu_addr);
874 kfree(kproc->rmem);
875 release_rmem:
876 of_reserved_mem_device_release(dev);
877 return ret;
880 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
882 int i;
884 for (i = 0; i < kproc->num_rmems; i++)
885 iounmap(kproc->rmem[i].cpu_addr);
886 kfree(kproc->rmem);
888 of_reserved_mem_device_release(kproc->dev);
892 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
893 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
894 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
895 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
896 * leveraging the Core1 TCMs as well in certain modes where they would have
897 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs). This is done by
898 * making a Core1 TCM visible immediately after the corresponding Core0 TCM.
899 * The SoC memory map uses the larger 64 KB sizes for the Core0 TCMs, and the
900 * dts representation reflects this increased size on supported SoCs. The Core0
901 * TCM sizes therefore have to be adjusted to only half the original size in
902 * Split mode.
904 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
906 struct k3_r5_cluster *cluster = kproc->cluster;
907 struct k3_r5_core *core = kproc->core;
908 struct device *cdev = core->dev;
909 struct k3_r5_core *core0;
911 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
912 !cluster->soc_data->tcm_is_double)
913 return;
915 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
916 if (core == core0) {
917 WARN_ON(core->mem[0].size != SZ_64K);
918 WARN_ON(core->mem[1].size != SZ_64K);
920 core->mem[0].size /= 2;
921 core->mem[1].size /= 2;
923 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
924 core->mem[0].size, core->mem[1].size);
928 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
930 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
931 struct device *dev = &pdev->dev;
932 struct k3_r5_rproc *kproc;
933 struct k3_r5_core *core, *core1;
934 struct device *cdev;
935 const char *fw_name;
936 struct rproc *rproc;
937 int ret;
939 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
940 list_for_each_entry(core, &cluster->cores, elem) {
941 cdev = core->dev;
942 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
943 if (ret) {
944 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
945 ret);
946 goto out;
949 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
950 fw_name, sizeof(*kproc));
951 if (!rproc) {
952 ret = -ENOMEM;
953 goto out;
956 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
957 rproc->has_iommu = false;
958 /* error recovery is not supported at present */
959 rproc->recovery_disabled = true;
961 kproc = rproc->priv;
962 kproc->cluster = cluster;
963 kproc->core = core;
964 kproc->dev = cdev;
965 kproc->rproc = rproc;
966 core->rproc = rproc;
968 ret = k3_r5_rproc_configure(kproc);
969 if (ret) {
970 dev_err(dev, "initial configure failed, ret = %d\n",
971 ret);
972 goto err_config;
975 k3_r5_adjust_tcm_sizes(kproc);
977 ret = k3_r5_reserved_mem_init(kproc);
978 if (ret) {
979 dev_err(dev, "reserved memory init failed, ret = %d\n",
980 ret);
981 goto err_config;
984 ret = rproc_add(rproc);
985 if (ret) {
986 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
987 goto err_add;
990 /* create only one rproc in lockstep mode */
991 if (cluster->mode == CLUSTER_MODE_LOCKSTEP)
992 break;
995 return 0;
997 err_split:
998 rproc_del(rproc);
999 err_add:
1000 k3_r5_reserved_mem_exit(kproc);
1001 err_config:
1002 rproc_free(rproc);
1003 core->rproc = NULL;
1004 out:
1005 /* undo core0 upon any failures on core1 in split-mode */
1006 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1007 core = list_prev_entry(core, elem);
1008 rproc = core->rproc;
1009 kproc = rproc->priv;
1010 goto err_split;
1012 return ret;
1015 static void k3_r5_cluster_rproc_exit(void *data)
1017 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1018 struct k3_r5_rproc *kproc;
1019 struct k3_r5_core *core;
1020 struct rproc *rproc;
1023 * lockstep mode has only one rproc associated with first core, whereas
1024 * split-mode has two rprocs associated with each core, and requires
1025 * that core1 be powered down first
1027 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
1028 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1029 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1031 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1032 rproc = core->rproc;
1033 kproc = rproc->priv;
1035 rproc_del(rproc);
1037 k3_r5_reserved_mem_exit(kproc);
1039 rproc_free(rproc);
1040 core->rproc = NULL;
1044 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1045 struct k3_r5_core *core)
1047 static const char * const mem_names[] = {"atcm", "btcm"};
1048 struct device *dev = &pdev->dev;
1049 struct resource *res;
1050 int num_mems;
1051 int i;
1053 num_mems = ARRAY_SIZE(mem_names);
1054 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1055 if (!core->mem)
1056 return -ENOMEM;
1058 for (i = 0; i < num_mems; i++) {
1059 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1060 mem_names[i]);
1061 if (!res) {
1062 dev_err(dev, "found no memory resource for %s\n",
1063 mem_names[i]);
1064 return -EINVAL;
1066 if (!devm_request_mem_region(dev, res->start,
1067 resource_size(res),
1068 dev_name(dev))) {
1069 dev_err(dev, "could not request %s region for resource\n",
1070 mem_names[i]);
1071 return -EBUSY;
1075 * TCMs are designed in general to support RAM-like backing
1076 * memories. So, map these as Normal Non-Cached memories. This
1077 * also avoids/fixes any potential alignment faults due to
1078 * unaligned data accesses when using memcpy() or memset()
1079 * functions (normally seen with device type memory).
1081 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1082 resource_size(res));
1083 if (!core->mem[i].cpu_addr) {
1084 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1085 return -ENOMEM;
1087 core->mem[i].bus_addr = res->start;
1090 * TODO:
1091 * The R5F cores can place ATCM & BTCM anywhere in its address
1092 * based on the corresponding Region Registers in the System
1093 * Control coprocessor. For now, place ATCM and BTCM at
1094 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1095 * SoCs) based on loczrama setting
1097 if (!strcmp(mem_names[i], "atcm")) {
1098 core->mem[i].dev_addr = core->loczrama ?
1099 0 : K3_R5_TCM_DEV_ADDR;
1100 } else {
1101 core->mem[i].dev_addr = core->loczrama ?
1102 K3_R5_TCM_DEV_ADDR : 0;
1104 core->mem[i].size = resource_size(res);
1106 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1107 mem_names[i], &core->mem[i].bus_addr,
1108 core->mem[i].size, core->mem[i].cpu_addr,
1109 core->mem[i].dev_addr);
1111 core->num_mems = num_mems;
1113 return 0;
1116 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1117 struct k3_r5_core *core)
1119 struct device_node *np = pdev->dev.of_node;
1120 struct device *dev = &pdev->dev;
1121 struct device_node *sram_np;
1122 struct resource res;
1123 int num_sram;
1124 int i, ret;
1126 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1127 if (num_sram <= 0) {
1128 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1129 num_sram);
1130 return 0;
1133 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1134 if (!core->sram)
1135 return -ENOMEM;
1137 for (i = 0; i < num_sram; i++) {
1138 sram_np = of_parse_phandle(np, "sram", i);
1139 if (!sram_np)
1140 return -EINVAL;
1142 if (!of_device_is_available(sram_np)) {
1143 of_node_put(sram_np);
1144 return -EINVAL;
1147 ret = of_address_to_resource(sram_np, 0, &res);
1148 of_node_put(sram_np);
1149 if (ret)
1150 return -EINVAL;
1152 core->sram[i].bus_addr = res.start;
1153 core->sram[i].dev_addr = res.start;
1154 core->sram[i].size = resource_size(&res);
1155 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1156 resource_size(&res));
1157 if (!core->sram[i].cpu_addr) {
1158 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1159 i, &res.start);
1160 return -ENOMEM;
1163 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1164 i, &core->sram[i].bus_addr,
1165 core->sram[i].size, core->sram[i].cpu_addr,
1166 core->sram[i].dev_addr);
1168 core->num_sram = num_sram;
1170 return 0;
1173 static
1174 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1175 const struct ti_sci_handle *sci)
1177 struct ti_sci_proc *tsp;
1178 u32 temp[2];
1179 int ret;
1181 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1182 temp, 2);
1183 if (ret < 0)
1184 return ERR_PTR(ret);
1186 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1187 if (!tsp)
1188 return ERR_PTR(-ENOMEM);
1190 tsp->dev = dev;
1191 tsp->sci = sci;
1192 tsp->ops = &sci->ops.proc_ops;
1193 tsp->proc_id = temp[0];
1194 tsp->host_id = temp[1];
1196 return tsp;
1199 static int k3_r5_core_of_init(struct platform_device *pdev)
1201 struct device *dev = &pdev->dev;
1202 struct device_node *np = dev_of_node(dev);
1203 struct k3_r5_core *core;
1204 int ret;
1206 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1207 return -ENOMEM;
1209 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1210 if (!core) {
1211 ret = -ENOMEM;
1212 goto err;
1215 core->dev = dev;
1217 * Use SoC Power-on-Reset values as default if no DT properties are
1218 * used to dictate the TCM configurations
1220 core->atcm_enable = 0;
1221 core->btcm_enable = 1;
1222 core->loczrama = 1;
1224 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1225 if (ret < 0 && ret != -EINVAL) {
1226 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1227 ret);
1228 goto err;
1231 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1232 if (ret < 0 && ret != -EINVAL) {
1233 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1234 ret);
1235 goto err;
1238 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1239 if (ret < 0 && ret != -EINVAL) {
1240 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1241 goto err;
1244 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1245 if (IS_ERR(core->ti_sci)) {
1246 ret = PTR_ERR(core->ti_sci);
1247 if (ret != -EPROBE_DEFER) {
1248 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1249 ret);
1251 core->ti_sci = NULL;
1252 goto err;
1255 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1256 if (ret) {
1257 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1258 goto err;
1261 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1262 if (IS_ERR_OR_NULL(core->reset)) {
1263 ret = PTR_ERR_OR_ZERO(core->reset);
1264 if (!ret)
1265 ret = -ENODEV;
1266 if (ret != -EPROBE_DEFER) {
1267 dev_err(dev, "failed to get reset handle, ret = %d\n",
1268 ret);
1270 goto err;
1273 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1274 if (IS_ERR(core->tsp)) {
1275 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1276 ret);
1277 ret = PTR_ERR(core->tsp);
1278 goto err;
1281 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1282 if (ret) {
1283 dev_err(dev, "failed to get internal memories, ret = %d\n",
1284 ret);
1285 goto err;
1288 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1289 if (ret) {
1290 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1291 goto err;
1294 ret = ti_sci_proc_request(core->tsp);
1295 if (ret < 0) {
1296 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1297 goto err;
1300 platform_set_drvdata(pdev, core);
1301 devres_close_group(dev, k3_r5_core_of_init);
1303 return 0;
1305 err:
1306 devres_release_group(dev, k3_r5_core_of_init);
1307 return ret;
1311 * free the resources explicitly since driver model is not being used
1312 * for the child R5F devices
1314 static void k3_r5_core_of_exit(struct platform_device *pdev)
1316 struct k3_r5_core *core = platform_get_drvdata(pdev);
1317 struct device *dev = &pdev->dev;
1318 int ret;
1320 ret = ti_sci_proc_release(core->tsp);
1321 if (ret)
1322 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1324 platform_set_drvdata(pdev, NULL);
1325 devres_release_group(dev, k3_r5_core_of_init);
1328 static void k3_r5_cluster_of_exit(void *data)
1330 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1331 struct platform_device *cpdev;
1332 struct k3_r5_core *core, *temp;
1334 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1335 list_del(&core->elem);
1336 cpdev = to_platform_device(core->dev);
1337 k3_r5_core_of_exit(cpdev);
1341 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1343 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1344 struct device *dev = &pdev->dev;
1345 struct device_node *np = dev_of_node(dev);
1346 struct platform_device *cpdev;
1347 struct device_node *child;
1348 struct k3_r5_core *core;
1349 int ret;
1351 for_each_available_child_of_node(np, child) {
1352 cpdev = of_find_device_by_node(child);
1353 if (!cpdev) {
1354 ret = -ENODEV;
1355 dev_err(dev, "could not get R5 core platform device\n");
1356 goto fail;
1359 ret = k3_r5_core_of_init(cpdev);
1360 if (ret) {
1361 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1362 ret);
1363 put_device(&cpdev->dev);
1364 goto fail;
1367 core = platform_get_drvdata(cpdev);
1368 put_device(&cpdev->dev);
1369 list_add_tail(&core->elem, &cluster->cores);
1372 return 0;
1374 fail:
1375 k3_r5_cluster_of_exit(pdev);
1376 return ret;
1379 static int k3_r5_probe(struct platform_device *pdev)
1381 struct device *dev = &pdev->dev;
1382 struct device_node *np = dev_of_node(dev);
1383 struct k3_r5_cluster *cluster;
1384 const struct k3_r5_soc_data *data;
1385 int ret;
1386 int num_cores;
1388 data = of_device_get_match_data(&pdev->dev);
1389 if (!data) {
1390 dev_err(dev, "SoC-specific data is not defined\n");
1391 return -ENODEV;
1394 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1395 if (!cluster)
1396 return -ENOMEM;
1398 cluster->dev = dev;
1399 cluster->mode = CLUSTER_MODE_LOCKSTEP;
1400 cluster->soc_data = data;
1401 INIT_LIST_HEAD(&cluster->cores);
1403 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1404 if (ret < 0 && ret != -EINVAL) {
1405 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1406 ret);
1407 return ret;
1410 num_cores = of_get_available_child_count(np);
1411 if (num_cores != 2) {
1412 dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1413 num_cores);
1414 return -ENODEV;
1417 platform_set_drvdata(pdev, cluster);
1419 ret = devm_of_platform_populate(dev);
1420 if (ret) {
1421 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1422 ret);
1423 return ret;
1426 ret = k3_r5_cluster_of_init(pdev);
1427 if (ret) {
1428 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1429 return ret;
1432 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1433 if (ret)
1434 return ret;
1436 ret = k3_r5_cluster_rproc_init(pdev);
1437 if (ret) {
1438 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1439 ret);
1440 return ret;
1443 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1444 if (ret)
1445 return ret;
1447 return 0;
1450 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1451 .tcm_is_double = false,
1452 .tcm_ecc_autoinit = false,
1455 static const struct k3_r5_soc_data j7200_soc_data = {
1456 .tcm_is_double = true,
1457 .tcm_ecc_autoinit = true,
1460 static const struct of_device_id k3_r5_of_match[] = {
1461 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1462 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1463 { .compatible = "ti,j7200-r5fss", .data = &j7200_soc_data, },
1464 { /* sentinel */ },
1466 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1468 static struct platform_driver k3_r5_rproc_driver = {
1469 .probe = k3_r5_probe,
1470 .driver = {
1471 .name = "k3_r5_rproc",
1472 .of_match_table = k3_r5_of_match,
1476 module_platform_driver(k3_r5_rproc_driver);
1478 MODULE_LICENSE("GPL v2");
1479 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1480 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");