1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14 * changed its name to ConnectCom Solutions, Inc.
15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */
52 * 1. Use scsi_transport_spi
53 * 2. advansys_info is not safe against multiple simultaneous callers
54 * 3. Add module_param to override ISA/VLB ioport array
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
60 /* Enable driver tracing. */
63 typedef unsigned char uchar
;
65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
67 #define PCI_VENDOR_ID_ASP 0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A 0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
75 #define PortAddr unsigned int /* port address size */
76 #define inp(port) inb(port)
77 #define outp(port, byte) outb((byte), (port))
79 #define inpw(port) inw(port)
80 #define outpw(port, word) outw((word), (port))
82 #define ASC_MAX_SG_QUEUE 7
83 #define ASC_MAX_SG_LIST 255
85 #define ASC_CS_TYPE unsigned short
87 #define ASC_IS_ISA (0x0001)
88 #define ASC_IS_ISAPNP (0x0081)
89 #define ASC_IS_EISA (0x0002)
90 #define ASC_IS_PCI (0x0004)
91 #define ASC_IS_PCI_ULTRA (0x0104)
92 #define ASC_IS_PCMCIA (0x0008)
93 #define ASC_IS_MCA (0x0020)
94 #define ASC_IS_VL (0x0040)
95 #define ASC_IS_WIDESCSI_16 (0x0100)
96 #define ASC_IS_WIDESCSI_32 (0x0200)
97 #define ASC_IS_BIG_ENDIAN (0x8000)
99 #define ASC_CHIP_MIN_VER_VL (0x01)
100 #define ASC_CHIP_MAX_VER_VL (0x07)
101 #define ASC_CHIP_MIN_VER_PCI (0x09)
102 #define ASC_CHIP_MAX_VER_PCI (0x0F)
103 #define ASC_CHIP_VER_PCI_BIT (0x08)
104 #define ASC_CHIP_MIN_VER_ISA (0x11)
105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
106 #define ASC_CHIP_MAX_VER_ISA (0x27)
107 #define ASC_CHIP_VER_ISA_BIT (0x30)
108 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
109 #define ASC_CHIP_VER_ASYN_BUG (0x21)
110 #define ASC_CHIP_VER_PCI 0x08
111 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
112 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
113 #define ASC_CHIP_MIN_VER_EISA (0x41)
114 #define ASC_CHIP_MAX_VER_EISA (0x47)
115 #define ASC_CHIP_VER_EISA_BIT (0x40)
116 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
117 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
118 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
119 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
121 #define ASC_SCSI_ID_BITS 3
122 #define ASC_SCSI_TIX_TYPE uchar
123 #define ASC_ALL_DEVICE_BIT_SET 0xFF
124 #define ASC_SCSI_BIT_ID_TYPE uchar
125 #define ASC_MAX_TID 7
126 #define ASC_MAX_LUN 7
127 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
128 #define ASC_MAX_SENSE_LEN 32
129 #define ASC_MIN_SENSE_LEN 14
130 #define ASC_SCSI_RESET_HOLD_TIME_US 60
133 * Narrow boards only support 12-byte commands, while wide boards
134 * extend to 16-byte commands.
136 #define ASC_MAX_CDB_LEN 12
137 #define ADV_MAX_CDB_LEN 16
139 #define MS_SDTR_LEN 0x03
140 #define MS_WDTR_LEN 0x02
142 #define ASC_SG_LIST_PER_Q 7
144 #define QS_READY 0x01
145 #define QS_DISC1 0x02
146 #define QS_DISC2 0x04
148 #define QS_ABORTED 0x40
150 #define QC_NO_CALLBACK 0x01
151 #define QC_SG_SWAP_QUEUE 0x02
152 #define QC_SG_HEAD 0x04
153 #define QC_DATA_IN 0x08
154 #define QC_DATA_OUT 0x10
155 #define QC_URGENT 0x20
156 #define QC_MSG_OUT 0x40
157 #define QC_REQ_SENSE 0x80
158 #define QCSG_SG_XFER_LIST 0x02
159 #define QCSG_SG_XFER_MORE 0x04
160 #define QCSG_SG_XFER_END 0x08
161 #define QD_IN_PROGRESS 0x00
162 #define QD_NO_ERROR 0x01
163 #define QD_ABORTED_BY_HOST 0x02
164 #define QD_WITH_ERROR 0x04
165 #define QD_INVALID_REQUEST 0x80
166 #define QD_INVALID_HOST_NUM 0x81
167 #define QD_INVALID_DEVICE 0x82
168 #define QD_ERR_INTERNAL 0xFF
169 #define QHSTA_NO_ERROR 0x00
170 #define QHSTA_M_SEL_TIMEOUT 0x11
171 #define QHSTA_M_DATA_OVER_RUN 0x12
172 #define QHSTA_M_DATA_UNDER_RUN 0x12
173 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
174 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
177 #define QHSTA_D_HOST_ABORT_FAILED 0x23
178 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
180 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
181 #define QHSTA_M_WTM_TIMEOUT 0x41
182 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
183 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
185 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
186 #define QHSTA_M_BAD_TAG_CODE 0x46
187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
189 #define QHSTA_D_LRAM_CMP_ERROR 0x81
190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
191 #define ASC_FLAG_SCSIQ_REQ 0x01
192 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
193 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
194 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
195 #define ASC_FLAG_WIN16 0x10
196 #define ASC_FLAG_WIN32 0x20
197 #define ASC_FLAG_ISA_OVER_16MB 0x40
198 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
199 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
203 #define ASC_SCSIQ_CPY_BEG 4
204 #define ASC_SCSIQ_SGHD_CPY_BEG 2
205 #define ASC_SCSIQ_B_FWD 0
206 #define ASC_SCSIQ_B_BWD 1
207 #define ASC_SCSIQ_B_STATUS 2
208 #define ASC_SCSIQ_B_QNO 3
209 #define ASC_SCSIQ_B_CNTL 4
210 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
211 #define ASC_SCSIQ_D_DATA_ADDR 8
212 #define ASC_SCSIQ_D_DATA_CNT 12
213 #define ASC_SCSIQ_B_SENSE_LEN 20
214 #define ASC_SCSIQ_DONE_INFO_BEG 22
215 #define ASC_SCSIQ_D_SRBPTR 22
216 #define ASC_SCSIQ_B_TARGET_IX 26
217 #define ASC_SCSIQ_B_CDB_LEN 28
218 #define ASC_SCSIQ_B_TAG_CODE 29
219 #define ASC_SCSIQ_W_VM_ID 30
220 #define ASC_SCSIQ_DONE_STATUS 32
221 #define ASC_SCSIQ_HOST_STATUS 33
222 #define ASC_SCSIQ_SCSI_STATUS 34
223 #define ASC_SCSIQ_CDB_BEG 36
224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
227 #define ASC_SCSIQ_B_SG_WK_QP 49
228 #define ASC_SCSIQ_B_SG_WK_IX 50
229 #define ASC_SCSIQ_W_ALT_DC1 52
230 #define ASC_SCSIQ_B_LIST_CNT 6
231 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
232 #define ASC_SGQ_B_SG_CNTL 4
233 #define ASC_SGQ_B_SG_HEAD_QP 5
234 #define ASC_SGQ_B_SG_LIST_CNT 6
235 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
236 #define ASC_SGQ_LIST_BEG 8
237 #define ASC_DEF_SCSI1_QNG 4
238 #define ASC_MAX_SCSI1_QNG 4
239 #define ASC_DEF_SCSI2_QNG 16
240 #define ASC_MAX_SCSI2_QNG 32
241 #define ASC_TAG_CODE_MASK 0x23
242 #define ASC_STOP_REQ_RISC_STOP 0x01
243 #define ASC_STOP_ACK_RISC_STOP 0x03
244 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
245 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
247 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
248 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
249 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
250 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
251 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
252 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
253 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
255 typedef struct asc_scsiq_1
{
269 typedef struct asc_scsiq_2
{
278 typedef struct asc_scsiq_3
{
285 typedef struct asc_scsiq_4
{
286 uchar cdb
[ASC_MAX_CDB_LEN
];
287 uchar y_first_sg_list_qp
;
288 uchar y_working_sg_qp
;
289 uchar y_working_sg_ix
;
292 ushort x_reconnect_rtn
;
293 __le32 x_saved_data_addr
;
294 __le32 x_saved_data_cnt
;
297 typedef struct asc_q_done_info
{
309 typedef struct asc_sg_list
{
314 typedef struct asc_sg_head
{
317 ushort entry_to_copy
;
319 ASC_SG_LIST sg_list
[];
322 typedef struct asc_scsi_q
{
326 ASC_SG_HEAD
*sg_head
;
327 ushort remain_sg_entry_cnt
;
328 ushort next_sg_index
;
331 typedef struct asc_scsi_bios_req_q
{
335 ASC_SG_HEAD
*sg_head
;
338 uchar cdb
[ASC_MAX_CDB_LEN
];
339 uchar sense
[ASC_MIN_SENSE_LEN
];
340 } ASC_SCSI_BIOS_REQ_Q
;
342 typedef struct asc_risc_q
{
351 typedef struct asc_sg_list_q
{
357 uchar sg_cur_list_cnt
;
360 typedef struct asc_risc_sg_list_q
{
364 ASC_SG_LIST sg_list
[7];
365 } ASC_RISC_SG_LIST_Q
;
367 #define ASCQ_ERR_Q_STATUS 0x0D
368 #define ASCQ_ERR_CUR_QNG 0x17
369 #define ASCQ_ERR_SG_Q_LINKS 0x18
370 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
371 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
372 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
375 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
377 #define ASC_WARN_NO_ERROR 0x0000
378 #define ASC_WARN_IO_PORT_ROTATE 0x0001
379 #define ASC_WARN_EEPROM_CHKSUM 0x0002
380 #define ASC_WARN_IRQ_MODIFIED 0x0004
381 #define ASC_WARN_AUTO_CONFIG 0x0008
382 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
383 #define ASC_WARN_EEPROM_RECOVER 0x0020
384 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
387 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
389 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
390 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
391 #define ASC_IERR_SET_PC_ADDR 0x0004
392 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
393 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
394 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
395 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
396 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
397 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
398 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
399 #define ASC_IERR_NO_BUS_TYPE 0x0400
400 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
401 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
402 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
404 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
405 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
406 #define ASC_MIN_FREE_Q (0x02)
407 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
408 #define ASC_MAX_TOTAL_QNG 240
409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
412 #define ASC_MAX_INRAM_TAG_QNG 16
413 #define ASC_IOADR_GAP 0x10
414 #define ASC_SYN_MAX_OFFSET 0x0F
415 #define ASC_DEF_SDTR_OFFSET 0x0F
416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
419 /* The narrow chip only supports a limited selection of transfer rates.
420 * These are encoded in the range 0..7 or 0..15 depending whether the chip
421 * is Ultra-capable or not. These tables let us convert from one to the other.
423 static const unsigned char asc_syn_xfer_period
[8] = {
424 25, 30, 35, 40, 50, 60, 70, 85
427 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
428 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
431 typedef struct ext_msg
{
437 uchar sdtr_xfer_period
;
438 uchar sdtr_req_ack_offset
;
453 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
454 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
455 #define wdtr_width u_ext_msg.wdtr.wdtr_width
456 #define mdp_b3 u_ext_msg.mdp_b3
457 #define mdp_b2 u_ext_msg.mdp_b2
458 #define mdp_b1 u_ext_msg.mdp_b1
459 #define mdp_b0 u_ext_msg.mdp_b0
461 typedef struct asc_dvc_cfg
{
462 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
463 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
464 ASC_SCSI_BIT_ID_TYPE disc_enable
;
465 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
468 uchar isa_dma_channel
;
471 ushort mcode_version
;
472 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
473 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
474 uchar adapter_info
[6];
477 #define ASC_DEF_DVC_CNTL 0xFFFF
478 #define ASC_DEF_CHIP_SCSI_ID 7
479 #define ASC_DEF_ISA_DMA_SPEED 4
480 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
481 #define ASC_INIT_STATE_END_GET_CFG 0x0002
482 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
483 #define ASC_INIT_STATE_END_SET_CFG 0x0008
484 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
485 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
486 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
487 #define ASC_INIT_STATE_END_INQUIRY 0x0080
488 #define ASC_INIT_RESET_SCSI_DONE 0x0100
489 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
490 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
491 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
492 #define ASC_MIN_TAGGED_CMD 7
493 #define ASC_MAX_SCSI_RESET_WAIT 30
494 #define ASC_OVERRUN_BSIZE 64
496 struct asc_dvc_var
; /* Forward Declaration. */
498 typedef struct asc_dvc_var
{
504 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
505 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
506 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
507 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
508 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
509 ASC_SCSI_BIT_ID_TYPE start_motor
;
511 dma_addr_t overrun_dma
;
512 uchar scsi_reset_wait
;
517 uchar in_critical_cnt
;
518 uchar last_q_shortage
;
520 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
521 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
522 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
523 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
524 const uchar
*sdtr_period_tbl
;
526 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
529 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
530 unsigned int max_dma_count
;
531 ASC_SCSI_BIT_ID_TYPE no_scam
;
532 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
533 uchar min_sdtr_index
;
534 uchar max_sdtr_index
;
535 struct asc_board
*drv_ptr
;
536 unsigned int uc_break
;
539 typedef struct asc_dvc_inq_info
{
540 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
543 typedef struct asc_cap_info
{
548 typedef struct asc_cap_info_array
{
549 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
550 } ASC_CAP_INFO_ARRAY
;
552 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
553 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
554 #define ASC_CNTL_INITIATOR (ushort)0x0001
555 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
556 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
557 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
558 #define ASC_CNTL_NO_SCAM (ushort)0x0010
559 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
560 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
561 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
562 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
563 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
564 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
565 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
566 #define ASC_CNTL_BURST_MODE (ushort)0x2000
567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
568 #define ASC_EEP_DVC_CFG_BEG_VL 2
569 #define ASC_EEP_MAX_DVC_ADDR_VL 15
570 #define ASC_EEP_DVC_CFG_BEG 32
571 #define ASC_EEP_MAX_DVC_ADDR 45
572 #define ASC_EEP_MAX_RETRY 20
575 * These macros keep the chip SCSI id and ISA DMA speed
576 * bitfields in board order. C bitfields aren't portable
577 * between big and little-endian platforms so they are
581 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
582 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
584 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
586 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
588 typedef struct asceep_config
{
600 uchar id_speed
; /* low order 4 bits is chip scsi id */
601 /* high order 4 bits is isa dma speed */
602 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
603 uchar adapter_info
[6];
608 #define ASC_EEP_CMD_READ 0x80
609 #define ASC_EEP_CMD_WRITE 0x40
610 #define ASC_EEP_CMD_WRITE_ABLE 0x30
611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
612 #define ASCV_MSGOUT_BEG 0x0000
613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
615 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
616 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
617 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
618 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
619 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
620 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
621 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
622 #define ASCV_BREAK_ADDR (ushort)0x0028
623 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
624 #define ASCV_BREAK_CONTROL (ushort)0x002C
625 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
627 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
628 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
629 #define ASCV_MCODE_SIZE_W (ushort)0x0034
630 #define ASCV_STOP_CODE_B (ushort)0x0036
631 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
632 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
633 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
634 #define ASCV_HALTCODE_W (ushort)0x0040
635 #define ASCV_CHKSUM_W (ushort)0x0042
636 #define ASCV_MC_DATE_W (ushort)0x0044
637 #define ASCV_MC_VER_W (ushort)0x0046
638 #define ASCV_NEXTRDY_B (ushort)0x0048
639 #define ASCV_DONENEXT_B (ushort)0x0049
640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
641 #define ASCV_SCSIBUSY_B (ushort)0x004B
642 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
643 #define ASCV_CURCDB_B (ushort)0x004D
644 #define ASCV_RCLUN_B (ushort)0x004E
645 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
646 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
647 #define ASCV_DISC_ENABLE_B (ushort)0x0052
648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
649 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
650 #define ASCV_MCODE_CNTL_B (ushort)0x0056
651 #define ASCV_NULL_TARGET_B (ushort)0x0057
652 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
653 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
654 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
655 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
656 #define ASCV_HOST_FLAG_B (ushort)0x005D
657 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
658 #define ASCV_VER_SERIAL_B (ushort)0x0065
659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
660 #define ASCV_WTM_FLAG_B (ushort)0x0068
661 #define ASCV_RISC_FLAG_B (ushort)0x006A
662 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
663 #define ASC_HOST_FLAG_IN_ISR 0x01
664 #define ASC_HOST_FLAG_ACK_INT 0x02
665 #define ASC_RISC_FLAG_GEN_INT 0x01
666 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
667 #define IOP_CTRL (0x0F)
668 #define IOP_STATUS (0x0E)
669 #define IOP_INT_ACK IOP_STATUS
670 #define IOP_REG_IFC (0x0D)
671 #define IOP_SYN_OFFSET (0x0B)
672 #define IOP_EXTRA_CONTROL (0x0D)
673 #define IOP_REG_PC (0x0C)
674 #define IOP_RAM_ADDR (0x0A)
675 #define IOP_RAM_DATA (0x08)
676 #define IOP_EEP_DATA (0x06)
677 #define IOP_EEP_CMD (0x07)
678 #define IOP_VERSION (0x03)
679 #define IOP_CONFIG_HIGH (0x04)
680 #define IOP_CONFIG_LOW (0x02)
681 #define IOP_SIG_BYTE (0x01)
682 #define IOP_SIG_WORD (0x00)
683 #define IOP_REG_DC1 (0x0E)
684 #define IOP_REG_DC0 (0x0C)
685 #define IOP_REG_SB (0x0B)
686 #define IOP_REG_DA1 (0x0A)
687 #define IOP_REG_DA0 (0x08)
688 #define IOP_REG_SC (0x09)
689 #define IOP_DMA_SPEED (0x07)
690 #define IOP_REG_FLAG (0x07)
691 #define IOP_FIFO_H (0x06)
692 #define IOP_FIFO_L (0x04)
693 #define IOP_REG_ID (0x05)
694 #define IOP_REG_QP (0x03)
695 #define IOP_REG_IH (0x02)
696 #define IOP_REG_IX (0x01)
697 #define IOP_REG_AX (0x00)
698 #define IFC_REG_LOCK (0x00)
699 #define IFC_REG_UNLOCK (0x09)
700 #define IFC_WR_EN_FILTER (0x10)
701 #define IFC_RD_NO_EEPROM (0x10)
702 #define IFC_SLEW_RATE (0x20)
703 #define IFC_ACT_NEG (0x40)
704 #define IFC_INP_FILTER (0x80)
705 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
706 #define SC_SEL (uchar)(0x80)
707 #define SC_BSY (uchar)(0x40)
708 #define SC_ACK (uchar)(0x20)
709 #define SC_REQ (uchar)(0x10)
710 #define SC_ATN (uchar)(0x08)
711 #define SC_IO (uchar)(0x04)
712 #define SC_CD (uchar)(0x02)
713 #define SC_MSG (uchar)(0x01)
714 #define SEC_SCSI_CTL (uchar)(0x80)
715 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
716 #define SEC_SLEW_RATE (uchar)(0x20)
717 #define SEC_ENABLE_FILTER (uchar)(0x10)
718 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
725 #define ASC_MAX_QNO 0xF8
726 #define ASC_DATA_SEC_BEG (ushort)0x0080
727 #define ASC_DATA_SEC_END (ushort)0x0080
728 #define ASC_CODE_SEC_BEG (ushort)0x0080
729 #define ASC_CODE_SEC_END (ushort)0x0080
730 #define ASC_QADR_BEG (0x4000)
731 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
732 #define ASC_QADR_END (ushort)0x7FFF
733 #define ASC_QLAST_ADR (ushort)0x7FC0
734 #define ASC_QBLK_SIZE 0x40
735 #define ASC_BIOS_DATA_QBEG 0xF8
736 #define ASC_MIN_ACTIVE_QNO 0x01
737 #define ASC_QLINK_END 0xFF
738 #define ASC_EEPROM_WORDS 0x10
739 #define ASC_MAX_MGS_LEN 0x10
740 #define ASC_BIOS_ADDR_DEF 0xDC00
741 #define ASC_BIOS_SIZE 0x3800
742 #define ASC_BIOS_RAM_OFF 0x3800
743 #define ASC_BIOS_RAM_SIZE 0x800
744 #define ASC_BIOS_MIN_ADDR 0xC000
745 #define ASC_BIOS_MAX_ADDR 0xEC00
746 #define ASC_BIOS_BANK_SIZE 0x0400
747 #define ASC_MCODE_START_ADDR 0x0080
748 #define ASC_CFG0_HOST_INT_ON 0x0020
749 #define ASC_CFG0_BIOS_ON 0x0040
750 #define ASC_CFG0_VERA_BURST_ON 0x0080
751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
753 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
754 #define ASC_CFG_MSW_CLR_MASK 0x3080
755 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
756 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
757 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
758 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
759 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
760 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
761 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
762 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
763 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
764 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
765 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
766 #define CSW_HALTED (ASC_CS_TYPE)0x0010
767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
768 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
769 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
770 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
772 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
773 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
774 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
775 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
776 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
777 #define CC_CHIP_RESET (uchar)0x80
778 #define CC_SCSI_RESET (uchar)0x40
779 #define CC_HALT (uchar)0x20
780 #define CC_SINGLE_STEP (uchar)0x10
781 #define CC_DMA_ABLE (uchar)0x08
782 #define CC_TEST (uchar)0x04
783 #define CC_BANK_ONE (uchar)0x02
784 #define CC_DIAG (uchar)0x01
785 #define ASC_1000_ID0W 0x04C1
786 #define ASC_1000_ID0W_FIX 0x00C1
787 #define ASC_1000_ID1B 0x25
788 #define ASC_EISA_REV_IOP_MASK (0x0C83)
789 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
790 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
791 #define INS_HALTINT (ushort)0x6281
792 #define INS_HALT (ushort)0x6280
793 #define INS_SINT (ushort)0x6200
794 #define INS_RFLAG_WTM (ushort)0x7380
795 #define ASC_MC_SAVE_CODE_WSIZE 0x500
796 #define ASC_MC_SAVE_DATA_WSIZE 0x40
798 typedef struct asc_mc_saved
{
799 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
800 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
803 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
804 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
805 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
806 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
807 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
808 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
809 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
810 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
811 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
812 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
813 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
814 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
815 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
816 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
817 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
818 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
819 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
820 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
821 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
822 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
823 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
824 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
825 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
826 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
827 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
828 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
829 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
830 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
831 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
832 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
833 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
834 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
835 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
836 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
837 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
838 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
839 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
840 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
841 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
842 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
843 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
844 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
845 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
846 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
847 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
848 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
849 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
850 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
851 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
852 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
853 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
854 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
855 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
856 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
857 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
858 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
859 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
860 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
861 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
862 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
863 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
864 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
865 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
866 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
867 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
868 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
869 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
871 #define AdvPortAddr void __iomem * /* Virtual memory address size */
874 * Define Adv Library required memory access macros.
876 #define ADV_MEM_READB(addr) readb(addr)
877 #define ADV_MEM_READW(addr) readw(addr)
878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
883 * Define total number of simultaneous maximum element scatter-gather
884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
885 * maximum number of outstanding commands per wide host adapter. Each
886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
889 * structures or 255 scatter-gather elements.
891 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
894 * Define maximum number of scatter-gather elements per request.
896 #define ADV_MAX_SG_LIST 255
897 #define NO_OF_SG_PER_BLOCK 15
899 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
900 #define ADV_EEP_DVC_CFG_END (0x15)
901 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
902 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
904 #define ADV_EEP_DELAY_MS 100
906 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
907 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
909 * For the ASC3550 Bit 13 is Termination Polarity control bit.
910 * For later ICs Bit 13 controls whether the CIS (Card Information
911 * Service Section) is loaded from EEPROM.
913 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
914 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
920 * Function 0 will specify INT B.
922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
924 * Function 1 will specify INT A.
926 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
928 typedef struct adveep_3550_config
{
929 /* Word Offset, Description */
931 ushort cfg_lsw
; /* 00 power up initialization */
932 /* bit 13 set - Term Polarity Control */
933 /* bit 14 set - BIOS Enable */
934 /* bit 15 set - Big Endian Mode */
935 ushort cfg_msw
; /* 01 unused */
936 ushort disc_enable
; /* 02 disconnect enable */
937 ushort wdtr_able
; /* 03 Wide DTR able */
938 ushort sdtr_able
; /* 04 Synchronous DTR able */
939 ushort start_motor
; /* 05 send start up motor */
940 ushort tagqng_able
; /* 06 tag queuing able */
941 ushort bios_scan
; /* 07 BIOS device control */
942 ushort scam_tolerant
; /* 08 no scam */
944 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
945 uchar bios_boot_delay
; /* power up wait */
947 uchar scsi_reset_delay
; /* 10 reset delay */
948 uchar bios_id_lun
; /* first boot device scsi id & lun */
949 /* high nibble is lun */
950 /* low nibble is scsi id */
952 uchar termination
; /* 11 0 - automatic */
953 /* 1 - low off / high off */
954 /* 2 - low off / high on */
955 /* 3 - low on / high on */
956 /* There is no low on / high off */
958 uchar reserved1
; /* reserved byte (not used) */
960 ushort bios_ctrl
; /* 12 BIOS control bits */
961 /* bit 0 BIOS don't act as initiator. */
962 /* bit 1 BIOS > 1 GB support */
963 /* bit 2 BIOS > 2 Disk Support */
964 /* bit 3 BIOS don't support removables */
965 /* bit 4 BIOS support bootable CD */
966 /* bit 5 BIOS scan enabled */
967 /* bit 6 BIOS support multiple LUNs */
968 /* bit 7 BIOS display of message */
969 /* bit 8 SCAM disabled */
970 /* bit 9 Reset SCSI bus during init. */
972 /* bit 11 No verbose initialization. */
973 /* bit 12 SCSI parity enabled */
977 ushort ultra_able
; /* 13 ULTRA speed able */
978 ushort reserved2
; /* 14 reserved */
979 uchar max_host_qng
; /* 15 maximum host queuing */
980 uchar max_dvc_qng
; /* maximum per device queuing */
981 ushort dvc_cntl
; /* 16 control bit for driver */
982 ushort bug_fix
; /* 17 control bit for bug fix */
983 ushort serial_number_word1
; /* 18 Board serial number word 1 */
984 ushort serial_number_word2
; /* 19 Board serial number word 2 */
985 ushort serial_number_word3
; /* 20 Board serial number word 3 */
986 ushort check_sum
; /* 21 EEP check sum */
987 uchar oem_name
[16]; /* 22 OEM name */
988 ushort dvc_err_code
; /* 30 last device driver error code */
989 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
990 ushort adv_err_addr
; /* 32 last uc error address */
991 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
992 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
993 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
994 ushort num_of_err
; /* 36 number of error */
995 } ADVEEP_3550_CONFIG
;
997 typedef struct adveep_38C0800_config
{
998 /* Word Offset, Description */
1000 ushort cfg_lsw
; /* 00 power up initialization */
1001 /* bit 13 set - Load CIS */
1002 /* bit 14 set - BIOS Enable */
1003 /* bit 15 set - Big Endian Mode */
1004 ushort cfg_msw
; /* 01 unused */
1005 ushort disc_enable
; /* 02 disconnect enable */
1006 ushort wdtr_able
; /* 03 Wide DTR able */
1007 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1008 ushort start_motor
; /* 05 send start up motor */
1009 ushort tagqng_able
; /* 06 tag queuing able */
1010 ushort bios_scan
; /* 07 BIOS device control */
1011 ushort scam_tolerant
; /* 08 no scam */
1013 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1014 uchar bios_boot_delay
; /* power up wait */
1016 uchar scsi_reset_delay
; /* 10 reset delay */
1017 uchar bios_id_lun
; /* first boot device scsi id & lun */
1018 /* high nibble is lun */
1019 /* low nibble is scsi id */
1021 uchar termination_se
; /* 11 0 - automatic */
1022 /* 1 - low off / high off */
1023 /* 2 - low off / high on */
1024 /* 3 - low on / high on */
1025 /* There is no low on / high off */
1027 uchar termination_lvd
; /* 11 0 - automatic */
1028 /* 1 - low off / high off */
1029 /* 2 - low off / high on */
1030 /* 3 - low on / high on */
1031 /* There is no low on / high off */
1033 ushort bios_ctrl
; /* 12 BIOS control bits */
1034 /* bit 0 BIOS don't act as initiator. */
1035 /* bit 1 BIOS > 1 GB support */
1036 /* bit 2 BIOS > 2 Disk Support */
1037 /* bit 3 BIOS don't support removables */
1038 /* bit 4 BIOS support bootable CD */
1039 /* bit 5 BIOS scan enabled */
1040 /* bit 6 BIOS support multiple LUNs */
1041 /* bit 7 BIOS display of message */
1042 /* bit 8 SCAM disabled */
1043 /* bit 9 Reset SCSI bus during init. */
1045 /* bit 11 No verbose initialization. */
1046 /* bit 12 SCSI parity enabled */
1050 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1051 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1052 uchar max_host_qng
; /* 15 maximum host queueing */
1053 uchar max_dvc_qng
; /* maximum per device queuing */
1054 ushort dvc_cntl
; /* 16 control bit for driver */
1055 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1056 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1057 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1058 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1059 ushort check_sum
; /* 21 EEP check sum */
1060 uchar oem_name
[16]; /* 22 OEM name */
1061 ushort dvc_err_code
; /* 30 last device driver error code */
1062 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1063 ushort adv_err_addr
; /* 32 last uc error address */
1064 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1065 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1066 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1067 ushort reserved36
; /* 36 reserved */
1068 ushort reserved37
; /* 37 reserved */
1069 ushort reserved38
; /* 38 reserved */
1070 ushort reserved39
; /* 39 reserved */
1071 ushort reserved40
; /* 40 reserved */
1072 ushort reserved41
; /* 41 reserved */
1073 ushort reserved42
; /* 42 reserved */
1074 ushort reserved43
; /* 43 reserved */
1075 ushort reserved44
; /* 44 reserved */
1076 ushort reserved45
; /* 45 reserved */
1077 ushort reserved46
; /* 46 reserved */
1078 ushort reserved47
; /* 47 reserved */
1079 ushort reserved48
; /* 48 reserved */
1080 ushort reserved49
; /* 49 reserved */
1081 ushort reserved50
; /* 50 reserved */
1082 ushort reserved51
; /* 51 reserved */
1083 ushort reserved52
; /* 52 reserved */
1084 ushort reserved53
; /* 53 reserved */
1085 ushort reserved54
; /* 54 reserved */
1086 ushort reserved55
; /* 55 reserved */
1087 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1088 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1089 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1090 ushort subsysid
; /* 59 SubSystem ID */
1091 ushort reserved60
; /* 60 reserved */
1092 ushort reserved61
; /* 61 reserved */
1093 ushort reserved62
; /* 62 reserved */
1094 ushort reserved63
; /* 63 reserved */
1095 } ADVEEP_38C0800_CONFIG
;
1097 typedef struct adveep_38C1600_config
{
1098 /* Word Offset, Description */
1100 ushort cfg_lsw
; /* 00 power up initialization */
1101 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102 /* clear - Func. 0 INTA, Func. 1 INTB */
1103 /* bit 13 set - Load CIS */
1104 /* bit 14 set - BIOS Enable */
1105 /* bit 15 set - Big Endian Mode */
1106 ushort cfg_msw
; /* 01 unused */
1107 ushort disc_enable
; /* 02 disconnect enable */
1108 ushort wdtr_able
; /* 03 Wide DTR able */
1109 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1110 ushort start_motor
; /* 05 send start up motor */
1111 ushort tagqng_able
; /* 06 tag queuing able */
1112 ushort bios_scan
; /* 07 BIOS device control */
1113 ushort scam_tolerant
; /* 08 no scam */
1115 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1116 uchar bios_boot_delay
; /* power up wait */
1118 uchar scsi_reset_delay
; /* 10 reset delay */
1119 uchar bios_id_lun
; /* first boot device scsi id & lun */
1120 /* high nibble is lun */
1121 /* low nibble is scsi id */
1123 uchar termination_se
; /* 11 0 - automatic */
1124 /* 1 - low off / high off */
1125 /* 2 - low off / high on */
1126 /* 3 - low on / high on */
1127 /* There is no low on / high off */
1129 uchar termination_lvd
; /* 11 0 - automatic */
1130 /* 1 - low off / high off */
1131 /* 2 - low off / high on */
1132 /* 3 - low on / high on */
1133 /* There is no low on / high off */
1135 ushort bios_ctrl
; /* 12 BIOS control bits */
1136 /* bit 0 BIOS don't act as initiator. */
1137 /* bit 1 BIOS > 1 GB support */
1138 /* bit 2 BIOS > 2 Disk Support */
1139 /* bit 3 BIOS don't support removables */
1140 /* bit 4 BIOS support bootable CD */
1141 /* bit 5 BIOS scan enabled */
1142 /* bit 6 BIOS support multiple LUNs */
1143 /* bit 7 BIOS display of message */
1144 /* bit 8 SCAM disabled */
1145 /* bit 9 Reset SCSI bus during init. */
1146 /* bit 10 Basic Integrity Checking disabled */
1147 /* bit 11 No verbose initialization. */
1148 /* bit 12 SCSI parity enabled */
1149 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1152 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1153 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1154 uchar max_host_qng
; /* 15 maximum host queueing */
1155 uchar max_dvc_qng
; /* maximum per device queuing */
1156 ushort dvc_cntl
; /* 16 control bit for driver */
1157 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1158 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1159 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1160 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1161 ushort check_sum
; /* 21 EEP check sum */
1162 uchar oem_name
[16]; /* 22 OEM name */
1163 ushort dvc_err_code
; /* 30 last device driver error code */
1164 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1165 ushort adv_err_addr
; /* 32 last uc error address */
1166 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1167 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1168 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1169 ushort reserved36
; /* 36 reserved */
1170 ushort reserved37
; /* 37 reserved */
1171 ushort reserved38
; /* 38 reserved */
1172 ushort reserved39
; /* 39 reserved */
1173 ushort reserved40
; /* 40 reserved */
1174 ushort reserved41
; /* 41 reserved */
1175 ushort reserved42
; /* 42 reserved */
1176 ushort reserved43
; /* 43 reserved */
1177 ushort reserved44
; /* 44 reserved */
1178 ushort reserved45
; /* 45 reserved */
1179 ushort reserved46
; /* 46 reserved */
1180 ushort reserved47
; /* 47 reserved */
1181 ushort reserved48
; /* 48 reserved */
1182 ushort reserved49
; /* 49 reserved */
1183 ushort reserved50
; /* 50 reserved */
1184 ushort reserved51
; /* 51 reserved */
1185 ushort reserved52
; /* 52 reserved */
1186 ushort reserved53
; /* 53 reserved */
1187 ushort reserved54
; /* 54 reserved */
1188 ushort reserved55
; /* 55 reserved */
1189 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1190 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1191 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1192 ushort subsysid
; /* 59 SubSystem ID */
1193 ushort reserved60
; /* 60 reserved */
1194 ushort reserved61
; /* 61 reserved */
1195 ushort reserved62
; /* 62 reserved */
1196 ushort reserved63
; /* 63 reserved */
1197 } ADVEEP_38C1600_CONFIG
;
1202 #define ASC_EEP_CMD_DONE 0x0200
1205 #define BIOS_CTRL_BIOS 0x0001
1206 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1207 #define BIOS_CTRL_GT_2_DISK 0x0004
1208 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1209 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1210 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1211 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1212 #define BIOS_CTRL_NO_SCAM 0x0100
1213 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1214 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1215 #define BIOS_CTRL_SCSI_PARITY 0x1000
1216 #define BIOS_CTRL_AIPP_DIS 0x2000
1218 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1220 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224 * a special 16K Adv Library and Microcode version. After the issue is
1225 * resolved, should restore 32K support.
1227 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1229 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1232 * Byte I/O register address from base of 'iop_base'.
1234 #define IOPB_INTR_STATUS_REG 0x00
1235 #define IOPB_CHIP_ID_1 0x01
1236 #define IOPB_INTR_ENABLES 0x02
1237 #define IOPB_CHIP_TYPE_REV 0x03
1238 #define IOPB_RES_ADDR_4 0x04
1239 #define IOPB_RES_ADDR_5 0x05
1240 #define IOPB_RAM_DATA 0x06
1241 #define IOPB_RES_ADDR_7 0x07
1242 #define IOPB_FLAG_REG 0x08
1243 #define IOPB_RES_ADDR_9 0x09
1244 #define IOPB_RISC_CSR 0x0A
1245 #define IOPB_RES_ADDR_B 0x0B
1246 #define IOPB_RES_ADDR_C 0x0C
1247 #define IOPB_RES_ADDR_D 0x0D
1248 #define IOPB_SOFT_OVER_WR 0x0E
1249 #define IOPB_RES_ADDR_F 0x0F
1250 #define IOPB_MEM_CFG 0x10
1251 #define IOPB_RES_ADDR_11 0x11
1252 #define IOPB_GPIO_DATA 0x12
1253 #define IOPB_RES_ADDR_13 0x13
1254 #define IOPB_FLASH_PAGE 0x14
1255 #define IOPB_RES_ADDR_15 0x15
1256 #define IOPB_GPIO_CNTL 0x16
1257 #define IOPB_RES_ADDR_17 0x17
1258 #define IOPB_FLASH_DATA 0x18
1259 #define IOPB_RES_ADDR_19 0x19
1260 #define IOPB_RES_ADDR_1A 0x1A
1261 #define IOPB_RES_ADDR_1B 0x1B
1262 #define IOPB_RES_ADDR_1C 0x1C
1263 #define IOPB_RES_ADDR_1D 0x1D
1264 #define IOPB_RES_ADDR_1E 0x1E
1265 #define IOPB_RES_ADDR_1F 0x1F
1266 #define IOPB_DMA_CFG0 0x20
1267 #define IOPB_DMA_CFG1 0x21
1268 #define IOPB_TICKLE 0x22
1269 #define IOPB_DMA_REG_WR 0x23
1270 #define IOPB_SDMA_STATUS 0x24
1271 #define IOPB_SCSI_BYTE_CNT 0x25
1272 #define IOPB_HOST_BYTE_CNT 0x26
1273 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1274 #define IOPB_BYTE_TO_XFER_0 0x28
1275 #define IOPB_BYTE_TO_XFER_1 0x29
1276 #define IOPB_BYTE_TO_XFER_2 0x2A
1277 #define IOPB_BYTE_TO_XFER_3 0x2B
1278 #define IOPB_ACC_GRP 0x2C
1279 #define IOPB_RES_ADDR_2D 0x2D
1280 #define IOPB_DEV_ID 0x2E
1281 #define IOPB_RES_ADDR_2F 0x2F
1282 #define IOPB_SCSI_DATA 0x30
1283 #define IOPB_RES_ADDR_31 0x31
1284 #define IOPB_RES_ADDR_32 0x32
1285 #define IOPB_SCSI_DATA_HSHK 0x33
1286 #define IOPB_SCSI_CTRL 0x34
1287 #define IOPB_RES_ADDR_35 0x35
1288 #define IOPB_RES_ADDR_36 0x36
1289 #define IOPB_RES_ADDR_37 0x37
1290 #define IOPB_RAM_BIST 0x38
1291 #define IOPB_PLL_TEST 0x39
1292 #define IOPB_PCI_INT_CFG 0x3A
1293 #define IOPB_RES_ADDR_3B 0x3B
1294 #define IOPB_RFIFO_CNT 0x3C
1295 #define IOPB_RES_ADDR_3D 0x3D
1296 #define IOPB_RES_ADDR_3E 0x3E
1297 #define IOPB_RES_ADDR_3F 0x3F
1300 * Word I/O register address from base of 'iop_base'.
1302 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1303 #define IOPW_CTRL_REG 0x02 /* CC */
1304 #define IOPW_RAM_ADDR 0x04 /* LA */
1305 #define IOPW_RAM_DATA 0x06 /* LD */
1306 #define IOPW_RES_ADDR_08 0x08
1307 #define IOPW_RISC_CSR 0x0A /* CSR */
1308 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1309 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1310 #define IOPW_RES_ADDR_10 0x10
1311 #define IOPW_SEL_MASK 0x12 /* SM */
1312 #define IOPW_RES_ADDR_14 0x14
1313 #define IOPW_FLASH_ADDR 0x16 /* FA */
1314 #define IOPW_RES_ADDR_18 0x18
1315 #define IOPW_EE_CMD 0x1A /* EC */
1316 #define IOPW_EE_DATA 0x1C /* ED */
1317 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1318 #define IOPW_RES_ADDR_20 0x20
1319 #define IOPW_Q_BASE 0x22 /* QB */
1320 #define IOPW_QP 0x24 /* QP */
1321 #define IOPW_IX 0x26 /* IX */
1322 #define IOPW_SP 0x28 /* SP */
1323 #define IOPW_PC 0x2A /* PC */
1324 #define IOPW_RES_ADDR_2C 0x2C
1325 #define IOPW_RES_ADDR_2E 0x2E
1326 #define IOPW_SCSI_DATA 0x30 /* SD */
1327 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1328 #define IOPW_SCSI_CTRL 0x34 /* SC */
1329 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1330 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1331 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1332 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1333 #define IOPW_RES_ADDR_3C 0x3C
1334 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1337 * Doubleword I/O register address from base of 'iop_base'.
1339 #define IOPDW_RES_ADDR_0 0x00
1340 #define IOPDW_RAM_DATA 0x04
1341 #define IOPDW_RES_ADDR_8 0x08
1342 #define IOPDW_RES_ADDR_C 0x0C
1343 #define IOPDW_RES_ADDR_10 0x10
1344 #define IOPDW_COMMA 0x14
1345 #define IOPDW_COMMB 0x18
1346 #define IOPDW_RES_ADDR_1C 0x1C
1347 #define IOPDW_SDMA_ADDR0 0x20
1348 #define IOPDW_SDMA_ADDR1 0x24
1349 #define IOPDW_SDMA_COUNT 0x28
1350 #define IOPDW_SDMA_ERROR 0x2C
1351 #define IOPDW_RDMA_ADDR0 0x30
1352 #define IOPDW_RDMA_ADDR1 0x34
1353 #define IOPDW_RDMA_COUNT 0x38
1354 #define IOPDW_RDMA_ERROR 0x3C
1356 #define ADV_CHIP_ID_BYTE 0x25
1357 #define ADV_CHIP_ID_WORD 0x04C1
1359 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1360 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1361 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1362 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1363 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1364 #define ADV_INTR_ENABLE_RST_INTR 0x20
1365 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1366 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1368 #define ADV_INTR_STATUS_INTRA 0x01
1369 #define ADV_INTR_STATUS_INTRB 0x02
1370 #define ADV_INTR_STATUS_INTRC 0x04
1372 #define ADV_RISC_CSR_STOP (0x0000)
1373 #define ADV_RISC_TEST_COND (0x2000)
1374 #define ADV_RISC_CSR_RUN (0x4000)
1375 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1377 #define ADV_CTRL_REG_HOST_INTR 0x0100
1378 #define ADV_CTRL_REG_SEL_INTR 0x0200
1379 #define ADV_CTRL_REG_DPR_INTR 0x0400
1380 #define ADV_CTRL_REG_RTA_INTR 0x0800
1381 #define ADV_CTRL_REG_RMA_INTR 0x1000
1382 #define ADV_CTRL_REG_RES_BIT14 0x2000
1383 #define ADV_CTRL_REG_DPE_INTR 0x4000
1384 #define ADV_CTRL_REG_POWER_DONE 0x8000
1385 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1387 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1388 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1389 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1393 #define ADV_TICKLE_NOP 0x00
1394 #define ADV_TICKLE_A 0x01
1395 #define ADV_TICKLE_B 0x02
1396 #define ADV_TICKLE_C 0x03
1398 #define AdvIsIntPending(port) \
1399 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1402 * SCSI_CFG0 Register bit definitions
1404 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1405 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1406 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1407 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1409 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1410 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1411 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1414 #define OUR_ID 0x000F /* SCSI ID */
1417 * SCSI_CFG1 Register bit definitions
1419 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1420 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1422 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1423 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1424 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1425 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1426 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1427 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1428 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1429 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1430 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1431 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1432 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1433 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1436 * Addendum for ASC-38C0800 Chip
1438 * The ASC-38C1600 Chip uses the same definitions except that the
1439 * bus mode override bits [12:10] have been moved to byte register
1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1446 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1447 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1448 #define HVD 0x1000 /* HVD Device Detect */
1449 #define LVD 0x0800 /* LVD Device Detect */
1450 #define SE 0x0400 /* SE Device Detect */
1451 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1452 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1453 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1454 #define TERM_SE 0x0030 /* SE Termination Bits */
1455 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1456 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1457 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1458 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1459 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1460 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1461 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1462 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1464 #define CABLE_ILLEGAL_A 0x7
1465 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1467 #define CABLE_ILLEGAL_B 0xB
1468 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1471 * MEM_CFG Register bit definitions
1473 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1474 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1475 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1476 #define RAM_SZ_2KB 0x00 /* 2 KB */
1477 #define RAM_SZ_4KB 0x04 /* 4 KB */
1478 #define RAM_SZ_8KB 0x08 /* 8 KB */
1479 #define RAM_SZ_16KB 0x0C /* 16 KB */
1480 #define RAM_SZ_32KB 0x10 /* 32 KB */
1481 #define RAM_SZ_64KB 0x14 /* 64 KB */
1484 * DMA_CFG0 Register bit definitions
1486 * This register is only accessible to the host.
1488 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1489 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1490 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1491 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1492 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1493 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1494 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1495 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1496 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1497 #define START_CTL 0x0C /* DMA start conditions */
1498 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1499 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1500 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1501 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1502 #define READ_CMD 0x03 /* Memory Read Method */
1503 #define READ_CMD_MR 0x00 /* Memory Read */
1504 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1505 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1508 * ASC-38C0800 RAM BIST Register bit definitions
1510 #define RAM_TEST_MODE 0x80
1511 #define PRE_TEST_MODE 0x40
1512 #define NORMAL_MODE 0x00
1513 #define RAM_TEST_DONE 0x10
1514 #define RAM_TEST_STATUS 0x0F
1515 #define RAM_TEST_HOST_ERROR 0x08
1516 #define RAM_TEST_INTRAM_ERROR 0x04
1517 #define RAM_TEST_RISC_ERROR 0x02
1518 #define RAM_TEST_SCSI_ERROR 0x01
1519 #define RAM_TEST_SUCCESS 0x00
1520 #define PRE_TEST_VALUE 0x05
1521 #define NORMAL_VALUE 0x00
1524 * ASC38C1600 Definitions
1526 * IOPB_PCI_INT_CFG Bit Field Definitions
1529 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1532 * Bit 1 can be set to change the interrupt for the Function to operate in
1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535 * mode, otherwise the operating mode is undefined.
1537 #define TOTEMPOLE 0x02
1540 * Bit 0 can be used to change the Int Pin for the Function. The value is
1541 * 0 by default for both Functions with Function 0 using INT A and Function
1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546 * value specified in the PCI Configuration Space.
1551 * Adv Library Status Definitions
1555 #define ADV_SUCCESS 1
1557 #define ADV_ERROR (-1)
1560 * ADV_DVC_VAR 'warn_code' values
1562 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1563 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1564 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1565 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1567 #define ADV_MAX_TID 15 /* max. target identifier */
1568 #define ADV_MAX_LUN 7 /* max. logical unit number */
1571 * Fixed locations of microcode operating variables.
1573 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1574 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1575 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1576 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1577 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1578 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1579 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1580 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1581 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1582 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1583 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1584 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1585 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1586 #define ASC_MC_CHIP_TYPE 0x009A
1587 #define ASC_MC_INTRB_CODE 0x009B
1588 #define ASC_MC_WDTR_ABLE 0x009C
1589 #define ASC_MC_SDTR_ABLE 0x009E
1590 #define ASC_MC_TAGQNG_ABLE 0x00A0
1591 #define ASC_MC_DISC_ENABLE 0x00A2
1592 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1593 #define ASC_MC_IDLE_CMD 0x00A6
1594 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1595 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1596 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1597 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1598 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1599 #define ASC_MC_SDTR_DONE 0x00B6
1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1601 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1603 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1604 #define ASC_MC_WDTR_DONE 0x0124
1605 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1606 #define ASC_MC_ICQ 0x0160
1607 #define ASC_MC_IRQ 0x0164
1608 #define ASC_MC_PPR_ABLE 0x017A
1611 * BIOS LRAM variable absolute offsets.
1613 #define BIOS_CODESEG 0x54
1614 #define BIOS_CODELEN 0x56
1615 #define BIOS_SIGNATURE 0x58
1616 #define BIOS_VERSION 0x5A
1619 * Microcode Control Flags
1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622 * and handled by the microcode.
1624 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1625 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1630 #define HSHK_CFG_WIDE_XFR 0x8000
1631 #define HSHK_CFG_RATE 0x0F00
1632 #define HSHK_CFG_OFFSET 0x001F
1634 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1635 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1636 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1637 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1639 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1640 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1641 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1642 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1643 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1645 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1646 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1647 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1648 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1649 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1654 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1655 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1658 * All fields here are accessed by the board microcode and need to be
1661 typedef struct adv_carr_t
{
1662 __le32 carr_va
; /* Carrier Virtual Address */
1663 __le32 carr_pa
; /* Carrier Physical Address */
1664 __le32 areq_vpa
; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1666 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1668 * next_vpa [3:1] Reserved Bits
1669 * next_vpa [0] Done Flag set in Response Queue.
1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1677 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0
1679 #define ADV_RQ_DONE 0x00000001
1680 #define ADV_RQ_GOOD 0x00000002
1681 #define ADV_CQ_STOPPER 0x00000000
1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1686 * Each carrier is 64 bytes, and we need three additional
1687 * carrier for icq, irq, and the termination carrier.
1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1691 #define ADV_CARRIER_BUFSIZE \
1692 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1694 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1695 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1696 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1699 * Adapter temporary configuration structure
1701 * This structure can be discarded after initialization. Don't add
1702 * fields here needed after initialization.
1704 * Field naming convention:
1706 * *_enable indicates the field enables or disables a feature. The
1707 * value of the field is never reset.
1709 typedef struct adv_dvc_cfg
{
1710 ushort disc_enable
; /* enable disconnection */
1711 uchar chip_version
; /* chip version */
1712 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713 ushort control_flag
; /* Microcode Control Flag */
1714 ushort mcode_date
; /* Microcode date */
1715 ushort mcode_version
; /* Microcode version */
1716 ushort serial1
; /* EEPROM serial number word 1 */
1717 ushort serial2
; /* EEPROM serial number word 2 */
1718 ushort serial3
; /* EEPROM serial number word 3 */
1722 struct adv_scsi_req_q
;
1724 typedef struct adv_sg_block
{
1728 uchar sg_cnt
; /* Valid entries in block. */
1729 __le32 sg_ptr
; /* Pointer to next sg block. */
1731 __le32 sg_addr
; /* SG element address. */
1732 __le32 sg_count
; /* SG element count. */
1733 } sg_list
[NO_OF_SG_PER_BLOCK
];
1737 * ADV_SCSI_REQ_Q - microcode request structure
1739 * All fields in this structure up to byte 60 are used by the microcode.
1740 * The microcode makes assumptions about the size and ordering of fields
1741 * in this structure. Do not change the structure definition here without
1742 * coordinating the change with the microcode.
1744 * All fields accessed by microcode must be maintained in little_endian
1747 typedef struct adv_scsi_req_q
{
1748 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1750 uchar target_id
; /* Device target identifier. */
1751 uchar target_lun
; /* Device target logical unit number. */
1752 __le32 data_addr
; /* Data buffer physical address. */
1753 __le32 data_cnt
; /* Data count. Ucode sets to residual. */
1758 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1760 uchar done_status
; /* Completion status. */
1761 uchar scsi_status
; /* SCSI status byte. */
1762 uchar host_status
; /* Ucode host status. */
1763 uchar sg_working_ix
;
1764 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1765 __le32 sg_real_addr
; /* SG list physical address. */
1767 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1771 * End of microcode structure - 60 bytes. The rest of the structure
1772 * is used by the Adv Library and ignored by the microcode.
1775 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1779 * The following two structures are used to process Wide Board requests.
1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784 * to the Mid-Level SCSI request structure.
1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788 * up to 255 scatter-gather elements may be used per request or
1791 * Both structures must be 32 byte aligned.
1793 typedef struct adv_sgblk
{
1794 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1795 dma_addr_t sg_addr
; /* Physical address */
1796 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1799 typedef struct adv_req
{
1800 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1801 uchar align
[24]; /* Request structure padding. */
1802 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1803 dma_addr_t req_addr
;
1804 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1805 } adv_req_t
__aligned(32);
1808 * Adapter operation variable structure.
1810 * One structure is required per host adapter.
1812 * Field naming convention:
1814 * *_able indicates both whether a feature should be enabled or disabled
1815 * and whether a device isi capable of the feature. At initialization
1816 * this field may be set, but later if a device is found to be incapable
1817 * of the feature, the field is cleared.
1819 typedef struct adv_dvc_var
{
1820 AdvPortAddr iop_base
; /* I/O port address */
1821 ushort err_code
; /* fatal error code */
1822 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1823 ushort wdtr_able
; /* try WDTR for a device */
1824 ushort sdtr_able
; /* try SDTR for a device */
1825 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1826 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1827 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1828 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1829 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1830 ushort tagqng_able
; /* try tagged queuing with a device */
1831 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1832 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1833 ushort start_motor
; /* start motor command allowed */
1834 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1835 uchar chip_no
; /* should be assigned by caller */
1836 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1837 ushort no_scam
; /* scam_tolerant of EEPROM */
1838 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1839 uchar chip_scsi_id
; /* chip SCSI target ID */
1841 uchar bist_err_code
;
1842 ADV_CARR_T
*carrier
;
1843 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1844 dma_addr_t carrier_addr
;
1845 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1846 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1847 ushort carr_pending_cnt
; /* Count of pending carriers. */
1849 * Note: The following fields will not be used after initialization. The
1850 * driver may discard the buffer after initialization is done.
1852 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1856 * Microcode idle loop commands
1858 #define IDLE_CMD_COMPLETED 0
1859 #define IDLE_CMD_STOP_CHIP 0x0001
1860 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1861 #define IDLE_CMD_SEND_INT 0x0004
1862 #define IDLE_CMD_ABORT 0x0008
1863 #define IDLE_CMD_DEVICE_RESET 0x0010
1864 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1865 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1866 #define IDLE_CMD_SCSIREQ 0x0080
1868 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1869 #define IDLE_CMD_STATUS_FAILURE 0x0002
1872 * AdvSendIdleCmd() flag definitions.
1874 #define ADV_NOWAIT 0x01
1877 * Wait loop time out values.
1879 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1880 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1881 #define SCSI_MAX_RETRY 10 /* retry count */
1883 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1888 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1890 /* Read byte from a register. */
1891 #define AdvReadByteRegister(iop_base, reg_off) \
1892 (ADV_MEM_READB((iop_base) + (reg_off)))
1894 /* Write byte to a register. */
1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1898 /* Read word (2 bytes) from a register. */
1899 #define AdvReadWordRegister(iop_base, reg_off) \
1900 (ADV_MEM_READW((iop_base) + (reg_off)))
1902 /* Write word (2 bytes) to a register. */
1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1904 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1906 /* Write dword (4 bytes) to a register. */
1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1910 /* Read byte from LRAM. */
1911 #define AdvReadByteLram(iop_base, addr, byte) \
1913 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1917 /* Write byte to LRAM. */
1918 #define AdvWriteByteLram(iop_base, addr, byte) \
1919 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1922 /* Read word (2 bytes) from LRAM. */
1923 #define AdvReadWordLram(iop_base, addr, word) \
1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1929 /* Write word (2 bytes) to LRAM. */
1930 #define AdvWriteWordLram(iop_base, addr, word) \
1931 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1934 /* Write little-endian double word (4 bytes) to LRAM */
1935 /* Because of unspecified C language ordering don't use auto-increment. */
1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945 #define AdvReadWordAutoIncLram(iop_base) \
1946 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949 #define AdvWriteWordAutoIncLram(iop_base, word) \
1950 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1953 * Define macro to check for Condor signature.
1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1958 #define AdvFindSignature(iop_base) \
1959 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960 ADV_CHIP_ID_BYTE) && \
1961 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
1965 * Define macro to Return the version number of the chip at 'iop_base'.
1967 * The second parameter 'bus_type' is currently unused.
1969 #define AdvGetChipVersion(iop_base, bus_type) \
1970 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1976 * If the request has not yet been sent to the device it will simply be
1977 * aborted from RISC memory. If the request is disconnected it will be
1978 * aborted on reselection by sending an Abort Message to the target ID.
1981 * ADV_TRUE(1) - Queue was successfully aborted.
1982 * ADV_FALSE(0) - Queue was not found on the active queue list.
1984 #define AdvAbortQueue(asc_dvc, srb_tag) \
1985 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986 (ADV_DCNT) (srb_tag))
1989 * Send a Bus Device Reset Message to the specified target ID.
1991 * All outstanding commands will be purged if sending the
1992 * Bus Device Reset Message is successful.
1995 * ADV_TRUE(1) - All requests on the target are purged.
1996 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1999 #define AdvResetDevice(asc_dvc, target_id) \
2000 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2001 (ADV_DCNT) (target_id))
2004 * SCSI Wide Type definition.
2006 #define ADV_SCSI_BIT_ID_TYPE ushort
2009 * AdvInitScsiTarget() 'cntl_flag' options.
2011 #define ADV_SCAN_LUN 0x01
2012 #define ADV_CAPINFO_NOLUN 0x02
2015 * Convert target id to target id bit mask.
2017 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2023 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2024 #define QD_NO_ERROR 0x01
2025 #define QD_ABORTED_BY_HOST 0x02
2026 #define QD_WITH_ERROR 0x04
2028 #define QHSTA_NO_ERROR 0x00
2029 #define QHSTA_M_SEL_TIMEOUT 0x11
2030 #define QHSTA_M_DATA_OVER_RUN 0x12
2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032 #define QHSTA_M_QUEUE_ABORTED 0x15
2033 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2034 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2035 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2036 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2037 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2038 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2039 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2042 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2044 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2046 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2047 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2048 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2049 #define QHSTA_M_WTM_TIMEOUT 0x41
2050 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2051 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2054 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2055 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2061 * Total contiguous memory needed for driver SG blocks.
2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064 * number of scatter-gather elements the driver supports in a
2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2069 (sizeof(ADV_SG_BLOCK) * \
2070 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2072 /* struct asc_board flags */
2073 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2077 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2079 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2081 /* Asc Library return codes */
2084 #define ASC_NOERROR 1
2086 #define ASC_ERROR (-1)
2088 /* struct scsi_cmnd function return codes */
2089 #define STATUS_BYTE(byte) (byte)
2090 #define MSG_BYTE(byte) ((byte) << 8)
2091 #define HOST_BYTE(byte) ((byte) << 16)
2092 #define DRIVER_BYTE(byte) ((byte) << 24)
2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095 #ifndef ADVANSYS_STATS
2096 #define ASC_STATS_ADD(shost, counter, count)
2097 #else /* ADVANSYS_STATS */
2098 #define ASC_STATS_ADD(shost, counter, count) \
2099 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100 #endif /* ADVANSYS_STATS */
2102 /* If the result wraps when calculating tenths, return 0. */
2103 #define ASC_TENTHS(num, den) \
2104 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2108 * Display a message to the console.
2110 #define ASC_PRINT(s) \
2112 printk("advansys: "); \
2116 #define ASC_PRINT1(s, a1) \
2118 printk("advansys: "); \
2119 printk((s), (a1)); \
2122 #define ASC_PRINT2(s, a1, a2) \
2124 printk("advansys: "); \
2125 printk((s), (a1), (a2)); \
2128 #define ASC_PRINT3(s, a1, a2, a3) \
2130 printk("advansys: "); \
2131 printk((s), (a1), (a2), (a3)); \
2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2136 printk("advansys: "); \
2137 printk((s), (a1), (a2), (a3), (a4)); \
2140 #ifndef ADVANSYS_DEBUG
2142 #define ASC_DBG(lvl, s...)
2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2153 #else /* ADVANSYS_DEBUG */
2156 * Debugging Message Levels:
2158 * 1: High-Level Tracing
2159 * 2-N: Verbose Tracing
2162 #define ASC_DBG(lvl, format, arg...) { \
2163 if (asc_dbglvl >= (lvl)) \
2164 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2165 __func__ , ## arg); \
2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2170 if (asc_dbglvl >= (lvl)) { \
2171 asc_prt_scsi_host(s); \
2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2177 if (asc_dbglvl >= (lvl)) { \
2178 asc_prt_asc_scsi_q(scsiqp); \
2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2184 if (asc_dbglvl >= (lvl)) { \
2185 asc_prt_asc_qdone_info(qdone); \
2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2191 if (asc_dbglvl >= (lvl)) { \
2192 asc_prt_adv_scsi_req_q(scsiqp); \
2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2198 if (asc_dbglvl >= (lvl)) { \
2199 asc_prt_hex((name), (start), (length)); \
2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211 #endif /* ADVANSYS_DEBUG */
2213 #ifdef ADVANSYS_STATS
2215 /* Per board statistics structure */
2217 /* Driver Entrypoint Statistics */
2218 unsigned int queuecommand
; /* # calls to advansys_queuecommand() */
2219 unsigned int reset
; /* # calls to advansys_eh_bus_reset() */
2220 unsigned int biosparam
; /* # calls to advansys_biosparam() */
2221 unsigned int interrupt
; /* # advansys_interrupt() calls */
2222 unsigned int callback
; /* # calls to asc/adv_isr_callback() */
2223 unsigned int done
; /* # calls to request's scsi_done function */
2224 unsigned int build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2225 unsigned int adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2226 unsigned int adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2227 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228 unsigned int exe_noerror
; /* # ASC_NOERROR returns. */
2229 unsigned int exe_busy
; /* # ASC_BUSY returns. */
2230 unsigned int exe_error
; /* # ASC_ERROR returns. */
2231 unsigned int exe_unknown
; /* # unknown returns. */
2232 /* Data Transfer Statistics */
2233 unsigned int xfer_cnt
; /* # I/O requests received */
2234 unsigned int xfer_elem
; /* # scatter-gather elements */
2235 unsigned int xfer_sect
; /* # 512-byte blocks */
2237 #endif /* ADVANSYS_STATS */
2240 * Structure allocated for each board.
2242 * This structure is allocated by scsi_host_alloc() at the end
2243 * of the 'Scsi_Host' structure starting at the 'hostdata'
2244 * field. It is guaranteed to be allocated from DMA-able memory.
2248 struct Scsi_Host
*shost
;
2249 uint flags
; /* Board flags */
2252 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2253 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2256 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2257 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2259 ushort asc_n_io_port
; /* Number I/O ports. */
2260 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2261 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2262 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2263 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2265 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2266 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2267 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2268 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2270 /* /proc/scsi/advansys/[0...] */
2271 #ifdef ADVANSYS_STATS
2272 struct asc_stats asc_stats
; /* Board statistics */
2273 #endif /* ADVANSYS_STATS */
2275 * The following fields are used only for Narrow Boards.
2277 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2279 * The following fields are used only for Wide Boards.
2281 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2282 ushort ioport
; /* I/O Port address. */
2283 adv_req_t
*adv_reqp
; /* Request structures. */
2284 dma_addr_t adv_reqp_addr
;
2285 size_t adv_reqp_size
;
2286 struct dma_pool
*adv_sgblk_pool
; /* Scatter-gather structures. */
2287 ushort bios_signature
; /* BIOS Signature. */
2288 ushort bios_version
; /* BIOS Version. */
2289 ushort bios_codeseg
; /* BIOS Code Segment. */
2290 ushort bios_codelen
; /* BIOS Code Segment Length. */
2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294 dvc_var.asc_dvc_var)
2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296 dvc_var.adv_dvc_var)
2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2299 #ifdef ADVANSYS_DEBUG
2300 static int asc_dbglvl
= 3;
2303 * asc_prt_asc_dvc_var()
2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2307 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2309 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2312 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2313 (unsigned)h
->init_sdtr
);
2315 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2317 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2318 (unsigned)h
->chip_no
);
2320 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2322 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2324 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2326 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2327 (unsigned)h
->in_critical_cnt
);
2329 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2331 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2332 (unsigned)h
->pci_fix_asyn_xfer
);
2334 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2338 * asc_prt_asc_dvc_cfg()
2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2342 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2344 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2346 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347 h
->disc_enable
, h
->sdtr_enable
);
2349 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2351 h
->isa_dma_channel
, h
->chip_version
);
2353 printk(" mcode_date 0x%x, mcode_version %d\n",
2354 h
->mcode_date
, h
->mcode_version
);
2358 * asc_prt_adv_dvc_var()
2360 * Display an ADV_DVC_VAR structure.
2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2364 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2366 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2369 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2370 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2372 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2375 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2379 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h
->icq_sp
, h
->irq_sp
);
2381 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2382 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2384 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2385 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2389 * asc_prt_adv_dvc_cfg()
2391 * Display an ADV_DVC_CFG structure.
2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2395 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2397 printk(" disc_enable 0x%x, termination 0x%x\n",
2398 h
->disc_enable
, h
->termination
);
2400 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2401 h
->chip_version
, h
->mcode_date
);
2403 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2404 h
->mcode_version
, h
->control_flag
);
2408 * asc_prt_scsi_host()
2410 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2412 struct asc_board
*boardp
= shost_priv(s
);
2414 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2415 printk(" host_busy %d, host_no %d,\n",
2416 scsi_host_busy(s
), s
->host_no
);
2418 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2421 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2424 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2427 if (ASC_NARROW_BOARD(boardp
)) {
2428 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2429 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2431 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2432 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2439 * Print hexadecimal output in 4 byte groupings 32 bytes
2440 * or 8 double-words per line.
2442 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2449 printk("%s: (%d bytes)\n", f
, l
);
2451 for (i
= 0; i
< l
; i
+= 32) {
2453 /* Display a maximum of 8 double-words per line. */
2454 if ((k
= (l
- i
) / 4) >= 8) {
2461 for (j
= 0; j
< k
; j
++) {
2462 printk(" %2.2X%2.2X%2.2X%2.2X",
2463 (unsigned)s
[i
+ (j
* 4)],
2464 (unsigned)s
[i
+ (j
* 4) + 1],
2465 (unsigned)s
[i
+ (j
* 4) + 2],
2466 (unsigned)s
[i
+ (j
* 4) + 3]);
2474 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2477 printk(" %2.2X%2.2X",
2478 (unsigned)s
[i
+ (j
* 4)],
2479 (unsigned)s
[i
+ (j
* 4) + 1]);
2482 printk(" %2.2X%2.2X%2.2X",
2483 (unsigned)s
[i
+ (j
* 4) + 1],
2484 (unsigned)s
[i
+ (j
* 4) + 2],
2485 (unsigned)s
[i
+ (j
* 4) + 3]);
2494 * asc_prt_asc_scsi_q()
2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2501 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2504 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505 q
->q2
.target_ix
, q
->q1
.target_lun
, q
->q2
.srb_tag
,
2509 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2511 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2512 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2514 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2516 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2520 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2521 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2523 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2524 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2526 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2533 * asc_prt_asc_qdone_info()
2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2537 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2538 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539 q
->d2
.srb_tag
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2542 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2547 * asc_prt_adv_sgblock()
2549 * Display an ADV_SG_BLOCK structure.
2551 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2555 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556 (ulong
)b
, sgblockno
);
2557 printk(" sg_cnt %u, sg_ptr 0x%x\n",
2558 b
->sg_cnt
, (u32
)le32_to_cpu(b
->sg_ptr
));
2559 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2561 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2562 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2563 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564 i
, (u32
)le32_to_cpu(b
->sg_list
[i
].sg_addr
),
2565 (u32
)le32_to_cpu(b
->sg_list
[i
].sg_count
));
2570 * asc_prt_adv_scsi_req_q()
2572 * Display an ADV_SCSI_REQ_Q structure.
2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2577 struct adv_sg_block
*sg_ptr
;
2578 adv_sgblk_t
*sgblkp
;
2580 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2582 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
2583 q
->target_id
, q
->target_lun
, q
->srb_tag
);
2585 printk(" cntl 0x%x, data_addr 0x%lx\n",
2586 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
));
2588 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589 (ulong
)le32_to_cpu(q
->data_cnt
),
2590 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2593 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2596 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2597 q
->sg_working_ix
, q
->target_cmd
);
2599 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2601 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2603 /* Display the request's ADV_SG_BLOCK structures. */
2604 if (q
->sg_list_ptr
!= NULL
) {
2605 sgblkp
= container_of(q
->sg_list_ptr
, adv_sgblk_t
, sg_block
);
2608 sg_ptr
= &sgblkp
->sg_block
;
2609 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2610 if (sg_ptr
->sg_ptr
== 0) {
2613 sgblkp
= sgblkp
->next_sgblkp
;
2618 #endif /* ADVANSYS_DEBUG */
2623 * Return suitable for printing on the console with the argument
2624 * adapter's configuration information.
2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627 * otherwise the static 'info' array will be overrun.
2629 static const char *advansys_info(struct Scsi_Host
*shost
)
2631 static char info
[ASC_INFO_SIZE
];
2632 struct asc_board
*boardp
= shost_priv(shost
);
2633 ASC_DVC_VAR
*asc_dvc_varp
;
2634 ADV_DVC_VAR
*adv_dvc_varp
;
2636 char *widename
= NULL
;
2638 if (ASC_NARROW_BOARD(boardp
)) {
2639 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2640 ASC_DBG(1, "begin\n");
2641 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2642 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2644 busname
= "ISA PnP";
2649 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650 ASC_VERSION
, busname
,
2651 (ulong
)shost
->io_port
,
2652 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2653 boardp
->irq
, shost
->dma_channel
);
2655 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2657 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2659 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2660 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2661 == ASC_IS_PCI_ULTRA
) {
2662 busname
= "PCI Ultra";
2668 shost_printk(KERN_ERR
, shost
, "unknown bus "
2669 "type %d\n", asc_dvc_varp
->bus_type
);
2672 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2674 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2679 * Wide Adapter Information
2681 * Memory-mapped I/O is used instead of I/O space to access
2682 * the adapter, but display the I/O Port range. The Memory
2683 * I/O address is displayed through the driver /proc file.
2685 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2686 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2687 widename
= "Ultra-Wide";
2688 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2689 widename
= "Ultra2-Wide";
2691 widename
= "Ultra3-Wide";
2694 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2696 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2698 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2699 ASC_DBG(1, "end\n");
2703 #ifdef CONFIG_PROC_FS
2706 * asc_prt_board_devices()
2708 * Print driver information for devices attached to the board.
2710 static void asc_prt_board_devices(struct seq_file
*m
, struct Scsi_Host
*shost
)
2712 struct asc_board
*boardp
= shost_priv(shost
);
2717 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2720 if (ASC_NARROW_BOARD(boardp
)) {
2721 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2723 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2726 seq_puts(m
, "Target IDs Detected:");
2727 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2728 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
))
2729 seq_printf(m
, " %X,", i
);
2731 seq_printf(m
, " (%X=Host Adapter)\n", chip_scsi_id
);
2735 * Display Wide Board BIOS Information.
2737 static void asc_prt_adv_bios(struct seq_file
*m
, struct Scsi_Host
*shost
)
2739 struct asc_board
*boardp
= shost_priv(shost
);
2740 ushort major
, minor
, letter
;
2742 seq_puts(m
, "\nROM BIOS Version: ");
2745 * If the BIOS saved a valid signature, then fill in
2746 * the BIOS code segment base address.
2748 if (boardp
->bios_signature
!= 0x55AA) {
2749 seq_puts(m
, "Disabled or Pre-3.1\n"
2750 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2753 major
= (boardp
->bios_version
>> 12) & 0xF;
2754 minor
= (boardp
->bios_version
>> 8) & 0xF;
2755 letter
= (boardp
->bios_version
& 0xFF);
2757 seq_printf(m
, "%d.%d%c\n",
2759 letter
>= 26 ? '?' : letter
+ 'A');
2761 * Current available ROM BIOS release is 3.1I for UW
2762 * and 3.2I for U2W. This code doesn't differentiate
2763 * UW and U2W boards.
2765 if (major
< 3 || (major
<= 3 && minor
< 1) ||
2766 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
2767 seq_puts(m
, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768 "ftp://ftp.connectcom.net/pub\n");
2774 * Add serial number to information bar if signature AAh
2775 * is found in at bit 15-9 (7 bits) of word 1.
2777 * Serial Number consists fo 12 alpha-numeric digits.
2779 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2780 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2781 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2782 * 5 - Product revision (A-J) Word0: " "
2784 * Signature Word1: 15-9 (7 bits)
2785 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2788 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2790 * Note 1: Only production cards will have a serial number.
2792 * Note 2: Signature is most significant 7 bits (0xFE).
2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2796 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
2800 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
2804 * First word - 6 digits.
2808 /* Product type - 1st digit. */
2809 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
2810 /* Product type is P=Prototype */
2815 /* Manufacturing location - 2nd digit. */
2816 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
2818 /* Product ID - 3rd, 4th digits. */
2820 *cp
++ = '0' + (num
/ 100);
2822 *cp
++ = '0' + (num
/ 10);
2824 /* Product revision - 5th digit. */
2825 *cp
++ = 'A' + (num
% 10);
2835 * If bit 15 of third word is set, then the
2836 * last digit of the year is greater than 7.
2838 if (serialnum
[2] & 0x8000) {
2839 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
2841 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
2844 /* Week of year - 7th, 8th digits. */
2846 *cp
++ = '0' + num
/ 10;
2853 w
= serialnum
[2] & 0x7FFF;
2855 /* Serial number - 9th digit. */
2856 *cp
++ = 'A' + (w
/ 1000);
2858 /* 10th, 11th, 12th digits. */
2860 *cp
++ = '0' + num
/ 100;
2862 *cp
++ = '0' + num
/ 10;
2866 *cp
= '\0'; /* Null Terminate the string. */
2872 * asc_prt_asc_board_eeprom()
2874 * Print board EEPROM configuration.
2876 static void asc_prt_asc_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
2878 struct asc_board
*boardp
= shost_priv(shost
);
2881 uchar serialstr
[13];
2883 ASC_DVC_VAR
*asc_dvc_varp
;
2884 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2886 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2887 #endif /* CONFIG_ISA */
2888 ep
= &boardp
->eep_config
.asc_eep
;
2891 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2894 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
2896 seq_printf(m
, " Serial Number: %s\n", serialstr
);
2897 else if (ep
->adapter_info
[5] == 0xBB)
2899 " Default Settings Used for EEPROM-less Adapter.\n");
2901 seq_puts(m
, " Serial Number Signature Not Present.\n");
2904 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
2909 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
2911 seq_puts(m
, " Target ID: ");
2912 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2913 seq_printf(m
, " %d", i
);
2915 seq_puts(m
, "\n Disconnects: ");
2916 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2917 seq_printf(m
, " %c",
2918 (ep
->disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2920 seq_puts(m
, "\n Command Queuing: ");
2921 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2922 seq_printf(m
, " %c",
2923 (ep
->use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2925 seq_puts(m
, "\n Start Motor: ");
2926 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2927 seq_printf(m
, " %c",
2928 (ep
->start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2930 seq_puts(m
, "\n Synchronous Transfer:");
2931 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2932 seq_printf(m
, " %c",
2933 (ep
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2937 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2939 " Host ISA DMA speed: %d MB/S\n",
2940 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
2942 #endif /* CONFIG_ISA */
2946 * asc_prt_adv_board_eeprom()
2948 * Print board EEPROM configuration.
2950 static void asc_prt_adv_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
2952 struct asc_board
*boardp
= shost_priv(shost
);
2953 ADV_DVC_VAR
*adv_dvc_varp
;
2956 uchar serialstr
[13];
2957 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
2958 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
2959 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
2962 ushort sdtr_speed
= 0;
2964 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2965 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2966 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
2967 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2968 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
2970 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
2974 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2977 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2978 wordp
= &ep_3550
->serial_number_word1
;
2979 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2980 wordp
= &ep_38C0800
->serial_number_word1
;
2982 wordp
= &ep_38C1600
->serial_number_word1
;
2985 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
)
2986 seq_printf(m
, " Serial Number: %s\n", serialstr
);
2988 seq_puts(m
, " Serial Number Signature Not Present.\n");
2990 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
2992 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993 ep_3550
->adapter_scsi_id
,
2994 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
2995 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
2997 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998 ep_38C0800
->adapter_scsi_id
,
2999 ep_38C0800
->max_host_qng
,
3000 ep_38C0800
->max_dvc_qng
);
3003 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004 ep_38C1600
->adapter_scsi_id
,
3005 ep_38C1600
->max_host_qng
,
3006 ep_38C1600
->max_dvc_qng
);
3007 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3008 word
= ep_3550
->termination
;
3009 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3010 word
= ep_38C0800
->termination_lvd
;
3012 word
= ep_38C1600
->termination_lvd
;
3016 termstr
= "Low Off/High Off";
3019 termstr
= "Low Off/High On";
3022 termstr
= "Low On/High On";
3026 termstr
= "Automatic";
3030 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
3032 " termination: %u (%s), bios_ctrl: 0x%x\n",
3033 ep_3550
->termination
, termstr
,
3034 ep_3550
->bios_ctrl
);
3035 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
3037 " termination: %u (%s), bios_ctrl: 0x%x\n",
3038 ep_38C0800
->termination_lvd
, termstr
,
3039 ep_38C0800
->bios_ctrl
);
3042 " termination: %u (%s), bios_ctrl: 0x%x\n",
3043 ep_38C1600
->termination_lvd
, termstr
,
3044 ep_38C1600
->bios_ctrl
);
3046 seq_puts(m
, " Target ID: ");
3047 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3048 seq_printf(m
, " %X", i
);
3051 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3052 word
= ep_3550
->disc_enable
;
3053 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3054 word
= ep_38C0800
->disc_enable
;
3056 word
= ep_38C1600
->disc_enable
;
3058 seq_puts(m
, " Disconnects: ");
3059 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3060 seq_printf(m
, " %c",
3061 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3064 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3065 word
= ep_3550
->tagqng_able
;
3066 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3067 word
= ep_38C0800
->tagqng_able
;
3069 word
= ep_38C1600
->tagqng_able
;
3071 seq_puts(m
, " Command Queuing: ");
3072 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3073 seq_printf(m
, " %c",
3074 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3077 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3078 word
= ep_3550
->start_motor
;
3079 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3080 word
= ep_38C0800
->start_motor
;
3082 word
= ep_38C1600
->start_motor
;
3084 seq_puts(m
, " Start Motor: ");
3085 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3086 seq_printf(m
, " %c",
3087 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3090 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3091 seq_puts(m
, " Synchronous Transfer:");
3092 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3093 seq_printf(m
, " %c",
3094 (ep_3550
->sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3099 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3100 seq_puts(m
, " Ultra Transfer: ");
3101 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3102 seq_printf(m
, " %c",
3103 (ep_3550
->ultra_able
& ADV_TID_TO_TIDMASK(i
))
3108 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3109 word
= ep_3550
->wdtr_able
;
3110 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3111 word
= ep_38C0800
->wdtr_able
;
3113 word
= ep_38C1600
->wdtr_able
;
3115 seq_puts(m
, " Wide Transfer: ");
3116 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3117 seq_printf(m
, " %c",
3118 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3121 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3122 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3123 seq_puts(m
, " Synchronous Transfer Speed (Mhz):\n ");
3124 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3128 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3129 } else if (i
== 4) {
3130 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3131 } else if (i
== 8) {
3132 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3133 } else if (i
== 12) {
3134 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3136 switch (sdtr_speed
& ADV_MAX_TID
) {
3159 seq_printf(m
, "%X:%s ", i
, speed_str
);
3169 * asc_prt_driver_conf()
3171 static void asc_prt_driver_conf(struct seq_file
*m
, struct Scsi_Host
*shost
)
3173 struct asc_board
*boardp
= shost_priv(shost
);
3176 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3180 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3181 scsi_host_busy(shost
), shost
->max_id
,
3182 shost
->max_lun
, shost
->max_channel
);
3185 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3186 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3187 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3190 " unchecked_isa_dma %d\n",
3191 shost
->unchecked_isa_dma
);
3194 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3195 boardp
->flags
, shost
->last_reset
, jiffies
,
3196 boardp
->asc_n_io_port
);
3198 seq_printf(m
, " io_port 0x%lx\n", shost
->io_port
);
3202 * asc_prt_asc_board_info()
3204 * Print dynamic board configuration information.
3206 static void asc_prt_asc_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3208 struct asc_board
*boardp
= shost_priv(shost
);
3213 int renegotiate
= 0;
3215 v
= &boardp
->dvc_var
.asc_dvc_var
;
3216 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3217 chip_scsi_id
= c
->chip_scsi_id
;
3220 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3223 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3224 "mcode_version 0x%x, err_code %u\n",
3225 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3228 /* Current number of commands waiting for the host. */
3230 " Total Command Pending: %d\n", v
->cur_total_qng
);
3232 seq_puts(m
, " Command Queuing:");
3233 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3234 if ((chip_scsi_id
== i
) ||
3235 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3238 seq_printf(m
, " %X:%c",
3240 (v
->use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3243 /* Current number of commands waiting for a device. */
3244 seq_puts(m
, "\n Command Queue Pending:");
3245 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3246 if ((chip_scsi_id
== i
) ||
3247 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3250 seq_printf(m
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3253 /* Current limit on number of commands that can be sent to a device. */
3254 seq_puts(m
, "\n Command Queue Limit:");
3255 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3256 if ((chip_scsi_id
== i
) ||
3257 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3260 seq_printf(m
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3263 /* Indicate whether the device has returned queue full status. */
3264 seq_puts(m
, "\n Command Queue Full:");
3265 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3266 if ((chip_scsi_id
== i
) ||
3267 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3270 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
))
3271 seq_printf(m
, " %X:Y-%d",
3272 i
, boardp
->queue_full_cnt
[i
]);
3274 seq_printf(m
, " %X:N", i
);
3277 seq_puts(m
, "\n Synchronous Transfer:");
3278 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3279 if ((chip_scsi_id
== i
) ||
3280 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3283 seq_printf(m
, " %X:%c",
3285 (v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3289 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3290 uchar syn_period_ix
;
3292 if ((chip_scsi_id
== i
) ||
3293 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3294 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3298 seq_printf(m
, " %X:", i
);
3300 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3301 seq_puts(m
, " Asynchronous");
3304 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3308 " Transfer Period Factor: %d (%d.%d Mhz),",
3309 v
->sdtr_period_tbl
[syn_period_ix
],
3310 250 / v
->sdtr_period_tbl
[syn_period_ix
],
3312 v
->sdtr_period_tbl
[syn_period_ix
]));
3314 seq_printf(m
, " REQ/ACK Offset: %d",
3315 boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3318 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3327 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3332 * asc_prt_adv_board_info()
3334 * Print dynamic board configuration information.
3336 static void asc_prt_adv_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3338 struct asc_board
*boardp
= shost_priv(shost
);
3342 AdvPortAddr iop_base
;
3343 ushort chip_scsi_id
;
3347 ushort sdtr_able
, wdtr_able
;
3348 ushort wdtr_done
, sdtr_done
;
3350 int renegotiate
= 0;
3352 v
= &boardp
->dvc_var
.adv_dvc_var
;
3353 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3354 iop_base
= v
->iop_base
;
3355 chip_scsi_id
= v
->chip_scsi_id
;
3358 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3362 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3363 (unsigned long)v
->iop_base
,
3364 AdvReadWordRegister(iop_base
,IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3367 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3368 "mcode_version 0x%x\n", c
->chip_version
,
3369 c
->mcode_date
, c
->mcode_version
);
3371 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3372 seq_puts(m
, " Queuing Enabled:");
3373 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3374 if ((chip_scsi_id
== i
) ||
3375 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3379 seq_printf(m
, " %X:%c",
3381 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3384 seq_puts(m
, "\n Queue Limit:");
3385 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3386 if ((chip_scsi_id
== i
) ||
3387 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3391 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3394 seq_printf(m
, " %X:%d", i
, lrambyte
);
3397 seq_puts(m
, "\n Command Pending:");
3398 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3399 if ((chip_scsi_id
== i
) ||
3400 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3404 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3407 seq_printf(m
, " %X:%d", i
, lrambyte
);
3411 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3412 seq_puts(m
, " Wide Enabled:");
3413 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3414 if ((chip_scsi_id
== i
) ||
3415 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3419 seq_printf(m
, " %X:%c",
3421 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3425 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3426 seq_puts(m
, " Transfer Bit Width:");
3427 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3428 if ((chip_scsi_id
== i
) ||
3429 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3433 AdvReadWordLram(iop_base
,
3434 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3437 seq_printf(m
, " %X:%d",
3438 i
, (lramword
& 0x8000) ? 16 : 8);
3440 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3441 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3448 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3449 seq_puts(m
, " Synchronous Enabled:");
3450 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3451 if ((chip_scsi_id
== i
) ||
3452 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3456 seq_printf(m
, " %X:%c",
3458 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3462 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3463 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3465 AdvReadWordLram(iop_base
,
3466 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3468 lramword
&= ~0x8000;
3470 if ((chip_scsi_id
== i
) ||
3471 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3472 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3476 seq_printf(m
, " %X:", i
);
3478 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3479 seq_puts(m
, " Asynchronous");
3481 seq_puts(m
, " Transfer Period Factor: ");
3483 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3484 seq_puts(m
, "9 (80.0 Mhz),");
3485 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3486 seq_puts(m
, "10 (40.0 Mhz),");
3487 } else { /* 20 Mhz or below. */
3489 period
= (((lramword
>> 8) * 25) + 50) / 4;
3491 if (period
== 0) { /* Should never happen. */
3492 seq_printf(m
, "%d (? Mhz), ", period
);
3496 period
, 250 / period
,
3497 ASC_TENTHS(250, period
));
3501 seq_printf(m
, " REQ/ACK Offset: %d",
3505 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3514 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3518 #ifdef ADVANSYS_STATS
3520 * asc_prt_board_stats()
3522 static void asc_prt_board_stats(struct seq_file
*m
, struct Scsi_Host
*shost
)
3524 struct asc_board
*boardp
= shost_priv(shost
);
3525 struct asc_stats
*s
= &boardp
->asc_stats
;
3528 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3532 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3533 s
->queuecommand
, s
->reset
, s
->biosparam
,
3537 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3538 s
->callback
, s
->done
, s
->build_error
,
3539 s
->adv_build_noreq
, s
->adv_build_nosg
);
3542 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3543 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
3547 * Display data transfer statistics.
3549 if (s
->xfer_cnt
> 0) {
3550 seq_printf(m
, " xfer_cnt %u, xfer_elem %u, ",
3551 s
->xfer_cnt
, s
->xfer_elem
);
3553 seq_printf(m
, "xfer_bytes %u.%01u kb\n",
3554 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
3556 /* Scatter gather transfer statistics */
3557 seq_printf(m
, " avg_num_elem %u.%01u, ",
3558 s
->xfer_elem
/ s
->xfer_cnt
,
3559 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
3561 seq_printf(m
, "avg_elem_size %u.%01u kb, ",
3562 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
3563 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
3565 seq_printf(m
, "avg_xfer_size %u.%01u kb\n",
3566 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
3567 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
3570 #endif /* ADVANSYS_STATS */
3573 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3575 * m: seq_file to print into
3578 * Return the number of bytes read from or written to a
3579 * /proc/scsi/advansys/[0...] file.
3582 advansys_show_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3584 struct asc_board
*boardp
= shost_priv(shost
);
3586 ASC_DBG(1, "begin\n");
3589 * User read of /proc/scsi/advansys/[0...] file.
3593 * Get board configuration information.
3595 * advansys_info() returns the board string from its own static buffer.
3597 /* Copy board information. */
3598 seq_printf(m
, "%s\n", (char *)advansys_info(shost
));
3600 * Display Wide Board BIOS Information.
3602 if (!ASC_NARROW_BOARD(boardp
))
3603 asc_prt_adv_bios(m
, shost
);
3606 * Display driver information for each device attached to the board.
3608 asc_prt_board_devices(m
, shost
);
3611 * Display EEPROM configuration for the board.
3613 if (ASC_NARROW_BOARD(boardp
))
3614 asc_prt_asc_board_eeprom(m
, shost
);
3616 asc_prt_adv_board_eeprom(m
, shost
);
3619 * Display driver configuration and information for the board.
3621 asc_prt_driver_conf(m
, shost
);
3623 #ifdef ADVANSYS_STATS
3625 * Display driver statistics for the board.
3627 asc_prt_board_stats(m
, shost
);
3628 #endif /* ADVANSYS_STATS */
3631 * Display Asc Library dynamic configuration information
3634 if (ASC_NARROW_BOARD(boardp
))
3635 asc_prt_asc_board_info(m
, shost
);
3637 asc_prt_adv_board_info(m
, shost
);
3640 #endif /* CONFIG_PROC_FS */
3642 static void asc_scsi_done(struct scsi_cmnd
*scp
)
3644 scsi_dma_unmap(scp
);
3645 ASC_STATS(scp
->device
->host
, done
);
3646 scp
->scsi_done(scp
);
3649 static void AscSetBank(PortAddr iop_base
, uchar bank
)
3653 val
= AscGetChipControl(iop_base
) &
3655 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
3659 } else if (bank
== 2) {
3660 val
|= CC_DIAG
| CC_BANK_ONE
;
3662 val
&= ~CC_BANK_ONE
;
3664 AscSetChipControl(iop_base
, val
);
3667 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
3669 AscSetBank(iop_base
, 1);
3670 AscWriteChipIH(iop_base
, ins_code
);
3671 AscSetBank(iop_base
, 0);
3674 static int AscStartChip(PortAddr iop_base
)
3676 AscSetChipControl(iop_base
, 0);
3677 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3683 static bool AscStopChip(PortAddr iop_base
)
3688 AscGetChipControl(iop_base
) &
3689 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
3690 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
3691 AscSetChipIH(iop_base
, INS_HALT
);
3692 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3693 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
3699 static bool AscIsChipHalted(PortAddr iop_base
)
3701 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3702 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
3709 static bool AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
3714 iop_base
= asc_dvc
->iop_base
;
3715 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
3719 AscStopChip(iop_base
);
3720 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
3722 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3723 AscSetChipIH(iop_base
, INS_HALT
);
3724 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
3725 AscSetChipControl(iop_base
, CC_HALT
);
3727 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
3728 AscSetChipStatus(iop_base
, 0);
3729 return (AscIsChipHalted(iop_base
));
3732 static int AscFindSignature(PortAddr iop_base
)
3736 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3737 iop_base
, AscGetChipSignatureByte(iop_base
));
3738 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
3739 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3740 iop_base
, AscGetChipSignatureWord(iop_base
));
3741 sig_word
= AscGetChipSignatureWord(iop_base
);
3742 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
3743 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
3750 static void AscEnableInterrupt(PortAddr iop_base
)
3754 cfg
= AscGetChipCfgLsw(iop_base
);
3755 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
3758 static void AscDisableInterrupt(PortAddr iop_base
)
3762 cfg
= AscGetChipCfgLsw(iop_base
);
3763 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
3766 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
3768 unsigned char byte_data
;
3769 unsigned short word_data
;
3771 if (isodd_word(addr
)) {
3772 AscSetChipLramAddr(iop_base
, addr
- 1);
3773 word_data
= AscGetChipLramData(iop_base
);
3774 byte_data
= (word_data
>> 8) & 0xFF;
3776 AscSetChipLramAddr(iop_base
, addr
);
3777 word_data
= AscGetChipLramData(iop_base
);
3778 byte_data
= word_data
& 0xFF;
3783 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
3787 AscSetChipLramAddr(iop_base
, addr
);
3788 word_data
= AscGetChipLramData(iop_base
);
3793 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
3797 AscSetChipLramAddr(iop_base
, s_addr
);
3798 for (i
= 0; i
< words
; i
++) {
3799 AscSetChipLramData(iop_base
, set_wval
);
3803 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
3805 AscSetChipLramAddr(iop_base
, addr
);
3806 AscSetChipLramData(iop_base
, word_val
);
3809 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
3813 if (isodd_word(addr
)) {
3815 word_data
= AscReadLramWord(iop_base
, addr
);
3816 word_data
&= 0x00FF;
3817 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
3819 word_data
= AscReadLramWord(iop_base
, addr
);
3820 word_data
&= 0xFF00;
3821 word_data
|= ((ushort
)byte_val
& 0x00FF);
3823 AscWriteLramWord(iop_base
, addr
, word_data
);
3827 * Copy 2 bytes to LRAM.
3829 * The source data is assumed to be in little-endian order in memory
3830 * and is maintained in little-endian order when written to LRAM.
3833 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
3834 const uchar
*s_buffer
, int words
)
3838 AscSetChipLramAddr(iop_base
, s_addr
);
3839 for (i
= 0; i
< 2 * words
; i
+= 2) {
3841 * On a little-endian system the second argument below
3842 * produces a little-endian ushort which is written to
3843 * LRAM in little-endian order. On a big-endian system
3844 * the second argument produces a big-endian ushort which
3845 * is "transparently" byte-swapped by outpw() and written
3846 * in little-endian order to LRAM.
3848 outpw(iop_base
+ IOP_RAM_DATA
,
3849 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
3854 * Copy 4 bytes to LRAM.
3856 * The source data is assumed to be in little-endian order in memory
3857 * and is maintained in little-endian order when written to LRAM.
3860 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
3861 ushort s_addr
, uchar
*s_buffer
, int dwords
)
3865 AscSetChipLramAddr(iop_base
, s_addr
);
3866 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
3867 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
3868 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
3873 * Copy 2 bytes from LRAM.
3875 * The source data is assumed to be in little-endian order in LRAM
3876 * and is maintained in little-endian order when written to memory.
3879 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
3880 ushort s_addr
, uchar
*d_buffer
, int words
)
3885 AscSetChipLramAddr(iop_base
, s_addr
);
3886 for (i
= 0; i
< 2 * words
; i
+= 2) {
3887 word
= inpw(iop_base
+ IOP_RAM_DATA
);
3888 d_buffer
[i
] = word
& 0xff;
3889 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
3893 static u32
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
3898 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
3899 sum
+= AscReadLramWord(iop_base
, s_addr
);
3904 static void AscInitLram(ASC_DVC_VAR
*asc_dvc
)
3910 iop_base
= asc_dvc
->iop_base
;
3911 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
3912 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
3914 i
= ASC_MIN_ACTIVE_QNO
;
3915 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
3916 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3918 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3919 (uchar
)(asc_dvc
->max_total_qng
));
3920 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3923 s_addr
+= ASC_QBLK_SIZE
;
3924 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
3925 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3927 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3929 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3932 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3933 (uchar
)ASC_QLINK_END
);
3934 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3935 (uchar
)(asc_dvc
->max_total_qng
- 1));
3936 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3937 (uchar
)asc_dvc
->max_total_qng
);
3939 s_addr
+= ASC_QBLK_SIZE
;
3940 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
3941 i
++, s_addr
+= ASC_QBLK_SIZE
) {
3942 AscWriteLramByte(iop_base
,
3943 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
3944 AscWriteLramByte(iop_base
,
3945 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
3946 AscWriteLramByte(iop_base
,
3947 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
3952 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
3953 const uchar
*mcode_buf
, ushort mcode_size
)
3956 ushort mcode_word_size
;
3957 ushort mcode_chksum
;
3959 /* Write the microcode buffer starting at LRAM address 0. */
3960 mcode_word_size
= (ushort
)(mcode_size
>> 1);
3961 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
3962 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
3964 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
3965 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
3966 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
3967 (ushort
)ASC_CODE_SEC_BEG
,
3968 (ushort
)((mcode_size
-
3972 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
3973 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
3974 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
3978 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
3984 iop_base
= asc_dvc
->iop_base
;
3985 AscPutRiscVarFreeQHead(iop_base
, 1);
3986 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
3987 AscPutVarFreeQHead(iop_base
, 1);
3988 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
3989 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
3990 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
3991 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
3992 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
3993 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
3994 asc_dvc
->max_total_qng
);
3995 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
3996 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
3997 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
3998 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
3999 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4000 AscPutQDoneInProgress(iop_base
, 0);
4001 lram_addr
= ASC_QADR_BEG
;
4002 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4003 AscWriteLramWord(iop_base
, lram_addr
, 0);
4007 static int AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4014 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4016 iop_base
= asc_dvc
->iop_base
;
4018 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4019 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4020 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4023 AscInitQLinkVar(asc_dvc
);
4024 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4025 asc_dvc
->cfg
->disc_enable
);
4026 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4027 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4029 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4030 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4031 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4032 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4033 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
4034 warn_code
= -ENOMEM
;
4037 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4038 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4039 (uchar
*)&phy_addr
, 1);
4040 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4041 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4042 (uchar
*)&phy_size
, 1);
4044 asc_dvc
->cfg
->mcode_date
=
4045 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4046 asc_dvc
->cfg
->mcode_version
=
4047 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4049 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4050 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4051 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4052 warn_code
= -EINVAL
;
4053 goto err_mcode_start
;
4055 if (AscStartChip(iop_base
) != 1) {
4056 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4058 goto err_mcode_start
;
4064 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4065 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4067 asc_dvc
->overrun_dma
= 0;
4071 static int AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4073 const struct firmware
*fw
;
4074 const char fwname
[] = "advansys/mcode.bin";
4076 unsigned long chksum
;
4080 iop_base
= asc_dvc
->iop_base
;
4082 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4083 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4084 AscResetChipAndScsiBus(asc_dvc
);
4085 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4087 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4088 if (asc_dvc
->err_code
!= 0)
4090 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4091 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4094 AscDisableInterrupt(iop_base
);
4095 AscInitLram(asc_dvc
);
4097 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4099 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4101 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4105 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4107 release_firmware(fw
);
4108 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4111 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4112 (fw
->data
[1] << 8) | fw
->data
[0];
4113 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4114 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4115 fw
->size
- 4) != chksum
) {
4116 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4117 release_firmware(fw
);
4120 release_firmware(fw
);
4121 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4122 if (!asc_dvc
->overrun_dma
)
4124 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4125 AscEnableInterrupt(iop_base
);
4130 * Load the Microcode
4132 * Write the microcode image to RISC memory starting at address 0.
4134 * The microcode is stored compressed in the following format:
4136 * 254 word (508 byte) table indexed by byte code followed
4137 * by the following byte codes:
4140 * 00: Emit word 0 in table.
4141 * 01: Emit word 1 in table.
4143 * FD: Emit word 253 in table.
4146 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4147 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4149 * Returns 0 or an error if the checksum doesn't match
4151 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4152 int size
, int memsize
, int chksum
)
4154 int i
, j
, end
, len
= 0;
4157 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4159 for (i
= 253 * 2; i
< size
; i
++) {
4160 if (buf
[i
] == 0xff) {
4161 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4162 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4163 AdvWriteWordAutoIncLram(iop_base
, word
);
4167 } else if (buf
[i
] == 0xfe) {
4168 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4169 AdvWriteWordAutoIncLram(iop_base
, word
);
4173 unsigned int off
= buf
[i
] * 2;
4174 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4175 AdvWriteWordAutoIncLram(iop_base
, word
);
4182 while (len
< memsize
) {
4183 AdvWriteWordAutoIncLram(iop_base
, 0);
4187 /* Verify the microcode checksum. */
4189 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4191 for (len
= 0; len
< end
; len
+= 2) {
4192 sum
+= AdvReadWordAutoIncLram(iop_base
);
4196 return ASC_IERR_MCODE_CHKSUM
;
4201 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*adv_dvc
)
4203 off_t carr_offset
= 0, next_offset
;
4204 dma_addr_t carr_paddr
;
4205 int carr_num
= ADV_CARRIER_BUFSIZE
/ sizeof(ADV_CARR_T
), i
;
4207 for (i
= 0; i
< carr_num
; i
++) {
4208 carr_offset
= i
* sizeof(ADV_CARR_T
);
4209 /* Get physical address of the carrier 'carrp'. */
4210 carr_paddr
= adv_dvc
->carrier_addr
+ carr_offset
;
4212 adv_dvc
->carrier
[i
].carr_pa
= cpu_to_le32(carr_paddr
);
4213 adv_dvc
->carrier
[i
].carr_va
= cpu_to_le32(carr_offset
);
4214 adv_dvc
->carrier
[i
].areq_vpa
= 0;
4215 next_offset
= carr_offset
+ sizeof(ADV_CARR_T
);
4218 adv_dvc
->carrier
[i
].next_vpa
= cpu_to_le32(next_offset
);
4221 * We cannot have a carrier with 'carr_va' of '0', as
4222 * a reference to this carrier would be interpreted as
4224 * So start at carrier 1 with the freelist.
4226 adv_dvc
->carr_freelist
= &adv_dvc
->carrier
[1];
4229 static ADV_CARR_T
*adv_get_carrier(struct adv_dvc_var
*adv_dvc
, u32 offset
)
4233 BUG_ON(offset
> ADV_CARRIER_BUFSIZE
);
4235 index
= offset
/ sizeof(ADV_CARR_T
);
4236 return &adv_dvc
->carrier
[index
];
4239 static ADV_CARR_T
*adv_get_next_carrier(struct adv_dvc_var
*adv_dvc
)
4241 ADV_CARR_T
*carrp
= adv_dvc
->carr_freelist
;
4242 u32 next_vpa
= le32_to_cpu(carrp
->next_vpa
);
4244 if (next_vpa
== 0 || next_vpa
== ~0) {
4245 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa
);
4249 adv_dvc
->carr_freelist
= adv_get_carrier(adv_dvc
, next_vpa
);
4251 * insert stopper carrier to terminate list
4253 carrp
->next_vpa
= cpu_to_le32(ADV_CQ_STOPPER
);
4259 * 'offset' is the index in the request pointer array
4261 static adv_req_t
* adv_get_reqp(struct adv_dvc_var
*adv_dvc
, u32 offset
)
4263 struct asc_board
*boardp
= adv_dvc
->drv_ptr
;
4265 BUG_ON(offset
> adv_dvc
->max_host_qng
);
4266 return &boardp
->adv_reqp
[offset
];
4270 * Send an idle command to the chip and wait for completion.
4272 * Command completion is polled for once per microsecond.
4274 * The function can be called from anywhere including an interrupt handler.
4275 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4276 * functions to prevent reentrancy.
4279 * ADV_TRUE - command completed successfully
4280 * ADV_FALSE - command failed
4281 * ADV_ERROR - command timed out
4284 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4285 ushort idle_cmd
, u32 idle_cmd_parameter
)
4288 AdvPortAddr iop_base
;
4290 iop_base
= asc_dvc
->iop_base
;
4293 * Clear the idle command status which is set by the microcode
4294 * to a non-zero value to indicate when the command is completed.
4295 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4297 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4300 * Write the idle command value after the idle command parameter
4301 * has been written to avoid a race condition. If the order is not
4302 * followed, the microcode may process the idle command before the
4303 * parameters have been written to LRAM.
4305 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4306 cpu_to_le32(idle_cmd_parameter
));
4307 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4310 * Tickle the RISC to tell it to process the idle command.
4312 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4313 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4315 * Clear the tickle value. In the ASC-3550 the RISC flag
4316 * command 'clr_tickle_b' does not work unless the host
4319 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4322 /* Wait for up to 100 millisecond for the idle command to timeout. */
4323 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4324 /* Poll once each microsecond for command completion. */
4325 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4326 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4334 BUG(); /* The idle command should never timeout. */
4339 * Reset SCSI Bus and purge all outstanding requests.
4342 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4343 * ADV_FALSE(0) - Microcode command failed.
4344 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4345 * may be hung which requires driver recovery.
4347 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
4352 * Send the SCSI Bus Reset idle start idle command which asserts
4353 * the SCSI Bus Reset signal.
4355 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
4356 if (status
!= ADV_TRUE
) {
4361 * Delay for the specified SCSI Bus Reset hold time.
4363 * The hold time delay is done on the host because the RISC has no
4364 * microsecond accurate timer.
4366 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
4369 * Send the SCSI Bus Reset end idle command which de-asserts
4370 * the SCSI Bus Reset signal and purges any pending requests.
4372 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
4373 if (status
!= ADV_TRUE
) {
4377 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4383 * Initialize the ASC-3550.
4385 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4387 * For a non-fatal error return a warning code. If there are no warnings
4388 * then 0 is returned.
4390 * Needed after initialization for error recovery.
4392 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
4394 const struct firmware
*fw
;
4395 const char fwname
[] = "advansys/3550.bin";
4396 AdvPortAddr iop_base
;
4404 unsigned long chksum
;
4407 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4408 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
4409 uchar max_cmd
[ADV_MAX_TID
+ 1];
4411 /* If there is already an error, don't continue. */
4412 if (asc_dvc
->err_code
!= 0)
4416 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4418 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
4419 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4424 iop_base
= asc_dvc
->iop_base
;
4427 * Save the RISC memory BIOS region before writing the microcode.
4428 * The BIOS may already be loaded and using its RISC LRAM region
4429 * so its region must be saved and restored.
4431 * Note: This code makes the assumption, which is currently true,
4432 * that a chip reset does not clear RISC LRAM.
4434 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4435 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4440 * Save current per TID negotiated values.
4442 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
4443 ushort bios_version
, major
, minor
;
4446 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
4447 major
= (bios_version
>> 12) & 0xF;
4448 minor
= (bios_version
>> 8) & 0xF;
4449 if (major
< 3 || (major
== 3 && minor
== 1)) {
4450 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4451 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
4453 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4456 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4457 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4458 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4459 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4463 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4465 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4467 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4471 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4473 release_firmware(fw
);
4474 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4477 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4478 (fw
->data
[1] << 8) | fw
->data
[0];
4479 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4480 fw
->size
- 4, ADV_3550_MEMSIZE
,
4482 release_firmware(fw
);
4483 if (asc_dvc
->err_code
)
4487 * Restore the RISC memory BIOS region.
4489 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4490 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4495 * Calculate and write the microcode code checksum to the microcode
4496 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4498 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4499 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
4501 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
4502 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
4503 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
4505 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
4508 * Read and save microcode version and date.
4510 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
4511 asc_dvc
->cfg
->mcode_date
);
4512 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
4513 asc_dvc
->cfg
->mcode_version
);
4516 * Set the chip type to indicate the ASC3550.
4518 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
4521 * If the PCI Configuration Command Register "Parity Error Response
4522 * Control" Bit was clear (0), then set the microcode variable
4523 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4524 * to ignore DMA parity errors.
4526 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
4527 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4528 word
|= CONTROL_FLAG_IGNORE_PERR
;
4529 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4533 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4534 * threshold of 128 bytes. This register is only accessible to the host.
4536 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
4537 START_CTL_EMFU
| READ_CMD_MRM
);
4540 * Microcode operating variables for WDTR, SDTR, and command tag
4541 * queuing will be set in slave_configure() based on what a
4542 * device reports it is capable of in Inquiry byte 7.
4544 * If SCSI Bus Resets have been disabled, then directly set
4545 * SDTR and WDTR from the EEPROM configuration. This will allow
4546 * the BIOS and warm boot to work without a SCSI bus hang on
4547 * the Inquiry caused by host and target mismatched DTR values.
4548 * Without the SCSI Bus Reset, before an Inquiry a device can't
4549 * be assumed to be in Asynchronous, Narrow mode.
4551 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
4552 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
4553 asc_dvc
->wdtr_able
);
4554 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
4555 asc_dvc
->sdtr_able
);
4559 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4560 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4561 * bitmask. These values determine the maximum SDTR speed negotiated
4564 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4565 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4566 * without determining here whether the device supports SDTR.
4568 * 4-bit speed SDTR speed name
4569 * =========== ===============
4570 * 0000b (0x0) SDTR disabled
4572 * 0010b (0x2) 10 Mhz
4573 * 0011b (0x3) 20 Mhz (Ultra)
4574 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4575 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4576 * 0110b (0x6) Undefined
4578 * 1111b (0xF) Undefined
4581 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4582 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
4583 /* Set Ultra speed for TID 'tid'. */
4584 word
|= (0x3 << (4 * (tid
% 4)));
4586 /* Set Fast speed for TID 'tid'. */
4587 word
|= (0x2 << (4 * (tid
% 4)));
4589 if (tid
== 3) { /* Check if done with sdtr_speed1. */
4590 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
4592 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
4593 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
4595 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
4596 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
4598 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
4599 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
4605 * Set microcode operating variable for the disconnect per TID bitmask.
4607 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
4608 asc_dvc
->cfg
->disc_enable
);
4611 * Set SCSI_CFG0 Microcode Default Value.
4613 * The microcode will set the SCSI_CFG0 register using this value
4614 * after it is started below.
4616 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
4617 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
4618 asc_dvc
->chip_scsi_id
);
4621 * Determine SCSI_CFG1 Microcode Default Value.
4623 * The microcode will set the SCSI_CFG1 register using this value
4624 * after it is started below.
4627 /* Read current SCSI_CFG1 Register value. */
4628 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
4631 * If all three connectors are in use, return an error.
4633 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
4634 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
4635 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
4640 * If the internal narrow cable is reversed all of the SCSI_CTRL
4641 * register signals will be set. Check for and return an error if
4642 * this condition is found.
4644 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
4645 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
4650 * If this is a differential board and a single-ended device
4651 * is attached to one of the connectors, return an error.
4653 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
4654 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
4659 * If automatic termination control is enabled, then set the
4660 * termination value based on a table listed in a_condor.h.
4662 * If manual termination was specified with an EEPROM setting
4663 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4664 * is ready to be 'ored' into SCSI_CFG1.
4666 if (asc_dvc
->cfg
->termination
== 0) {
4668 * The software always controls termination by setting TERM_CTL_SEL.
4669 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4671 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
4673 switch (scsi_cfg1
& CABLE_DETECT
) {
4674 /* TERM_CTL_H: on, TERM_CTL_L: on */
4681 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
4684 /* TERM_CTL_H: on, TERM_CTL_L: off */
4690 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
4693 /* TERM_CTL_H: off, TERM_CTL_L: off */
4701 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4703 scsi_cfg1
&= ~TERM_CTL
;
4706 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4707 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4708 * referenced, because the hardware internally inverts
4709 * the Termination High and Low bits if TERM_POL is set.
4711 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
4714 * Set SCSI_CFG1 Microcode Default Value
4716 * Set filter value and possibly modified termination control
4717 * bits in the Microcode SCSI_CFG1 Register Value.
4719 * The microcode will set the SCSI_CFG1 register using this value
4720 * after it is started below.
4722 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
4723 FLTR_DISABLE
| scsi_cfg1
);
4726 * Set MEM_CFG Microcode Default Value
4728 * The microcode will set the MEM_CFG register using this value
4729 * after it is started below.
4731 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4734 * ASC-3550 has 8KB internal memory.
4736 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
4737 BIOS_EN
| RAM_SZ_8KB
);
4740 * Set SEL_MASK Microcode Default Value
4742 * The microcode will set the SEL_MASK register using this value
4743 * after it is started below.
4745 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
4746 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
4748 AdvBuildCarrierFreelist(asc_dvc
);
4751 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4754 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
4755 if (!asc_dvc
->icq_sp
) {
4756 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4761 * Set RISC ICQ physical address start value.
4763 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
4766 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4768 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
4769 if (!asc_dvc
->irq_sp
) {
4770 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4775 * Set RISC IRQ physical address start value.
4777 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
4778 asc_dvc
->carr_pending_cnt
= 0;
4780 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
4781 (ADV_INTR_ENABLE_HOST_INTR
|
4782 ADV_INTR_ENABLE_GLOBAL_INTR
));
4784 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
4785 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
4787 /* finally, finally, gentlemen, start your engine */
4788 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
4791 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4792 * Resets should be performed. The RISC has to be running
4793 * to issue a SCSI Bus Reset.
4795 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
4797 * If the BIOS Signature is present in memory, restore the
4798 * BIOS Handshake Configuration Table and do not perform
4801 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
4804 * Restore per TID negotiated values.
4806 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4807 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4808 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
4810 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4811 AdvWriteByteLram(iop_base
,
4812 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4816 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
4817 warn_code
= ASC_WARN_BUSRESET_ERROR
;
4826 * Initialize the ASC-38C0800.
4828 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4830 * For a non-fatal error return a warning code. If there are no warnings
4831 * then 0 is returned.
4833 * Needed after initialization for error recovery.
4835 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
4837 const struct firmware
*fw
;
4838 const char fwname
[] = "advansys/38C0800.bin";
4839 AdvPortAddr iop_base
;
4847 unsigned long chksum
;
4851 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4852 ushort wdtr_able
, sdtr_able
, tagqng_able
;
4853 uchar max_cmd
[ADV_MAX_TID
+ 1];
4855 /* If there is already an error, don't continue. */
4856 if (asc_dvc
->err_code
!= 0)
4860 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4862 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
4863 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4868 iop_base
= asc_dvc
->iop_base
;
4871 * Save the RISC memory BIOS region before writing the microcode.
4872 * The BIOS may already be loaded and using its RISC LRAM region
4873 * so its region must be saved and restored.
4875 * Note: This code makes the assumption, which is currently true,
4876 * that a chip reset does not clear RISC LRAM.
4878 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4879 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4884 * Save current per TID negotiated values.
4886 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4887 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4888 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4889 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4890 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4895 * RAM BIST (RAM Built-In Self Test)
4897 * Address : I/O base + offset 0x38h register (byte).
4898 * Function: Bit 7-6(RW) : RAM mode
4899 * Normal Mode : 0x00
4900 * Pre-test Mode : 0x40
4901 * RAM Test Mode : 0x80
4903 * Bit 4(RO) : Done bit
4904 * Bit 3-0(RO) : Status
4906 * Int_RAM Error : 0x04
4911 * Note: RAM BIST code should be put right here, before loading the
4912 * microcode and after saving the RISC memory BIOS region.
4918 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4919 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4920 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4921 * to NORMAL_MODE, return an error too.
4923 for (i
= 0; i
< 2; i
++) {
4924 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
4925 mdelay(10); /* Wait for 10ms before reading back. */
4926 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
4927 if ((byte
& RAM_TEST_DONE
) == 0
4928 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
4929 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
4933 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
4934 mdelay(10); /* Wait for 10ms before reading back. */
4935 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
4937 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
4943 * LRAM Test - It takes about 1.5 ms to run through the test.
4945 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4946 * If Done bit not set or Status not 0, save register byte, set the
4947 * err_code, and return an error.
4949 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
4950 mdelay(10); /* Wait for 10ms before checking status. */
4952 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
4953 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
4954 /* Get here if Done bit not set or Status not 0. */
4955 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
4956 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
4960 /* We need to reset back to normal mode after LRAM test passes. */
4961 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
4963 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4965 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4967 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4971 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4973 release_firmware(fw
);
4974 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4977 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4978 (fw
->data
[1] << 8) | fw
->data
[0];
4979 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4980 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
4982 release_firmware(fw
);
4983 if (asc_dvc
->err_code
)
4987 * Restore the RISC memory BIOS region.
4989 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4990 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4995 * Calculate and write the microcode code checksum to the microcode
4996 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4998 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4999 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5001 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5002 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5003 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5005 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5008 * Read microcode version and date.
5010 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5011 asc_dvc
->cfg
->mcode_date
);
5012 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5013 asc_dvc
->cfg
->mcode_version
);
5016 * Set the chip type to indicate the ASC38C0800.
5018 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5021 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5022 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5023 * cable detection and then we are able to read C_DET[3:0].
5025 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5026 * Microcode Default Value' section below.
5028 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5029 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5030 scsi_cfg1
| DIS_TERM_DRV
);
5033 * If the PCI Configuration Command Register "Parity Error Response
5034 * Control" Bit was clear (0), then set the microcode variable
5035 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5036 * to ignore DMA parity errors.
5038 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5039 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5040 word
|= CONTROL_FLAG_IGNORE_PERR
;
5041 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5045 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5046 * bits for the default FIFO threshold.
5048 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5050 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5052 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5053 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5057 * Microcode operating variables for WDTR, SDTR, and command tag
5058 * queuing will be set in slave_configure() based on what a
5059 * device reports it is capable of in Inquiry byte 7.
5061 * If SCSI Bus Resets have been disabled, then directly set
5062 * SDTR and WDTR from the EEPROM configuration. This will allow
5063 * the BIOS and warm boot to work without a SCSI bus hang on
5064 * the Inquiry caused by host and target mismatched DTR values.
5065 * Without the SCSI Bus Reset, before an Inquiry a device can't
5066 * be assumed to be in Asynchronous, Narrow mode.
5068 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5069 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5070 asc_dvc
->wdtr_able
);
5071 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5072 asc_dvc
->sdtr_able
);
5076 * Set microcode operating variables for DISC and SDTR_SPEED1,
5077 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5078 * configuration values.
5080 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5081 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5082 * without determining here whether the device supports SDTR.
5084 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5085 asc_dvc
->cfg
->disc_enable
);
5086 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5087 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5088 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5089 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5092 * Set SCSI_CFG0 Microcode Default Value.
5094 * The microcode will set the SCSI_CFG0 register using this value
5095 * after it is started below.
5097 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5098 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5099 asc_dvc
->chip_scsi_id
);
5102 * Determine SCSI_CFG1 Microcode Default Value.
5104 * The microcode will set the SCSI_CFG1 register using this value
5105 * after it is started below.
5108 /* Read current SCSI_CFG1 Register value. */
5109 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5112 * If the internal narrow cable is reversed all of the SCSI_CTRL
5113 * register signals will be set. Check for and return an error if
5114 * this condition is found.
5116 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5117 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5122 * All kind of combinations of devices attached to one of four
5123 * connectors are acceptable except HVD device attached. For example,
5124 * LVD device can be attached to SE connector while SE device attached
5125 * to LVD connector. If LVD device attached to SE connector, it only
5126 * runs up to Ultra speed.
5128 * If an HVD device is attached to one of LVD connectors, return an
5129 * error. However, there is no way to detect HVD device attached to
5132 if (scsi_cfg1
& HVD
) {
5133 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5138 * If either SE or LVD automatic termination control is enabled, then
5139 * set the termination value based on a table listed in a_condor.h.
5141 * If manual termination was specified with an EEPROM setting then
5142 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5143 * to be 'ored' into SCSI_CFG1.
5145 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5146 /* SE automatic termination control is enabled. */
5147 switch (scsi_cfg1
& C_DET_SE
) {
5148 /* TERM_SE_HI: on, TERM_SE_LO: on */
5152 asc_dvc
->cfg
->termination
|= TERM_SE
;
5155 /* TERM_SE_HI: on, TERM_SE_LO: off */
5157 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5162 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5163 /* LVD automatic termination control is enabled. */
5164 switch (scsi_cfg1
& C_DET_LVD
) {
5165 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5169 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5172 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5179 * Clear any set TERM_SE and TERM_LVD bits.
5181 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5184 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5186 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5189 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5190 * bits and set possibly modified termination control bits in the
5191 * Microcode SCSI_CFG1 Register Value.
5193 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5196 * Set SCSI_CFG1 Microcode Default Value
5198 * Set possibly modified termination control and reset DIS_TERM_DRV
5199 * bits in the Microcode SCSI_CFG1 Register Value.
5201 * The microcode will set the SCSI_CFG1 register using this value
5202 * after it is started below.
5204 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5207 * Set MEM_CFG Microcode Default Value
5209 * The microcode will set the MEM_CFG register using this value
5210 * after it is started below.
5212 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5215 * ASC-38C0800 has 16KB internal memory.
5217 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5218 BIOS_EN
| RAM_SZ_16KB
);
5221 * Set SEL_MASK Microcode Default Value
5223 * The microcode will set the SEL_MASK register using this value
5224 * after it is started below.
5226 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5227 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5229 AdvBuildCarrierFreelist(asc_dvc
);
5232 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5235 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
5236 if (!asc_dvc
->icq_sp
) {
5237 ASC_DBG(0, "Failed to get ICQ carrier\n");
5238 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5243 * Set RISC ICQ physical address start value.
5244 * carr_pa is LE, must be native before write
5246 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5249 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5251 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
5252 if (!asc_dvc
->irq_sp
) {
5253 ASC_DBG(0, "Failed to get IRQ carrier\n");
5254 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5259 * Set RISC IRQ physical address start value.
5261 * carr_pa is LE, must be native before write *
5263 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5264 asc_dvc
->carr_pending_cnt
= 0;
5266 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5267 (ADV_INTR_ENABLE_HOST_INTR
|
5268 ADV_INTR_ENABLE_GLOBAL_INTR
));
5270 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5271 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5273 /* finally, finally, gentlemen, start your engine */
5274 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5277 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5278 * Resets should be performed. The RISC has to be running
5279 * to issue a SCSI Bus Reset.
5281 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5283 * If the BIOS Signature is present in memory, restore the
5284 * BIOS Handshake Configuration Table and do not perform
5287 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5290 * Restore per TID negotiated values.
5292 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5293 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5294 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5296 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5297 AdvWriteByteLram(iop_base
,
5298 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5302 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5303 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5312 * Initialize the ASC-38C1600.
5314 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5316 * For a non-fatal error return a warning code. If there are no warnings
5317 * then 0 is returned.
5319 * Needed after initialization for error recovery.
5321 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
5323 const struct firmware
*fw
;
5324 const char fwname
[] = "advansys/38C1600.bin";
5325 AdvPortAddr iop_base
;
5333 unsigned long chksum
;
5337 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5338 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
5339 uchar max_cmd
[ASC_MAX_TID
+ 1];
5341 /* If there is already an error, don't continue. */
5342 if (asc_dvc
->err_code
!= 0) {
5347 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5349 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
5350 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5355 iop_base
= asc_dvc
->iop_base
;
5358 * Save the RISC memory BIOS region before writing the microcode.
5359 * The BIOS may already be loaded and using its RISC LRAM region
5360 * so its region must be saved and restored.
5362 * Note: This code makes the assumption, which is currently true,
5363 * that a chip reset does not clear RISC LRAM.
5365 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5366 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5371 * Save current per TID negotiated values.
5373 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5374 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5375 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5376 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5377 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5378 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5383 * RAM BIST (Built-In Self Test)
5385 * Address : I/O base + offset 0x38h register (byte).
5386 * Function: Bit 7-6(RW) : RAM mode
5387 * Normal Mode : 0x00
5388 * Pre-test Mode : 0x40
5389 * RAM Test Mode : 0x80
5391 * Bit 4(RO) : Done bit
5392 * Bit 3-0(RO) : Status
5394 * Int_RAM Error : 0x04
5399 * Note: RAM BIST code should be put right here, before loading the
5400 * microcode and after saving the RISC memory BIOS region.
5406 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5407 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5408 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5409 * to NORMAL_MODE, return an error too.
5411 for (i
= 0; i
< 2; i
++) {
5412 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5413 mdelay(10); /* Wait for 10ms before reading back. */
5414 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5415 if ((byte
& RAM_TEST_DONE
) == 0
5416 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5417 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5421 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5422 mdelay(10); /* Wait for 10ms before reading back. */
5423 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5425 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5431 * LRAM Test - It takes about 1.5 ms to run through the test.
5433 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5434 * If Done bit not set or Status not 0, save register byte, set the
5435 * err_code, and return an error.
5437 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5438 mdelay(10); /* Wait for 10ms before checking status. */
5440 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5441 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5442 /* Get here if Done bit not set or Status not 0. */
5443 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5444 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5448 /* We need to reset back to normal mode after LRAM test passes. */
5449 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5451 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5453 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5455 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5459 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5461 release_firmware(fw
);
5462 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5465 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5466 (fw
->data
[1] << 8) | fw
->data
[0];
5467 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5468 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
5470 release_firmware(fw
);
5471 if (asc_dvc
->err_code
)
5475 * Restore the RISC memory BIOS region.
5477 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5478 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5483 * Calculate and write the microcode code checksum to the microcode
5484 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5486 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5487 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5489 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5490 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5491 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5493 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5496 * Read microcode version and date.
5498 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5499 asc_dvc
->cfg
->mcode_date
);
5500 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5501 asc_dvc
->cfg
->mcode_version
);
5504 * Set the chip type to indicate the ASC38C1600.
5506 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
5509 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5510 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5511 * cable detection and then we are able to read C_DET[3:0].
5513 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5514 * Microcode Default Value' section below.
5516 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5517 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5518 scsi_cfg1
| DIS_TERM_DRV
);
5521 * If the PCI Configuration Command Register "Parity Error Response
5522 * Control" Bit was clear (0), then set the microcode variable
5523 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5524 * to ignore DMA parity errors.
5526 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5527 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5528 word
|= CONTROL_FLAG_IGNORE_PERR
;
5529 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5533 * If the BIOS control flag AIPP (Asynchronous Information
5534 * Phase Protection) disable bit is not set, then set the firmware
5535 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5536 * AIPP checking and encoding.
5538 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
5539 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5540 word
|= CONTROL_FLAG_ENABLE_AIPP
;
5541 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5545 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5546 * and START_CTL_TH [3:2].
5548 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5549 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
5552 * Microcode operating variables for WDTR, SDTR, and command tag
5553 * queuing will be set in slave_configure() based on what a
5554 * device reports it is capable of in Inquiry byte 7.
5556 * If SCSI Bus Resets have been disabled, then directly set
5557 * SDTR and WDTR from the EEPROM configuration. This will allow
5558 * the BIOS and warm boot to work without a SCSI bus hang on
5559 * the Inquiry caused by host and target mismatched DTR values.
5560 * Without the SCSI Bus Reset, before an Inquiry a device can't
5561 * be assumed to be in Asynchronous, Narrow mode.
5563 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5564 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5565 asc_dvc
->wdtr_able
);
5566 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5567 asc_dvc
->sdtr_able
);
5571 * Set microcode operating variables for DISC and SDTR_SPEED1,
5572 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5573 * configuration values.
5575 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5576 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5577 * without determining here whether the device supports SDTR.
5579 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5580 asc_dvc
->cfg
->disc_enable
);
5581 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5582 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5583 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5584 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5587 * Set SCSI_CFG0 Microcode Default Value.
5589 * The microcode will set the SCSI_CFG0 register using this value
5590 * after it is started below.
5592 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5593 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5594 asc_dvc
->chip_scsi_id
);
5597 * Calculate SCSI_CFG1 Microcode Default Value.
5599 * The microcode will set the SCSI_CFG1 register using this value
5600 * after it is started below.
5602 * Each ASC-38C1600 function has only two cable detect bits.
5603 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5605 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5608 * If the cable is reversed all of the SCSI_CTRL register signals
5609 * will be set. Check for and return an error if this condition is
5612 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5613 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5618 * Each ASC-38C1600 function has two connectors. Only an HVD device
5619 * can not be connected to either connector. An LVD device or SE device
5620 * may be connected to either connecor. If an SE device is connected,
5621 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5623 * If an HVD device is attached, return an error.
5625 if (scsi_cfg1
& HVD
) {
5626 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
5631 * Each function in the ASC-38C1600 uses only the SE cable detect and
5632 * termination because there are two connectors for each function. Each
5633 * function may use either LVD or SE mode. Corresponding the SE automatic
5634 * termination control EEPROM bits are used for each function. Each
5635 * function has its own EEPROM. If SE automatic control is enabled for
5636 * the function, then set the termination value based on a table listed
5639 * If manual termination is specified in the EEPROM for the function,
5640 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5641 * ready to be 'ored' into SCSI_CFG1.
5643 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5644 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
5645 /* SE automatic termination control is enabled. */
5646 switch (scsi_cfg1
& C_DET_SE
) {
5647 /* TERM_SE_HI: on, TERM_SE_LO: on */
5651 asc_dvc
->cfg
->termination
|= TERM_SE
;
5655 if (PCI_FUNC(pdev
->devfn
) == 0) {
5656 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5658 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5659 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5666 * Clear any set TERM_SE bits.
5668 scsi_cfg1
&= ~TERM_SE
;
5671 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5673 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
5676 * Clear Big Endian and Terminator Polarity bits and set possibly
5677 * modified termination control bits in the Microcode SCSI_CFG1
5680 * Big Endian bit is not used even on big endian machines.
5682 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
5685 * Set SCSI_CFG1 Microcode Default Value
5687 * Set possibly modified termination control bits in the Microcode
5688 * SCSI_CFG1 Register Value.
5690 * The microcode will set the SCSI_CFG1 register using this value
5691 * after it is started below.
5693 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5696 * Set MEM_CFG Microcode Default Value
5698 * The microcode will set the MEM_CFG register using this value
5699 * after it is started below.
5701 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5704 * ASC-38C1600 has 32KB internal memory.
5706 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5707 * out a special 16K Adv Library and Microcode version. After the issue
5708 * resolved, we should turn back to the 32K support. Both a_condor.h and
5709 * mcode.sas files also need to be updated.
5711 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5712 * BIOS_EN | RAM_SZ_32KB);
5714 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5715 BIOS_EN
| RAM_SZ_16KB
);
5718 * Set SEL_MASK Microcode Default Value
5720 * The microcode will set the SEL_MASK register using this value
5721 * after it is started below.
5723 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5724 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5726 AdvBuildCarrierFreelist(asc_dvc
);
5729 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5731 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
5732 if (!asc_dvc
->icq_sp
) {
5733 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5738 * Set RISC ICQ physical address start value. Initialize the
5739 * COMMA register to the same value otherwise the RISC will
5740 * prematurely detect a command is available.
5742 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5743 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
5744 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
5747 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5749 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
5750 if (!asc_dvc
->irq_sp
) {
5751 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5756 * Set RISC IRQ physical address start value.
5758 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5759 asc_dvc
->carr_pending_cnt
= 0;
5761 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5762 (ADV_INTR_ENABLE_HOST_INTR
|
5763 ADV_INTR_ENABLE_GLOBAL_INTR
));
5764 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5765 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5767 /* finally, finally, gentlemen, start your engine */
5768 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5771 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5772 * Resets should be performed. The RISC has to be running
5773 * to issue a SCSI Bus Reset.
5775 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5777 * If the BIOS Signature is present in memory, restore the
5778 * per TID microcode operating variables.
5780 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5783 * Restore per TID negotiated values.
5785 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5786 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5787 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5788 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5790 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5791 AdvWriteByteLram(iop_base
,
5792 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5796 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5797 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5806 * Reset chip and SCSI Bus.
5809 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
5810 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
5812 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
5815 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5816 ushort ppr_able
= 0;
5817 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
5818 AdvPortAddr iop_base
;
5821 iop_base
= asc_dvc
->iop_base
;
5824 * Save current per TID negotiated values.
5826 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5827 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5828 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5829 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5831 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5832 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5833 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5838 * Force the AdvInitAsc3550/38C0800Driver() function to
5839 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5840 * The initialization functions assumes a SCSI Bus Reset is not
5841 * needed if the BIOS signature word is present.
5843 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
5844 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
5847 * Stop chip and reset it.
5849 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
5850 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
5852 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
5853 ADV_CTRL_REG_CMD_WR_IO_REG
);
5856 * Reset Adv Library error code, if any, and try
5857 * re-initializing the chip.
5859 asc_dvc
->err_code
= 0;
5860 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5861 status
= AdvInitAsc38C1600Driver(asc_dvc
);
5862 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
5863 status
= AdvInitAsc38C0800Driver(asc_dvc
);
5865 status
= AdvInitAsc3550Driver(asc_dvc
);
5868 /* Translate initialization return value to status value. */
5876 * Restore the BIOS signature word.
5878 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
5881 * Restore per TID negotiated values.
5883 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5884 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5885 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5886 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5888 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5889 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5890 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5898 * adv_async_callback() - Adv Library asynchronous event callback function.
5900 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
5903 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
5905 * The firmware detected a SCSI Bus reset.
5907 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5910 case ADV_ASYNC_RDMA_FAILURE
:
5912 * Handle RDMA failure by resetting the SCSI Bus and
5913 * possibly the chip if it is unresponsive. Log the error
5914 * with a unique code.
5916 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5917 AdvResetChipAndSB(adv_dvc_varp
);
5920 case ADV_HOST_SCSI_BUS_RESET
:
5922 * Host generated SCSI bus reset occurred.
5924 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5928 ASC_DBG(0, "unknown code 0x%x\n", code
);
5934 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5936 * Callback function for the Wide SCSI Adv Library.
5938 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
5940 struct asc_board
*boardp
= adv_dvc_varp
->drv_ptr
;
5942 adv_sgblk_t
*sgblkp
;
5943 struct scsi_cmnd
*scp
;
5945 dma_addr_t sense_addr
;
5947 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5948 adv_dvc_varp
, scsiqp
);
5949 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
5952 * Get the adv_req_t structure for the command that has been
5953 * completed. The adv_req_t structure actually contains the
5954 * completed ADV_SCSI_REQ_Q structure.
5956 scp
= scsi_host_find_tag(boardp
->shost
, scsiqp
->srb_tag
);
5958 ASC_DBG(1, "scp 0x%p\n", scp
);
5961 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5964 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
5966 reqp
= (adv_req_t
*)scp
->host_scribble
;
5967 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
5969 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5973 * Remove backreferences to avoid duplicate
5974 * command completions.
5976 scp
->host_scribble
= NULL
;
5979 ASC_STATS(boardp
->shost
, callback
);
5980 ASC_DBG(1, "shost 0x%p\n", boardp
->shost
);
5982 sense_addr
= le32_to_cpu(scsiqp
->sense_addr
);
5983 dma_unmap_single(boardp
->dev
, sense_addr
,
5984 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
5987 * 'done_status' contains the command's ending status.
5989 switch (scsiqp
->done_status
) {
5991 ASC_DBG(2, "QD_NO_ERROR\n");
5995 * Check for an underrun condition.
5997 * If there was no error and an underrun condition, then
5998 * then return the number of underrun bytes.
6000 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6001 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6002 resid_cnt
<= scsi_bufflen(scp
)) {
6003 ASC_DBG(1, "underrun condition %lu bytes\n",
6005 scsi_set_resid(scp
, resid_cnt
);
6010 ASC_DBG(2, "QD_WITH_ERROR\n");
6011 switch (scsiqp
->host_status
) {
6012 case QHSTA_NO_ERROR
:
6013 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6014 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6015 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6016 SCSI_SENSE_BUFFERSIZE
);
6018 * Note: The 'status_byte()' macro used by
6019 * target drivers defined in scsi.h shifts the
6020 * status byte returned by host drivers right
6021 * by 1 bit. This is why target drivers also
6022 * use right shifted status byte definitions.
6023 * For instance target drivers use
6024 * CHECK_CONDITION, defined to 0x1, instead of
6025 * the SCSI defined check condition value of
6026 * 0x2. Host drivers are supposed to return
6027 * the status byte as it is defined by SCSI.
6029 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6030 STATUS_BYTE(scsiqp
->scsi_status
);
6032 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6037 /* Some other QHSTA error occurred. */
6038 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6039 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6044 case QD_ABORTED_BY_HOST
:
6045 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6047 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6051 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6053 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6058 * If the 'init_tidmask' bit isn't already set for the target and the
6059 * current request finished normally, then set the bit for the target
6060 * to indicate that a device is present.
6062 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6063 scsiqp
->done_status
== QD_NO_ERROR
&&
6064 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6065 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6071 * Free all 'adv_sgblk_t' structures allocated for the request.
6073 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6074 /* Remove 'sgblkp' from the request list. */
6075 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6077 dma_pool_free(boardp
->adv_sgblk_pool
, sgblkp
,
6081 ASC_DBG(1, "done\n");
6085 * Adv Library Interrupt Service Routine
6087 * This function is called by a driver's interrupt service routine.
6088 * The function disables and re-enables interrupts.
6090 * When a microcode idle command is completed, the ADV_DVC_VAR
6091 * 'idle_cmd_done' field is set to ADV_TRUE.
6093 * Note: AdvISR() can be called when interrupts are disabled or even
6094 * when there is no hardware interrupt condition present. It will
6095 * always check for completed idle commands and microcode requests.
6096 * This is an important feature that shouldn't be changed because it
6097 * allows commands to be completed from polling mode loops.
6100 * ADV_TRUE(1) - interrupt was pending
6101 * ADV_FALSE(0) - no interrupt was pending
6103 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6105 AdvPortAddr iop_base
;
6107 ADV_CARR_T
*free_carrp
;
6108 __le32 irq_next_vpa
;
6109 ADV_SCSI_REQ_Q
*scsiq
;
6112 iop_base
= asc_dvc
->iop_base
;
6114 /* Reading the register clears the interrupt. */
6115 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6117 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6118 ADV_INTR_STATUS_INTRC
)) == 0) {
6123 * Notify the driver of an asynchronous microcode condition by
6124 * calling the adv_async_callback function. The function
6125 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6127 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6130 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6132 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6133 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6134 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6135 asc_dvc
->carr_pending_cnt
!= 0) {
6136 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6138 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6139 AdvWriteByteRegister(iop_base
,
6146 adv_async_callback(asc_dvc
, intrb_code
);
6150 * Check if the IRQ stopper carrier contains a completed request.
6152 while (((irq_next_vpa
=
6153 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ADV_RQ_DONE
) != 0) {
6155 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6156 * The RISC will have set 'areq_vpa' to a virtual address.
6158 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6159 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6160 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6161 * in AdvExeScsiQueue().
6163 u32 pa_offset
= le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
);
6164 ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6165 asc_dvc
->irq_sp
, pa_offset
);
6166 reqp
= adv_get_reqp(asc_dvc
, pa_offset
);
6167 scsiq
= &reqp
->scsi_req_q
;
6170 * Request finished with good status and the queue was not
6171 * DMAed to host memory by the firmware. Set all status fields
6172 * to indicate good status.
6174 if ((irq_next_vpa
& ADV_RQ_GOOD
) != 0) {
6175 scsiq
->done_status
= QD_NO_ERROR
;
6176 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6177 scsiq
->data_cnt
= 0L;
6181 * Advance the stopper pointer to the next carrier
6182 * ignoring the lower four bits. Free the previous
6185 free_carrp
= asc_dvc
->irq_sp
;
6186 asc_dvc
->irq_sp
= adv_get_carrier(asc_dvc
,
6187 ADV_GET_CARRP(irq_next_vpa
));
6189 free_carrp
->next_vpa
= asc_dvc
->carr_freelist
->carr_va
;
6190 asc_dvc
->carr_freelist
= free_carrp
;
6191 asc_dvc
->carr_pending_cnt
--;
6194 * Clear request microcode control flag.
6199 * Notify the driver of the completed request by passing
6200 * the ADV_SCSI_REQ_Q pointer to its callback function.
6202 adv_isr_callback(asc_dvc
, scsiq
);
6204 * Note: After the driver callback function is called, 'scsiq'
6205 * can no longer be referenced.
6207 * Fall through and continue processing other completed
6214 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6216 if (asc_dvc
->err_code
== 0) {
6217 asc_dvc
->err_code
= err_code
;
6218 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6224 static void AscAckInterrupt(PortAddr iop_base
)
6232 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6233 if (loop
++ > 0x7FFF) {
6236 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6238 AscReadLramByte(iop_base
,
6239 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6240 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6241 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6242 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6244 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6245 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6250 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6253 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6255 const uchar
*period_table
;
6260 period_table
= asc_dvc
->sdtr_period_tbl
;
6261 max_index
= (int)asc_dvc
->max_sdtr_index
;
6262 min_index
= (int)asc_dvc
->min_sdtr_index
;
6263 if ((syn_time
<= period_table
[max_index
])) {
6264 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6265 if (syn_time
<= period_table
[i
]) {
6269 return (uchar
)max_index
;
6271 return (uchar
)(max_index
+ 1);
6276 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6278 PortAddr iop_base
= asc_dvc
->iop_base
;
6279 uchar sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6280 EXT_MSG sdtr_buf
= {
6281 .msg_type
= EXTENDED_MESSAGE
,
6282 .msg_len
= MS_SDTR_LEN
,
6283 .msg_req
= EXTENDED_SDTR
,
6284 .xfer_period
= sdtr_period
,
6285 .req_ack_offset
= sdtr_offset
,
6287 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
6289 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
6290 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6292 sizeof(EXT_MSG
) >> 1);
6293 return ((sdtr_period_index
<< 4) | sdtr_offset
);
6295 sdtr_buf
.req_ack_offset
= 0;
6296 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6298 sizeof(EXT_MSG
) >> 1);
6304 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
6307 uchar sdtr_period_ix
;
6309 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6310 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
6312 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
6316 static bool AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
6318 ASC_SCSI_BIT_ID_TYPE org_id
;
6322 AscSetBank(iop_base
, 1);
6323 org_id
= AscReadChipDvcID(iop_base
);
6324 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
6325 if (org_id
== (0x01 << i
))
6328 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
6329 AscWriteChipDvcID(iop_base
, id
);
6330 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
6331 AscSetBank(iop_base
, 0);
6332 AscSetChipSyn(iop_base
, sdtr_data
);
6333 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
6339 AscSetBank(iop_base
, 1);
6340 AscWriteChipDvcID(iop_base
, org_id
);
6341 AscSetBank(iop_base
, 0);
6345 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
6347 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
6348 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
6351 static void AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
6357 ushort int_halt_code
;
6358 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6359 ASC_SCSI_BIT_ID_TYPE target_id
;
6366 uchar q_cntl
, tid_no
;
6370 struct asc_board
*boardp
;
6372 BUG_ON(!asc_dvc
->drv_ptr
);
6373 boardp
= asc_dvc
->drv_ptr
;
6375 iop_base
= asc_dvc
->iop_base
;
6376 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
6378 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
6379 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
6380 target_ix
= AscReadLramByte(iop_base
,
6381 (ushort
)(halt_q_addr
+
6382 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
6383 q_cntl
= AscReadLramByte(iop_base
,
6384 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6385 tid_no
= ASC_TIX_TO_TID(target_ix
);
6386 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
6387 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6388 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
6392 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
6393 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6394 AscSetChipSDTR(iop_base
, 0, tid_no
);
6395 boardp
->sdtr_data
[tid_no
] = 0;
6397 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6399 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
6400 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6401 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6402 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6404 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6406 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
6407 AscMemWordCopyPtrFromLram(iop_base
,
6410 sizeof(EXT_MSG
) >> 1);
6412 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6413 ext_msg
.msg_req
== EXTENDED_SDTR
&&
6414 ext_msg
.msg_len
== MS_SDTR_LEN
) {
6416 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
6418 sdtr_accept
= false;
6419 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
6421 if ((ext_msg
.xfer_period
<
6422 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
6423 || (ext_msg
.xfer_period
>
6424 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6426 sdtr_accept
= false;
6427 ext_msg
.xfer_period
=
6428 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6433 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
6434 ext_msg
.req_ack_offset
);
6435 if (sdtr_data
== 0xFF) {
6437 q_cntl
|= QC_MSG_OUT
;
6438 asc_dvc
->init_sdtr
&= ~target_id
;
6439 asc_dvc
->sdtr_done
&= ~target_id
;
6440 AscSetChipSDTR(iop_base
, asyn_sdtr
,
6442 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6445 if (ext_msg
.req_ack_offset
== 0) {
6447 q_cntl
&= ~QC_MSG_OUT
;
6448 asc_dvc
->init_sdtr
&= ~target_id
;
6449 asc_dvc
->sdtr_done
&= ~target_id
;
6450 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6452 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
6453 q_cntl
&= ~QC_MSG_OUT
;
6454 asc_dvc
->sdtr_done
|= target_id
;
6455 asc_dvc
->init_sdtr
|= target_id
;
6456 asc_dvc
->pci_fix_asyn_xfer
&=
6459 AscCalSDTRData(asc_dvc
,
6460 ext_msg
.xfer_period
,
6463 AscSetChipSDTR(iop_base
, sdtr_data
,
6465 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6467 q_cntl
|= QC_MSG_OUT
;
6468 AscMsgOutSDTR(asc_dvc
,
6469 ext_msg
.xfer_period
,
6470 ext_msg
.req_ack_offset
);
6471 asc_dvc
->pci_fix_asyn_xfer
&=
6474 AscCalSDTRData(asc_dvc
,
6475 ext_msg
.xfer_period
,
6478 AscSetChipSDTR(iop_base
, sdtr_data
,
6480 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6481 asc_dvc
->sdtr_done
|= target_id
;
6482 asc_dvc
->init_sdtr
|= target_id
;
6486 AscWriteLramByte(iop_base
,
6487 (ushort
)(halt_q_addr
+
6488 (ushort
)ASC_SCSIQ_B_CNTL
),
6490 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6492 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6493 ext_msg
.msg_req
== EXTENDED_WDTR
&&
6494 ext_msg
.msg_len
== MS_WDTR_LEN
) {
6496 ext_msg
.wdtr_width
= 0;
6497 AscMemWordCopyPtrToLram(iop_base
,
6500 sizeof(EXT_MSG
) >> 1);
6501 q_cntl
|= QC_MSG_OUT
;
6502 AscWriteLramByte(iop_base
,
6503 (ushort
)(halt_q_addr
+
6504 (ushort
)ASC_SCSIQ_B_CNTL
),
6506 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6510 ext_msg
.msg_type
= MESSAGE_REJECT
;
6511 AscMemWordCopyPtrToLram(iop_base
,
6514 sizeof(EXT_MSG
) >> 1);
6515 q_cntl
|= QC_MSG_OUT
;
6516 AscWriteLramByte(iop_base
,
6517 (ushort
)(halt_q_addr
+
6518 (ushort
)ASC_SCSIQ_B_CNTL
),
6520 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6523 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
6525 q_cntl
|= QC_REQ_SENSE
;
6527 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
6529 asc_dvc
->sdtr_done
&= ~target_id
;
6531 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
6532 q_cntl
|= QC_MSG_OUT
;
6533 AscMsgOutSDTR(asc_dvc
,
6535 sdtr_period_tbl
[(sdtr_data
>> 4) &
6539 (uchar
)(sdtr_data
& (uchar
)
6540 ASC_SYN_MAX_OFFSET
));
6543 AscWriteLramByte(iop_base
,
6544 (ushort
)(halt_q_addr
+
6545 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6547 tag_code
= AscReadLramByte(iop_base
,
6548 (ushort
)(halt_q_addr
+ (ushort
)
6549 ASC_SCSIQ_B_TAG_CODE
));
6551 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
6552 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
6555 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6556 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
6559 AscWriteLramByte(iop_base
,
6560 (ushort
)(halt_q_addr
+
6561 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
6564 q_status
= AscReadLramByte(iop_base
,
6565 (ushort
)(halt_q_addr
+ (ushort
)
6566 ASC_SCSIQ_B_STATUS
));
6567 q_status
|= (QS_READY
| QS_BUSY
);
6568 AscWriteLramByte(iop_base
,
6569 (ushort
)(halt_q_addr
+
6570 (ushort
)ASC_SCSIQ_B_STATUS
),
6573 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
6574 scsi_busy
&= ~target_id
;
6575 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6577 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6579 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
6581 AscMemWordCopyPtrFromLram(iop_base
,
6584 sizeof(EXT_MSG
) >> 1);
6586 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
6587 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
6588 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
6590 asc_dvc
->init_sdtr
&= ~target_id
;
6591 asc_dvc
->sdtr_done
&= ~target_id
;
6592 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6593 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6595 q_cntl
&= ~QC_MSG_OUT
;
6596 AscWriteLramByte(iop_base
,
6597 (ushort
)(halt_q_addr
+
6598 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6599 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6601 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
6603 scsi_status
= AscReadLramByte(iop_base
,
6604 (ushort
)((ushort
)halt_q_addr
+
6606 ASC_SCSIQ_SCSI_STATUS
));
6608 AscReadLramByte(iop_base
,
6609 (ushort
)((ushort
)ASC_QADR_BEG
+
6610 (ushort
)target_ix
));
6611 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
6613 scsi_busy
= AscReadLramByte(iop_base
,
6614 (ushort
)ASCV_SCSIBUSY_B
);
6615 scsi_busy
|= target_id
;
6616 AscWriteLramByte(iop_base
,
6617 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6618 asc_dvc
->queue_full_or_busy
|= target_id
;
6620 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
6621 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
6623 asc_dvc
->max_dvc_qng
[tid_no
] =
6626 AscWriteLramByte(iop_base
,
6628 ASCV_MAX_DVC_QNG_BEG
6634 * Set the device queue depth to the
6635 * number of active requests when the
6636 * QUEUE FULL condition was encountered.
6638 boardp
->queue_full
|= target_id
;
6639 boardp
->queue_full_cnt
[tid_no
] =
6644 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6652 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6654 * Calling/Exit State:
6658 * Input an ASC_QDONE_INFO structure from the chip
6661 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
6666 AscSetChipLramAddr(iop_base
, s_addr
);
6667 for (i
= 0; i
< 2 * words
; i
+= 2) {
6671 word
= inpw(iop_base
+ IOP_RAM_DATA
);
6672 inbuf
[i
] = word
& 0xff;
6673 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
6675 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
6679 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
6681 ASC_QDONE_INFO
*scsiq
, unsigned int max_dma_count
)
6686 DvcGetQinfo(iop_base
,
6687 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
6689 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
6691 _val
= AscReadLramWord(iop_base
,
6692 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
6693 scsiq
->q_status
= (uchar
)_val
;
6694 scsiq
->q_no
= (uchar
)(_val
>> 8);
6695 _val
= AscReadLramWord(iop_base
,
6696 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6697 scsiq
->cntl
= (uchar
)_val
;
6698 sg_queue_cnt
= (uchar
)(_val
>> 8);
6699 _val
= AscReadLramWord(iop_base
,
6701 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
6702 scsiq
->sense_len
= (uchar
)_val
;
6703 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
6706 * Read high word of remain bytes from alternate location.
6708 scsiq
->remain_bytes
= (((u32
)AscReadLramWord(iop_base
,
6711 ASC_SCSIQ_W_ALT_DC1
)))
6714 * Read low word of remain bytes from original location.
6716 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
6717 (ushort
)(q_addr
+ (ushort
)
6718 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
6720 scsiq
->remain_bytes
&= max_dma_count
;
6721 return sg_queue_cnt
;
6725 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6727 * Interrupt callback function for the Narrow SCSI Asc Library.
6729 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
6731 struct asc_board
*boardp
= asc_dvc_varp
->drv_ptr
;
6733 struct scsi_cmnd
*scp
;
6735 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
6736 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
6739 * Decrease the srb_tag by 1 to find the SCSI command
6741 srb_tag
= qdonep
->d2
.srb_tag
- 1;
6742 scp
= scsi_host_find_tag(boardp
->shost
, srb_tag
);
6746 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6748 ASC_STATS(boardp
->shost
, callback
);
6750 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
6751 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
6753 * 'qdonep' contains the command's ending status.
6755 switch (qdonep
->d3
.done_stat
) {
6757 ASC_DBG(2, "QD_NO_ERROR\n");
6761 * Check for an underrun condition.
6763 * If there was no error and an underrun condition, then
6764 * return the number of underrun bytes.
6766 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
6767 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
6768 ASC_DBG(1, "underrun condition %u bytes\n",
6769 (unsigned)qdonep
->remain_bytes
);
6770 scsi_set_resid(scp
, qdonep
->remain_bytes
);
6775 ASC_DBG(2, "QD_WITH_ERROR\n");
6776 switch (qdonep
->d3
.host_stat
) {
6777 case QHSTA_NO_ERROR
:
6778 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
6779 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6780 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6781 SCSI_SENSE_BUFFERSIZE
);
6783 * Note: The 'status_byte()' macro used by
6784 * target drivers defined in scsi.h shifts the
6785 * status byte returned by host drivers right
6786 * by 1 bit. This is why target drivers also
6787 * use right shifted status byte definitions.
6788 * For instance target drivers use
6789 * CHECK_CONDITION, defined to 0x1, instead of
6790 * the SCSI defined check condition value of
6791 * 0x2. Host drivers are supposed to return
6792 * the status byte as it is defined by SCSI.
6794 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6795 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
6797 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
6802 /* QHSTA error occurred */
6803 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
6804 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6809 case QD_ABORTED_BY_HOST
:
6810 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6812 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
6814 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
6818 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
6820 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
6822 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
6827 * If the 'init_tidmask' bit isn't already set for the target and the
6828 * current request finished normally, then set the bit for the target
6829 * to indicate that a device is present.
6831 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6832 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
6833 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
6834 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6840 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
6849 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6850 ASC_SCSI_BIT_ID_TYPE target_id
;
6854 uchar cur_target_qng
;
6855 ASC_QDONE_INFO scsiq_buf
;
6856 ASC_QDONE_INFO
*scsiq
;
6859 iop_base
= asc_dvc
->iop_base
;
6861 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
6862 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
6863 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
6864 next_qp
= AscReadLramByte(iop_base
,
6865 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
6866 if (next_qp
!= ASC_QLINK_END
) {
6867 AscPutVarDoneQTail(iop_base
, next_qp
);
6868 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
6869 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
6870 asc_dvc
->max_dma_count
);
6871 AscWriteLramByte(iop_base
,
6873 (ushort
)ASC_SCSIQ_B_STATUS
),
6875 q_status
& (uchar
)~(QS_READY
|
6877 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
6878 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
6879 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
6881 sg_list_qp
= next_qp
;
6882 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
6883 sg_list_qp
= AscReadLramByte(iop_base
,
6887 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
6888 if (sg_list_qp
== ASC_QLINK_END
) {
6889 AscSetLibErrorCode(asc_dvc
,
6890 ASCQ_ERR_SG_Q_LINKS
);
6891 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
6892 scsiq
->d3
.host_stat
=
6893 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
6894 goto FATAL_ERR_QDONE
;
6896 AscWriteLramByte(iop_base
,
6897 (ushort
)(sg_q_addr
+ (ushort
)
6898 ASC_SCSIQ_B_STATUS
),
6901 n_q_used
= sg_queue_cnt
+ 1;
6902 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
6904 if (asc_dvc
->queue_full_or_busy
& target_id
) {
6905 cur_target_qng
= AscReadLramByte(iop_base
,
6911 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
6912 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
6914 scsi_busy
&= ~target_id
;
6915 AscWriteLramByte(iop_base
,
6916 (ushort
)ASCV_SCSIBUSY_B
,
6918 asc_dvc
->queue_full_or_busy
&= ~target_id
;
6921 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
6922 asc_dvc
->cur_total_qng
-= n_q_used
;
6923 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
6924 asc_dvc
->cur_dvc_qng
[tid_no
]--;
6927 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
6928 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
6929 goto FATAL_ERR_QDONE
;
6931 if ((scsiq
->d2
.srb_tag
== 0UL) ||
6932 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
6934 } else if (scsiq
->q_status
== QS_DONE
) {
6936 * This is also curious.
6937 * false_overrun will _always_ be set to 'false'
6939 false_overrun
= false;
6940 if (scsiq
->extra_bytes
!= 0) {
6941 scsiq
->remain_bytes
+= scsiq
->extra_bytes
;
6943 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
6944 if (scsiq
->d3
.host_stat
==
6945 QHSTA_M_DATA_OVER_RUN
) {
6947 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
6949 scsiq
->d3
.done_stat
=
6951 scsiq
->d3
.host_stat
=
6953 } else if (false_overrun
) {
6954 scsiq
->d3
.done_stat
=
6956 scsiq
->d3
.host_stat
=
6959 } else if (scsiq
->d3
.host_stat
==
6960 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
6961 AscStopChip(iop_base
);
6962 AscSetChipControl(iop_base
,
6963 (uchar
)(CC_SCSI_RESET
6966 AscSetChipControl(iop_base
, CC_HALT
);
6967 AscSetChipStatus(iop_base
,
6968 CIW_CLR_SCSI_RESET_INT
);
6969 AscSetChipStatus(iop_base
, 0);
6970 AscSetChipControl(iop_base
, 0);
6973 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
6974 asc_isr_callback(asc_dvc
, scsiq
);
6976 if ((AscReadLramByte(iop_base
,
6977 (ushort
)(q_addr
+ (ushort
)
6980 asc_dvc
->unit_not_ready
&= ~target_id
;
6981 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
6982 asc_dvc
->start_motor
&=
6989 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
6991 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
6992 asc_isr_callback(asc_dvc
, scsiq
);
7000 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7002 ASC_CS_TYPE chipstat
;
7004 ushort saved_ram_addr
;
7006 uchar saved_ctrl_reg
;
7011 iop_base
= asc_dvc
->iop_base
;
7012 int_pending
= ASC_FALSE
;
7014 if (AscIsIntPending(iop_base
) == 0)
7017 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7020 if (asc_dvc
->in_critical_cnt
!= 0) {
7021 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7024 if (asc_dvc
->is_in_int
) {
7025 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7028 asc_dvc
->is_in_int
= true;
7029 ctrl_reg
= AscGetChipControl(iop_base
);
7030 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7031 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7032 chipstat
= AscGetChipStatus(iop_base
);
7033 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7034 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7036 int_pending
= ASC_TRUE
;
7037 asc_dvc
->sdtr_done
= 0;
7038 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7039 while ((AscGetChipStatus(iop_base
) &
7040 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7043 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7044 AscSetChipControl(iop_base
, CC_HALT
);
7045 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7046 AscSetChipStatus(iop_base
, 0);
7047 chipstat
= AscGetChipStatus(iop_base
);
7050 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7051 host_flag
= AscReadLramByte(iop_base
,
7053 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7054 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7055 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7056 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7057 AscAckInterrupt(iop_base
);
7058 int_pending
= ASC_TRUE
;
7059 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7060 AscIsrChipHalted(asc_dvc
);
7061 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7063 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7065 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7070 AscIsrQDone(asc_dvc
)) == 1) {
7073 } while (status
== 0x11);
7075 if ((status
& 0x80) != 0)
7076 int_pending
= ASC_ERROR
;
7079 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7080 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7081 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7082 asc_dvc
->is_in_int
= false;
7089 * Reset the host associated with the command 'scp'.
7091 * This function runs its own thread. Interrupts must be blocked but
7092 * sleeping is allowed and no locking other than for host structures is
7093 * required. Returns SUCCESS or FAILED.
7095 static int advansys_reset(struct scsi_cmnd
*scp
)
7097 struct Scsi_Host
*shost
= scp
->device
->host
;
7098 struct asc_board
*boardp
= shost_priv(shost
);
7099 unsigned long flags
;
7103 ASC_DBG(1, "0x%p\n", scp
);
7105 ASC_STATS(shost
, reset
);
7107 scmd_printk(KERN_INFO
, scp
, "SCSI host reset started...\n");
7109 if (ASC_NARROW_BOARD(boardp
)) {
7110 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7112 /* Reset the chip and SCSI bus. */
7113 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7114 status
= AscInitAsc1000Driver(asc_dvc
);
7116 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7117 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7118 scmd_printk(KERN_INFO
, scp
, "SCSI host reset error: "
7119 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
7122 } else if (status
) {
7123 scmd_printk(KERN_INFO
, scp
, "SCSI host reset warning: "
7126 scmd_printk(KERN_INFO
, scp
, "SCSI host reset "
7130 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7133 * If the suggest reset bus flags are set, then reset the bus.
7134 * Otherwise only reset the device.
7136 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
7139 * Reset the chip and SCSI bus.
7141 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7142 switch (AdvResetChipAndSB(adv_dvc
)) {
7144 scmd_printk(KERN_INFO
, scp
, "SCSI host reset "
7149 scmd_printk(KERN_INFO
, scp
, "SCSI host reset error\n");
7153 spin_lock_irqsave(shost
->host_lock
, flags
);
7155 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7158 ASC_DBG(1, "ret %d\n", ret
);
7164 * advansys_biosparam()
7166 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7167 * support is enabled for a drive.
7169 * ip (information pointer) is an int array with the following definition:
7175 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
7176 sector_t capacity
, int ip
[])
7178 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7180 ASC_DBG(1, "begin\n");
7181 ASC_STATS(sdev
->host
, biosparam
);
7182 if (ASC_NARROW_BOARD(boardp
)) {
7183 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
7184 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
7192 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
7193 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
7201 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
7202 ASC_DBG(1, "end\n");
7207 * First-level interrupt handler.
7209 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7211 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
7213 struct Scsi_Host
*shost
= dev_id
;
7214 struct asc_board
*boardp
= shost_priv(shost
);
7215 irqreturn_t result
= IRQ_NONE
;
7216 unsigned long flags
;
7218 ASC_DBG(2, "boardp 0x%p\n", boardp
);
7219 spin_lock_irqsave(shost
->host_lock
, flags
);
7220 if (ASC_NARROW_BOARD(boardp
)) {
7221 if (AscIsIntPending(shost
->io_port
)) {
7222 result
= IRQ_HANDLED
;
7223 ASC_STATS(shost
, interrupt
);
7224 ASC_DBG(1, "before AscISR()\n");
7225 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
7228 ASC_DBG(1, "before AdvISR()\n");
7229 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
7230 result
= IRQ_HANDLED
;
7231 ASC_STATS(shost
, interrupt
);
7234 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7236 ASC_DBG(1, "end\n");
7240 static bool AscHostReqRiscHalt(PortAddr iop_base
)
7244 uchar saved_stop_code
;
7246 if (AscIsChipHalted(iop_base
))
7248 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
7249 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
7250 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
7252 if (AscIsChipHalted(iop_base
)) {
7257 } while (count
++ < 20);
7258 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
7263 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
7267 if (AscHostReqRiscHalt(iop_base
)) {
7268 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7269 AscStartChip(iop_base
);
7274 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
7276 char type
= sdev
->type
;
7277 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
7279 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
7281 if (asc_dvc
->init_sdtr
& tid_bits
)
7284 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
7285 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
7287 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
7288 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
7289 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
7290 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
7292 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
7293 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
7294 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
7298 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
7300 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
7301 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
7303 if (sdev
->lun
== 0) {
7304 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
7305 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
7306 asc_dvc
->init_sdtr
|= tid_bit
;
7308 asc_dvc
->init_sdtr
&= ~tid_bit
;
7311 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
7312 AscAsyncFix(asc_dvc
, sdev
);
7315 if (sdev
->tagged_supported
) {
7316 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
7317 if (sdev
->lun
== 0) {
7318 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
7319 asc_dvc
->use_tagged_qng
|= tid_bit
;
7321 scsi_change_queue_depth(sdev
,
7322 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7325 if (sdev
->lun
== 0) {
7326 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
7327 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
7331 if ((sdev
->lun
== 0) &&
7332 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
7333 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
7334 asc_dvc
->cfg
->disc_enable
);
7335 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
7336 asc_dvc
->use_tagged_qng
);
7337 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
7338 asc_dvc
->cfg
->can_tagged_qng
);
7340 asc_dvc
->max_dvc_qng
[sdev
->id
] =
7341 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
7342 AscWriteLramByte(asc_dvc
->iop_base
,
7343 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
7344 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7351 * If the EEPROM enabled WDTR for the device and the device supports wide
7352 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7353 * write the new value to the microcode.
7356 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7358 unsigned short cfg_word
;
7359 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7360 if ((cfg_word
& tidmask
) != 0)
7363 cfg_word
|= tidmask
;
7364 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7367 * Clear the microcode SDTR and WDTR negotiation done indicators for
7368 * the target to cause it to negotiate with the new setting set above.
7369 * WDTR when accepted causes the target to enter asynchronous mode, so
7370 * SDTR must be negotiated.
7372 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7373 cfg_word
&= ~tidmask
;
7374 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7375 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7376 cfg_word
&= ~tidmask
;
7377 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7381 * Synchronous Transfers
7383 * If the EEPROM enabled SDTR for the device and the device
7384 * supports synchronous transfers, then turn on the device's
7385 * 'sdtr_able' bit. Write the new value to the microcode.
7388 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7390 unsigned short cfg_word
;
7391 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7392 if ((cfg_word
& tidmask
) != 0)
7395 cfg_word
|= tidmask
;
7396 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7399 * Clear the microcode "SDTR negotiation" done indicator for the
7400 * target to cause it to negotiate with the new setting set above.
7402 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7403 cfg_word
&= ~tidmask
;
7404 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7408 * PPR (Parallel Protocol Request) Capable
7410 * If the device supports DT mode, then it must be PPR capable.
7411 * The PPR message will be used in place of the SDTR and WDTR
7412 * messages to negotiate synchronous speed and offset, transfer
7413 * width, and protocol options.
7415 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
7416 AdvPortAddr iop_base
, unsigned short tidmask
)
7418 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7419 adv_dvc
->ppr_able
|= tidmask
;
7420 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7424 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
7426 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
7427 unsigned short tidmask
= 1 << sdev
->id
;
7429 if (sdev
->lun
== 0) {
7431 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7432 * is enabled in the EEPROM and the device supports the
7433 * feature, then enable it in the microcode.
7436 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
7437 advansys_wide_enable_wdtr(iop_base
, tidmask
);
7438 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
7439 advansys_wide_enable_sdtr(iop_base
, tidmask
);
7440 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
7441 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
7444 * Tag Queuing is disabled for the BIOS which runs in polled
7445 * mode and would see no benefit from Tag Queuing. Also by
7446 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7447 * bugs will at least work with the BIOS.
7449 if ((adv_dvc
->tagqng_able
& tidmask
) &&
7450 sdev
->tagged_supported
) {
7451 unsigned short cfg_word
;
7452 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
7453 cfg_word
|= tidmask
;
7454 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
7456 AdvWriteByteLram(iop_base
,
7457 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
7458 adv_dvc
->max_dvc_qng
);
7462 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
)
7463 scsi_change_queue_depth(sdev
, adv_dvc
->max_dvc_qng
);
7467 * Set the number of commands to queue per device for the
7468 * specified host adapter.
7470 static int advansys_slave_configure(struct scsi_device
*sdev
)
7472 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7474 if (ASC_NARROW_BOARD(boardp
))
7475 advansys_narrow_slave_configure(sdev
,
7476 &boardp
->dvc_var
.asc_dvc_var
);
7478 advansys_wide_slave_configure(sdev
,
7479 &boardp
->dvc_var
.adv_dvc_var
);
7484 static __le32
asc_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
7486 struct asc_board
*board
= shost_priv(scp
->device
->host
);
7488 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
7489 SCSI_SENSE_BUFFERSIZE
,
7491 if (dma_mapping_error(board
->dev
, scp
->SCp
.dma_handle
)) {
7492 ASC_DBG(1, "failed to map sense buffer\n");
7495 return cpu_to_le32(scp
->SCp
.dma_handle
);
7498 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7499 struct asc_scsi_q
*asc_scsi_q
)
7501 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7505 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
7508 * Set the srb_tag to the command tag + 1, as
7509 * srb_tag '0' is used internally by the chip.
7511 srb_tag
= scp
->request
->tag
+ 1;
7512 asc_scsi_q
->q2
.srb_tag
= srb_tag
;
7515 * Build the ASC_SCSI_Q request.
7517 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
7518 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
7519 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
7520 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
7521 asc_scsi_q
->q2
.target_ix
=
7522 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
7523 asc_scsi_q
->q1
.sense_addr
= asc_get_sense_buffer_dma(scp
);
7524 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
7525 if (!asc_scsi_q
->q1
.sense_addr
)
7529 * If there are any outstanding requests for the current target,
7530 * then every 255th request send an ORDERED request. This heuristic
7531 * tries to retain the benefit of request sorting while preventing
7532 * request starvation. 255 is the max number of tags or pending commands
7533 * a device may have outstanding.
7535 * The request count is incremented below for every successfully
7539 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
7540 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
7541 asc_scsi_q
->q2
.tag_code
= ORDERED_QUEUE_TAG
;
7543 asc_scsi_q
->q2
.tag_code
= SIMPLE_QUEUE_TAG
;
7546 /* Build ASC_SCSI_Q */
7547 use_sg
= scsi_dma_map(scp
);
7549 ASC_DBG(1, "failed to map sglist\n");
7551 } else if (use_sg
> 0) {
7553 struct scatterlist
*slp
;
7554 struct asc_sg_head
*asc_sg_head
;
7556 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
7557 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7558 "sg_tablesize %d\n", use_sg
,
7559 scp
->device
->host
->sg_tablesize
);
7560 scsi_dma_unmap(scp
);
7561 scp
->result
= HOST_BYTE(DID_ERROR
);
7565 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
7566 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
7568 scsi_dma_unmap(scp
);
7569 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
7573 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
7574 asc_scsi_q
->sg_head
= asc_sg_head
;
7575 asc_scsi_q
->q1
.data_cnt
= 0;
7576 asc_scsi_q
->q1
.data_addr
= 0;
7577 /* This is a byte value, otherwise it would need to be swapped. */
7578 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
7579 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
7580 asc_sg_head
->entry_cnt
);
7583 * Convert scatter-gather list into ASC_SG_HEAD list.
7585 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
7586 asc_sg_head
->sg_list
[sgcnt
].addr
=
7587 cpu_to_le32(sg_dma_address(slp
));
7588 asc_sg_head
->sg_list
[sgcnt
].bytes
=
7589 cpu_to_le32(sg_dma_len(slp
));
7590 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7591 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7595 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7597 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
7598 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7604 * Build scatter-gather list for Adv Library (Wide Board).
7606 * Additional ADV_SG_BLOCK structures will need to be allocated
7607 * if the total number of scatter-gather elements exceeds
7608 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7609 * assumed to be physically contiguous.
7612 * ADV_SUCCESS(1) - SG List successfully created
7613 * ADV_ERROR(-1) - SG List creation failed
7616 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
,
7617 ADV_SCSI_REQ_Q
*scsiqp
, struct scsi_cmnd
*scp
, int use_sg
)
7619 adv_sgblk_t
*sgblkp
, *prev_sgblkp
;
7620 struct scatterlist
*slp
;
7622 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
7623 dma_addr_t sgblk_paddr
;
7626 slp
= scsi_sglist(scp
);
7627 sg_elem_cnt
= use_sg
;
7629 prev_sg_block
= NULL
;
7630 reqp
->sgblkp
= NULL
;
7634 * Allocate a 'adv_sgblk_t' structure from the board free
7635 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7636 * (15) scatter-gather elements.
7638 sgblkp
= dma_pool_alloc(boardp
->adv_sgblk_pool
, GFP_ATOMIC
,
7641 ASC_DBG(1, "no free adv_sgblk_t\n");
7642 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
7645 * Allocation failed. Free 'adv_sgblk_t' structures
7646 * already allocated for the request.
7648 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
7649 /* Remove 'sgblkp' from the request list. */
7650 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
7651 sgblkp
->next_sgblkp
= NULL
;
7652 dma_pool_free(boardp
->adv_sgblk_pool
, sgblkp
,
7657 /* Complete 'adv_sgblk_t' board allocation. */
7658 sgblkp
->sg_addr
= sgblk_paddr
;
7659 sgblkp
->next_sgblkp
= NULL
;
7660 sg_block
= &sgblkp
->sg_block
;
7663 * Check if this is the first 'adv_sgblk_t' for the
7666 if (reqp
->sgblkp
== NULL
) {
7667 /* Request's first scatter-gather block. */
7668 reqp
->sgblkp
= sgblkp
;
7671 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7674 scsiqp
->sg_list_ptr
= sg_block
;
7675 scsiqp
->sg_real_addr
= cpu_to_le32(sgblk_paddr
);
7677 /* Request's second or later scatter-gather block. */
7678 prev_sgblkp
->next_sgblkp
= sgblkp
;
7681 * Point the previous ADV_SG_BLOCK structure to
7682 * the newly allocated ADV_SG_BLOCK structure.
7684 prev_sg_block
->sg_ptr
= cpu_to_le32(sgblk_paddr
);
7687 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
7688 sg_block
->sg_list
[i
].sg_addr
=
7689 cpu_to_le32(sg_dma_address(slp
));
7690 sg_block
->sg_list
[i
].sg_count
=
7691 cpu_to_le32(sg_dma_len(slp
));
7692 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7693 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7695 if (--sg_elem_cnt
== 0) {
7697 * Last ADV_SG_BLOCK and scatter-gather entry.
7699 sg_block
->sg_cnt
= i
+ 1;
7700 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
7705 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
7706 prev_sg_block
= sg_block
;
7707 prev_sgblkp
= sgblkp
;
7712 * Build a request structure for the Adv Library (Wide Board).
7714 * If an adv_req_t can not be allocated to issue the request,
7715 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7717 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7718 * microcode for DMA addresses or math operations are byte swapped
7719 * to little-endian order.
7722 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7723 adv_req_t
**adv_reqpp
)
7725 u32 srb_tag
= scp
->request
->tag
;
7727 ADV_SCSI_REQ_Q
*scsiqp
;
7730 dma_addr_t sense_addr
;
7733 * Allocate an adv_req_t structure from the board to execute
7736 reqp
= &boardp
->adv_reqp
[srb_tag
];
7737 if (reqp
->cmndp
&& reqp
->cmndp
!= scp
) {
7738 ASC_DBG(1, "no free adv_req_t\n");
7739 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7743 reqp
->req_addr
= boardp
->adv_reqp_addr
+ (srb_tag
* sizeof(adv_req_t
));
7745 scsiqp
= &reqp
->scsi_req_q
;
7748 * Initialize the structure.
7750 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
7753 * Set the srb_tag to the command tag.
7755 scsiqp
->srb_tag
= srb_tag
;
7758 * Set 'host_scribble' to point to the adv_req_t structure.
7761 scp
->host_scribble
= (void *)reqp
;
7764 * Build the ADV_SCSI_REQ_Q request.
7767 /* Set CDB length and copy it to the request structure. */
7768 scsiqp
->cdb_len
= scp
->cmd_len
;
7769 /* Copy first 12 CDB bytes to cdb[]. */
7770 memcpy(scsiqp
->cdb
, scp
->cmnd
, scp
->cmd_len
< 12 ? scp
->cmd_len
: 12);
7771 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7772 if (scp
->cmd_len
> 12) {
7773 int cdb16_len
= scp
->cmd_len
- 12;
7775 memcpy(scsiqp
->cdb16
, &scp
->cmnd
[12], cdb16_len
);
7778 scsiqp
->target_id
= scp
->device
->id
;
7779 scsiqp
->target_lun
= scp
->device
->lun
;
7781 sense_addr
= dma_map_single(boardp
->dev
, scp
->sense_buffer
,
7782 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7783 if (dma_mapping_error(boardp
->dev
, sense_addr
)) {
7784 ASC_DBG(1, "failed to map sense buffer\n");
7785 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7788 scsiqp
->sense_addr
= cpu_to_le32(sense_addr
);
7789 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
7791 /* Build ADV_SCSI_REQ_Q */
7793 use_sg
= scsi_dma_map(scp
);
7795 ASC_DBG(1, "failed to map SG list\n");
7796 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7798 } else if (use_sg
== 0) {
7799 /* Zero-length transfer */
7800 reqp
->sgblkp
= NULL
;
7801 scsiqp
->data_cnt
= 0;
7803 scsiqp
->data_addr
= 0;
7804 scsiqp
->sg_list_ptr
= NULL
;
7805 scsiqp
->sg_real_addr
= 0;
7807 if (use_sg
> ADV_MAX_SG_LIST
) {
7808 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7809 "ADV_MAX_SG_LIST %d\n", use_sg
,
7810 scp
->device
->host
->sg_tablesize
);
7811 scsi_dma_unmap(scp
);
7812 scp
->result
= HOST_BYTE(DID_ERROR
);
7814 scp
->host_scribble
= NULL
;
7819 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
7821 ret
= adv_get_sglist(boardp
, reqp
, scsiqp
, scp
, use_sg
);
7822 if (ret
!= ADV_SUCCESS
) {
7823 scsi_dma_unmap(scp
);
7824 scp
->result
= HOST_BYTE(DID_ERROR
);
7826 scp
->host_scribble
= NULL
;
7831 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
7834 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7836 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
7837 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7844 static int AscSgListToQueue(int sg_list
)
7848 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
7849 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
7851 return n_sg_list_qs
+ 1;
7855 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
7859 ASC_SCSI_BIT_ID_TYPE target_id
;
7862 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
7863 tid_no
= ASC_TIX_TO_TID(target_ix
);
7864 if ((asc_dvc
->unit_not_ready
& target_id
) ||
7865 (asc_dvc
->queue_full_or_busy
& target_id
)) {
7869 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
7870 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
7872 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
7873 (uint
) ASC_MIN_FREE_Q
;
7875 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
7876 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
7877 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
7878 asc_dvc
->max_dvc_qng
[tid_no
]) {
7884 if ((n_qs
> asc_dvc
->last_q_shortage
)
7885 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
7886 asc_dvc
->last_q_shortage
= n_qs
;
7892 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
7898 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
7899 q_status
= (uchar
)AscReadLramByte(iop_base
,
7901 ASC_SCSIQ_B_STATUS
));
7902 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
7903 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
7905 return ASC_QLINK_END
;
7909 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
7913 for (i
= 0; i
< n_free_q
; i
++) {
7914 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
7915 if (free_q_head
== ASC_QLINK_END
)
7923 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7925 * Calling/Exit State:
7929 * Output an ASC_SCSI_Q structure to the chip
7932 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
7936 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
7937 AscSetChipLramAddr(iop_base
, s_addr
);
7938 for (i
= 0; i
< 2 * words
; i
+= 2) {
7939 if (i
== 4 || i
== 20) {
7942 outpw(iop_base
+ IOP_RAM_DATA
,
7943 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
7947 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
7952 uchar syn_period_ix
;
7956 iop_base
= asc_dvc
->iop_base
;
7957 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
7958 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
7959 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
7960 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
7962 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
7963 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
7964 AscMsgOutSDTR(asc_dvc
,
7965 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
7967 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
7969 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7970 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
7971 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
7973 scsiq
->q1
.status
= QS_FREE
;
7974 AscMemWordCopyPtrToLram(iop_base
,
7975 q_addr
+ ASC_SCSIQ_CDB_BEG
,
7976 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
7978 DvcPutScsiQ(iop_base
,
7979 q_addr
+ ASC_SCSIQ_CPY_BEG
,
7980 (uchar
*)&scsiq
->q1
.cntl
,
7981 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
7982 AscWriteLramWord(iop_base
,
7983 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
7984 (ushort
)(((ushort
)scsiq
->q1
.
7985 q_no
<< 8) | (ushort
)QS_READY
));
7990 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
7994 ASC_SG_HEAD
*sg_head
;
7995 ASC_SG_LIST_Q scsi_sg_q
;
7996 __le32 saved_data_addr
;
7997 __le32 saved_data_cnt
;
7999 ushort sg_list_dwords
;
8001 ushort sg_entry_cnt
;
8005 iop_base
= asc_dvc
->iop_base
;
8006 sg_head
= scsiq
->sg_head
;
8007 saved_data_addr
= scsiq
->q1
.data_addr
;
8008 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8009 scsiq
->q1
.data_addr
= cpu_to_le32(sg_head
->sg_list
[0].addr
);
8010 scsiq
->q1
.data_cnt
= cpu_to_le32(sg_head
->sg_list
[0].bytes
);
8012 * Set sg_entry_cnt to be the number of SG elements that
8013 * will fit in the allocated SG queues. It is minus 1, because
8014 * the first SG element is handled above.
8016 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8018 if (sg_entry_cnt
!= 0) {
8019 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8020 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8022 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8023 scsi_sg_q
.sg_head_qp
= q_no
;
8024 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8025 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8026 scsi_sg_q
.seq_no
= i
+ 1;
8027 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8028 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8029 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8031 scsi_sg_q
.sg_list_cnt
=
8033 scsi_sg_q
.sg_cur_list_cnt
=
8036 scsi_sg_q
.sg_list_cnt
=
8037 ASC_SG_LIST_PER_Q
- 1;
8038 scsi_sg_q
.sg_cur_list_cnt
=
8039 ASC_SG_LIST_PER_Q
- 1;
8042 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8043 sg_list_dwords
= sg_entry_cnt
<< 1;
8045 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8046 scsi_sg_q
.sg_cur_list_cnt
=
8049 scsi_sg_q
.sg_list_cnt
=
8051 scsi_sg_q
.sg_cur_list_cnt
=
8056 next_qp
= AscReadLramByte(iop_base
,
8059 scsi_sg_q
.q_no
= next_qp
;
8060 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8061 AscMemWordCopyPtrToLram(iop_base
,
8062 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8063 (uchar
*)&scsi_sg_q
,
8064 sizeof(ASC_SG_LIST_Q
) >> 1);
8065 AscMemDWordCopyPtrToLram(iop_base
,
8066 q_addr
+ ASC_SGQ_LIST_BEG
,
8070 sg_index
+= ASC_SG_LIST_PER_Q
;
8071 scsiq
->next_sg_index
= sg_index
;
8074 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8076 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8077 scsiq
->q1
.data_addr
= saved_data_addr
;
8078 scsiq
->q1
.data_cnt
= saved_data_cnt
;
8083 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
8092 iop_base
= asc_dvc
->iop_base
;
8093 target_ix
= scsiq
->q2
.target_ix
;
8094 tid_no
= ASC_TIX_TO_TID(target_ix
);
8096 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
8097 if (n_q_required
> 1) {
8098 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
8099 (uchar
)n_q_required
);
8100 if (next_qp
!= ASC_QLINK_END
) {
8101 asc_dvc
->last_q_shortage
= 0;
8102 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
8103 scsiq
->q1
.q_no
= free_q_head
;
8104 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
8107 } else if (n_q_required
== 1) {
8108 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
8109 if (next_qp
!= ASC_QLINK_END
) {
8110 scsiq
->q1
.q_no
= free_q_head
;
8111 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
8115 AscPutVarFreeQHead(iop_base
, next_qp
);
8116 asc_dvc
->cur_total_qng
+= n_q_required
;
8117 asc_dvc
->cur_dvc_qng
[tid_no
]++;
8122 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8123 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
8142 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
8147 bool disable_syn_offset_one_fix
;
8150 ushort sg_entry_cnt
= 0;
8151 ushort sg_entry_cnt_minus_one
= 0;
8158 ASC_SG_HEAD
*sg_head
;
8159 unsigned long data_cnt
;
8161 iop_base
= asc_dvc
->iop_base
;
8162 sg_head
= scsiq
->sg_head
;
8163 if (asc_dvc
->err_code
!= 0)
8166 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
8167 scsiq
->q1
.extra_bytes
= 0;
8170 target_ix
= scsiq
->q2
.target_ix
;
8171 tid_no
= ASC_TIX_TO_TID(target_ix
);
8173 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
8174 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
8175 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
8176 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8177 AscMsgOutSDTR(asc_dvc
,
8179 sdtr_period_tbl
[(sdtr_data
>> 4) &
8183 (uchar
)(sdtr_data
& (uchar
)
8184 ASC_SYN_MAX_OFFSET
));
8185 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
8188 if (asc_dvc
->in_critical_cnt
!= 0) {
8189 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
8192 asc_dvc
->in_critical_cnt
++;
8193 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8194 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
8195 asc_dvc
->in_critical_cnt
--;
8198 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8199 asc_dvc
->in_critical_cnt
--;
8202 if (sg_entry_cnt
== 1) {
8203 scsiq
->q1
.data_addr
= cpu_to_le32(sg_head
->sg_list
[0].addr
);
8204 scsiq
->q1
.data_cnt
= cpu_to_le32(sg_head
->sg_list
[0].bytes
);
8205 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
8207 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
8209 scsi_cmd
= scsiq
->cdbptr
[0];
8210 disable_syn_offset_one_fix
= false;
8211 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
8212 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
8213 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
8215 for (i
= 0; i
< sg_entry_cnt
; i
++) {
8216 data_cnt
+= le32_to_cpu(sg_head
->sg_list
[i
].
8220 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
8222 if (data_cnt
!= 0UL) {
8223 if (data_cnt
< 512UL) {
8224 disable_syn_offset_one_fix
= true;
8226 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
8229 _syn_offset_one_disable_cmd
[i
];
8230 if (disable_cmd
== 0xFF) {
8233 if (scsi_cmd
== disable_cmd
) {
8234 disable_syn_offset_one_fix
=
8242 if (disable_syn_offset_one_fix
) {
8243 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
8244 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
8245 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
8247 scsiq
->q2
.tag_code
&= 0x27;
8249 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8250 if (asc_dvc
->bug_fix_cntl
) {
8251 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8252 if ((scsi_cmd
== READ_6
) ||
8253 (scsi_cmd
== READ_10
)) {
8254 addr
= le32_to_cpu(sg_head
->
8256 [sg_entry_cnt_minus_one
].
8258 le32_to_cpu(sg_head
->
8260 [sg_entry_cnt_minus_one
].
8263 (uchar
)((ushort
)addr
& 0x0003);
8264 if ((extra_bytes
!= 0)
8268 ASC_TAG_FLAG_EXTRA_BYTES
)
8270 scsiq
->q2
.tag_code
|=
8271 ASC_TAG_FLAG_EXTRA_BYTES
;
8272 scsiq
->q1
.extra_bytes
=
8275 le32_to_cpu(sg_head
->
8277 [sg_entry_cnt_minus_one
].
8279 data_cnt
-= extra_bytes
;
8282 [sg_entry_cnt_minus_one
].
8284 cpu_to_le32(data_cnt
);
8289 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
8290 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
8291 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
8292 (uint
) n_q_required
)
8293 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8295 AscSendScsiQueue(asc_dvc
, scsiq
,
8296 n_q_required
)) == 1) {
8297 asc_dvc
->in_critical_cnt
--;
8302 if (asc_dvc
->bug_fix_cntl
) {
8303 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8304 if ((scsi_cmd
== READ_6
) ||
8305 (scsi_cmd
== READ_10
)) {
8307 le32_to_cpu(scsiq
->q1
.data_addr
) +
8308 le32_to_cpu(scsiq
->q1
.data_cnt
);
8310 (uchar
)((ushort
)addr
& 0x0003);
8311 if ((extra_bytes
!= 0)
8315 ASC_TAG_FLAG_EXTRA_BYTES
)
8318 le32_to_cpu(scsiq
->q1
.
8320 if (((ushort
)data_cnt
& 0x01FF)
8322 scsiq
->q2
.tag_code
|=
8323 ASC_TAG_FLAG_EXTRA_BYTES
;
8324 data_cnt
-= extra_bytes
;
8325 scsiq
->q1
.data_cnt
=
8328 scsiq
->q1
.extra_bytes
=
8336 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
8337 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8338 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
8339 n_q_required
)) == 1) {
8340 asc_dvc
->in_critical_cnt
--;
8345 asc_dvc
->in_critical_cnt
--;
8350 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8352 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8353 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8354 * RISC to notify it a new command is ready to be executed.
8356 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8357 * set to SCSI_MAX_RETRY.
8359 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8360 * for DMA addresses or math operations are byte swapped to little-endian
8364 * ADV_SUCCESS(1) - The request was successfully queued.
8365 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8366 * request completes.
8367 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8370 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, adv_req_t
*reqp
)
8372 AdvPortAddr iop_base
;
8373 ADV_CARR_T
*new_carrp
;
8374 ADV_SCSI_REQ_Q
*scsiq
= &reqp
->scsi_req_q
;
8377 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8379 if (scsiq
->target_id
> ADV_MAX_TID
) {
8380 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
8381 scsiq
->done_status
= QD_WITH_ERROR
;
8385 iop_base
= asc_dvc
->iop_base
;
8388 * Allocate a carrier ensuring at least one carrier always
8389 * remains on the freelist and initialize fields.
8391 new_carrp
= adv_get_next_carrier(asc_dvc
);
8393 ASC_DBG(1, "No free carriers\n");
8397 asc_dvc
->carr_pending_cnt
++;
8399 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8400 scsiq
->scsiq_ptr
= cpu_to_le32(scsiq
->srb_tag
);
8401 scsiq
->scsiq_rptr
= cpu_to_le32(reqp
->req_addr
);
8403 scsiq
->carr_va
= asc_dvc
->icq_sp
->carr_va
;
8404 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
8407 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8408 * the microcode. The newly allocated stopper will become the new
8411 asc_dvc
->icq_sp
->areq_vpa
= scsiq
->scsiq_rptr
;
8414 * Set the 'next_vpa' pointer for the old stopper to be the
8415 * physical address of the new stopper. The RISC can only
8416 * follow physical addresses.
8418 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
8421 * Set the host adapter stopper pointer to point to the new carrier.
8423 asc_dvc
->icq_sp
= new_carrp
;
8425 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
8426 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
8428 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8430 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
8431 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
8433 * Clear the tickle value. In the ASC-3550 the RISC flag
8434 * command 'clr_tickle_a' does not work unless the host
8437 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
8440 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
8442 * Notify the RISC a carrier is ready by writing the physical
8443 * address of the new carrier stopper to the COMMA register.
8445 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
8446 le32_to_cpu(new_carrp
->carr_pa
));
8453 * Execute a single 'struct scsi_cmnd'.
8455 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
8458 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
8460 ASC_DBG(1, "scp 0x%p\n", scp
);
8462 if (ASC_NARROW_BOARD(boardp
)) {
8463 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8464 struct asc_scsi_q asc_scsi_q
;
8466 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
8467 if (ret
!= ASC_NOERROR
) {
8468 ASC_STATS(scp
->device
->host
, build_error
);
8472 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
8473 kfree(asc_scsi_q
.sg_head
);
8474 err_code
= asc_dvc
->err_code
;
8476 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8477 adv_req_t
*adv_reqp
;
8479 switch (adv_build_req(boardp
, scp
, &adv_reqp
)) {
8481 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8484 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8486 * The asc_stats fields 'adv_build_noreq' and
8487 * 'adv_build_nosg' count wide board busy conditions.
8488 * They are updated in adv_build_req and
8489 * adv_get_sglist, respectively.
8494 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8495 ASC_STATS(scp
->device
->host
, build_error
);
8499 ret
= AdvExeScsiQueue(adv_dvc
, adv_reqp
);
8500 err_code
= adv_dvc
->err_code
;
8505 ASC_STATS(scp
->device
->host
, exe_noerror
);
8507 * Increment monotonically increasing per device
8508 * successful request counter. Wrapping doesn't matter.
8510 boardp
->reqcnt
[scp
->device
->id
]++;
8511 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8514 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8515 ASC_STATS(scp
->device
->host
, exe_busy
);
8518 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
8519 "err_code 0x%x\n", err_code
);
8520 ASC_STATS(scp
->device
->host
, exe_error
);
8521 scp
->result
= HOST_BYTE(DID_ERROR
);
8524 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
8525 "err_code 0x%x\n", err_code
);
8526 ASC_STATS(scp
->device
->host
, exe_unknown
);
8527 scp
->result
= HOST_BYTE(DID_ERROR
);
8531 ASC_DBG(1, "end\n");
8536 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8538 * This function always returns 0. Command return status is saved
8539 * in the 'scp' result field.
8542 advansys_queuecommand_lck(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
8544 struct Scsi_Host
*shost
= scp
->device
->host
;
8545 int asc_res
, result
= 0;
8547 ASC_STATS(shost
, queuecommand
);
8548 scp
->scsi_done
= done
;
8550 asc_res
= asc_execute_scsi_cmnd(scp
);
8556 result
= SCSI_MLQUEUE_HOST_BUSY
;
8567 static DEF_SCSI_QCMD(advansys_queuecommand
)
8569 static ushort
AscGetEisaChipCfg(PortAddr iop_base
)
8571 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
8572 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
8573 return inpw(eisa_cfg_iop
);
8577 * Return the BIOS address of the adapter at the specified
8578 * I/O port and with the specified bus type.
8580 static unsigned short AscGetChipBiosAddress(PortAddr iop_base
,
8581 unsigned short bus_type
)
8583 unsigned short cfg_lsw
;
8584 unsigned short bios_addr
;
8587 * The PCI BIOS is re-located by the motherboard BIOS. Because
8588 * of this the driver can not determine where a PCI BIOS is
8589 * loaded and executes.
8591 if (bus_type
& ASC_IS_PCI
)
8594 if ((bus_type
& ASC_IS_EISA
) != 0) {
8595 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
8597 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
8601 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
8604 * ISA PnP uses the top bit as the 32K BIOS flag
8606 if (bus_type
== ASC_IS_ISAPNP
)
8608 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
8612 static uchar
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
8616 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
8617 return (new_host_id
);
8619 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
8621 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
8622 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
8623 return (AscGetChipScsiID(iop_base
));
8626 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base
)
8630 AscSetBank(iop_base
, 1);
8631 sc
= inp(iop_base
+ IOP_REG_SC
);
8632 AscSetBank(iop_base
, 0);
8636 static unsigned char AscGetChipVersion(PortAddr iop_base
,
8637 unsigned short bus_type
)
8639 if (bus_type
& ASC_IS_EISA
) {
8641 unsigned char revision
;
8642 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
8643 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
8644 revision
= inp(eisa_iop
);
8645 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
8647 return AscGetChipVerNo(iop_base
);
8651 static void AscEnableIsaDma(uchar dma_channel
)
8653 if (dma_channel
< 4) {
8654 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
8655 outp(0x000A, dma_channel
);
8656 } else if (dma_channel
< 8) {
8657 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
8658 outp(0x00D4, (ushort
)(dma_channel
- 4));
8661 #endif /* CONFIG_ISA */
8663 static int AscStopQueueExe(PortAddr iop_base
)
8667 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
8668 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
8669 ASC_STOP_REQ_RISC_STOP
);
8671 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
8672 ASC_STOP_ACK_RISC_STOP
) {
8676 } while (count
++ < 20);
8681 static unsigned int AscGetMaxDmaCount(ushort bus_type
)
8683 if (bus_type
& ASC_IS_ISA
)
8684 return ASC_MAX_ISA_DMA_COUNT
;
8685 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
8686 return ASC_MAX_VL_DMA_COUNT
;
8687 return ASC_MAX_PCI_DMA_COUNT
;
8691 static ushort
AscGetIsaDmaChannel(PortAddr iop_base
)
8695 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
8696 if (channel
== 0x03)
8698 else if (channel
== 0x00)
8700 return (channel
+ 4);
8703 static ushort
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
8708 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
8709 if (dma_channel
== 7)
8712 value
= dma_channel
- 4;
8713 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
8715 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
8716 return (AscGetIsaDmaChannel(iop_base
));
8721 static uchar
AscGetIsaDmaSpeed(PortAddr iop_base
)
8725 AscSetBank(iop_base
, 1);
8726 speed_value
= AscReadChipDmaSpeed(iop_base
);
8727 speed_value
&= 0x07;
8728 AscSetBank(iop_base
, 0);
8732 static uchar
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
8734 speed_value
&= 0x07;
8735 AscSetBank(iop_base
, 1);
8736 AscWriteChipDmaSpeed(iop_base
, speed_value
);
8737 AscSetBank(iop_base
, 0);
8738 return AscGetIsaDmaSpeed(iop_base
);
8740 #endif /* CONFIG_ISA */
8742 static void AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
8748 iop_base
= asc_dvc
->iop_base
;
8749 asc_dvc
->err_code
= 0;
8750 if ((asc_dvc
->bus_type
&
8751 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
8752 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
8754 AscSetChipControl(iop_base
, CC_HALT
);
8755 AscSetChipStatus(iop_base
, 0);
8756 asc_dvc
->bug_fix_cntl
= 0;
8757 asc_dvc
->pci_fix_asyn_xfer
= 0;
8758 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
8759 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8760 asc_dvc
->sdtr_done
= 0;
8761 asc_dvc
->cur_total_qng
= 0;
8762 asc_dvc
->is_in_int
= false;
8763 asc_dvc
->in_critical_cnt
= 0;
8764 asc_dvc
->last_q_shortage
= 0;
8765 asc_dvc
->use_tagged_qng
= 0;
8766 asc_dvc
->no_scam
= 0;
8767 asc_dvc
->unit_not_ready
= 0;
8768 asc_dvc
->queue_full_or_busy
= 0;
8769 asc_dvc
->redo_scam
= 0;
8771 asc_dvc
->min_sdtr_index
= 0;
8772 asc_dvc
->cfg
->can_tagged_qng
= 0;
8773 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
8774 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
8775 asc_dvc
->init_sdtr
= 0;
8776 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
8777 asc_dvc
->scsi_reset_wait
= 3;
8778 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
8779 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
8780 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
8781 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
8782 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
8783 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
8784 asc_dvc
->cfg
->chip_version
= chip_version
;
8785 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
8786 asc_dvc
->max_sdtr_index
= 7;
8787 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
8788 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
8789 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
8790 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
8791 asc_dvc
->max_sdtr_index
= 15;
8792 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
8793 AscSetExtraControl(iop_base
,
8794 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
8795 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
8796 AscSetExtraControl(iop_base
,
8797 (SEC_ACTIVE_NEGATE
|
8798 SEC_ENABLE_FILTER
));
8801 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
8802 AscSetExtraControl(iop_base
,
8803 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
8806 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
8808 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
8809 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
8810 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
8811 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
8813 asc_dvc
->cfg
->isa_dma_channel
=
8814 (uchar
)AscGetIsaDmaChannel(iop_base
);
8816 #endif /* CONFIG_ISA */
8817 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
8818 asc_dvc
->cur_dvc_qng
[i
] = 0;
8819 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
8820 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
8821 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
8822 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
8826 static int AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
8830 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
8831 unsigned char read_back
;
8832 AscSetChipEEPCmd(iop_base
, cmd_reg
);
8834 read_back
= AscGetChipEEPCmd(iop_base
);
8835 if (read_back
== cmd_reg
)
8841 static void AscWaitEEPRead(void)
8846 static ushort
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
8851 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
8853 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
8854 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
8856 read_wval
= AscGetChipEEPData(iop_base
);
8861 static ushort
AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
8869 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
8872 wbuf
= (ushort
*)cfg_buf
;
8874 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8875 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
8876 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8879 if (bus_type
& ASC_IS_VL
) {
8880 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
8881 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
8883 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
8884 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
8886 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
8887 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8888 if (s_addr
<= uchar_end_in_config
) {
8890 * Swap all char fields - must unswap bytes already swapped
8891 * by AscReadEEPWord().
8893 *wbuf
= le16_to_cpu(wval
);
8895 /* Don't swap word field at the end - cntl field. */
8898 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
8901 * Read the checksum word which will be compared against 'sum'
8902 * by the caller. Word field already swapped.
8904 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8908 static int AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
8915 iop_base
= asc_dvc
->iop_base
;
8917 q_addr
= ASC_QNO_TO_QADDR(241);
8918 saved_word
= AscReadLramWord(iop_base
, q_addr
);
8919 AscSetChipLramAddr(iop_base
, q_addr
);
8920 AscSetChipLramData(iop_base
, 0x55AA);
8922 AscSetChipLramAddr(iop_base
, q_addr
);
8923 if (AscGetChipLramData(iop_base
) == 0x55AA) {
8925 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
8930 static void AscWaitEEPWrite(void)
8935 static int AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
8942 AscSetChipEEPData(iop_base
, data_reg
);
8944 read_back
= AscGetChipEEPData(iop_base
);
8945 if (read_back
== data_reg
) {
8948 if (retry
++ > ASC_EEP_MAX_RETRY
) {
8954 static ushort
AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
8958 read_wval
= AscReadEEPWord(iop_base
, addr
);
8959 if (read_wval
!= word_val
) {
8960 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
8962 AscWriteEEPDataReg(iop_base
, word_val
);
8964 AscWriteEEPCmdReg(iop_base
,
8965 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
8967 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
8969 return (AscReadEEPWord(iop_base
, addr
));
8974 static int AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
8984 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
8986 wbuf
= (ushort
*)cfg_buf
;
8989 /* Write two config words; AscWriteEEPWord() will swap bytes. */
8990 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
8992 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
8996 if (bus_type
& ASC_IS_VL
) {
8997 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
8998 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9000 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9001 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9003 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9004 if (s_addr
<= uchar_end_in_config
) {
9006 * This is a char field. Swap char fields before they are
9007 * swapped again by AscWriteEEPWord().
9009 word
= cpu_to_le16(*wbuf
);
9011 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9015 /* Don't swap word field at the end - cntl field. */
9017 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9021 sum
+= *wbuf
; /* Checksum calculated from word values. */
9023 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9025 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9029 /* Read EEPROM back again. */
9030 wbuf
= (ushort
*)cfg_buf
;
9032 * Read two config words; Byte-swapping done by AscReadEEPWord().
9034 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9035 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
9039 if (bus_type
& ASC_IS_VL
) {
9040 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9041 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9043 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9044 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9046 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9047 if (s_addr
<= uchar_end_in_config
) {
9049 * Swap all char fields. Must unswap bytes already swapped
9050 * by AscReadEEPWord().
9053 le16_to_cpu(AscReadEEPWord
9054 (iop_base
, (uchar
)s_addr
));
9056 /* Don't swap word field at the end - cntl field. */
9057 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9059 if (*wbuf
!= word
) {
9063 /* Read checksum; Byte swapping not needed. */
9064 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
9070 static int AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9078 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
9082 if (++retry
> ASC_EEP_MAX_RETRY
) {
9089 static int AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
9091 ASCEEP_CONFIG eep_config_buf
;
9092 ASCEEP_CONFIG
*eep_config
;
9096 ushort cfg_msw
, cfg_lsw
;
9100 iop_base
= asc_dvc
->iop_base
;
9102 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
9103 AscStopQueueExe(iop_base
);
9104 if ((AscStopChip(iop_base
)) ||
9105 (AscGetChipScsiCtrl(iop_base
) != 0)) {
9106 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
9107 AscResetChipAndScsiBus(asc_dvc
);
9108 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
9110 if (!AscIsChipHalted(iop_base
)) {
9111 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
9114 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
9115 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
9116 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
9119 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
9120 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9121 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9122 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9123 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9124 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9125 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9127 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
9128 ASC_DBG(1, "chksum 0x%x\n", chksum
);
9132 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9133 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9134 if (asc_dvc
->cfg
->chip_version
== 3) {
9135 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
9136 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9137 eep_config
->cfg_lsw
=
9138 AscGetChipCfgLsw(iop_base
);
9140 if (eep_config
->cfg_msw
!= cfg_msw
) {
9141 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9142 eep_config
->cfg_msw
=
9143 AscGetChipCfgMsw(iop_base
);
9147 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9148 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
9149 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
9150 if (chksum
!= eep_config
->chksum
) {
9151 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
9152 ASC_CHIP_VER_PCI_ULTRA_3050
) {
9153 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9154 eep_config
->init_sdtr
= 0xFF;
9155 eep_config
->disc_enable
= 0xFF;
9156 eep_config
->start_motor
= 0xFF;
9157 eep_config
->use_cmd_qng
= 0;
9158 eep_config
->max_total_qng
= 0xF0;
9159 eep_config
->max_tag_qng
= 0x20;
9160 eep_config
->cntl
= 0xBFFF;
9161 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
9162 eep_config
->no_scam
= 0;
9163 eep_config
->adapter_info
[0] = 0;
9164 eep_config
->adapter_info
[1] = 0;
9165 eep_config
->adapter_info
[2] = 0;
9166 eep_config
->adapter_info
[3] = 0;
9167 eep_config
->adapter_info
[4] = 0;
9168 /* Indicate EEPROM-less board. */
9169 eep_config
->adapter_info
[5] = 0xBB;
9172 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9174 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
9177 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
9178 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
9179 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
9180 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
9181 asc_dvc
->start_motor
= eep_config
->start_motor
;
9182 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
9183 asc_dvc
->no_scam
= eep_config
->no_scam
;
9184 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
9185 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
9186 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
9187 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
9188 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
9189 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
9190 if (!AscTestExternalLram(asc_dvc
)) {
9191 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
9192 ASC_IS_PCI_ULTRA
)) {
9193 eep_config
->max_total_qng
=
9194 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
9195 eep_config
->max_tag_qng
=
9196 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
9198 eep_config
->cfg_msw
|= 0x0800;
9200 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9201 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
9202 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
9206 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
9207 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
9209 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
9210 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
9212 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
9213 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
9215 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
9216 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
9218 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
9219 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
9220 eep_config
->use_cmd_qng
) {
9221 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
9222 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9224 ASC_EEP_SET_CHIP_ID(eep_config
,
9225 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
9226 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
9227 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
9228 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
9229 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
9232 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9233 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
9234 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
9235 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
9236 (uchar
)(ASC_DEF_SDTR_OFFSET
|
9237 (asc_dvc
->min_sdtr_index
<< 4));
9239 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
9241 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
9242 asc_dvc
->bus_type
)) != 0) {
9244 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9248 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9254 static int AscInitGetConfig(struct Scsi_Host
*shost
)
9256 struct asc_board
*board
= shost_priv(shost
);
9257 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9258 unsigned short warn_code
= 0;
9260 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
9261 if (asc_dvc
->err_code
!= 0)
9262 return asc_dvc
->err_code
;
9264 if (AscFindSignature(asc_dvc
->iop_base
)) {
9265 AscInitAscDvcVar(asc_dvc
);
9266 warn_code
= AscInitFromEEP(asc_dvc
);
9267 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
9268 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
9269 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
9271 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9274 switch (warn_code
) {
9275 case 0: /* No error */
9277 case ASC_WARN_IO_PORT_ROTATE
:
9278 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9281 case ASC_WARN_AUTO_CONFIG
:
9282 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9285 case ASC_WARN_EEPROM_CHKSUM
:
9286 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9288 case ASC_WARN_IRQ_MODIFIED
:
9289 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9291 case ASC_WARN_CMD_QNG_CONFLICT
:
9292 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
9296 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9301 if (asc_dvc
->err_code
!= 0)
9302 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9303 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9305 return asc_dvc
->err_code
;
9308 static int AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
9310 struct asc_board
*board
= shost_priv(shost
);
9311 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9312 PortAddr iop_base
= asc_dvc
->iop_base
;
9313 unsigned short cfg_msw
;
9314 unsigned short warn_code
= 0;
9316 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
9317 if (asc_dvc
->err_code
!= 0)
9318 return asc_dvc
->err_code
;
9319 if (!AscFindSignature(asc_dvc
->iop_base
)) {
9320 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9321 return asc_dvc
->err_code
;
9324 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9325 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9326 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9327 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9328 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9330 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
9331 asc_dvc
->cfg
->cmd_qng_enabled
) {
9332 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
9333 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9335 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9336 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9339 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
9341 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9342 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
9344 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
9345 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
9346 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
9347 asc_dvc
->bug_fix_cntl
|=
9348 ASC_BUG_FIX_ASYN_USE_SYN
;
9352 #endif /* CONFIG_PCI */
9353 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
9354 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
9355 == ASC_CHIP_VER_ASYN_BUG
) {
9356 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
9359 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
9360 asc_dvc
->cfg
->chip_scsi_id
) {
9361 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
9364 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
9365 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
9366 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
9368 #endif /* CONFIG_ISA */
9370 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
9372 switch (warn_code
) {
9373 case 0: /* No error. */
9375 case ASC_WARN_IO_PORT_ROTATE
:
9376 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9379 case ASC_WARN_AUTO_CONFIG
:
9380 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9383 case ASC_WARN_EEPROM_CHKSUM
:
9384 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9386 case ASC_WARN_IRQ_MODIFIED
:
9387 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9389 case ASC_WARN_CMD_QNG_CONFLICT
:
9390 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
9394 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9399 if (asc_dvc
->err_code
!= 0)
9400 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9401 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9403 return asc_dvc
->err_code
;
9407 * EEPROM Configuration.
9409 * All drivers should use this structure to set the default EEPROM
9410 * configuration. The BIOS now uses this structure when it is built.
9411 * Additional structure information can be found in a_condor.h where
9412 * the structure is defined.
9414 * The *_Field_IsChar structs are needed to correct for endianness.
9415 * These values are read from the board 16 bits at a time directly
9416 * into the structs. Because some fields are char, the values will be
9417 * in the wrong order. The *_Field_IsChar tells when to flip the
9418 * bytes. Data read and written to PCI memory is automatically swapped
9419 * on big-endian platforms so char fields read as words are actually being
9420 * unswapped on big-endian platforms.
9423 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config
= {
9424 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
9425 0x0000, /* cfg_msw */
9426 0xFFFF, /* disc_enable */
9427 0xFFFF, /* wdtr_able */
9428 0xFFFF, /* sdtr_able */
9429 0xFFFF, /* start_motor */
9430 0xFFFF, /* tagqng_able */
9431 0xFFFF, /* bios_scan */
9432 0, /* scam_tolerant */
9433 7, /* adapter_scsi_id */
9434 0, /* bios_boot_delay */
9435 3, /* scsi_reset_delay */
9436 0, /* bios_id_lun */
9437 0, /* termination */
9439 0xFFE7, /* bios_ctrl */
9440 0xFFFF, /* ultra_able */
9442 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
9443 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9446 0, /* serial_number_word1 */
9447 0, /* serial_number_word2 */
9448 0, /* serial_number_word3 */
9450 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9451 , /* oem_name[16] */
9452 0, /* dvc_err_code */
9453 0, /* adv_err_code */
9454 0, /* adv_err_addr */
9455 0, /* saved_dvc_err_code */
9456 0, /* saved_adv_err_code */
9457 0, /* saved_adv_err_addr */
9461 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar
= {
9464 0, /* -disc_enable */
9467 0, /* start_motor */
9468 0, /* tagqng_able */
9470 0, /* scam_tolerant */
9471 1, /* adapter_scsi_id */
9472 1, /* bios_boot_delay */
9473 1, /* scsi_reset_delay */
9474 1, /* bios_id_lun */
9475 1, /* termination */
9480 1, /* max_host_qng */
9481 1, /* max_dvc_qng */
9484 0, /* serial_number_word1 */
9485 0, /* serial_number_word2 */
9486 0, /* serial_number_word3 */
9488 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9489 , /* oem_name[16] */
9490 0, /* dvc_err_code */
9491 0, /* adv_err_code */
9492 0, /* adv_err_addr */
9493 0, /* saved_dvc_err_code */
9494 0, /* saved_adv_err_code */
9495 0, /* saved_adv_err_addr */
9499 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config
= {
9500 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9501 0x0000, /* 01 cfg_msw */
9502 0xFFFF, /* 02 disc_enable */
9503 0xFFFF, /* 03 wdtr_able */
9504 0x4444, /* 04 sdtr_speed1 */
9505 0xFFFF, /* 05 start_motor */
9506 0xFFFF, /* 06 tagqng_able */
9507 0xFFFF, /* 07 bios_scan */
9508 0, /* 08 scam_tolerant */
9509 7, /* 09 adapter_scsi_id */
9510 0, /* bios_boot_delay */
9511 3, /* 10 scsi_reset_delay */
9512 0, /* bios_id_lun */
9513 0, /* 11 termination_se */
9514 0, /* termination_lvd */
9515 0xFFE7, /* 12 bios_ctrl */
9516 0x4444, /* 13 sdtr_speed2 */
9517 0x4444, /* 14 sdtr_speed3 */
9518 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9519 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9520 0, /* 16 dvc_cntl */
9521 0x4444, /* 17 sdtr_speed4 */
9522 0, /* 18 serial_number_word1 */
9523 0, /* 19 serial_number_word2 */
9524 0, /* 20 serial_number_word3 */
9525 0, /* 21 check_sum */
9526 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9527 , /* 22-29 oem_name[16] */
9528 0, /* 30 dvc_err_code */
9529 0, /* 31 adv_err_code */
9530 0, /* 32 adv_err_addr */
9531 0, /* 33 saved_dvc_err_code */
9532 0, /* 34 saved_adv_err_code */
9533 0, /* 35 saved_adv_err_addr */
9534 0, /* 36 reserved */
9535 0, /* 37 reserved */
9536 0, /* 38 reserved */
9537 0, /* 39 reserved */
9538 0, /* 40 reserved */
9539 0, /* 41 reserved */
9540 0, /* 42 reserved */
9541 0, /* 43 reserved */
9542 0, /* 44 reserved */
9543 0, /* 45 reserved */
9544 0, /* 46 reserved */
9545 0, /* 47 reserved */
9546 0, /* 48 reserved */
9547 0, /* 49 reserved */
9548 0, /* 50 reserved */
9549 0, /* 51 reserved */
9550 0, /* 52 reserved */
9551 0, /* 53 reserved */
9552 0, /* 54 reserved */
9553 0, /* 55 reserved */
9554 0, /* 56 cisptr_lsw */
9555 0, /* 57 cisprt_msw */
9556 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
9557 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
9558 0, /* 60 reserved */
9559 0, /* 61 reserved */
9560 0, /* 62 reserved */
9564 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar
= {
9567 0, /* 02 disc_enable */
9568 0, /* 03 wdtr_able */
9569 0, /* 04 sdtr_speed1 */
9570 0, /* 05 start_motor */
9571 0, /* 06 tagqng_able */
9572 0, /* 07 bios_scan */
9573 0, /* 08 scam_tolerant */
9574 1, /* 09 adapter_scsi_id */
9575 1, /* bios_boot_delay */
9576 1, /* 10 scsi_reset_delay */
9577 1, /* bios_id_lun */
9578 1, /* 11 termination_se */
9579 1, /* termination_lvd */
9580 0, /* 12 bios_ctrl */
9581 0, /* 13 sdtr_speed2 */
9582 0, /* 14 sdtr_speed3 */
9583 1, /* 15 max_host_qng */
9584 1, /* max_dvc_qng */
9585 0, /* 16 dvc_cntl */
9586 0, /* 17 sdtr_speed4 */
9587 0, /* 18 serial_number_word1 */
9588 0, /* 19 serial_number_word2 */
9589 0, /* 20 serial_number_word3 */
9590 0, /* 21 check_sum */
9591 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9592 , /* 22-29 oem_name[16] */
9593 0, /* 30 dvc_err_code */
9594 0, /* 31 adv_err_code */
9595 0, /* 32 adv_err_addr */
9596 0, /* 33 saved_dvc_err_code */
9597 0, /* 34 saved_adv_err_code */
9598 0, /* 35 saved_adv_err_addr */
9599 0, /* 36 reserved */
9600 0, /* 37 reserved */
9601 0, /* 38 reserved */
9602 0, /* 39 reserved */
9603 0, /* 40 reserved */
9604 0, /* 41 reserved */
9605 0, /* 42 reserved */
9606 0, /* 43 reserved */
9607 0, /* 44 reserved */
9608 0, /* 45 reserved */
9609 0, /* 46 reserved */
9610 0, /* 47 reserved */
9611 0, /* 48 reserved */
9612 0, /* 49 reserved */
9613 0, /* 50 reserved */
9614 0, /* 51 reserved */
9615 0, /* 52 reserved */
9616 0, /* 53 reserved */
9617 0, /* 54 reserved */
9618 0, /* 55 reserved */
9619 0, /* 56 cisptr_lsw */
9620 0, /* 57 cisprt_msw */
9621 0, /* 58 subsysvid */
9622 0, /* 59 subsysid */
9623 0, /* 60 reserved */
9624 0, /* 61 reserved */
9625 0, /* 62 reserved */
9629 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config
= {
9630 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9631 0x0000, /* 01 cfg_msw */
9632 0xFFFF, /* 02 disc_enable */
9633 0xFFFF, /* 03 wdtr_able */
9634 0x5555, /* 04 sdtr_speed1 */
9635 0xFFFF, /* 05 start_motor */
9636 0xFFFF, /* 06 tagqng_able */
9637 0xFFFF, /* 07 bios_scan */
9638 0, /* 08 scam_tolerant */
9639 7, /* 09 adapter_scsi_id */
9640 0, /* bios_boot_delay */
9641 3, /* 10 scsi_reset_delay */
9642 0, /* bios_id_lun */
9643 0, /* 11 termination_se */
9644 0, /* termination_lvd */
9645 0xFFE7, /* 12 bios_ctrl */
9646 0x5555, /* 13 sdtr_speed2 */
9647 0x5555, /* 14 sdtr_speed3 */
9648 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9649 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9650 0, /* 16 dvc_cntl */
9651 0x5555, /* 17 sdtr_speed4 */
9652 0, /* 18 serial_number_word1 */
9653 0, /* 19 serial_number_word2 */
9654 0, /* 20 serial_number_word3 */
9655 0, /* 21 check_sum */
9656 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9657 , /* 22-29 oem_name[16] */
9658 0, /* 30 dvc_err_code */
9659 0, /* 31 adv_err_code */
9660 0, /* 32 adv_err_addr */
9661 0, /* 33 saved_dvc_err_code */
9662 0, /* 34 saved_adv_err_code */
9663 0, /* 35 saved_adv_err_addr */
9664 0, /* 36 reserved */
9665 0, /* 37 reserved */
9666 0, /* 38 reserved */
9667 0, /* 39 reserved */
9668 0, /* 40 reserved */
9669 0, /* 41 reserved */
9670 0, /* 42 reserved */
9671 0, /* 43 reserved */
9672 0, /* 44 reserved */
9673 0, /* 45 reserved */
9674 0, /* 46 reserved */
9675 0, /* 47 reserved */
9676 0, /* 48 reserved */
9677 0, /* 49 reserved */
9678 0, /* 50 reserved */
9679 0, /* 51 reserved */
9680 0, /* 52 reserved */
9681 0, /* 53 reserved */
9682 0, /* 54 reserved */
9683 0, /* 55 reserved */
9684 0, /* 56 cisptr_lsw */
9685 0, /* 57 cisprt_msw */
9686 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
9687 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
9688 0, /* 60 reserved */
9689 0, /* 61 reserved */
9690 0, /* 62 reserved */
9694 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar
= {
9697 0, /* 02 disc_enable */
9698 0, /* 03 wdtr_able */
9699 0, /* 04 sdtr_speed1 */
9700 0, /* 05 start_motor */
9701 0, /* 06 tagqng_able */
9702 0, /* 07 bios_scan */
9703 0, /* 08 scam_tolerant */
9704 1, /* 09 adapter_scsi_id */
9705 1, /* bios_boot_delay */
9706 1, /* 10 scsi_reset_delay */
9707 1, /* bios_id_lun */
9708 1, /* 11 termination_se */
9709 1, /* termination_lvd */
9710 0, /* 12 bios_ctrl */
9711 0, /* 13 sdtr_speed2 */
9712 0, /* 14 sdtr_speed3 */
9713 1, /* 15 max_host_qng */
9714 1, /* max_dvc_qng */
9715 0, /* 16 dvc_cntl */
9716 0, /* 17 sdtr_speed4 */
9717 0, /* 18 serial_number_word1 */
9718 0, /* 19 serial_number_word2 */
9719 0, /* 20 serial_number_word3 */
9720 0, /* 21 check_sum */
9721 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9722 , /* 22-29 oem_name[16] */
9723 0, /* 30 dvc_err_code */
9724 0, /* 31 adv_err_code */
9725 0, /* 32 adv_err_addr */
9726 0, /* 33 saved_dvc_err_code */
9727 0, /* 34 saved_adv_err_code */
9728 0, /* 35 saved_adv_err_addr */
9729 0, /* 36 reserved */
9730 0, /* 37 reserved */
9731 0, /* 38 reserved */
9732 0, /* 39 reserved */
9733 0, /* 40 reserved */
9734 0, /* 41 reserved */
9735 0, /* 42 reserved */
9736 0, /* 43 reserved */
9737 0, /* 44 reserved */
9738 0, /* 45 reserved */
9739 0, /* 46 reserved */
9740 0, /* 47 reserved */
9741 0, /* 48 reserved */
9742 0, /* 49 reserved */
9743 0, /* 50 reserved */
9744 0, /* 51 reserved */
9745 0, /* 52 reserved */
9746 0, /* 53 reserved */
9747 0, /* 54 reserved */
9748 0, /* 55 reserved */
9749 0, /* 56 cisptr_lsw */
9750 0, /* 57 cisprt_msw */
9751 0, /* 58 subsysvid */
9752 0, /* 59 subsysid */
9753 0, /* 60 reserved */
9754 0, /* 61 reserved */
9755 0, /* 62 reserved */
9760 * Wait for EEPROM command to complete
9762 static void AdvWaitEEPCmd(AdvPortAddr iop_base
)
9766 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
9767 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
9773 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
9779 * Read the EEPROM from specified location
9781 static ushort
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
9783 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9784 ASC_EEP_CMD_READ
| eep_word_addr
);
9785 AdvWaitEEPCmd(iop_base
);
9786 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
9790 * Write the EEPROM from 'cfg_buf'.
9792 static void AdvSet3550EEPConfig(AdvPortAddr iop_base
,
9793 ADVEEP_3550_CONFIG
*cfg_buf
)
9796 ushort addr
, chksum
;
9799 wbuf
= (ushort
*)cfg_buf
;
9800 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
9803 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9804 AdvWaitEEPCmd(iop_base
);
9807 * Write EEPROM from word 0 to word 20.
9809 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9810 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9813 if (*charfields
++) {
9814 word
= cpu_to_le16(*wbuf
);
9818 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9819 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9820 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9821 ASC_EEP_CMD_WRITE
| addr
);
9822 AdvWaitEEPCmd(iop_base
);
9823 mdelay(ADV_EEP_DELAY_MS
);
9827 * Write EEPROM checksum at word 21.
9829 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9830 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9831 AdvWaitEEPCmd(iop_base
);
9836 * Write EEPROM OEM name at words 22 to 29.
9838 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9839 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9842 if (*charfields
++) {
9843 word
= cpu_to_le16(*wbuf
);
9847 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9848 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9849 ASC_EEP_CMD_WRITE
| addr
);
9850 AdvWaitEEPCmd(iop_base
);
9852 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9853 AdvWaitEEPCmd(iop_base
);
9857 * Write the EEPROM from 'cfg_buf'.
9859 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base
,
9860 ADVEEP_38C0800_CONFIG
*cfg_buf
)
9864 ushort addr
, chksum
;
9866 wbuf
= (ushort
*)cfg_buf
;
9867 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
9870 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9871 AdvWaitEEPCmd(iop_base
);
9874 * Write EEPROM from word 0 to word 20.
9876 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9877 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9880 if (*charfields
++) {
9881 word
= cpu_to_le16(*wbuf
);
9885 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9886 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9887 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9888 ASC_EEP_CMD_WRITE
| addr
);
9889 AdvWaitEEPCmd(iop_base
);
9890 mdelay(ADV_EEP_DELAY_MS
);
9894 * Write EEPROM checksum at word 21.
9896 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9897 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9898 AdvWaitEEPCmd(iop_base
);
9903 * Write EEPROM OEM name at words 22 to 29.
9905 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9906 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9909 if (*charfields
++) {
9910 word
= cpu_to_le16(*wbuf
);
9914 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9915 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9916 ASC_EEP_CMD_WRITE
| addr
);
9917 AdvWaitEEPCmd(iop_base
);
9919 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9920 AdvWaitEEPCmd(iop_base
);
9924 * Write the EEPROM from 'cfg_buf'.
9926 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base
,
9927 ADVEEP_38C1600_CONFIG
*cfg_buf
)
9931 ushort addr
, chksum
;
9933 wbuf
= (ushort
*)cfg_buf
;
9934 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
9937 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9938 AdvWaitEEPCmd(iop_base
);
9941 * Write EEPROM from word 0 to word 20.
9943 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9944 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9947 if (*charfields
++) {
9948 word
= cpu_to_le16(*wbuf
);
9952 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9953 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9954 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9955 ASC_EEP_CMD_WRITE
| addr
);
9956 AdvWaitEEPCmd(iop_base
);
9957 mdelay(ADV_EEP_DELAY_MS
);
9961 * Write EEPROM checksum at word 21.
9963 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9964 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9965 AdvWaitEEPCmd(iop_base
);
9970 * Write EEPROM OEM name at words 22 to 29.
9972 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9973 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9976 if (*charfields
++) {
9977 word
= cpu_to_le16(*wbuf
);
9981 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9982 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9983 ASC_EEP_CMD_WRITE
| addr
);
9984 AdvWaitEEPCmd(iop_base
);
9986 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9987 AdvWaitEEPCmd(iop_base
);
9991 * Read EEPROM configuration into the specified buffer.
9993 * Return a checksum based on the EEPROM configuration read.
9995 static ushort
AdvGet3550EEPConfig(AdvPortAddr iop_base
,
9996 ADVEEP_3550_CONFIG
*cfg_buf
)
9998 ushort wval
, chksum
;
10001 ushort
*charfields
;
10003 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10004 wbuf
= (ushort
*)cfg_buf
;
10007 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10008 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10009 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10010 chksum
+= wval
; /* Checksum is calculated from word values. */
10011 if (*charfields
++) {
10012 *wbuf
= le16_to_cpu(wval
);
10017 /* Read checksum word. */
10018 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10022 /* Read rest of EEPROM not covered by the checksum. */
10023 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10024 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10025 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10026 if (*charfields
++) {
10027 *wbuf
= le16_to_cpu(*wbuf
);
10034 * Read EEPROM configuration into the specified buffer.
10036 * Return a checksum based on the EEPROM configuration read.
10038 static ushort
AdvGet38C0800EEPConfig(AdvPortAddr iop_base
,
10039 ADVEEP_38C0800_CONFIG
*cfg_buf
)
10041 ushort wval
, chksum
;
10044 ushort
*charfields
;
10046 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10047 wbuf
= (ushort
*)cfg_buf
;
10050 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10051 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10052 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10053 chksum
+= wval
; /* Checksum is calculated from word values. */
10054 if (*charfields
++) {
10055 *wbuf
= le16_to_cpu(wval
);
10060 /* Read checksum word. */
10061 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10065 /* Read rest of EEPROM not covered by the checksum. */
10066 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10067 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10068 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10069 if (*charfields
++) {
10070 *wbuf
= le16_to_cpu(*wbuf
);
10077 * Read EEPROM configuration into the specified buffer.
10079 * Return a checksum based on the EEPROM configuration read.
10081 static ushort
AdvGet38C1600EEPConfig(AdvPortAddr iop_base
,
10082 ADVEEP_38C1600_CONFIG
*cfg_buf
)
10084 ushort wval
, chksum
;
10087 ushort
*charfields
;
10089 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10090 wbuf
= (ushort
*)cfg_buf
;
10093 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10094 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10095 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10096 chksum
+= wval
; /* Checksum is calculated from word values. */
10097 if (*charfields
++) {
10098 *wbuf
= le16_to_cpu(wval
);
10103 /* Read checksum word. */
10104 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10108 /* Read rest of EEPROM not covered by the checksum. */
10109 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10110 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10111 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10112 if (*charfields
++) {
10113 *wbuf
= le16_to_cpu(*wbuf
);
10120 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10121 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10122 * all of this is done.
10124 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10126 * For a non-fatal error return a warning code. If there are no warnings
10127 * then 0 is returned.
10129 * Note: Chip is stopped on entry.
10131 static int AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
10133 AdvPortAddr iop_base
;
10135 ADVEEP_3550_CONFIG eep_config
;
10137 iop_base
= asc_dvc
->iop_base
;
10142 * Read the board's EEPROM configuration.
10144 * Set default values if a bad checksum is found.
10146 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
10147 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10150 * Set EEPROM default values.
10152 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
10153 sizeof(ADVEEP_3550_CONFIG
));
10156 * Assume the 6 byte board serial number that was read from
10157 * EEPROM is correct even if the EEPROM checksum failed.
10159 eep_config
.serial_number_word3
=
10160 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10162 eep_config
.serial_number_word2
=
10163 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10165 eep_config
.serial_number_word1
=
10166 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10168 AdvSet3550EEPConfig(iop_base
, &eep_config
);
10171 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10172 * EEPROM configuration that was read.
10174 * This is the mapping of EEPROM fields to Adv Library fields.
10176 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10177 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
10178 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
10179 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10180 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10181 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10182 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10183 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10184 asc_dvc
->start_motor
= eep_config
.start_motor
;
10185 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10186 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10187 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10188 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10189 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10190 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10193 * Set the host maximum queuing (max. 253, min. 16) and the per device
10194 * maximum queuing (max. 63, min. 4).
10196 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10197 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10198 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10199 /* If the value is zero, assume it is uninitialized. */
10200 if (eep_config
.max_host_qng
== 0) {
10201 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10203 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10207 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10208 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10209 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10210 /* If the value is zero, assume it is uninitialized. */
10211 if (eep_config
.max_dvc_qng
== 0) {
10212 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10214 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10219 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10220 * set 'max_dvc_qng' to 'max_host_qng'.
10222 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10223 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10227 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10228 * values based on possibly adjusted EEPROM values.
10230 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10231 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10234 * If the EEPROM 'termination' field is set to automatic (0), then set
10235 * the ADV_DVC_CFG 'termination' field to automatic also.
10237 * If the termination is specified with a non-zero 'termination'
10238 * value check that a legal value is set and set the ADV_DVC_CFG
10239 * 'termination' field appropriately.
10241 if (eep_config
.termination
== 0) {
10242 asc_dvc
->cfg
->termination
= 0; /* auto termination */
10244 /* Enable manual control with low off / high off. */
10245 if (eep_config
.termination
== 1) {
10246 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
10248 /* Enable manual control with low off / high on. */
10249 } else if (eep_config
.termination
== 2) {
10250 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
10252 /* Enable manual control with low on / high on. */
10253 } else if (eep_config
.termination
== 3) {
10254 asc_dvc
->cfg
->termination
=
10255 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
10258 * The EEPROM 'termination' field contains a bad value. Use
10259 * automatic termination instead.
10261 asc_dvc
->cfg
->termination
= 0;
10262 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10270 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10271 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10272 * all of this is done.
10274 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10276 * For a non-fatal error return a warning code. If there are no warnings
10277 * then 0 is returned.
10279 * Note: Chip is stopped on entry.
10281 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
10283 AdvPortAddr iop_base
;
10285 ADVEEP_38C0800_CONFIG eep_config
;
10286 uchar tid
, termination
;
10287 ushort sdtr_speed
= 0;
10289 iop_base
= asc_dvc
->iop_base
;
10294 * Read the board's EEPROM configuration.
10296 * Set default values if a bad checksum is found.
10298 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
10299 eep_config
.check_sum
) {
10300 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10303 * Set EEPROM default values.
10305 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
10306 sizeof(ADVEEP_38C0800_CONFIG
));
10309 * Assume the 6 byte board serial number that was read from
10310 * EEPROM is correct even if the EEPROM checksum failed.
10312 eep_config
.serial_number_word3
=
10313 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10315 eep_config
.serial_number_word2
=
10316 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10318 eep_config
.serial_number_word1
=
10319 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10321 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
10324 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10325 * EEPROM configuration that was read.
10327 * This is the mapping of EEPROM fields to Adv Library fields.
10329 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10330 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10331 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10332 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10333 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10334 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10335 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10336 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10337 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10338 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10339 asc_dvc
->start_motor
= eep_config
.start_motor
;
10340 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10341 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10342 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10343 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10344 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10345 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10348 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10349 * are set, then set an 'sdtr_able' bit for it.
10351 asc_dvc
->sdtr_able
= 0;
10352 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
10354 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10355 } else if (tid
== 4) {
10356 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10357 } else if (tid
== 8) {
10358 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10359 } else if (tid
== 12) {
10360 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10362 if (sdtr_speed
& ADV_MAX_TID
) {
10363 asc_dvc
->sdtr_able
|= (1 << tid
);
10369 * Set the host maximum queuing (max. 253, min. 16) and the per device
10370 * maximum queuing (max. 63, min. 4).
10372 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10373 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10374 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10375 /* If the value is zero, assume it is uninitialized. */
10376 if (eep_config
.max_host_qng
== 0) {
10377 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10379 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10383 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10384 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10385 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10386 /* If the value is zero, assume it is uninitialized. */
10387 if (eep_config
.max_dvc_qng
== 0) {
10388 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10390 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10395 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10396 * set 'max_dvc_qng' to 'max_host_qng'.
10398 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10399 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10403 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10404 * values based on possibly adjusted EEPROM values.
10406 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10407 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10410 * If the EEPROM 'termination' field is set to automatic (0), then set
10411 * the ADV_DVC_CFG 'termination' field to automatic also.
10413 * If the termination is specified with a non-zero 'termination'
10414 * value check that a legal value is set and set the ADV_DVC_CFG
10415 * 'termination' field appropriately.
10417 if (eep_config
.termination_se
== 0) {
10418 termination
= 0; /* auto termination for SE */
10420 /* Enable manual control with low off / high off. */
10421 if (eep_config
.termination_se
== 1) {
10424 /* Enable manual control with low off / high on. */
10425 } else if (eep_config
.termination_se
== 2) {
10426 termination
= TERM_SE_HI
;
10428 /* Enable manual control with low on / high on. */
10429 } else if (eep_config
.termination_se
== 3) {
10430 termination
= TERM_SE
;
10433 * The EEPROM 'termination_se' field contains a bad value.
10434 * Use automatic termination instead.
10437 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10441 if (eep_config
.termination_lvd
== 0) {
10442 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10444 /* Enable manual control with low off / high off. */
10445 if (eep_config
.termination_lvd
== 1) {
10446 asc_dvc
->cfg
->termination
= termination
;
10448 /* Enable manual control with low off / high on. */
10449 } else if (eep_config
.termination_lvd
== 2) {
10450 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10452 /* Enable manual control with low on / high on. */
10453 } else if (eep_config
.termination_lvd
== 3) {
10454 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10457 * The EEPROM 'termination_lvd' field contains a bad value.
10458 * Use automatic termination instead.
10460 asc_dvc
->cfg
->termination
= termination
;
10461 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10469 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10470 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10471 * all of this is done.
10473 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10475 * For a non-fatal error return a warning code. If there are no warnings
10476 * then 0 is returned.
10478 * Note: Chip is stopped on entry.
10480 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
10482 AdvPortAddr iop_base
;
10484 ADVEEP_38C1600_CONFIG eep_config
;
10485 uchar tid
, termination
;
10486 ushort sdtr_speed
= 0;
10488 iop_base
= asc_dvc
->iop_base
;
10493 * Read the board's EEPROM configuration.
10495 * Set default values if a bad checksum is found.
10497 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
10498 eep_config
.check_sum
) {
10499 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
10500 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10503 * Set EEPROM default values.
10505 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
10506 sizeof(ADVEEP_38C1600_CONFIG
));
10508 if (PCI_FUNC(pdev
->devfn
) != 0) {
10511 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10512 * and old Mac system booting problem. The Expansion
10513 * ROM must be disabled in Function 1 for these systems
10515 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
10517 * Clear the INTAB (bit 11) if the GPIO 0 input
10518 * indicates the Function 1 interrupt line is wired
10521 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10522 * 1 - Function 1 interrupt line wired to INT A.
10523 * 0 - Function 1 interrupt line wired to INT B.
10525 * Note: Function 0 is always wired to INTA.
10526 * Put all 5 GPIO bits in input mode and then read
10527 * their input values.
10529 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
10530 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
10531 if ((ints
& 0x01) == 0)
10532 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
10536 * Assume the 6 byte board serial number that was read from
10537 * EEPROM is correct even if the EEPROM checksum failed.
10539 eep_config
.serial_number_word3
=
10540 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10541 eep_config
.serial_number_word2
=
10542 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10543 eep_config
.serial_number_word1
=
10544 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10546 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
10550 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10551 * EEPROM configuration that was read.
10553 * This is the mapping of EEPROM fields to Adv Library fields.
10555 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10556 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10557 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10558 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10559 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10560 asc_dvc
->ppr_able
= 0;
10561 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10562 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10563 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10564 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10565 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
10566 asc_dvc
->start_motor
= eep_config
.start_motor
;
10567 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10568 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10569 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10572 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10573 * are set, then set an 'sdtr_able' bit for it.
10575 asc_dvc
->sdtr_able
= 0;
10576 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
10578 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10579 } else if (tid
== 4) {
10580 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10581 } else if (tid
== 8) {
10582 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10583 } else if (tid
== 12) {
10584 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10586 if (sdtr_speed
& ASC_MAX_TID
) {
10587 asc_dvc
->sdtr_able
|= (1 << tid
);
10593 * Set the host maximum queuing (max. 253, min. 16) and the per device
10594 * maximum queuing (max. 63, min. 4).
10596 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10597 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10598 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10599 /* If the value is zero, assume it is uninitialized. */
10600 if (eep_config
.max_host_qng
== 0) {
10601 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10603 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10607 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10608 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10609 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10610 /* If the value is zero, assume it is uninitialized. */
10611 if (eep_config
.max_dvc_qng
== 0) {
10612 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10614 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10619 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10620 * set 'max_dvc_qng' to 'max_host_qng'.
10622 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10623 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10627 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10628 * values based on possibly adjusted EEPROM values.
10630 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10631 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10634 * If the EEPROM 'termination' field is set to automatic (0), then set
10635 * the ASC_DVC_CFG 'termination' field to automatic also.
10637 * If the termination is specified with a non-zero 'termination'
10638 * value check that a legal value is set and set the ASC_DVC_CFG
10639 * 'termination' field appropriately.
10641 if (eep_config
.termination_se
== 0) {
10642 termination
= 0; /* auto termination for SE */
10644 /* Enable manual control with low off / high off. */
10645 if (eep_config
.termination_se
== 1) {
10648 /* Enable manual control with low off / high on. */
10649 } else if (eep_config
.termination_se
== 2) {
10650 termination
= TERM_SE_HI
;
10652 /* Enable manual control with low on / high on. */
10653 } else if (eep_config
.termination_se
== 3) {
10654 termination
= TERM_SE
;
10657 * The EEPROM 'termination_se' field contains a bad value.
10658 * Use automatic termination instead.
10661 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10665 if (eep_config
.termination_lvd
== 0) {
10666 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10668 /* Enable manual control with low off / high off. */
10669 if (eep_config
.termination_lvd
== 1) {
10670 asc_dvc
->cfg
->termination
= termination
;
10672 /* Enable manual control with low off / high on. */
10673 } else if (eep_config
.termination_lvd
== 2) {
10674 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10676 /* Enable manual control with low on / high on. */
10677 } else if (eep_config
.termination_lvd
== 3) {
10678 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10681 * The EEPROM 'termination_lvd' field contains a bad value.
10682 * Use automatic termination instead.
10684 asc_dvc
->cfg
->termination
= termination
;
10685 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10693 * Initialize the ADV_DVC_VAR structure.
10695 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10697 * For a non-fatal error return a warning code. If there are no warnings
10698 * then 0 is returned.
10700 static int AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
10702 struct asc_board
*board
= shost_priv(shost
);
10703 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
10704 unsigned short warn_code
= 0;
10705 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
10709 asc_dvc
->err_code
= 0;
10712 * Save the state of the PCI Configuration Command Register
10713 * "Parity Error Response Control" Bit. If the bit is clear (0),
10714 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10715 * DMA parity errors.
10717 asc_dvc
->cfg
->control_flag
= 0;
10718 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
10719 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
10720 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
10722 asc_dvc
->cfg
->chip_version
=
10723 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
10725 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10726 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
10727 (ushort
)ADV_CHIP_ID_BYTE
);
10729 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10730 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
10731 (ushort
)ADV_CHIP_ID_WORD
);
10734 * Reset the chip to start and allow register writes.
10736 if (AdvFindSignature(iop_base
) == 0) {
10737 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10741 * The caller must set 'chip_type' to a valid setting.
10743 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
10744 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
10745 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
10746 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
10753 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
10754 ADV_CTRL_REG_CMD_RESET
);
10756 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
10757 ADV_CTRL_REG_CMD_WR_IO_REG
);
10759 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
10760 status
= AdvInitFrom38C1600EEP(asc_dvc
);
10761 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
10762 status
= AdvInitFrom38C0800EEP(asc_dvc
);
10764 status
= AdvInitFrom3550EEP(asc_dvc
);
10766 warn_code
|= status
;
10769 if (warn_code
!= 0)
10770 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
10772 if (asc_dvc
->err_code
)
10773 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
10774 asc_dvc
->err_code
);
10776 return asc_dvc
->err_code
;
10780 static struct scsi_host_template advansys_template
= {
10781 .proc_name
= DRV_NAME
,
10782 #ifdef CONFIG_PROC_FS
10783 .show_info
= advansys_show_info
,
10786 .info
= advansys_info
,
10787 .queuecommand
= advansys_queuecommand
,
10788 .eh_host_reset_handler
= advansys_reset
,
10789 .bios_param
= advansys_biosparam
,
10790 .slave_configure
= advansys_slave_configure
,
10792 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10793 * must be set. The flag will be cleared in advansys_board_found
10794 * for non-ISA adapters.
10796 .unchecked_isa_dma
= true,
10799 static int advansys_wide_init_chip(struct Scsi_Host
*shost
)
10801 struct asc_board
*board
= shost_priv(shost
);
10802 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
10803 size_t sgblk_pool_size
;
10804 int warn_code
, err_code
;
10807 * Allocate buffer carrier structures. The total size
10808 * is about 8 KB, so allocate all at once.
10810 adv_dvc
->carrier
= dma_alloc_coherent(board
->dev
,
10811 ADV_CARRIER_BUFSIZE
, &adv_dvc
->carrier_addr
, GFP_KERNEL
);
10812 ASC_DBG(1, "carrier 0x%p\n", adv_dvc
->carrier
);
10814 if (!adv_dvc
->carrier
)
10815 goto kmalloc_failed
;
10818 * Allocate up to 'max_host_qng' request structures for the Wide
10819 * board. The total size is about 16 KB, so allocate all at once.
10820 * If the allocation fails decrement and try again.
10822 board
->adv_reqp_size
= adv_dvc
->max_host_qng
* sizeof(adv_req_t
);
10823 if (board
->adv_reqp_size
& 0x1f) {
10824 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t
));
10825 board
->adv_reqp_size
= ADV_32BALIGN(board
->adv_reqp_size
);
10827 board
->adv_reqp
= dma_alloc_coherent(board
->dev
, board
->adv_reqp_size
,
10828 &board
->adv_reqp_addr
, GFP_KERNEL
);
10830 if (!board
->adv_reqp
)
10831 goto kmalloc_failed
;
10833 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board
->adv_reqp
,
10834 adv_dvc
->max_host_qng
, board
->adv_reqp_size
);
10837 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10838 * the Wide board. Each structure is about 136 bytes.
10840 sgblk_pool_size
= sizeof(adv_sgblk_t
) * ADV_TOT_SG_BLOCK
;
10841 board
->adv_sgblk_pool
= dma_pool_create("adv_sgblk", board
->dev
,
10842 sgblk_pool_size
, 32, 0);
10844 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK
,
10845 sizeof(adv_sgblk_t
), sgblk_pool_size
);
10847 if (!board
->adv_sgblk_pool
)
10848 goto kmalloc_failed
;
10850 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
10851 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10852 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
10853 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
10854 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10855 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
10857 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10858 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
10860 err_code
= adv_dvc
->err_code
;
10862 if (warn_code
|| err_code
) {
10863 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
10864 "0x%x\n", warn_code
, err_code
);
10870 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
10871 err_code
= ADV_ERROR
;
10876 static void advansys_wide_free_mem(struct asc_board
*board
)
10878 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
10880 if (adv_dvc
->carrier
) {
10881 dma_free_coherent(board
->dev
, ADV_CARRIER_BUFSIZE
,
10882 adv_dvc
->carrier
, adv_dvc
->carrier_addr
);
10883 adv_dvc
->carrier
= NULL
;
10885 if (board
->adv_reqp
) {
10886 dma_free_coherent(board
->dev
, board
->adv_reqp_size
,
10887 board
->adv_reqp
, board
->adv_reqp_addr
);
10888 board
->adv_reqp
= NULL
;
10890 if (board
->adv_sgblk_pool
) {
10891 dma_pool_destroy(board
->adv_sgblk_pool
);
10892 board
->adv_sgblk_pool
= NULL
;
10896 static int advansys_board_found(struct Scsi_Host
*shost
, unsigned int iop
,
10899 struct pci_dev
*pdev
;
10900 struct asc_board
*boardp
= shost_priv(shost
);
10901 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
10902 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
10903 int share_irq
, warn_code
, ret
;
10905 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
10907 if (ASC_NARROW_BOARD(boardp
)) {
10908 ASC_DBG(1, "narrow board\n");
10909 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
10910 asc_dvc_varp
->bus_type
= bus_type
;
10911 asc_dvc_varp
->drv_ptr
= boardp
;
10912 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
10913 asc_dvc_varp
->iop_base
= iop
;
10916 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
10917 adv_dvc_varp
->drv_ptr
= boardp
;
10918 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
10919 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
10920 ASC_DBG(1, "wide board ASC-3550\n");
10921 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
10922 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
10923 ASC_DBG(1, "wide board ASC-38C0800\n");
10924 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
10926 ASC_DBG(1, "wide board ASC-38C1600\n");
10927 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
10930 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
10931 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
10932 if (!boardp
->ioremap_addr
) {
10933 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
10935 (long)pci_resource_start(pdev
, 1),
10936 boardp
->asc_n_io_port
);
10940 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
10941 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
10944 * Even though it isn't used to access wide boards, other
10945 * than for the debug line below, save I/O Port address so
10946 * that it can be reported.
10948 boardp
->ioport
= iop
;
10950 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10951 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
10952 #endif /* CONFIG_PCI */
10955 if (ASC_NARROW_BOARD(boardp
)) {
10957 * Set the board bus type and PCI IRQ before
10958 * calling AscInitGetConfig().
10960 switch (asc_dvc_varp
->bus_type
) {
10963 shost
->unchecked_isa_dma
= true;
10967 shost
->unchecked_isa_dma
= false;
10971 shost
->unchecked_isa_dma
= false;
10972 share_irq
= IRQF_SHARED
;
10974 #endif /* CONFIG_ISA */
10977 shost
->unchecked_isa_dma
= false;
10978 share_irq
= IRQF_SHARED
;
10980 #endif /* CONFIG_PCI */
10982 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
10983 "%d\n", asc_dvc_varp
->bus_type
);
10984 shost
->unchecked_isa_dma
= false;
10990 * NOTE: AscInitGetConfig() may change the board's
10991 * bus_type value. The bus_type value should no
10992 * longer be used. If the bus_type field must be
10993 * referenced only use the bit-wise AND operator "&".
10995 ASC_DBG(2, "AscInitGetConfig()\n");
10996 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
11000 * For Wide boards set PCI information before calling
11001 * AdvInitGetConfig().
11003 shost
->unchecked_isa_dma
= false;
11004 share_irq
= IRQF_SHARED
;
11005 ASC_DBG(2, "AdvInitGetConfig()\n");
11007 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
11011 #endif /* CONFIG_PCI */
11018 * Save the EEPROM configuration so that it can be displayed
11019 * from /proc/scsi/advansys/[0...].
11021 if (ASC_NARROW_BOARD(boardp
)) {
11026 * Set the adapter's target id bit in the 'init_tidmask' field.
11028 boardp
->init_tidmask
|=
11029 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
11032 * Save EEPROM settings for the board.
11034 ep
= &boardp
->eep_config
.asc_eep
;
11036 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
11037 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
11038 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
11039 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
11040 ep
->start_motor
= asc_dvc_varp
->start_motor
;
11041 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
11042 ep
->no_scam
= asc_dvc_varp
->no_scam
;
11043 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
11044 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
11045 /* 'max_tag_qng' is set to the same value for every device. */
11046 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
11047 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
11048 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
11049 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
11050 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
11051 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
11052 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
11055 * Modify board configuration.
11057 ASC_DBG(2, "AscInitSetConfig()\n");
11058 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
11062 ADVEEP_3550_CONFIG
*ep_3550
;
11063 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
11064 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
11067 * Save Wide EEP Configuration Information.
11069 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
11070 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
11072 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
11073 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11074 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11075 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
11076 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
11077 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11078 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11079 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
11080 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
11081 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11082 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
11083 ep_3550
->scsi_reset_delay
=
11084 adv_dvc_varp
->scsi_reset_wait
;
11085 ep_3550
->serial_number_word1
=
11086 adv_dvc_varp
->cfg
->serial1
;
11087 ep_3550
->serial_number_word2
=
11088 adv_dvc_varp
->cfg
->serial2
;
11089 ep_3550
->serial_number_word3
=
11090 adv_dvc_varp
->cfg
->serial3
;
11091 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
11092 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
11094 ep_38C0800
->adapter_scsi_id
=
11095 adv_dvc_varp
->chip_scsi_id
;
11096 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11097 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11098 ep_38C0800
->termination_lvd
=
11099 adv_dvc_varp
->cfg
->termination
;
11100 ep_38C0800
->disc_enable
=
11101 adv_dvc_varp
->cfg
->disc_enable
;
11102 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11103 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11104 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11105 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11106 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11107 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11108 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11109 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11110 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
11111 ep_38C0800
->scsi_reset_delay
=
11112 adv_dvc_varp
->scsi_reset_wait
;
11113 ep_38C0800
->serial_number_word1
=
11114 adv_dvc_varp
->cfg
->serial1
;
11115 ep_38C0800
->serial_number_word2
=
11116 adv_dvc_varp
->cfg
->serial2
;
11117 ep_38C0800
->serial_number_word3
=
11118 adv_dvc_varp
->cfg
->serial3
;
11120 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
11122 ep_38C1600
->adapter_scsi_id
=
11123 adv_dvc_varp
->chip_scsi_id
;
11124 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11125 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11126 ep_38C1600
->termination_lvd
=
11127 adv_dvc_varp
->cfg
->termination
;
11128 ep_38C1600
->disc_enable
=
11129 adv_dvc_varp
->cfg
->disc_enable
;
11130 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11131 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11132 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11133 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11134 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11135 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11136 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11137 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11138 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
11139 ep_38C1600
->scsi_reset_delay
=
11140 adv_dvc_varp
->scsi_reset_wait
;
11141 ep_38C1600
->serial_number_word1
=
11142 adv_dvc_varp
->cfg
->serial1
;
11143 ep_38C1600
->serial_number_word2
=
11144 adv_dvc_varp
->cfg
->serial2
;
11145 ep_38C1600
->serial_number_word3
=
11146 adv_dvc_varp
->cfg
->serial3
;
11150 * Set the adapter's target id bit in the 'init_tidmask' field.
11152 boardp
->init_tidmask
|=
11153 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
11157 * Channels are numbered beginning with 0. For AdvanSys one host
11158 * structure supports one channel. Multi-channel boards have a
11159 * separate host structure for each channel.
11161 shost
->max_channel
= 0;
11162 if (ASC_NARROW_BOARD(boardp
)) {
11163 shost
->max_id
= ASC_MAX_TID
+ 1;
11164 shost
->max_lun
= ASC_MAX_LUN
+ 1;
11165 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
11167 shost
->io_port
= asc_dvc_varp
->iop_base
;
11168 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
11169 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
11171 /* Set maximum number of queues the adapter can handle. */
11172 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
11174 shost
->max_id
= ADV_MAX_TID
+ 1;
11175 shost
->max_lun
= ADV_MAX_LUN
+ 1;
11176 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
11179 * Save the I/O Port address and length even though
11180 * I/O ports are not used to access Wide boards.
11181 * Instead the Wide boards are accessed with
11182 * PCI Memory Mapped I/O.
11184 shost
->io_port
= iop
;
11186 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
11188 /* Set maximum number of queues the adapter can handle. */
11189 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
11193 * Set the maximum number of scatter-gather elements the
11194 * adapter can handle.
11196 if (ASC_NARROW_BOARD(boardp
)) {
11198 * Allow two commands with 'sg_tablesize' scatter-gather
11199 * elements to be executed simultaneously. This value is
11200 * the theoretical hardware limit. It may be decreased
11203 shost
->sg_tablesize
=
11204 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
11205 ASC_SG_LIST_PER_Q
) + 1;
11207 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
11211 * The value of 'sg_tablesize' can not exceed the SCSI
11212 * mid-level driver definition of SG_ALL. SG_ALL also
11213 * must not be exceeded, because it is used to define the
11214 * size of the scatter-gather table in 'struct asc_sg_head'.
11216 if (shost
->sg_tablesize
> SG_ALL
) {
11217 shost
->sg_tablesize
= SG_ALL
;
11220 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
11222 /* BIOS start address. */
11223 if (ASC_NARROW_BOARD(boardp
)) {
11224 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
11225 asc_dvc_varp
->bus_type
);
11228 * Fill-in BIOS board variables. The Wide BIOS saves
11229 * information in LRAM that is used by the driver.
11231 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11232 BIOS_SIGNATURE
, boardp
->bios_signature
);
11233 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11234 BIOS_VERSION
, boardp
->bios_version
);
11235 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11236 BIOS_CODESEG
, boardp
->bios_codeseg
);
11237 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11238 BIOS_CODELEN
, boardp
->bios_codelen
);
11240 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11241 boardp
->bios_signature
, boardp
->bios_version
);
11243 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11244 boardp
->bios_codeseg
, boardp
->bios_codelen
);
11247 * If the BIOS saved a valid signature, then fill in
11248 * the BIOS code segment base address.
11250 if (boardp
->bios_signature
== 0x55AA) {
11252 * Convert x86 realmode code segment to a linear
11253 * address by shifting left 4.
11255 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
11262 * Register Board Resources - I/O Port, DMA, IRQ
11265 /* Register DMA Channel for Narrow boards. */
11266 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
11268 if (ASC_NARROW_BOARD(boardp
)) {
11269 /* Register DMA channel for ISA bus. */
11270 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
11271 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
11272 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
11274 shost_printk(KERN_ERR
, shost
, "request_dma() "
11276 shost
->dma_channel
, ret
);
11279 AscEnableIsaDma(shost
->dma_channel
);
11282 #endif /* CONFIG_ISA */
11284 /* Register IRQ Number. */
11285 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
11287 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
11291 if (ret
== -EBUSY
) {
11292 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11293 "already in use\n", boardp
->irq
);
11294 } else if (ret
== -EINVAL
) {
11295 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11296 "not valid\n", boardp
->irq
);
11298 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11299 "failed with %d\n", boardp
->irq
, ret
);
11305 * Initialize board RISC chip and enable interrupts.
11307 if (ASC_NARROW_BOARD(boardp
)) {
11308 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11310 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
11311 if (!asc_dvc_varp
->overrun_buf
) {
11315 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
11317 if (warn_code
|| asc_dvc_varp
->err_code
) {
11318 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
11319 "warn 0x%x, error 0x%x\n",
11320 asc_dvc_varp
->init_state
, warn_code
,
11321 asc_dvc_varp
->err_code
);
11322 if (!asc_dvc_varp
->overrun_dma
) {
11328 if (advansys_wide_init_chip(shost
)) {
11334 ASC_DBG_PRT_SCSI_HOST(2, shost
);
11336 ret
= scsi_add_host(shost
, boardp
->dev
);
11340 scsi_scan_host(shost
);
11344 if (ASC_NARROW_BOARD(boardp
)) {
11345 if (asc_dvc_varp
->overrun_dma
)
11346 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
11347 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11348 kfree(asc_dvc_varp
->overrun_buf
);
11350 advansys_wide_free_mem(boardp
);
11352 free_irq(boardp
->irq
, shost
);
11355 if (shost
->dma_channel
!= NO_ISA_DMA
)
11356 free_dma(shost
->dma_channel
);
11359 if (boardp
->ioremap_addr
)
11360 iounmap(boardp
->ioremap_addr
);
11368 * advansys_release()
11370 * Release resources allocated for a single AdvanSys adapter.
11372 static int advansys_release(struct Scsi_Host
*shost
)
11374 struct asc_board
*board
= shost_priv(shost
);
11375 ASC_DBG(1, "begin\n");
11376 scsi_remove_host(shost
);
11377 free_irq(board
->irq
, shost
);
11379 if (shost
->dma_channel
!= NO_ISA_DMA
) {
11380 ASC_DBG(1, "free_dma()\n");
11381 free_dma(shost
->dma_channel
);
11384 if (ASC_NARROW_BOARD(board
)) {
11385 dma_unmap_single(board
->dev
,
11386 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
11387 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11388 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
11390 iounmap(board
->ioremap_addr
);
11391 advansys_wide_free_mem(board
);
11393 scsi_host_put(shost
);
11394 ASC_DBG(1, "end\n");
11398 #define ASC_IOADR_TABLE_MAX_IX 11
11400 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
11401 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11402 0x0210, 0x0230, 0x0250, 0x0330
11406 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11412 static unsigned int advansys_isa_irq_no(PortAddr iop_base
)
11414 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11415 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
11416 if (chip_irq
== 13)
11421 static int advansys_isa_probe(struct device
*dev
, unsigned int id
)
11424 PortAddr iop_base
= _asc_def_iop_base
[id
];
11425 struct Scsi_Host
*shost
;
11426 struct asc_board
*board
;
11428 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11429 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11432 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11433 if (!AscFindSignature(iop_base
))
11434 goto release_region
;
11435 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
11436 goto release_region
;
11439 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11441 goto release_region
;
11443 board
= shost_priv(shost
);
11444 board
->irq
= advansys_isa_irq_no(iop_base
);
11446 board
->shost
= shost
;
11448 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
11452 dev_set_drvdata(dev
, shost
);
11456 scsi_host_put(shost
);
11458 release_region(iop_base
, ASC_IOADR_GAP
);
11462 static int advansys_isa_remove(struct device
*dev
, unsigned int id
)
11464 int ioport
= _asc_def_iop_base
[id
];
11465 advansys_release(dev_get_drvdata(dev
));
11466 release_region(ioport
, ASC_IOADR_GAP
);
11470 static struct isa_driver advansys_isa_driver
= {
11471 .probe
= advansys_isa_probe
,
11472 .remove
= advansys_isa_remove
,
11474 .owner
= THIS_MODULE
,
11480 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11490 static unsigned int advansys_vlb_irq_no(PortAddr iop_base
)
11492 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11493 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
11494 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
11499 static int advansys_vlb_probe(struct device
*dev
, unsigned int id
)
11502 PortAddr iop_base
= _asc_def_iop_base
[id
];
11503 struct Scsi_Host
*shost
;
11504 struct asc_board
*board
;
11506 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11507 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11510 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11511 if (!AscFindSignature(iop_base
))
11512 goto release_region
;
11514 * I don't think this condition can actually happen, but the old
11515 * driver did it, and the chances of finding a VLB setup in 2007
11516 * to do testing with is slight to none.
11518 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
11519 goto release_region
;
11522 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11524 goto release_region
;
11526 board
= shost_priv(shost
);
11527 board
->irq
= advansys_vlb_irq_no(iop_base
);
11529 board
->shost
= shost
;
11531 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
11535 dev_set_drvdata(dev
, shost
);
11539 scsi_host_put(shost
);
11541 release_region(iop_base
, ASC_IOADR_GAP
);
11545 static struct isa_driver advansys_vlb_driver
= {
11546 .probe
= advansys_vlb_probe
,
11547 .remove
= advansys_isa_remove
,
11549 .owner
= THIS_MODULE
,
11550 .name
= "advansys_vlb",
11554 static struct eisa_device_id advansys_eisa_table
[] = {
11560 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
11563 * EISA is a little more tricky than PCI; each EISA device may have two
11564 * channels, and this driver is written to make each channel its own Scsi_Host
11566 struct eisa_scsi_data
{
11567 struct Scsi_Host
*host
[2];
11571 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
11581 static unsigned int advansys_eisa_irq_no(struct eisa_device
*edev
)
11583 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
11584 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
11585 if ((chip_irq
== 13) || (chip_irq
> 15))
11590 static int advansys_eisa_probe(struct device
*dev
)
11592 int i
, ioport
, irq
= 0;
11594 struct eisa_device
*edev
= to_eisa_device(dev
);
11595 struct eisa_scsi_data
*data
;
11598 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
11601 ioport
= edev
->base_addr
+ 0xc30;
11604 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
11605 struct asc_board
*board
;
11606 struct Scsi_Host
*shost
;
11607 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
11608 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
11609 ioport
+ ASC_IOADR_GAP
- 1);
11612 if (!AscFindSignature(ioport
)) {
11613 release_region(ioport
, ASC_IOADR_GAP
);
11618 * I don't know why we need to do this for EISA chips, but
11619 * not for any others. It looks to be equivalent to
11620 * AscGetChipCfgMsw, but I may have overlooked something,
11621 * so I'm not converting it until I get an EISA board to
11627 irq
= advansys_eisa_irq_no(edev
);
11630 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11632 goto release_region
;
11634 board
= shost_priv(shost
);
11637 board
->shost
= shost
;
11639 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
11641 data
->host
[i
] = shost
;
11645 scsi_host_put(shost
);
11647 release_region(ioport
, ASC_IOADR_GAP
);
11653 dev_set_drvdata(dev
, data
);
11657 kfree(data
->host
[0]);
11658 kfree(data
->host
[1]);
11664 static int advansys_eisa_remove(struct device
*dev
)
11667 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
11669 for (i
= 0; i
< 2; i
++) {
11671 struct Scsi_Host
*shost
= data
->host
[i
];
11674 ioport
= shost
->io_port
;
11675 advansys_release(shost
);
11676 release_region(ioport
, ASC_IOADR_GAP
);
11683 static struct eisa_driver advansys_eisa_driver
= {
11684 .id_table
= advansys_eisa_table
,
11687 .probe
= advansys_eisa_probe
,
11688 .remove
= advansys_eisa_remove
,
11692 /* PCI Devices supported by this driver */
11693 static struct pci_device_id advansys_pci_tbl
[] = {
11694 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
11695 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11696 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
11697 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11698 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
11699 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11700 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
11701 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11702 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
11703 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11704 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
11705 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11709 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
11711 static void advansys_set_latency(struct pci_dev
*pdev
)
11713 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
11714 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
11715 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
11718 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
11719 if (latency
< 0x20)
11720 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
11724 static int advansys_pci_probe(struct pci_dev
*pdev
,
11725 const struct pci_device_id
*ent
)
11728 struct Scsi_Host
*shost
;
11729 struct asc_board
*board
;
11731 err
= pci_enable_device(pdev
);
11734 err
= pci_request_regions(pdev
, DRV_NAME
);
11736 goto disable_device
;
11737 pci_set_master(pdev
);
11738 advansys_set_latency(pdev
);
11741 if (pci_resource_len(pdev
, 0) == 0)
11742 goto release_region
;
11744 ioport
= pci_resource_start(pdev
, 0);
11747 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11749 goto release_region
;
11751 board
= shost_priv(shost
);
11752 board
->irq
= pdev
->irq
;
11753 board
->dev
= &pdev
->dev
;
11754 board
->shost
= shost
;
11756 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
11757 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
11758 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
11759 board
->flags
|= ASC_IS_WIDE_BOARD
;
11762 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
11766 pci_set_drvdata(pdev
, shost
);
11770 scsi_host_put(shost
);
11772 pci_release_regions(pdev
);
11774 pci_disable_device(pdev
);
11779 static void advansys_pci_remove(struct pci_dev
*pdev
)
11781 advansys_release(pci_get_drvdata(pdev
));
11782 pci_release_regions(pdev
);
11783 pci_disable_device(pdev
);
11786 static struct pci_driver advansys_pci_driver
= {
11788 .id_table
= advansys_pci_tbl
,
11789 .probe
= advansys_pci_probe
,
11790 .remove
= advansys_pci_remove
,
11793 static int __init
advansys_init(void)
11797 error
= isa_register_driver(&advansys_isa_driver
,
11798 ASC_IOADR_TABLE_MAX_IX
);
11802 error
= isa_register_driver(&advansys_vlb_driver
,
11803 ASC_IOADR_TABLE_MAX_IX
);
11805 goto unregister_isa
;
11807 error
= eisa_driver_register(&advansys_eisa_driver
);
11809 goto unregister_vlb
;
11811 error
= pci_register_driver(&advansys_pci_driver
);
11813 goto unregister_eisa
;
11818 eisa_driver_unregister(&advansys_eisa_driver
);
11820 isa_unregister_driver(&advansys_vlb_driver
);
11822 isa_unregister_driver(&advansys_isa_driver
);
11827 static void __exit
advansys_exit(void)
11829 pci_unregister_driver(&advansys_pci_driver
);
11830 eisa_driver_unregister(&advansys_eisa_driver
);
11831 isa_unregister_driver(&advansys_vlb_driver
);
11832 isa_unregister_driver(&advansys_isa_driver
);
11835 module_init(advansys_init
);
11836 module_exit(advansys_exit
);
11838 MODULE_LICENSE("GPL");
11839 MODULE_FIRMWARE("advansys/mcode.bin");
11840 MODULE_FIRMWARE("advansys/3550.bin");
11841 MODULE_FIRMWARE("advansys/38C0800.bin");
11842 MODULE_FIRMWARE("advansys/38C1600.bin");