Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / scsi / advansys.c
blob79830e77afa9770512eccccad330841d3efe1889
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9 * All Rights Reserved.
13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14 * changed its name to ConnectCom Solutions, Inc.
15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
38 #include <asm/io.h>
39 #include <asm/dma.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */
50 /* FIXME:
52 * 1. Use scsi_transport_spi
53 * 2. advansys_info is not safe against multiple simultaneous callers
54 * 3. Add module_param to override ISA/VLB ioport array
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
60 /* Enable driver tracing. */
61 #undef ADVANSYS_DEBUG
63 typedef unsigned char uchar;
65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
67 #define PCI_VENDOR_ID_ASP 0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A 0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
75 #define PortAddr unsigned int /* port address size */
76 #define inp(port) inb(port)
77 #define outp(port, byte) outb((byte), (port))
79 #define inpw(port) inw(port)
80 #define outpw(port, word) outw((word), (port))
82 #define ASC_MAX_SG_QUEUE 7
83 #define ASC_MAX_SG_LIST 255
85 #define ASC_CS_TYPE unsigned short
87 #define ASC_IS_ISA (0x0001)
88 #define ASC_IS_ISAPNP (0x0081)
89 #define ASC_IS_EISA (0x0002)
90 #define ASC_IS_PCI (0x0004)
91 #define ASC_IS_PCI_ULTRA (0x0104)
92 #define ASC_IS_PCMCIA (0x0008)
93 #define ASC_IS_MCA (0x0020)
94 #define ASC_IS_VL (0x0040)
95 #define ASC_IS_WIDESCSI_16 (0x0100)
96 #define ASC_IS_WIDESCSI_32 (0x0200)
97 #define ASC_IS_BIG_ENDIAN (0x8000)
99 #define ASC_CHIP_MIN_VER_VL (0x01)
100 #define ASC_CHIP_MAX_VER_VL (0x07)
101 #define ASC_CHIP_MIN_VER_PCI (0x09)
102 #define ASC_CHIP_MAX_VER_PCI (0x0F)
103 #define ASC_CHIP_VER_PCI_BIT (0x08)
104 #define ASC_CHIP_MIN_VER_ISA (0x11)
105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
106 #define ASC_CHIP_MAX_VER_ISA (0x27)
107 #define ASC_CHIP_VER_ISA_BIT (0x30)
108 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
109 #define ASC_CHIP_VER_ASYN_BUG (0x21)
110 #define ASC_CHIP_VER_PCI 0x08
111 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
112 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
113 #define ASC_CHIP_MIN_VER_EISA (0x41)
114 #define ASC_CHIP_MAX_VER_EISA (0x47)
115 #define ASC_CHIP_VER_EISA_BIT (0x40)
116 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
117 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
118 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
119 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
121 #define ASC_SCSI_ID_BITS 3
122 #define ASC_SCSI_TIX_TYPE uchar
123 #define ASC_ALL_DEVICE_BIT_SET 0xFF
124 #define ASC_SCSI_BIT_ID_TYPE uchar
125 #define ASC_MAX_TID 7
126 #define ASC_MAX_LUN 7
127 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
128 #define ASC_MAX_SENSE_LEN 32
129 #define ASC_MIN_SENSE_LEN 14
130 #define ASC_SCSI_RESET_HOLD_TIME_US 60
133 * Narrow boards only support 12-byte commands, while wide boards
134 * extend to 16-byte commands.
136 #define ASC_MAX_CDB_LEN 12
137 #define ADV_MAX_CDB_LEN 16
139 #define MS_SDTR_LEN 0x03
140 #define MS_WDTR_LEN 0x02
142 #define ASC_SG_LIST_PER_Q 7
143 #define QS_FREE 0x00
144 #define QS_READY 0x01
145 #define QS_DISC1 0x02
146 #define QS_DISC2 0x04
147 #define QS_BUSY 0x08
148 #define QS_ABORTED 0x40
149 #define QS_DONE 0x80
150 #define QC_NO_CALLBACK 0x01
151 #define QC_SG_SWAP_QUEUE 0x02
152 #define QC_SG_HEAD 0x04
153 #define QC_DATA_IN 0x08
154 #define QC_DATA_OUT 0x10
155 #define QC_URGENT 0x20
156 #define QC_MSG_OUT 0x40
157 #define QC_REQ_SENSE 0x80
158 #define QCSG_SG_XFER_LIST 0x02
159 #define QCSG_SG_XFER_MORE 0x04
160 #define QCSG_SG_XFER_END 0x08
161 #define QD_IN_PROGRESS 0x00
162 #define QD_NO_ERROR 0x01
163 #define QD_ABORTED_BY_HOST 0x02
164 #define QD_WITH_ERROR 0x04
165 #define QD_INVALID_REQUEST 0x80
166 #define QD_INVALID_HOST_NUM 0x81
167 #define QD_INVALID_DEVICE 0x82
168 #define QD_ERR_INTERNAL 0xFF
169 #define QHSTA_NO_ERROR 0x00
170 #define QHSTA_M_SEL_TIMEOUT 0x11
171 #define QHSTA_M_DATA_OVER_RUN 0x12
172 #define QHSTA_M_DATA_UNDER_RUN 0x12
173 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
174 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
177 #define QHSTA_D_HOST_ABORT_FAILED 0x23
178 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
180 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
181 #define QHSTA_M_WTM_TIMEOUT 0x41
182 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
183 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
185 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
186 #define QHSTA_M_BAD_TAG_CODE 0x46
187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
189 #define QHSTA_D_LRAM_CMP_ERROR 0x81
190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
191 #define ASC_FLAG_SCSIQ_REQ 0x01
192 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
193 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
194 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
195 #define ASC_FLAG_WIN16 0x10
196 #define ASC_FLAG_WIN32 0x20
197 #define ASC_FLAG_ISA_OVER_16MB 0x40
198 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
199 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
203 #define ASC_SCSIQ_CPY_BEG 4
204 #define ASC_SCSIQ_SGHD_CPY_BEG 2
205 #define ASC_SCSIQ_B_FWD 0
206 #define ASC_SCSIQ_B_BWD 1
207 #define ASC_SCSIQ_B_STATUS 2
208 #define ASC_SCSIQ_B_QNO 3
209 #define ASC_SCSIQ_B_CNTL 4
210 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
211 #define ASC_SCSIQ_D_DATA_ADDR 8
212 #define ASC_SCSIQ_D_DATA_CNT 12
213 #define ASC_SCSIQ_B_SENSE_LEN 20
214 #define ASC_SCSIQ_DONE_INFO_BEG 22
215 #define ASC_SCSIQ_D_SRBPTR 22
216 #define ASC_SCSIQ_B_TARGET_IX 26
217 #define ASC_SCSIQ_B_CDB_LEN 28
218 #define ASC_SCSIQ_B_TAG_CODE 29
219 #define ASC_SCSIQ_W_VM_ID 30
220 #define ASC_SCSIQ_DONE_STATUS 32
221 #define ASC_SCSIQ_HOST_STATUS 33
222 #define ASC_SCSIQ_SCSI_STATUS 34
223 #define ASC_SCSIQ_CDB_BEG 36
224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
227 #define ASC_SCSIQ_B_SG_WK_QP 49
228 #define ASC_SCSIQ_B_SG_WK_IX 50
229 #define ASC_SCSIQ_W_ALT_DC1 52
230 #define ASC_SCSIQ_B_LIST_CNT 6
231 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
232 #define ASC_SGQ_B_SG_CNTL 4
233 #define ASC_SGQ_B_SG_HEAD_QP 5
234 #define ASC_SGQ_B_SG_LIST_CNT 6
235 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
236 #define ASC_SGQ_LIST_BEG 8
237 #define ASC_DEF_SCSI1_QNG 4
238 #define ASC_MAX_SCSI1_QNG 4
239 #define ASC_DEF_SCSI2_QNG 16
240 #define ASC_MAX_SCSI2_QNG 32
241 #define ASC_TAG_CODE_MASK 0x23
242 #define ASC_STOP_REQ_RISC_STOP 0x01
243 #define ASC_STOP_ACK_RISC_STOP 0x03
244 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
245 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
247 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
248 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
249 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
250 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
251 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
252 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
253 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
255 typedef struct asc_scsiq_1 {
256 uchar status;
257 uchar q_no;
258 uchar cntl;
259 uchar sg_queue_cnt;
260 uchar target_id;
261 uchar target_lun;
262 __le32 data_addr;
263 __le32 data_cnt;
264 __le32 sense_addr;
265 uchar sense_len;
266 uchar extra_bytes;
267 } ASC_SCSIQ_1;
269 typedef struct asc_scsiq_2 {
270 u32 srb_tag;
271 uchar target_ix;
272 uchar flag;
273 uchar cdb_len;
274 uchar tag_code;
275 ushort vm_id;
276 } ASC_SCSIQ_2;
278 typedef struct asc_scsiq_3 {
279 uchar done_stat;
280 uchar host_stat;
281 uchar scsi_stat;
282 uchar scsi_msg;
283 } ASC_SCSIQ_3;
285 typedef struct asc_scsiq_4 {
286 uchar cdb[ASC_MAX_CDB_LEN];
287 uchar y_first_sg_list_qp;
288 uchar y_working_sg_qp;
289 uchar y_working_sg_ix;
290 uchar y_res;
291 ushort x_req_count;
292 ushort x_reconnect_rtn;
293 __le32 x_saved_data_addr;
294 __le32 x_saved_data_cnt;
295 } ASC_SCSIQ_4;
297 typedef struct asc_q_done_info {
298 ASC_SCSIQ_2 d2;
299 ASC_SCSIQ_3 d3;
300 uchar q_status;
301 uchar q_no;
302 uchar cntl;
303 uchar sense_len;
304 uchar extra_bytes;
305 uchar res;
306 u32 remain_bytes;
307 } ASC_QDONE_INFO;
309 typedef struct asc_sg_list {
310 __le32 addr;
311 __le32 bytes;
312 } ASC_SG_LIST;
314 typedef struct asc_sg_head {
315 ushort entry_cnt;
316 ushort queue_cnt;
317 ushort entry_to_copy;
318 ushort res;
319 ASC_SG_LIST sg_list[];
320 } ASC_SG_HEAD;
322 typedef struct asc_scsi_q {
323 ASC_SCSIQ_1 q1;
324 ASC_SCSIQ_2 q2;
325 uchar *cdbptr;
326 ASC_SG_HEAD *sg_head;
327 ushort remain_sg_entry_cnt;
328 ushort next_sg_index;
329 } ASC_SCSI_Q;
331 typedef struct asc_scsi_bios_req_q {
332 ASC_SCSIQ_1 r1;
333 ASC_SCSIQ_2 r2;
334 uchar *cdbptr;
335 ASC_SG_HEAD *sg_head;
336 uchar *sense_ptr;
337 ASC_SCSIQ_3 r3;
338 uchar cdb[ASC_MAX_CDB_LEN];
339 uchar sense[ASC_MIN_SENSE_LEN];
340 } ASC_SCSI_BIOS_REQ_Q;
342 typedef struct asc_risc_q {
343 uchar fwd;
344 uchar bwd;
345 ASC_SCSIQ_1 i1;
346 ASC_SCSIQ_2 i2;
347 ASC_SCSIQ_3 i3;
348 ASC_SCSIQ_4 i4;
349 } ASC_RISC_Q;
351 typedef struct asc_sg_list_q {
352 uchar seq_no;
353 uchar q_no;
354 uchar cntl;
355 uchar sg_head_qp;
356 uchar sg_list_cnt;
357 uchar sg_cur_list_cnt;
358 } ASC_SG_LIST_Q;
360 typedef struct asc_risc_sg_list_q {
361 uchar fwd;
362 uchar bwd;
363 ASC_SG_LIST_Q sg;
364 ASC_SG_LIST sg_list[7];
365 } ASC_RISC_SG_LIST_Q;
367 #define ASCQ_ERR_Q_STATUS 0x0D
368 #define ASCQ_ERR_CUR_QNG 0x17
369 #define ASCQ_ERR_SG_Q_LINKS 0x18
370 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
371 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
372 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
375 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
377 #define ASC_WARN_NO_ERROR 0x0000
378 #define ASC_WARN_IO_PORT_ROTATE 0x0001
379 #define ASC_WARN_EEPROM_CHKSUM 0x0002
380 #define ASC_WARN_IRQ_MODIFIED 0x0004
381 #define ASC_WARN_AUTO_CONFIG 0x0008
382 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
383 #define ASC_WARN_EEPROM_RECOVER 0x0020
384 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
387 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
389 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
390 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
391 #define ASC_IERR_SET_PC_ADDR 0x0004
392 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
393 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
394 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
395 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
396 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
397 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
398 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
399 #define ASC_IERR_NO_BUS_TYPE 0x0400
400 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
401 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
402 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
404 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
405 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
406 #define ASC_MIN_FREE_Q (0x02)
407 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
408 #define ASC_MAX_TOTAL_QNG 240
409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
412 #define ASC_MAX_INRAM_TAG_QNG 16
413 #define ASC_IOADR_GAP 0x10
414 #define ASC_SYN_MAX_OFFSET 0x0F
415 #define ASC_DEF_SDTR_OFFSET 0x0F
416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
419 /* The narrow chip only supports a limited selection of transfer rates.
420 * These are encoded in the range 0..7 or 0..15 depending whether the chip
421 * is Ultra-capable or not. These tables let us convert from one to the other.
423 static const unsigned char asc_syn_xfer_period[8] = {
424 25, 30, 35, 40, 50, 60, 70, 85
427 static const unsigned char asc_syn_ultra_xfer_period[16] = {
428 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
431 typedef struct ext_msg {
432 uchar msg_type;
433 uchar msg_len;
434 uchar msg_req;
435 union {
436 struct {
437 uchar sdtr_xfer_period;
438 uchar sdtr_req_ack_offset;
439 } sdtr;
440 struct {
441 uchar wdtr_width;
442 } wdtr;
443 struct {
444 uchar mdp_b3;
445 uchar mdp_b2;
446 uchar mdp_b1;
447 uchar mdp_b0;
448 } mdp;
449 } u_ext_msg;
450 uchar res;
451 } EXT_MSG;
453 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
454 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
455 #define wdtr_width u_ext_msg.wdtr.wdtr_width
456 #define mdp_b3 u_ext_msg.mdp_b3
457 #define mdp_b2 u_ext_msg.mdp_b2
458 #define mdp_b1 u_ext_msg.mdp_b1
459 #define mdp_b0 u_ext_msg.mdp_b0
461 typedef struct asc_dvc_cfg {
462 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
463 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
464 ASC_SCSI_BIT_ID_TYPE disc_enable;
465 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
466 uchar chip_scsi_id;
467 uchar isa_dma_speed;
468 uchar isa_dma_channel;
469 uchar chip_version;
470 ushort mcode_date;
471 ushort mcode_version;
472 uchar max_tag_qng[ASC_MAX_TID + 1];
473 uchar sdtr_period_offset[ASC_MAX_TID + 1];
474 uchar adapter_info[6];
475 } ASC_DVC_CFG;
477 #define ASC_DEF_DVC_CNTL 0xFFFF
478 #define ASC_DEF_CHIP_SCSI_ID 7
479 #define ASC_DEF_ISA_DMA_SPEED 4
480 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
481 #define ASC_INIT_STATE_END_GET_CFG 0x0002
482 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
483 #define ASC_INIT_STATE_END_SET_CFG 0x0008
484 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
485 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
486 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
487 #define ASC_INIT_STATE_END_INQUIRY 0x0080
488 #define ASC_INIT_RESET_SCSI_DONE 0x0100
489 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
490 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
491 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
492 #define ASC_MIN_TAGGED_CMD 7
493 #define ASC_MAX_SCSI_RESET_WAIT 30
494 #define ASC_OVERRUN_BSIZE 64
496 struct asc_dvc_var; /* Forward Declaration. */
498 typedef struct asc_dvc_var {
499 PortAddr iop_base;
500 ushort err_code;
501 ushort dvc_cntl;
502 ushort bug_fix_cntl;
503 ushort bus_type;
504 ASC_SCSI_BIT_ID_TYPE init_sdtr;
505 ASC_SCSI_BIT_ID_TYPE sdtr_done;
506 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
507 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
508 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
509 ASC_SCSI_BIT_ID_TYPE start_motor;
510 uchar *overrun_buf;
511 dma_addr_t overrun_dma;
512 uchar scsi_reset_wait;
513 uchar chip_no;
514 bool is_in_int;
515 uchar max_total_qng;
516 uchar cur_total_qng;
517 uchar in_critical_cnt;
518 uchar last_q_shortage;
519 ushort init_state;
520 uchar cur_dvc_qng[ASC_MAX_TID + 1];
521 uchar max_dvc_qng[ASC_MAX_TID + 1];
522 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
523 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
524 const uchar *sdtr_period_tbl;
525 ASC_DVC_CFG *cfg;
526 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
527 char redo_scam;
528 ushort res2;
529 uchar dos_int13_table[ASC_MAX_TID + 1];
530 unsigned int max_dma_count;
531 ASC_SCSI_BIT_ID_TYPE no_scam;
532 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
533 uchar min_sdtr_index;
534 uchar max_sdtr_index;
535 struct asc_board *drv_ptr;
536 unsigned int uc_break;
537 } ASC_DVC_VAR;
539 typedef struct asc_dvc_inq_info {
540 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
541 } ASC_DVC_INQ_INFO;
543 typedef struct asc_cap_info {
544 u32 lba;
545 u32 blk_size;
546 } ASC_CAP_INFO;
548 typedef struct asc_cap_info_array {
549 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
550 } ASC_CAP_INFO_ARRAY;
552 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
553 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
554 #define ASC_CNTL_INITIATOR (ushort)0x0001
555 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
556 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
557 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
558 #define ASC_CNTL_NO_SCAM (ushort)0x0010
559 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
560 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
561 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
562 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
563 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
564 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
565 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
566 #define ASC_CNTL_BURST_MODE (ushort)0x2000
567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
568 #define ASC_EEP_DVC_CFG_BEG_VL 2
569 #define ASC_EEP_MAX_DVC_ADDR_VL 15
570 #define ASC_EEP_DVC_CFG_BEG 32
571 #define ASC_EEP_MAX_DVC_ADDR 45
572 #define ASC_EEP_MAX_RETRY 20
575 * These macros keep the chip SCSI id and ISA DMA speed
576 * bitfields in board order. C bitfields aren't portable
577 * between big and little-endian platforms so they are
578 * not used.
581 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
582 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
584 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
586 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
588 typedef struct asceep_config {
589 ushort cfg_lsw;
590 ushort cfg_msw;
591 uchar init_sdtr;
592 uchar disc_enable;
593 uchar use_cmd_qng;
594 uchar start_motor;
595 uchar max_total_qng;
596 uchar max_tag_qng;
597 uchar bios_scan;
598 uchar power_up_wait;
599 uchar no_scam;
600 uchar id_speed; /* low order 4 bits is chip scsi id */
601 /* high order 4 bits is isa dma speed */
602 uchar dos_int13_table[ASC_MAX_TID + 1];
603 uchar adapter_info[6];
604 ushort cntl;
605 ushort chksum;
606 } ASCEEP_CONFIG;
608 #define ASC_EEP_CMD_READ 0x80
609 #define ASC_EEP_CMD_WRITE 0x40
610 #define ASC_EEP_CMD_WRITE_ABLE 0x30
611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
612 #define ASCV_MSGOUT_BEG 0x0000
613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
615 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
616 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
617 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
618 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
619 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
620 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
621 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
622 #define ASCV_BREAK_ADDR (ushort)0x0028
623 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
624 #define ASCV_BREAK_CONTROL (ushort)0x002C
625 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
627 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
628 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
629 #define ASCV_MCODE_SIZE_W (ushort)0x0034
630 #define ASCV_STOP_CODE_B (ushort)0x0036
631 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
632 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
633 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
634 #define ASCV_HALTCODE_W (ushort)0x0040
635 #define ASCV_CHKSUM_W (ushort)0x0042
636 #define ASCV_MC_DATE_W (ushort)0x0044
637 #define ASCV_MC_VER_W (ushort)0x0046
638 #define ASCV_NEXTRDY_B (ushort)0x0048
639 #define ASCV_DONENEXT_B (ushort)0x0049
640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
641 #define ASCV_SCSIBUSY_B (ushort)0x004B
642 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
643 #define ASCV_CURCDB_B (ushort)0x004D
644 #define ASCV_RCLUN_B (ushort)0x004E
645 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
646 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
647 #define ASCV_DISC_ENABLE_B (ushort)0x0052
648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
649 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
650 #define ASCV_MCODE_CNTL_B (ushort)0x0056
651 #define ASCV_NULL_TARGET_B (ushort)0x0057
652 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
653 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
654 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
655 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
656 #define ASCV_HOST_FLAG_B (ushort)0x005D
657 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
658 #define ASCV_VER_SERIAL_B (ushort)0x0065
659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
660 #define ASCV_WTM_FLAG_B (ushort)0x0068
661 #define ASCV_RISC_FLAG_B (ushort)0x006A
662 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
663 #define ASC_HOST_FLAG_IN_ISR 0x01
664 #define ASC_HOST_FLAG_ACK_INT 0x02
665 #define ASC_RISC_FLAG_GEN_INT 0x01
666 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
667 #define IOP_CTRL (0x0F)
668 #define IOP_STATUS (0x0E)
669 #define IOP_INT_ACK IOP_STATUS
670 #define IOP_REG_IFC (0x0D)
671 #define IOP_SYN_OFFSET (0x0B)
672 #define IOP_EXTRA_CONTROL (0x0D)
673 #define IOP_REG_PC (0x0C)
674 #define IOP_RAM_ADDR (0x0A)
675 #define IOP_RAM_DATA (0x08)
676 #define IOP_EEP_DATA (0x06)
677 #define IOP_EEP_CMD (0x07)
678 #define IOP_VERSION (0x03)
679 #define IOP_CONFIG_HIGH (0x04)
680 #define IOP_CONFIG_LOW (0x02)
681 #define IOP_SIG_BYTE (0x01)
682 #define IOP_SIG_WORD (0x00)
683 #define IOP_REG_DC1 (0x0E)
684 #define IOP_REG_DC0 (0x0C)
685 #define IOP_REG_SB (0x0B)
686 #define IOP_REG_DA1 (0x0A)
687 #define IOP_REG_DA0 (0x08)
688 #define IOP_REG_SC (0x09)
689 #define IOP_DMA_SPEED (0x07)
690 #define IOP_REG_FLAG (0x07)
691 #define IOP_FIFO_H (0x06)
692 #define IOP_FIFO_L (0x04)
693 #define IOP_REG_ID (0x05)
694 #define IOP_REG_QP (0x03)
695 #define IOP_REG_IH (0x02)
696 #define IOP_REG_IX (0x01)
697 #define IOP_REG_AX (0x00)
698 #define IFC_REG_LOCK (0x00)
699 #define IFC_REG_UNLOCK (0x09)
700 #define IFC_WR_EN_FILTER (0x10)
701 #define IFC_RD_NO_EEPROM (0x10)
702 #define IFC_SLEW_RATE (0x20)
703 #define IFC_ACT_NEG (0x40)
704 #define IFC_INP_FILTER (0x80)
705 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
706 #define SC_SEL (uchar)(0x80)
707 #define SC_BSY (uchar)(0x40)
708 #define SC_ACK (uchar)(0x20)
709 #define SC_REQ (uchar)(0x10)
710 #define SC_ATN (uchar)(0x08)
711 #define SC_IO (uchar)(0x04)
712 #define SC_CD (uchar)(0x02)
713 #define SC_MSG (uchar)(0x01)
714 #define SEC_SCSI_CTL (uchar)(0x80)
715 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
716 #define SEC_SLEW_RATE (uchar)(0x20)
717 #define SEC_ENABLE_FILTER (uchar)(0x10)
718 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
725 #define ASC_MAX_QNO 0xF8
726 #define ASC_DATA_SEC_BEG (ushort)0x0080
727 #define ASC_DATA_SEC_END (ushort)0x0080
728 #define ASC_CODE_SEC_BEG (ushort)0x0080
729 #define ASC_CODE_SEC_END (ushort)0x0080
730 #define ASC_QADR_BEG (0x4000)
731 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
732 #define ASC_QADR_END (ushort)0x7FFF
733 #define ASC_QLAST_ADR (ushort)0x7FC0
734 #define ASC_QBLK_SIZE 0x40
735 #define ASC_BIOS_DATA_QBEG 0xF8
736 #define ASC_MIN_ACTIVE_QNO 0x01
737 #define ASC_QLINK_END 0xFF
738 #define ASC_EEPROM_WORDS 0x10
739 #define ASC_MAX_MGS_LEN 0x10
740 #define ASC_BIOS_ADDR_DEF 0xDC00
741 #define ASC_BIOS_SIZE 0x3800
742 #define ASC_BIOS_RAM_OFF 0x3800
743 #define ASC_BIOS_RAM_SIZE 0x800
744 #define ASC_BIOS_MIN_ADDR 0xC000
745 #define ASC_BIOS_MAX_ADDR 0xEC00
746 #define ASC_BIOS_BANK_SIZE 0x0400
747 #define ASC_MCODE_START_ADDR 0x0080
748 #define ASC_CFG0_HOST_INT_ON 0x0020
749 #define ASC_CFG0_BIOS_ON 0x0040
750 #define ASC_CFG0_VERA_BURST_ON 0x0080
751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
753 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
754 #define ASC_CFG_MSW_CLR_MASK 0x3080
755 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
756 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
757 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
758 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
759 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
760 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
761 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
762 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
763 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
764 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
765 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
766 #define CSW_HALTED (ASC_CS_TYPE)0x0010
767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
768 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
769 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
770 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
772 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
773 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
774 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
775 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
776 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
777 #define CC_CHIP_RESET (uchar)0x80
778 #define CC_SCSI_RESET (uchar)0x40
779 #define CC_HALT (uchar)0x20
780 #define CC_SINGLE_STEP (uchar)0x10
781 #define CC_DMA_ABLE (uchar)0x08
782 #define CC_TEST (uchar)0x04
783 #define CC_BANK_ONE (uchar)0x02
784 #define CC_DIAG (uchar)0x01
785 #define ASC_1000_ID0W 0x04C1
786 #define ASC_1000_ID0W_FIX 0x00C1
787 #define ASC_1000_ID1B 0x25
788 #define ASC_EISA_REV_IOP_MASK (0x0C83)
789 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
790 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
791 #define INS_HALTINT (ushort)0x6281
792 #define INS_HALT (ushort)0x6280
793 #define INS_SINT (ushort)0x6200
794 #define INS_RFLAG_WTM (ushort)0x7380
795 #define ASC_MC_SAVE_CODE_WSIZE 0x500
796 #define ASC_MC_SAVE_DATA_WSIZE 0x40
798 typedef struct asc_mc_saved {
799 ushort data[ASC_MC_SAVE_DATA_WSIZE];
800 ushort code[ASC_MC_SAVE_CODE_WSIZE];
801 } ASC_MC_SAVED;
803 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
804 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
805 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
806 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
807 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
808 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
809 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
810 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
811 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
812 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
813 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
814 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
815 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
816 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
817 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
818 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
819 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
820 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
821 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
822 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
823 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
824 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
825 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
826 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
827 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
828 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
829 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
830 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
831 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
832 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
833 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
834 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
835 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
836 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
837 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
838 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
839 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
840 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
841 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
842 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
843 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
844 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
845 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
846 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
847 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
848 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
849 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
850 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
851 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
852 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
853 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
854 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
855 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
856 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
857 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
858 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
859 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
860 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
861 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
862 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
863 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
864 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
865 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
866 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
867 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
868 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
869 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
871 #define AdvPortAddr void __iomem * /* Virtual memory address size */
874 * Define Adv Library required memory access macros.
876 #define ADV_MEM_READB(addr) readb(addr)
877 #define ADV_MEM_READW(addr) readw(addr)
878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
883 * Define total number of simultaneous maximum element scatter-gather
884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
885 * maximum number of outstanding commands per wide host adapter. Each
886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
889 * structures or 255 scatter-gather elements.
891 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
894 * Define maximum number of scatter-gather elements per request.
896 #define ADV_MAX_SG_LIST 255
897 #define NO_OF_SG_PER_BLOCK 15
899 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
900 #define ADV_EEP_DVC_CFG_END (0x15)
901 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
902 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
904 #define ADV_EEP_DELAY_MS 100
906 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
907 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
909 * For the ASC3550 Bit 13 is Termination Polarity control bit.
910 * For later ICs Bit 13 controls whether the CIS (Card Information
911 * Service Section) is loaded from EEPROM.
913 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
914 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
916 * ASC38C1600 Bit 11
918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
920 * Function 0 will specify INT B.
922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
924 * Function 1 will specify INT A.
926 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
928 typedef struct adveep_3550_config {
929 /* Word Offset, Description */
931 ushort cfg_lsw; /* 00 power up initialization */
932 /* bit 13 set - Term Polarity Control */
933 /* bit 14 set - BIOS Enable */
934 /* bit 15 set - Big Endian Mode */
935 ushort cfg_msw; /* 01 unused */
936 ushort disc_enable; /* 02 disconnect enable */
937 ushort wdtr_able; /* 03 Wide DTR able */
938 ushort sdtr_able; /* 04 Synchronous DTR able */
939 ushort start_motor; /* 05 send start up motor */
940 ushort tagqng_able; /* 06 tag queuing able */
941 ushort bios_scan; /* 07 BIOS device control */
942 ushort scam_tolerant; /* 08 no scam */
944 uchar adapter_scsi_id; /* 09 Host Adapter ID */
945 uchar bios_boot_delay; /* power up wait */
947 uchar scsi_reset_delay; /* 10 reset delay */
948 uchar bios_id_lun; /* first boot device scsi id & lun */
949 /* high nibble is lun */
950 /* low nibble is scsi id */
952 uchar termination; /* 11 0 - automatic */
953 /* 1 - low off / high off */
954 /* 2 - low off / high on */
955 /* 3 - low on / high on */
956 /* There is no low on / high off */
958 uchar reserved1; /* reserved byte (not used) */
960 ushort bios_ctrl; /* 12 BIOS control bits */
961 /* bit 0 BIOS don't act as initiator. */
962 /* bit 1 BIOS > 1 GB support */
963 /* bit 2 BIOS > 2 Disk Support */
964 /* bit 3 BIOS don't support removables */
965 /* bit 4 BIOS support bootable CD */
966 /* bit 5 BIOS scan enabled */
967 /* bit 6 BIOS support multiple LUNs */
968 /* bit 7 BIOS display of message */
969 /* bit 8 SCAM disabled */
970 /* bit 9 Reset SCSI bus during init. */
971 /* bit 10 */
972 /* bit 11 No verbose initialization. */
973 /* bit 12 SCSI parity enabled */
974 /* bit 13 */
975 /* bit 14 */
976 /* bit 15 */
977 ushort ultra_able; /* 13 ULTRA speed able */
978 ushort reserved2; /* 14 reserved */
979 uchar max_host_qng; /* 15 maximum host queuing */
980 uchar max_dvc_qng; /* maximum per device queuing */
981 ushort dvc_cntl; /* 16 control bit for driver */
982 ushort bug_fix; /* 17 control bit for bug fix */
983 ushort serial_number_word1; /* 18 Board serial number word 1 */
984 ushort serial_number_word2; /* 19 Board serial number word 2 */
985 ushort serial_number_word3; /* 20 Board serial number word 3 */
986 ushort check_sum; /* 21 EEP check sum */
987 uchar oem_name[16]; /* 22 OEM name */
988 ushort dvc_err_code; /* 30 last device driver error code */
989 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
990 ushort adv_err_addr; /* 32 last uc error address */
991 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
992 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
993 ushort saved_adv_err_addr; /* 35 saved last uc error address */
994 ushort num_of_err; /* 36 number of error */
995 } ADVEEP_3550_CONFIG;
997 typedef struct adveep_38C0800_config {
998 /* Word Offset, Description */
1000 ushort cfg_lsw; /* 00 power up initialization */
1001 /* bit 13 set - Load CIS */
1002 /* bit 14 set - BIOS Enable */
1003 /* bit 15 set - Big Endian Mode */
1004 ushort cfg_msw; /* 01 unused */
1005 ushort disc_enable; /* 02 disconnect enable */
1006 ushort wdtr_able; /* 03 Wide DTR able */
1007 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1008 ushort start_motor; /* 05 send start up motor */
1009 ushort tagqng_able; /* 06 tag queuing able */
1010 ushort bios_scan; /* 07 BIOS device control */
1011 ushort scam_tolerant; /* 08 no scam */
1013 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1014 uchar bios_boot_delay; /* power up wait */
1016 uchar scsi_reset_delay; /* 10 reset delay */
1017 uchar bios_id_lun; /* first boot device scsi id & lun */
1018 /* high nibble is lun */
1019 /* low nibble is scsi id */
1021 uchar termination_se; /* 11 0 - automatic */
1022 /* 1 - low off / high off */
1023 /* 2 - low off / high on */
1024 /* 3 - low on / high on */
1025 /* There is no low on / high off */
1027 uchar termination_lvd; /* 11 0 - automatic */
1028 /* 1 - low off / high off */
1029 /* 2 - low off / high on */
1030 /* 3 - low on / high on */
1031 /* There is no low on / high off */
1033 ushort bios_ctrl; /* 12 BIOS control bits */
1034 /* bit 0 BIOS don't act as initiator. */
1035 /* bit 1 BIOS > 1 GB support */
1036 /* bit 2 BIOS > 2 Disk Support */
1037 /* bit 3 BIOS don't support removables */
1038 /* bit 4 BIOS support bootable CD */
1039 /* bit 5 BIOS scan enabled */
1040 /* bit 6 BIOS support multiple LUNs */
1041 /* bit 7 BIOS display of message */
1042 /* bit 8 SCAM disabled */
1043 /* bit 9 Reset SCSI bus during init. */
1044 /* bit 10 */
1045 /* bit 11 No verbose initialization. */
1046 /* bit 12 SCSI parity enabled */
1047 /* bit 13 */
1048 /* bit 14 */
1049 /* bit 15 */
1050 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1051 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1052 uchar max_host_qng; /* 15 maximum host queueing */
1053 uchar max_dvc_qng; /* maximum per device queuing */
1054 ushort dvc_cntl; /* 16 control bit for driver */
1055 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1056 ushort serial_number_word1; /* 18 Board serial number word 1 */
1057 ushort serial_number_word2; /* 19 Board serial number word 2 */
1058 ushort serial_number_word3; /* 20 Board serial number word 3 */
1059 ushort check_sum; /* 21 EEP check sum */
1060 uchar oem_name[16]; /* 22 OEM name */
1061 ushort dvc_err_code; /* 30 last device driver error code */
1062 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1063 ushort adv_err_addr; /* 32 last uc error address */
1064 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1065 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1066 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1067 ushort reserved36; /* 36 reserved */
1068 ushort reserved37; /* 37 reserved */
1069 ushort reserved38; /* 38 reserved */
1070 ushort reserved39; /* 39 reserved */
1071 ushort reserved40; /* 40 reserved */
1072 ushort reserved41; /* 41 reserved */
1073 ushort reserved42; /* 42 reserved */
1074 ushort reserved43; /* 43 reserved */
1075 ushort reserved44; /* 44 reserved */
1076 ushort reserved45; /* 45 reserved */
1077 ushort reserved46; /* 46 reserved */
1078 ushort reserved47; /* 47 reserved */
1079 ushort reserved48; /* 48 reserved */
1080 ushort reserved49; /* 49 reserved */
1081 ushort reserved50; /* 50 reserved */
1082 ushort reserved51; /* 51 reserved */
1083 ushort reserved52; /* 52 reserved */
1084 ushort reserved53; /* 53 reserved */
1085 ushort reserved54; /* 54 reserved */
1086 ushort reserved55; /* 55 reserved */
1087 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1088 ushort cisprt_msw; /* 57 CIS PTR MSW */
1089 ushort subsysvid; /* 58 SubSystem Vendor ID */
1090 ushort subsysid; /* 59 SubSystem ID */
1091 ushort reserved60; /* 60 reserved */
1092 ushort reserved61; /* 61 reserved */
1093 ushort reserved62; /* 62 reserved */
1094 ushort reserved63; /* 63 reserved */
1095 } ADVEEP_38C0800_CONFIG;
1097 typedef struct adveep_38C1600_config {
1098 /* Word Offset, Description */
1100 ushort cfg_lsw; /* 00 power up initialization */
1101 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102 /* clear - Func. 0 INTA, Func. 1 INTB */
1103 /* bit 13 set - Load CIS */
1104 /* bit 14 set - BIOS Enable */
1105 /* bit 15 set - Big Endian Mode */
1106 ushort cfg_msw; /* 01 unused */
1107 ushort disc_enable; /* 02 disconnect enable */
1108 ushort wdtr_able; /* 03 Wide DTR able */
1109 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1110 ushort start_motor; /* 05 send start up motor */
1111 ushort tagqng_able; /* 06 tag queuing able */
1112 ushort bios_scan; /* 07 BIOS device control */
1113 ushort scam_tolerant; /* 08 no scam */
1115 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1116 uchar bios_boot_delay; /* power up wait */
1118 uchar scsi_reset_delay; /* 10 reset delay */
1119 uchar bios_id_lun; /* first boot device scsi id & lun */
1120 /* high nibble is lun */
1121 /* low nibble is scsi id */
1123 uchar termination_se; /* 11 0 - automatic */
1124 /* 1 - low off / high off */
1125 /* 2 - low off / high on */
1126 /* 3 - low on / high on */
1127 /* There is no low on / high off */
1129 uchar termination_lvd; /* 11 0 - automatic */
1130 /* 1 - low off / high off */
1131 /* 2 - low off / high on */
1132 /* 3 - low on / high on */
1133 /* There is no low on / high off */
1135 ushort bios_ctrl; /* 12 BIOS control bits */
1136 /* bit 0 BIOS don't act as initiator. */
1137 /* bit 1 BIOS > 1 GB support */
1138 /* bit 2 BIOS > 2 Disk Support */
1139 /* bit 3 BIOS don't support removables */
1140 /* bit 4 BIOS support bootable CD */
1141 /* bit 5 BIOS scan enabled */
1142 /* bit 6 BIOS support multiple LUNs */
1143 /* bit 7 BIOS display of message */
1144 /* bit 8 SCAM disabled */
1145 /* bit 9 Reset SCSI bus during init. */
1146 /* bit 10 Basic Integrity Checking disabled */
1147 /* bit 11 No verbose initialization. */
1148 /* bit 12 SCSI parity enabled */
1149 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150 /* bit 14 */
1151 /* bit 15 */
1152 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1153 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1154 uchar max_host_qng; /* 15 maximum host queueing */
1155 uchar max_dvc_qng; /* maximum per device queuing */
1156 ushort dvc_cntl; /* 16 control bit for driver */
1157 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1158 ushort serial_number_word1; /* 18 Board serial number word 1 */
1159 ushort serial_number_word2; /* 19 Board serial number word 2 */
1160 ushort serial_number_word3; /* 20 Board serial number word 3 */
1161 ushort check_sum; /* 21 EEP check sum */
1162 uchar oem_name[16]; /* 22 OEM name */
1163 ushort dvc_err_code; /* 30 last device driver error code */
1164 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1165 ushort adv_err_addr; /* 32 last uc error address */
1166 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1167 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1168 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1169 ushort reserved36; /* 36 reserved */
1170 ushort reserved37; /* 37 reserved */
1171 ushort reserved38; /* 38 reserved */
1172 ushort reserved39; /* 39 reserved */
1173 ushort reserved40; /* 40 reserved */
1174 ushort reserved41; /* 41 reserved */
1175 ushort reserved42; /* 42 reserved */
1176 ushort reserved43; /* 43 reserved */
1177 ushort reserved44; /* 44 reserved */
1178 ushort reserved45; /* 45 reserved */
1179 ushort reserved46; /* 46 reserved */
1180 ushort reserved47; /* 47 reserved */
1181 ushort reserved48; /* 48 reserved */
1182 ushort reserved49; /* 49 reserved */
1183 ushort reserved50; /* 50 reserved */
1184 ushort reserved51; /* 51 reserved */
1185 ushort reserved52; /* 52 reserved */
1186 ushort reserved53; /* 53 reserved */
1187 ushort reserved54; /* 54 reserved */
1188 ushort reserved55; /* 55 reserved */
1189 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1190 ushort cisprt_msw; /* 57 CIS PTR MSW */
1191 ushort subsysvid; /* 58 SubSystem Vendor ID */
1192 ushort subsysid; /* 59 SubSystem ID */
1193 ushort reserved60; /* 60 reserved */
1194 ushort reserved61; /* 61 reserved */
1195 ushort reserved62; /* 62 reserved */
1196 ushort reserved63; /* 63 reserved */
1197 } ADVEEP_38C1600_CONFIG;
1200 * EEPROM Commands
1202 #define ASC_EEP_CMD_DONE 0x0200
1204 /* bios_ctrl */
1205 #define BIOS_CTRL_BIOS 0x0001
1206 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1207 #define BIOS_CTRL_GT_2_DISK 0x0004
1208 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1209 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1210 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1211 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1212 #define BIOS_CTRL_NO_SCAM 0x0100
1213 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1214 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1215 #define BIOS_CTRL_SCSI_PARITY 0x1000
1216 #define BIOS_CTRL_AIPP_DIS 0x2000
1218 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1220 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224 * a special 16K Adv Library and Microcode version. After the issue is
1225 * resolved, should restore 32K support.
1227 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1229 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1232 * Byte I/O register address from base of 'iop_base'.
1234 #define IOPB_INTR_STATUS_REG 0x00
1235 #define IOPB_CHIP_ID_1 0x01
1236 #define IOPB_INTR_ENABLES 0x02
1237 #define IOPB_CHIP_TYPE_REV 0x03
1238 #define IOPB_RES_ADDR_4 0x04
1239 #define IOPB_RES_ADDR_5 0x05
1240 #define IOPB_RAM_DATA 0x06
1241 #define IOPB_RES_ADDR_7 0x07
1242 #define IOPB_FLAG_REG 0x08
1243 #define IOPB_RES_ADDR_9 0x09
1244 #define IOPB_RISC_CSR 0x0A
1245 #define IOPB_RES_ADDR_B 0x0B
1246 #define IOPB_RES_ADDR_C 0x0C
1247 #define IOPB_RES_ADDR_D 0x0D
1248 #define IOPB_SOFT_OVER_WR 0x0E
1249 #define IOPB_RES_ADDR_F 0x0F
1250 #define IOPB_MEM_CFG 0x10
1251 #define IOPB_RES_ADDR_11 0x11
1252 #define IOPB_GPIO_DATA 0x12
1253 #define IOPB_RES_ADDR_13 0x13
1254 #define IOPB_FLASH_PAGE 0x14
1255 #define IOPB_RES_ADDR_15 0x15
1256 #define IOPB_GPIO_CNTL 0x16
1257 #define IOPB_RES_ADDR_17 0x17
1258 #define IOPB_FLASH_DATA 0x18
1259 #define IOPB_RES_ADDR_19 0x19
1260 #define IOPB_RES_ADDR_1A 0x1A
1261 #define IOPB_RES_ADDR_1B 0x1B
1262 #define IOPB_RES_ADDR_1C 0x1C
1263 #define IOPB_RES_ADDR_1D 0x1D
1264 #define IOPB_RES_ADDR_1E 0x1E
1265 #define IOPB_RES_ADDR_1F 0x1F
1266 #define IOPB_DMA_CFG0 0x20
1267 #define IOPB_DMA_CFG1 0x21
1268 #define IOPB_TICKLE 0x22
1269 #define IOPB_DMA_REG_WR 0x23
1270 #define IOPB_SDMA_STATUS 0x24
1271 #define IOPB_SCSI_BYTE_CNT 0x25
1272 #define IOPB_HOST_BYTE_CNT 0x26
1273 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1274 #define IOPB_BYTE_TO_XFER_0 0x28
1275 #define IOPB_BYTE_TO_XFER_1 0x29
1276 #define IOPB_BYTE_TO_XFER_2 0x2A
1277 #define IOPB_BYTE_TO_XFER_3 0x2B
1278 #define IOPB_ACC_GRP 0x2C
1279 #define IOPB_RES_ADDR_2D 0x2D
1280 #define IOPB_DEV_ID 0x2E
1281 #define IOPB_RES_ADDR_2F 0x2F
1282 #define IOPB_SCSI_DATA 0x30
1283 #define IOPB_RES_ADDR_31 0x31
1284 #define IOPB_RES_ADDR_32 0x32
1285 #define IOPB_SCSI_DATA_HSHK 0x33
1286 #define IOPB_SCSI_CTRL 0x34
1287 #define IOPB_RES_ADDR_35 0x35
1288 #define IOPB_RES_ADDR_36 0x36
1289 #define IOPB_RES_ADDR_37 0x37
1290 #define IOPB_RAM_BIST 0x38
1291 #define IOPB_PLL_TEST 0x39
1292 #define IOPB_PCI_INT_CFG 0x3A
1293 #define IOPB_RES_ADDR_3B 0x3B
1294 #define IOPB_RFIFO_CNT 0x3C
1295 #define IOPB_RES_ADDR_3D 0x3D
1296 #define IOPB_RES_ADDR_3E 0x3E
1297 #define IOPB_RES_ADDR_3F 0x3F
1300 * Word I/O register address from base of 'iop_base'.
1302 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1303 #define IOPW_CTRL_REG 0x02 /* CC */
1304 #define IOPW_RAM_ADDR 0x04 /* LA */
1305 #define IOPW_RAM_DATA 0x06 /* LD */
1306 #define IOPW_RES_ADDR_08 0x08
1307 #define IOPW_RISC_CSR 0x0A /* CSR */
1308 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1309 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1310 #define IOPW_RES_ADDR_10 0x10
1311 #define IOPW_SEL_MASK 0x12 /* SM */
1312 #define IOPW_RES_ADDR_14 0x14
1313 #define IOPW_FLASH_ADDR 0x16 /* FA */
1314 #define IOPW_RES_ADDR_18 0x18
1315 #define IOPW_EE_CMD 0x1A /* EC */
1316 #define IOPW_EE_DATA 0x1C /* ED */
1317 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1318 #define IOPW_RES_ADDR_20 0x20
1319 #define IOPW_Q_BASE 0x22 /* QB */
1320 #define IOPW_QP 0x24 /* QP */
1321 #define IOPW_IX 0x26 /* IX */
1322 #define IOPW_SP 0x28 /* SP */
1323 #define IOPW_PC 0x2A /* PC */
1324 #define IOPW_RES_ADDR_2C 0x2C
1325 #define IOPW_RES_ADDR_2E 0x2E
1326 #define IOPW_SCSI_DATA 0x30 /* SD */
1327 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1328 #define IOPW_SCSI_CTRL 0x34 /* SC */
1329 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1330 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1331 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1332 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1333 #define IOPW_RES_ADDR_3C 0x3C
1334 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1337 * Doubleword I/O register address from base of 'iop_base'.
1339 #define IOPDW_RES_ADDR_0 0x00
1340 #define IOPDW_RAM_DATA 0x04
1341 #define IOPDW_RES_ADDR_8 0x08
1342 #define IOPDW_RES_ADDR_C 0x0C
1343 #define IOPDW_RES_ADDR_10 0x10
1344 #define IOPDW_COMMA 0x14
1345 #define IOPDW_COMMB 0x18
1346 #define IOPDW_RES_ADDR_1C 0x1C
1347 #define IOPDW_SDMA_ADDR0 0x20
1348 #define IOPDW_SDMA_ADDR1 0x24
1349 #define IOPDW_SDMA_COUNT 0x28
1350 #define IOPDW_SDMA_ERROR 0x2C
1351 #define IOPDW_RDMA_ADDR0 0x30
1352 #define IOPDW_RDMA_ADDR1 0x34
1353 #define IOPDW_RDMA_COUNT 0x38
1354 #define IOPDW_RDMA_ERROR 0x3C
1356 #define ADV_CHIP_ID_BYTE 0x25
1357 #define ADV_CHIP_ID_WORD 0x04C1
1359 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1360 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1361 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1362 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1363 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1364 #define ADV_INTR_ENABLE_RST_INTR 0x20
1365 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1366 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1368 #define ADV_INTR_STATUS_INTRA 0x01
1369 #define ADV_INTR_STATUS_INTRB 0x02
1370 #define ADV_INTR_STATUS_INTRC 0x04
1372 #define ADV_RISC_CSR_STOP (0x0000)
1373 #define ADV_RISC_TEST_COND (0x2000)
1374 #define ADV_RISC_CSR_RUN (0x4000)
1375 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1377 #define ADV_CTRL_REG_HOST_INTR 0x0100
1378 #define ADV_CTRL_REG_SEL_INTR 0x0200
1379 #define ADV_CTRL_REG_DPR_INTR 0x0400
1380 #define ADV_CTRL_REG_RTA_INTR 0x0800
1381 #define ADV_CTRL_REG_RMA_INTR 0x1000
1382 #define ADV_CTRL_REG_RES_BIT14 0x2000
1383 #define ADV_CTRL_REG_DPE_INTR 0x4000
1384 #define ADV_CTRL_REG_POWER_DONE 0x8000
1385 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1387 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1388 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1389 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1393 #define ADV_TICKLE_NOP 0x00
1394 #define ADV_TICKLE_A 0x01
1395 #define ADV_TICKLE_B 0x02
1396 #define ADV_TICKLE_C 0x03
1398 #define AdvIsIntPending(port) \
1399 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1402 * SCSI_CFG0 Register bit definitions
1404 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1405 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1406 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1407 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1409 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1410 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1411 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1414 #define OUR_ID 0x000F /* SCSI ID */
1417 * SCSI_CFG1 Register bit definitions
1419 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1420 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1422 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1423 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1424 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1425 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1426 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1427 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1428 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1429 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1430 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1431 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1432 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1433 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1436 * Addendum for ASC-38C0800 Chip
1438 * The ASC-38C1600 Chip uses the same definitions except that the
1439 * bus mode override bits [12:10] have been moved to byte register
1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1446 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1447 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1448 #define HVD 0x1000 /* HVD Device Detect */
1449 #define LVD 0x0800 /* LVD Device Detect */
1450 #define SE 0x0400 /* SE Device Detect */
1451 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1452 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1453 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1454 #define TERM_SE 0x0030 /* SE Termination Bits */
1455 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1456 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1457 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1458 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1459 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1460 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1461 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1462 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1464 #define CABLE_ILLEGAL_A 0x7
1465 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1467 #define CABLE_ILLEGAL_B 0xB
1468 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1471 * MEM_CFG Register bit definitions
1473 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1474 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1475 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1476 #define RAM_SZ_2KB 0x00 /* 2 KB */
1477 #define RAM_SZ_4KB 0x04 /* 4 KB */
1478 #define RAM_SZ_8KB 0x08 /* 8 KB */
1479 #define RAM_SZ_16KB 0x0C /* 16 KB */
1480 #define RAM_SZ_32KB 0x10 /* 32 KB */
1481 #define RAM_SZ_64KB 0x14 /* 64 KB */
1484 * DMA_CFG0 Register bit definitions
1486 * This register is only accessible to the host.
1488 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1489 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1490 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1491 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1492 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1493 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1494 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1495 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1496 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1497 #define START_CTL 0x0C /* DMA start conditions */
1498 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1499 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1500 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1501 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1502 #define READ_CMD 0x03 /* Memory Read Method */
1503 #define READ_CMD_MR 0x00 /* Memory Read */
1504 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1505 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1508 * ASC-38C0800 RAM BIST Register bit definitions
1510 #define RAM_TEST_MODE 0x80
1511 #define PRE_TEST_MODE 0x40
1512 #define NORMAL_MODE 0x00
1513 #define RAM_TEST_DONE 0x10
1514 #define RAM_TEST_STATUS 0x0F
1515 #define RAM_TEST_HOST_ERROR 0x08
1516 #define RAM_TEST_INTRAM_ERROR 0x04
1517 #define RAM_TEST_RISC_ERROR 0x02
1518 #define RAM_TEST_SCSI_ERROR 0x01
1519 #define RAM_TEST_SUCCESS 0x00
1520 #define PRE_TEST_VALUE 0x05
1521 #define NORMAL_VALUE 0x00
1524 * ASC38C1600 Definitions
1526 * IOPB_PCI_INT_CFG Bit Field Definitions
1529 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1532 * Bit 1 can be set to change the interrupt for the Function to operate in
1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535 * mode, otherwise the operating mode is undefined.
1537 #define TOTEMPOLE 0x02
1540 * Bit 0 can be used to change the Int Pin for the Function. The value is
1541 * 0 by default for both Functions with Function 0 using INT A and Function
1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543 * INT A is used.
1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546 * value specified in the PCI Configuration Space.
1548 #define INTAB 0x01
1551 * Adv Library Status Definitions
1553 #define ADV_TRUE 1
1554 #define ADV_FALSE 0
1555 #define ADV_SUCCESS 1
1556 #define ADV_BUSY 0
1557 #define ADV_ERROR (-1)
1560 * ADV_DVC_VAR 'warn_code' values
1562 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1563 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1564 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1565 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1567 #define ADV_MAX_TID 15 /* max. target identifier */
1568 #define ADV_MAX_LUN 7 /* max. logical unit number */
1571 * Fixed locations of microcode operating variables.
1573 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1574 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1575 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1576 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1577 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1578 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1579 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1580 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1581 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1582 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1583 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1584 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1585 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1586 #define ASC_MC_CHIP_TYPE 0x009A
1587 #define ASC_MC_INTRB_CODE 0x009B
1588 #define ASC_MC_WDTR_ABLE 0x009C
1589 #define ASC_MC_SDTR_ABLE 0x009E
1590 #define ASC_MC_TAGQNG_ABLE 0x00A0
1591 #define ASC_MC_DISC_ENABLE 0x00A2
1592 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1593 #define ASC_MC_IDLE_CMD 0x00A6
1594 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1595 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1596 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1597 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1598 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1599 #define ASC_MC_SDTR_DONE 0x00B6
1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1601 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1603 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1604 #define ASC_MC_WDTR_DONE 0x0124
1605 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1606 #define ASC_MC_ICQ 0x0160
1607 #define ASC_MC_IRQ 0x0164
1608 #define ASC_MC_PPR_ABLE 0x017A
1611 * BIOS LRAM variable absolute offsets.
1613 #define BIOS_CODESEG 0x54
1614 #define BIOS_CODELEN 0x56
1615 #define BIOS_SIGNATURE 0x58
1616 #define BIOS_VERSION 0x5A
1619 * Microcode Control Flags
1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622 * and handled by the microcode.
1624 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1625 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1630 #define HSHK_CFG_WIDE_XFR 0x8000
1631 #define HSHK_CFG_RATE 0x0F00
1632 #define HSHK_CFG_OFFSET 0x001F
1634 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1635 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1636 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1637 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1639 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1640 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1641 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1642 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1643 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1645 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1646 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1647 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1648 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1649 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1654 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1655 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1658 * All fields here are accessed by the board microcode and need to be
1659 * little-endian.
1661 typedef struct adv_carr_t {
1662 __le32 carr_va; /* Carrier Virtual Address */
1663 __le32 carr_pa; /* Carrier Physical Address */
1664 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1666 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1668 * next_vpa [3:1] Reserved Bits
1669 * next_vpa [0] Done Flag set in Response Queue.
1671 __le32 next_vpa;
1672 } ADV_CARR_T;
1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1677 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0
1679 #define ADV_RQ_DONE 0x00000001
1680 #define ADV_RQ_GOOD 0x00000002
1681 #define ADV_CQ_STOPPER 0x00000000
1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1686 * Each carrier is 64 bytes, and we need three additional
1687 * carrier for icq, irq, and the termination carrier.
1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1691 #define ADV_CARRIER_BUFSIZE \
1692 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1694 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1695 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1696 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1699 * Adapter temporary configuration structure
1701 * This structure can be discarded after initialization. Don't add
1702 * fields here needed after initialization.
1704 * Field naming convention:
1706 * *_enable indicates the field enables or disables a feature. The
1707 * value of the field is never reset.
1709 typedef struct adv_dvc_cfg {
1710 ushort disc_enable; /* enable disconnection */
1711 uchar chip_version; /* chip version */
1712 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713 ushort control_flag; /* Microcode Control Flag */
1714 ushort mcode_date; /* Microcode date */
1715 ushort mcode_version; /* Microcode version */
1716 ushort serial1; /* EEPROM serial number word 1 */
1717 ushort serial2; /* EEPROM serial number word 2 */
1718 ushort serial3; /* EEPROM serial number word 3 */
1719 } ADV_DVC_CFG;
1721 struct adv_dvc_var;
1722 struct adv_scsi_req_q;
1724 typedef struct adv_sg_block {
1725 uchar reserved1;
1726 uchar reserved2;
1727 uchar reserved3;
1728 uchar sg_cnt; /* Valid entries in block. */
1729 __le32 sg_ptr; /* Pointer to next sg block. */
1730 struct {
1731 __le32 sg_addr; /* SG element address. */
1732 __le32 sg_count; /* SG element count. */
1733 } sg_list[NO_OF_SG_PER_BLOCK];
1734 } ADV_SG_BLOCK;
1737 * ADV_SCSI_REQ_Q - microcode request structure
1739 * All fields in this structure up to byte 60 are used by the microcode.
1740 * The microcode makes assumptions about the size and ordering of fields
1741 * in this structure. Do not change the structure definition here without
1742 * coordinating the change with the microcode.
1744 * All fields accessed by microcode must be maintained in little_endian
1745 * order.
1747 typedef struct adv_scsi_req_q {
1748 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1749 uchar target_cmd;
1750 uchar target_id; /* Device target identifier. */
1751 uchar target_lun; /* Device target logical unit number. */
1752 __le32 data_addr; /* Data buffer physical address. */
1753 __le32 data_cnt; /* Data count. Ucode sets to residual. */
1754 __le32 sense_addr;
1755 __le32 carr_pa;
1756 uchar mflag;
1757 uchar sense_len;
1758 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1759 uchar scsi_cntl;
1760 uchar done_status; /* Completion status. */
1761 uchar scsi_status; /* SCSI status byte. */
1762 uchar host_status; /* Ucode host status. */
1763 uchar sg_working_ix;
1764 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1765 __le32 sg_real_addr; /* SG list physical address. */
1766 __le32 scsiq_rptr;
1767 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1768 __le32 scsiq_ptr;
1769 __le32 carr_va;
1771 * End of microcode structure - 60 bytes. The rest of the structure
1772 * is used by the Adv Library and ignored by the microcode.
1774 u32 srb_tag;
1775 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1776 } ADV_SCSI_REQ_Q;
1779 * The following two structures are used to process Wide Board requests.
1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784 * to the Mid-Level SCSI request structure.
1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788 * up to 255 scatter-gather elements may be used per request or
1789 * ADV_SCSI_REQ_Q.
1791 * Both structures must be 32 byte aligned.
1793 typedef struct adv_sgblk {
1794 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1795 dma_addr_t sg_addr; /* Physical address */
1796 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1797 } adv_sgblk_t;
1799 typedef struct adv_req {
1800 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1801 uchar align[24]; /* Request structure padding. */
1802 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1803 dma_addr_t req_addr;
1804 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1805 } adv_req_t __aligned(32);
1808 * Adapter operation variable structure.
1810 * One structure is required per host adapter.
1812 * Field naming convention:
1814 * *_able indicates both whether a feature should be enabled or disabled
1815 * and whether a device isi capable of the feature. At initialization
1816 * this field may be set, but later if a device is found to be incapable
1817 * of the feature, the field is cleared.
1819 typedef struct adv_dvc_var {
1820 AdvPortAddr iop_base; /* I/O port address */
1821 ushort err_code; /* fatal error code */
1822 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1823 ushort wdtr_able; /* try WDTR for a device */
1824 ushort sdtr_able; /* try SDTR for a device */
1825 ushort ultra_able; /* try SDTR Ultra speed for a device */
1826 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1827 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1828 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1829 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1830 ushort tagqng_able; /* try tagged queuing with a device */
1831 ushort ppr_able; /* PPR message capable per TID bitmask. */
1832 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1833 ushort start_motor; /* start motor command allowed */
1834 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1835 uchar chip_no; /* should be assigned by caller */
1836 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1837 ushort no_scam; /* scam_tolerant of EEPROM */
1838 struct asc_board *drv_ptr; /* driver pointer to private structure */
1839 uchar chip_scsi_id; /* chip SCSI target ID */
1840 uchar chip_type;
1841 uchar bist_err_code;
1842 ADV_CARR_T *carrier;
1843 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1844 dma_addr_t carrier_addr;
1845 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1846 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1847 ushort carr_pending_cnt; /* Count of pending carriers. */
1849 * Note: The following fields will not be used after initialization. The
1850 * driver may discard the buffer after initialization is done.
1852 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1853 } ADV_DVC_VAR;
1856 * Microcode idle loop commands
1858 #define IDLE_CMD_COMPLETED 0
1859 #define IDLE_CMD_STOP_CHIP 0x0001
1860 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1861 #define IDLE_CMD_SEND_INT 0x0004
1862 #define IDLE_CMD_ABORT 0x0008
1863 #define IDLE_CMD_DEVICE_RESET 0x0010
1864 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1865 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1866 #define IDLE_CMD_SCSIREQ 0x0080
1868 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1869 #define IDLE_CMD_STATUS_FAILURE 0x0002
1872 * AdvSendIdleCmd() flag definitions.
1874 #define ADV_NOWAIT 0x01
1877 * Wait loop time out values.
1879 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1880 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1881 #define SCSI_MAX_RETRY 10 /* retry count */
1883 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1888 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1890 /* Read byte from a register. */
1891 #define AdvReadByteRegister(iop_base, reg_off) \
1892 (ADV_MEM_READB((iop_base) + (reg_off)))
1894 /* Write byte to a register. */
1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1898 /* Read word (2 bytes) from a register. */
1899 #define AdvReadWordRegister(iop_base, reg_off) \
1900 (ADV_MEM_READW((iop_base) + (reg_off)))
1902 /* Write word (2 bytes) to a register. */
1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1904 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1906 /* Write dword (4 bytes) to a register. */
1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1910 /* Read byte from LRAM. */
1911 #define AdvReadByteLram(iop_base, addr, byte) \
1912 do { \
1913 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915 } while (0)
1917 /* Write byte to LRAM. */
1918 #define AdvWriteByteLram(iop_base, addr, byte) \
1919 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1922 /* Read word (2 bytes) from LRAM. */
1923 #define AdvReadWordLram(iop_base, addr, word) \
1924 do { \
1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927 } while (0)
1929 /* Write word (2 bytes) to LRAM. */
1930 #define AdvWriteWordLram(iop_base, addr, word) \
1931 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1934 /* Write little-endian double word (4 bytes) to LRAM */
1935 /* Because of unspecified C language ordering don't use auto-increment. */
1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945 #define AdvReadWordAutoIncLram(iop_base) \
1946 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949 #define AdvWriteWordAutoIncLram(iop_base, word) \
1950 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1953 * Define macro to check for Condor signature.
1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1958 #define AdvFindSignature(iop_base) \
1959 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960 ADV_CHIP_ID_BYTE) && \
1961 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
1965 * Define macro to Return the version number of the chip at 'iop_base'.
1967 * The second parameter 'bus_type' is currently unused.
1969 #define AdvGetChipVersion(iop_base, bus_type) \
1970 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1976 * If the request has not yet been sent to the device it will simply be
1977 * aborted from RISC memory. If the request is disconnected it will be
1978 * aborted on reselection by sending an Abort Message to the target ID.
1980 * Return value:
1981 * ADV_TRUE(1) - Queue was successfully aborted.
1982 * ADV_FALSE(0) - Queue was not found on the active queue list.
1984 #define AdvAbortQueue(asc_dvc, srb_tag) \
1985 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986 (ADV_DCNT) (srb_tag))
1989 * Send a Bus Device Reset Message to the specified target ID.
1991 * All outstanding commands will be purged if sending the
1992 * Bus Device Reset Message is successful.
1994 * Return Value:
1995 * ADV_TRUE(1) - All requests on the target are purged.
1996 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997 * are not purged.
1999 #define AdvResetDevice(asc_dvc, target_id) \
2000 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2001 (ADV_DCNT) (target_id))
2004 * SCSI Wide Type definition.
2006 #define ADV_SCSI_BIT_ID_TYPE ushort
2009 * AdvInitScsiTarget() 'cntl_flag' options.
2011 #define ADV_SCAN_LUN 0x01
2012 #define ADV_CAPINFO_NOLUN 0x02
2015 * Convert target id to target id bit mask.
2017 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2023 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2024 #define QD_NO_ERROR 0x01
2025 #define QD_ABORTED_BY_HOST 0x02
2026 #define QD_WITH_ERROR 0x04
2028 #define QHSTA_NO_ERROR 0x00
2029 #define QHSTA_M_SEL_TIMEOUT 0x11
2030 #define QHSTA_M_DATA_OVER_RUN 0x12
2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032 #define QHSTA_M_QUEUE_ABORTED 0x15
2033 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2034 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2035 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2036 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2037 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2038 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2039 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2042 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2044 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2046 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2047 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2048 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2049 #define QHSTA_M_WTM_TIMEOUT 0x41
2050 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2051 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2054 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2055 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2061 * Total contiguous memory needed for driver SG blocks.
2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064 * number of scatter-gather elements the driver supports in a
2065 * single request.
2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2069 (sizeof(ADV_SG_BLOCK) * \
2070 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2072 /* struct asc_board flags */
2073 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2077 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2079 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2081 /* Asc Library return codes */
2082 #define ASC_TRUE 1
2083 #define ASC_FALSE 0
2084 #define ASC_NOERROR 1
2085 #define ASC_BUSY 0
2086 #define ASC_ERROR (-1)
2088 /* struct scsi_cmnd function return codes */
2089 #define STATUS_BYTE(byte) (byte)
2090 #define MSG_BYTE(byte) ((byte) << 8)
2091 #define HOST_BYTE(byte) ((byte) << 16)
2092 #define DRIVER_BYTE(byte) ((byte) << 24)
2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095 #ifndef ADVANSYS_STATS
2096 #define ASC_STATS_ADD(shost, counter, count)
2097 #else /* ADVANSYS_STATS */
2098 #define ASC_STATS_ADD(shost, counter, count) \
2099 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100 #endif /* ADVANSYS_STATS */
2102 /* If the result wraps when calculating tenths, return 0. */
2103 #define ASC_TENTHS(num, den) \
2104 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2108 * Display a message to the console.
2110 #define ASC_PRINT(s) \
2112 printk("advansys: "); \
2113 printk(s); \
2116 #define ASC_PRINT1(s, a1) \
2118 printk("advansys: "); \
2119 printk((s), (a1)); \
2122 #define ASC_PRINT2(s, a1, a2) \
2124 printk("advansys: "); \
2125 printk((s), (a1), (a2)); \
2128 #define ASC_PRINT3(s, a1, a2, a3) \
2130 printk("advansys: "); \
2131 printk((s), (a1), (a2), (a3)); \
2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2136 printk("advansys: "); \
2137 printk((s), (a1), (a2), (a3), (a4)); \
2140 #ifndef ADVANSYS_DEBUG
2142 #define ASC_DBG(lvl, s...)
2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2153 #else /* ADVANSYS_DEBUG */
2156 * Debugging Message Levels:
2157 * 0: Errors Only
2158 * 1: High-Level Tracing
2159 * 2-N: Verbose Tracing
2162 #define ASC_DBG(lvl, format, arg...) { \
2163 if (asc_dbglvl >= (lvl)) \
2164 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2165 __func__ , ## arg); \
2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2170 if (asc_dbglvl >= (lvl)) { \
2171 asc_prt_scsi_host(s); \
2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2177 if (asc_dbglvl >= (lvl)) { \
2178 asc_prt_asc_scsi_q(scsiqp); \
2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2184 if (asc_dbglvl >= (lvl)) { \
2185 asc_prt_asc_qdone_info(qdone); \
2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2191 if (asc_dbglvl >= (lvl)) { \
2192 asc_prt_adv_scsi_req_q(scsiqp); \
2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2198 if (asc_dbglvl >= (lvl)) { \
2199 asc_prt_hex((name), (start), (length)); \
2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211 #endif /* ADVANSYS_DEBUG */
2213 #ifdef ADVANSYS_STATS
2215 /* Per board statistics structure */
2216 struct asc_stats {
2217 /* Driver Entrypoint Statistics */
2218 unsigned int queuecommand; /* # calls to advansys_queuecommand() */
2219 unsigned int reset; /* # calls to advansys_eh_bus_reset() */
2220 unsigned int biosparam; /* # calls to advansys_biosparam() */
2221 unsigned int interrupt; /* # advansys_interrupt() calls */
2222 unsigned int callback; /* # calls to asc/adv_isr_callback() */
2223 unsigned int done; /* # calls to request's scsi_done function */
2224 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2225 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2226 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2227 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228 unsigned int exe_noerror; /* # ASC_NOERROR returns. */
2229 unsigned int exe_busy; /* # ASC_BUSY returns. */
2230 unsigned int exe_error; /* # ASC_ERROR returns. */
2231 unsigned int exe_unknown; /* # unknown returns. */
2232 /* Data Transfer Statistics */
2233 unsigned int xfer_cnt; /* # I/O requests received */
2234 unsigned int xfer_elem; /* # scatter-gather elements */
2235 unsigned int xfer_sect; /* # 512-byte blocks */
2237 #endif /* ADVANSYS_STATS */
2240 * Structure allocated for each board.
2242 * This structure is allocated by scsi_host_alloc() at the end
2243 * of the 'Scsi_Host' structure starting at the 'hostdata'
2244 * field. It is guaranteed to be allocated from DMA-able memory.
2246 struct asc_board {
2247 struct device *dev;
2248 struct Scsi_Host *shost;
2249 uint flags; /* Board flags */
2250 unsigned int irq;
2251 union {
2252 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2253 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2254 } dvc_var;
2255 union {
2256 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2257 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2258 } dvc_cfg;
2259 ushort asc_n_io_port; /* Number I/O ports. */
2260 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2261 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2262 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2263 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2264 union {
2265 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2266 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2267 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2268 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2269 } eep_config;
2270 /* /proc/scsi/advansys/[0...] */
2271 #ifdef ADVANSYS_STATS
2272 struct asc_stats asc_stats; /* Board statistics */
2273 #endif /* ADVANSYS_STATS */
2275 * The following fields are used only for Narrow Boards.
2277 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2279 * The following fields are used only for Wide Boards.
2281 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2282 ushort ioport; /* I/O Port address. */
2283 adv_req_t *adv_reqp; /* Request structures. */
2284 dma_addr_t adv_reqp_addr;
2285 size_t adv_reqp_size;
2286 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */
2287 ushort bios_signature; /* BIOS Signature. */
2288 ushort bios_version; /* BIOS Version. */
2289 ushort bios_codeseg; /* BIOS Code Segment. */
2290 ushort bios_codelen; /* BIOS Code Segment Length. */
2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294 dvc_var.asc_dvc_var)
2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296 dvc_var.adv_dvc_var)
2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2299 #ifdef ADVANSYS_DEBUG
2300 static int asc_dbglvl = 3;
2303 * asc_prt_asc_dvc_var()
2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2307 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2309 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2312 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313 (unsigned)h->init_sdtr);
2315 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318 (unsigned)h->chip_no);
2320 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321 "%u,\n", (unsigned)h->queue_full_or_busy,
2322 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2324 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327 (unsigned)h->in_critical_cnt);
2329 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331 (unsigned)h->init_state, (unsigned)h->no_scam,
2332 (unsigned)h->pci_fix_asyn_xfer);
2334 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2338 * asc_prt_asc_dvc_cfg()
2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2342 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2344 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345 h->can_tagged_qng, h->cmd_qng_enabled);
2346 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347 h->disc_enable, h->sdtr_enable);
2349 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351 h->isa_dma_channel, h->chip_version);
2353 printk(" mcode_date 0x%x, mcode_version %d\n",
2354 h->mcode_date, h->mcode_version);
2358 * asc_prt_adv_dvc_var()
2360 * Display an ADV_DVC_VAR structure.
2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2364 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2366 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2369 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2370 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2372 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2375 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377 h->carr_freelist);
2379 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2381 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2382 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2384 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2385 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2389 * asc_prt_adv_dvc_cfg()
2391 * Display an ADV_DVC_CFG structure.
2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2395 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2397 printk(" disc_enable 0x%x, termination 0x%x\n",
2398 h->disc_enable, h->termination);
2400 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2401 h->chip_version, h->mcode_date);
2403 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2404 h->mcode_version, h->control_flag);
2408 * asc_prt_scsi_host()
2410 static void asc_prt_scsi_host(struct Scsi_Host *s)
2412 struct asc_board *boardp = shost_priv(s);
2414 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415 printk(" host_busy %d, host_no %d,\n",
2416 scsi_host_busy(s), s->host_no);
2418 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2421 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422 s->dma_channel, s->this_id, s->can_queue);
2424 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2427 if (ASC_NARROW_BOARD(boardp)) {
2428 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430 } else {
2431 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2437 * asc_prt_hex()
2439 * Print hexadecimal output in 4 byte groupings 32 bytes
2440 * or 8 double-words per line.
2442 static void asc_prt_hex(char *f, uchar *s, int l)
2444 int i;
2445 int j;
2446 int k;
2447 int m;
2449 printk("%s: (%d bytes)\n", f, l);
2451 for (i = 0; i < l; i += 32) {
2453 /* Display a maximum of 8 double-words per line. */
2454 if ((k = (l - i) / 4) >= 8) {
2455 k = 8;
2456 m = 0;
2457 } else {
2458 m = (l - i) % 4;
2461 for (j = 0; j < k; j++) {
2462 printk(" %2.2X%2.2X%2.2X%2.2X",
2463 (unsigned)s[i + (j * 4)],
2464 (unsigned)s[i + (j * 4) + 1],
2465 (unsigned)s[i + (j * 4) + 2],
2466 (unsigned)s[i + (j * 4) + 3]);
2469 switch (m) {
2470 case 0:
2471 default:
2472 break;
2473 case 1:
2474 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475 break;
2476 case 2:
2477 printk(" %2.2X%2.2X",
2478 (unsigned)s[i + (j * 4)],
2479 (unsigned)s[i + (j * 4) + 1]);
2480 break;
2481 case 3:
2482 printk(" %2.2X%2.2X%2.2X",
2483 (unsigned)s[i + (j * 4) + 1],
2484 (unsigned)s[i + (j * 4) + 2],
2485 (unsigned)s[i + (j * 4) + 3]);
2486 break;
2489 printk("\n");
2494 * asc_prt_asc_scsi_q()
2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2498 ASC_SG_HEAD *sgp;
2499 int i;
2501 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2503 printk
2504 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506 q->q2.tag_code);
2508 printk
2509 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510 (ulong)le32_to_cpu(q->q1.data_addr),
2511 (ulong)le32_to_cpu(q->q1.data_cnt),
2512 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2514 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515 (ulong)q->cdbptr, q->q2.cdb_len,
2516 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2518 if (q->sg_head) {
2519 sgp = q->sg_head;
2520 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522 sgp->queue_cnt);
2523 for (i = 0; i < sgp->entry_cnt; i++) {
2524 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2533 * asc_prt_asc_qdone_info()
2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2537 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540 q->d2.tag_code);
2541 printk
2542 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2547 * asc_prt_adv_sgblock()
2549 * Display an ADV_SG_BLOCK structure.
2551 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2553 int i;
2555 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556 (ulong)b, sgblockno);
2557 printk(" sg_cnt %u, sg_ptr 0x%x\n",
2558 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560 if (b->sg_ptr != 0)
2561 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562 for (i = 0; i < b->sg_cnt; i++) {
2563 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565 (u32)le32_to_cpu(b->sg_list[i].sg_count));
2570 * asc_prt_adv_scsi_req_q()
2572 * Display an ADV_SCSI_REQ_Q structure.
2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2576 int sg_blk_cnt;
2577 struct adv_sg_block *sg_ptr;
2578 adv_sgblk_t *sgblkp;
2580 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2582 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
2583 q->target_id, q->target_lun, q->srb_tag);
2585 printk(" cntl 0x%x, data_addr 0x%lx\n",
2586 q->cntl, (ulong)le32_to_cpu(q->data_addr));
2588 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589 (ulong)le32_to_cpu(q->data_cnt),
2590 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2592 printk
2593 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2596 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2597 q->sg_working_ix, q->target_cmd);
2599 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600 (ulong)le32_to_cpu(q->scsiq_rptr),
2601 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2603 /* Display the request's ADV_SG_BLOCK structures. */
2604 if (q->sg_list_ptr != NULL) {
2605 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606 sg_blk_cnt = 0;
2607 while (sgblkp) {
2608 sg_ptr = &sgblkp->sg_block;
2609 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610 if (sg_ptr->sg_ptr == 0) {
2611 break;
2613 sgblkp = sgblkp->next_sgblkp;
2614 sg_blk_cnt++;
2618 #endif /* ADVANSYS_DEBUG */
2621 * advansys_info()
2623 * Return suitable for printing on the console with the argument
2624 * adapter's configuration information.
2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627 * otherwise the static 'info' array will be overrun.
2629 static const char *advansys_info(struct Scsi_Host *shost)
2631 static char info[ASC_INFO_SIZE];
2632 struct asc_board *boardp = shost_priv(shost);
2633 ASC_DVC_VAR *asc_dvc_varp;
2634 ADV_DVC_VAR *adv_dvc_varp;
2635 char *busname;
2636 char *widename = NULL;
2638 if (ASC_NARROW_BOARD(boardp)) {
2639 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640 ASC_DBG(1, "begin\n");
2641 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643 ASC_IS_ISAPNP) {
2644 busname = "ISA PnP";
2645 } else {
2646 busname = "ISA";
2648 sprintf(info,
2649 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650 ASC_VERSION, busname,
2651 (ulong)shost->io_port,
2652 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653 boardp->irq, shost->dma_channel);
2654 } else {
2655 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656 busname = "VL";
2657 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658 busname = "EISA";
2659 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661 == ASC_IS_PCI_ULTRA) {
2662 busname = "PCI Ultra";
2663 } else {
2664 busname = "PCI";
2666 } else {
2667 busname = "?";
2668 shost_printk(KERN_ERR, shost, "unknown bus "
2669 "type %d\n", asc_dvc_varp->bus_type);
2671 sprintf(info,
2672 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673 ASC_VERSION, busname, (ulong)shost->io_port,
2674 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675 boardp->irq);
2677 } else {
2679 * Wide Adapter Information
2681 * Memory-mapped I/O is used instead of I/O space to access
2682 * the adapter, but display the I/O Port range. The Memory
2683 * I/O address is displayed through the driver /proc file.
2685 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687 widename = "Ultra-Wide";
2688 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689 widename = "Ultra2-Wide";
2690 } else {
2691 widename = "Ultra3-Wide";
2693 sprintf(info,
2694 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2698 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699 ASC_DBG(1, "end\n");
2700 return info;
2703 #ifdef CONFIG_PROC_FS
2706 * asc_prt_board_devices()
2708 * Print driver information for devices attached to the board.
2710 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2712 struct asc_board *boardp = shost_priv(shost);
2713 int chip_scsi_id;
2714 int i;
2716 seq_printf(m,
2717 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718 shost->host_no);
2720 if (ASC_NARROW_BOARD(boardp)) {
2721 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722 } else {
2723 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2726 seq_puts(m, "Target IDs Detected:");
2727 for (i = 0; i <= ADV_MAX_TID; i++) {
2728 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729 seq_printf(m, " %X,", i);
2731 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2735 * Display Wide Board BIOS Information.
2737 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2739 struct asc_board *boardp = shost_priv(shost);
2740 ushort major, minor, letter;
2742 seq_puts(m, "\nROM BIOS Version: ");
2745 * If the BIOS saved a valid signature, then fill in
2746 * the BIOS code segment base address.
2748 if (boardp->bios_signature != 0x55AA) {
2749 seq_puts(m, "Disabled or Pre-3.1\n"
2750 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752 } else {
2753 major = (boardp->bios_version >> 12) & 0xF;
2754 minor = (boardp->bios_version >> 8) & 0xF;
2755 letter = (boardp->bios_version & 0xFF);
2757 seq_printf(m, "%d.%d%c\n",
2758 major, minor,
2759 letter >= 26 ? '?' : letter + 'A');
2761 * Current available ROM BIOS release is 3.1I for UW
2762 * and 3.2I for U2W. This code doesn't differentiate
2763 * UW and U2W boards.
2765 if (major < 3 || (major <= 3 && minor < 1) ||
2766 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768 "ftp://ftp.connectcom.net/pub\n");
2774 * Add serial number to information bar if signature AAh
2775 * is found in at bit 15-9 (7 bits) of word 1.
2777 * Serial Number consists fo 12 alpha-numeric digits.
2779 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2780 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2781 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2782 * 5 - Product revision (A-J) Word0: " "
2784 * Signature Word1: 15-9 (7 bits)
2785 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2788 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2790 * Note 1: Only production cards will have a serial number.
2792 * Note 2: Signature is most significant 7 bits (0xFE).
2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2796 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2798 ushort w, num;
2800 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801 return ASC_FALSE;
2802 } else {
2804 * First word - 6 digits.
2806 w = serialnum[0];
2808 /* Product type - 1st digit. */
2809 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810 /* Product type is P=Prototype */
2811 *cp += 0x8;
2813 cp++;
2815 /* Manufacturing location - 2nd digit. */
2816 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2818 /* Product ID - 3rd, 4th digits. */
2819 num = w & 0x3FF;
2820 *cp++ = '0' + (num / 100);
2821 num %= 100;
2822 *cp++ = '0' + (num / 10);
2824 /* Product revision - 5th digit. */
2825 *cp++ = 'A' + (num % 10);
2828 * Second word
2830 w = serialnum[1];
2833 * Year - 6th digit.
2835 * If bit 15 of third word is set, then the
2836 * last digit of the year is greater than 7.
2838 if (serialnum[2] & 0x8000) {
2839 *cp++ = '8' + ((w & 0x1C0) >> 6);
2840 } else {
2841 *cp++ = '0' + ((w & 0x1C0) >> 6);
2844 /* Week of year - 7th, 8th digits. */
2845 num = w & 0x003F;
2846 *cp++ = '0' + num / 10;
2847 num %= 10;
2848 *cp++ = '0' + num;
2851 * Third word
2853 w = serialnum[2] & 0x7FFF;
2855 /* Serial number - 9th digit. */
2856 *cp++ = 'A' + (w / 1000);
2858 /* 10th, 11th, 12th digits. */
2859 num = w % 1000;
2860 *cp++ = '0' + num / 100;
2861 num %= 100;
2862 *cp++ = '0' + num / 10;
2863 num %= 10;
2864 *cp++ = '0' + num;
2866 *cp = '\0'; /* Null Terminate the string. */
2867 return ASC_TRUE;
2872 * asc_prt_asc_board_eeprom()
2874 * Print board EEPROM configuration.
2876 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2878 struct asc_board *boardp = shost_priv(shost);
2879 ASCEEP_CONFIG *ep;
2880 int i;
2881 uchar serialstr[13];
2882 #ifdef CONFIG_ISA
2883 ASC_DVC_VAR *asc_dvc_varp;
2884 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2886 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2887 #endif /* CONFIG_ISA */
2888 ep = &boardp->eep_config.asc_eep;
2890 seq_printf(m,
2891 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892 shost->host_no);
2894 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895 == ASC_TRUE)
2896 seq_printf(m, " Serial Number: %s\n", serialstr);
2897 else if (ep->adapter_info[5] == 0xBB)
2898 seq_puts(m,
2899 " Default Settings Used for EEPROM-less Adapter.\n");
2900 else
2901 seq_puts(m, " Serial Number Signature Not Present.\n");
2903 seq_printf(m,
2904 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906 ep->max_tag_qng);
2908 seq_printf(m,
2909 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2911 seq_puts(m, " Target ID: ");
2912 for (i = 0; i <= ASC_MAX_TID; i++)
2913 seq_printf(m, " %d", i);
2915 seq_puts(m, "\n Disconnects: ");
2916 for (i = 0; i <= ASC_MAX_TID; i++)
2917 seq_printf(m, " %c",
2918 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2920 seq_puts(m, "\n Command Queuing: ");
2921 for (i = 0; i <= ASC_MAX_TID; i++)
2922 seq_printf(m, " %c",
2923 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2925 seq_puts(m, "\n Start Motor: ");
2926 for (i = 0; i <= ASC_MAX_TID; i++)
2927 seq_printf(m, " %c",
2928 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2930 seq_puts(m, "\n Synchronous Transfer:");
2931 for (i = 0; i <= ASC_MAX_TID; i++)
2932 seq_printf(m, " %c",
2933 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934 seq_putc(m, '\n');
2936 #ifdef CONFIG_ISA
2937 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938 seq_printf(m,
2939 " Host ISA DMA speed: %d MB/S\n",
2940 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2942 #endif /* CONFIG_ISA */
2946 * asc_prt_adv_board_eeprom()
2948 * Print board EEPROM configuration.
2950 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2952 struct asc_board *boardp = shost_priv(shost);
2953 ADV_DVC_VAR *adv_dvc_varp;
2954 int i;
2955 char *termstr;
2956 uchar serialstr[13];
2957 ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960 ushort word;
2961 ushort *wordp;
2962 ushort sdtr_speed = 0;
2964 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966 ep_3550 = &boardp->eep_config.adv_3550_eep;
2967 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969 } else {
2970 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2973 seq_printf(m,
2974 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975 shost->host_no);
2977 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978 wordp = &ep_3550->serial_number_word1;
2979 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980 wordp = &ep_38C0800->serial_number_word1;
2981 } else {
2982 wordp = &ep_38C1600->serial_number_word1;
2985 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986 seq_printf(m, " Serial Number: %s\n", serialstr);
2987 else
2988 seq_puts(m, " Serial Number Signature Not Present.\n");
2990 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991 seq_printf(m,
2992 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993 ep_3550->adapter_scsi_id,
2994 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996 seq_printf(m,
2997 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998 ep_38C0800->adapter_scsi_id,
2999 ep_38C0800->max_host_qng,
3000 ep_38C0800->max_dvc_qng);
3001 else
3002 seq_printf(m,
3003 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004 ep_38C1600->adapter_scsi_id,
3005 ep_38C1600->max_host_qng,
3006 ep_38C1600->max_dvc_qng);
3007 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008 word = ep_3550->termination;
3009 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010 word = ep_38C0800->termination_lvd;
3011 } else {
3012 word = ep_38C1600->termination_lvd;
3014 switch (word) {
3015 case 1:
3016 termstr = "Low Off/High Off";
3017 break;
3018 case 2:
3019 termstr = "Low Off/High On";
3020 break;
3021 case 3:
3022 termstr = "Low On/High On";
3023 break;
3024 default:
3025 case 0:
3026 termstr = "Automatic";
3027 break;
3030 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031 seq_printf(m,
3032 " termination: %u (%s), bios_ctrl: 0x%x\n",
3033 ep_3550->termination, termstr,
3034 ep_3550->bios_ctrl);
3035 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036 seq_printf(m,
3037 " termination: %u (%s), bios_ctrl: 0x%x\n",
3038 ep_38C0800->termination_lvd, termstr,
3039 ep_38C0800->bios_ctrl);
3040 else
3041 seq_printf(m,
3042 " termination: %u (%s), bios_ctrl: 0x%x\n",
3043 ep_38C1600->termination_lvd, termstr,
3044 ep_38C1600->bios_ctrl);
3046 seq_puts(m, " Target ID: ");
3047 for (i = 0; i <= ADV_MAX_TID; i++)
3048 seq_printf(m, " %X", i);
3049 seq_putc(m, '\n');
3051 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052 word = ep_3550->disc_enable;
3053 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054 word = ep_38C0800->disc_enable;
3055 } else {
3056 word = ep_38C1600->disc_enable;
3058 seq_puts(m, " Disconnects: ");
3059 for (i = 0; i <= ADV_MAX_TID; i++)
3060 seq_printf(m, " %c",
3061 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062 seq_putc(m, '\n');
3064 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065 word = ep_3550->tagqng_able;
3066 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067 word = ep_38C0800->tagqng_able;
3068 } else {
3069 word = ep_38C1600->tagqng_able;
3071 seq_puts(m, " Command Queuing: ");
3072 for (i = 0; i <= ADV_MAX_TID; i++)
3073 seq_printf(m, " %c",
3074 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075 seq_putc(m, '\n');
3077 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078 word = ep_3550->start_motor;
3079 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080 word = ep_38C0800->start_motor;
3081 } else {
3082 word = ep_38C1600->start_motor;
3084 seq_puts(m, " Start Motor: ");
3085 for (i = 0; i <= ADV_MAX_TID; i++)
3086 seq_printf(m, " %c",
3087 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088 seq_putc(m, '\n');
3090 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091 seq_puts(m, " Synchronous Transfer:");
3092 for (i = 0; i <= ADV_MAX_TID; i++)
3093 seq_printf(m, " %c",
3094 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095 'Y' : 'N');
3096 seq_putc(m, '\n');
3099 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100 seq_puts(m, " Ultra Transfer: ");
3101 for (i = 0; i <= ADV_MAX_TID; i++)
3102 seq_printf(m, " %c",
3103 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104 ? 'Y' : 'N');
3105 seq_putc(m, '\n');
3108 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109 word = ep_3550->wdtr_able;
3110 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111 word = ep_38C0800->wdtr_able;
3112 } else {
3113 word = ep_38C1600->wdtr_able;
3115 seq_puts(m, " Wide Transfer: ");
3116 for (i = 0; i <= ADV_MAX_TID; i++)
3117 seq_printf(m, " %c",
3118 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119 seq_putc(m, '\n');
3121 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n ");
3124 for (i = 0; i <= ADV_MAX_TID; i++) {
3125 char *speed_str;
3127 if (i == 0) {
3128 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129 } else if (i == 4) {
3130 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131 } else if (i == 8) {
3132 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133 } else if (i == 12) {
3134 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3136 switch (sdtr_speed & ADV_MAX_TID) {
3137 case 0:
3138 speed_str = "Off";
3139 break;
3140 case 1:
3141 speed_str = " 5";
3142 break;
3143 case 2:
3144 speed_str = " 10";
3145 break;
3146 case 3:
3147 speed_str = " 20";
3148 break;
3149 case 4:
3150 speed_str = " 40";
3151 break;
3152 case 5:
3153 speed_str = " 80";
3154 break;
3155 default:
3156 speed_str = "Unk";
3157 break;
3159 seq_printf(m, "%X:%s ", i, speed_str);
3160 if (i == 7)
3161 seq_puts(m, "\n ");
3162 sdtr_speed >>= 4;
3164 seq_putc(m, '\n');
3169 * asc_prt_driver_conf()
3171 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3173 struct asc_board *boardp = shost_priv(shost);
3175 seq_printf(m,
3176 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3177 shost->host_no);
3179 seq_printf(m,
3180 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3181 scsi_host_busy(shost), shost->max_id,
3182 shost->max_lun, shost->max_channel);
3184 seq_printf(m,
3185 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3186 shost->unique_id, shost->can_queue, shost->this_id,
3187 shost->sg_tablesize, shost->cmd_per_lun);
3189 seq_printf(m,
3190 " unchecked_isa_dma %d\n",
3191 shost->unchecked_isa_dma);
3193 seq_printf(m,
3194 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3195 boardp->flags, shost->last_reset, jiffies,
3196 boardp->asc_n_io_port);
3198 seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3202 * asc_prt_asc_board_info()
3204 * Print dynamic board configuration information.
3206 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3208 struct asc_board *boardp = shost_priv(shost);
3209 int chip_scsi_id;
3210 ASC_DVC_VAR *v;
3211 ASC_DVC_CFG *c;
3212 int i;
3213 int renegotiate = 0;
3215 v = &boardp->dvc_var.asc_dvc_var;
3216 c = &boardp->dvc_cfg.asc_dvc_cfg;
3217 chip_scsi_id = c->chip_scsi_id;
3219 seq_printf(m,
3220 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3221 shost->host_no);
3223 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3224 "mcode_version 0x%x, err_code %u\n",
3225 c->chip_version, c->mcode_date, c->mcode_version,
3226 v->err_code);
3228 /* Current number of commands waiting for the host. */
3229 seq_printf(m,
3230 " Total Command Pending: %d\n", v->cur_total_qng);
3232 seq_puts(m, " Command Queuing:");
3233 for (i = 0; i <= ASC_MAX_TID; i++) {
3234 if ((chip_scsi_id == i) ||
3235 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3236 continue;
3238 seq_printf(m, " %X:%c",
3240 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3243 /* Current number of commands waiting for a device. */
3244 seq_puts(m, "\n Command Queue Pending:");
3245 for (i = 0; i <= ASC_MAX_TID; i++) {
3246 if ((chip_scsi_id == i) ||
3247 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3248 continue;
3250 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3253 /* Current limit on number of commands that can be sent to a device. */
3254 seq_puts(m, "\n Command Queue Limit:");
3255 for (i = 0; i <= ASC_MAX_TID; i++) {
3256 if ((chip_scsi_id == i) ||
3257 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3258 continue;
3260 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3263 /* Indicate whether the device has returned queue full status. */
3264 seq_puts(m, "\n Command Queue Full:");
3265 for (i = 0; i <= ASC_MAX_TID; i++) {
3266 if ((chip_scsi_id == i) ||
3267 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3268 continue;
3270 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3271 seq_printf(m, " %X:Y-%d",
3272 i, boardp->queue_full_cnt[i]);
3273 else
3274 seq_printf(m, " %X:N", i);
3277 seq_puts(m, "\n Synchronous Transfer:");
3278 for (i = 0; i <= ASC_MAX_TID; i++) {
3279 if ((chip_scsi_id == i) ||
3280 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3281 continue;
3283 seq_printf(m, " %X:%c",
3285 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3287 seq_putc(m, '\n');
3289 for (i = 0; i <= ASC_MAX_TID; i++) {
3290 uchar syn_period_ix;
3292 if ((chip_scsi_id == i) ||
3293 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3294 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3295 continue;
3298 seq_printf(m, " %X:", i);
3300 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3301 seq_puts(m, " Asynchronous");
3302 } else {
3303 syn_period_ix =
3304 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3307 seq_printf(m,
3308 " Transfer Period Factor: %d (%d.%d Mhz),",
3309 v->sdtr_period_tbl[syn_period_ix],
3310 250 / v->sdtr_period_tbl[syn_period_ix],
3311 ASC_TENTHS(250,
3312 v->sdtr_period_tbl[syn_period_ix]));
3314 seq_printf(m, " REQ/ACK Offset: %d",
3315 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3318 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3319 seq_puts(m, "*\n");
3320 renegotiate = 1;
3321 } else {
3322 seq_putc(m, '\n');
3326 if (renegotiate) {
3327 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3332 * asc_prt_adv_board_info()
3334 * Print dynamic board configuration information.
3336 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3338 struct asc_board *boardp = shost_priv(shost);
3339 int i;
3340 ADV_DVC_VAR *v;
3341 ADV_DVC_CFG *c;
3342 AdvPortAddr iop_base;
3343 ushort chip_scsi_id;
3344 ushort lramword;
3345 uchar lrambyte;
3346 ushort tagqng_able;
3347 ushort sdtr_able, wdtr_able;
3348 ushort wdtr_done, sdtr_done;
3349 ushort period = 0;
3350 int renegotiate = 0;
3352 v = &boardp->dvc_var.adv_dvc_var;
3353 c = &boardp->dvc_cfg.adv_dvc_cfg;
3354 iop_base = v->iop_base;
3355 chip_scsi_id = v->chip_scsi_id;
3357 seq_printf(m,
3358 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3359 shost->host_no);
3361 seq_printf(m,
3362 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3363 (unsigned long)v->iop_base,
3364 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3365 v->err_code);
3367 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3368 "mcode_version 0x%x\n", c->chip_version,
3369 c->mcode_date, c->mcode_version);
3371 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3372 seq_puts(m, " Queuing Enabled:");
3373 for (i = 0; i <= ADV_MAX_TID; i++) {
3374 if ((chip_scsi_id == i) ||
3375 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3376 continue;
3379 seq_printf(m, " %X:%c",
3381 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3384 seq_puts(m, "\n Queue Limit:");
3385 for (i = 0; i <= ADV_MAX_TID; i++) {
3386 if ((chip_scsi_id == i) ||
3387 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388 continue;
3391 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3392 lrambyte);
3394 seq_printf(m, " %X:%d", i, lrambyte);
3397 seq_puts(m, "\n Command Pending:");
3398 for (i = 0; i <= ADV_MAX_TID; i++) {
3399 if ((chip_scsi_id == i) ||
3400 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3401 continue;
3404 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3405 lrambyte);
3407 seq_printf(m, " %X:%d", i, lrambyte);
3409 seq_putc(m, '\n');
3411 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3412 seq_puts(m, " Wide Enabled:");
3413 for (i = 0; i <= ADV_MAX_TID; i++) {
3414 if ((chip_scsi_id == i) ||
3415 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3416 continue;
3419 seq_printf(m, " %X:%c",
3421 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3423 seq_putc(m, '\n');
3425 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3426 seq_puts(m, " Transfer Bit Width:");
3427 for (i = 0; i <= ADV_MAX_TID; i++) {
3428 if ((chip_scsi_id == i) ||
3429 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3430 continue;
3433 AdvReadWordLram(iop_base,
3434 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3435 lramword);
3437 seq_printf(m, " %X:%d",
3438 i, (lramword & 0x8000) ? 16 : 8);
3440 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3441 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3442 seq_putc(m, '*');
3443 renegotiate = 1;
3446 seq_putc(m, '\n');
3448 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3449 seq_puts(m, " Synchronous Enabled:");
3450 for (i = 0; i <= ADV_MAX_TID; i++) {
3451 if ((chip_scsi_id == i) ||
3452 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3453 continue;
3456 seq_printf(m, " %X:%c",
3458 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3460 seq_putc(m, '\n');
3462 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3463 for (i = 0; i <= ADV_MAX_TID; i++) {
3465 AdvReadWordLram(iop_base,
3466 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3467 lramword);
3468 lramword &= ~0x8000;
3470 if ((chip_scsi_id == i) ||
3471 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3472 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3473 continue;
3476 seq_printf(m, " %X:", i);
3478 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3479 seq_puts(m, " Asynchronous");
3480 } else {
3481 seq_puts(m, " Transfer Period Factor: ");
3483 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3484 seq_puts(m, "9 (80.0 Mhz),");
3485 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3486 seq_puts(m, "10 (40.0 Mhz),");
3487 } else { /* 20 Mhz or below. */
3489 period = (((lramword >> 8) * 25) + 50) / 4;
3491 if (period == 0) { /* Should never happen. */
3492 seq_printf(m, "%d (? Mhz), ", period);
3493 } else {
3494 seq_printf(m,
3495 "%d (%d.%d Mhz),",
3496 period, 250 / period,
3497 ASC_TENTHS(250, period));
3501 seq_printf(m, " REQ/ACK Offset: %d",
3502 lramword & 0x1F);
3505 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3506 seq_puts(m, "*\n");
3507 renegotiate = 1;
3508 } else {
3509 seq_putc(m, '\n');
3513 if (renegotiate) {
3514 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3518 #ifdef ADVANSYS_STATS
3520 * asc_prt_board_stats()
3522 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3524 struct asc_board *boardp = shost_priv(shost);
3525 struct asc_stats *s = &boardp->asc_stats;
3527 seq_printf(m,
3528 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3529 shost->host_no);
3531 seq_printf(m,
3532 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3533 s->queuecommand, s->reset, s->biosparam,
3534 s->interrupt);
3536 seq_printf(m,
3537 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3538 s->callback, s->done, s->build_error,
3539 s->adv_build_noreq, s->adv_build_nosg);
3541 seq_printf(m,
3542 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3543 s->exe_noerror, s->exe_busy, s->exe_error,
3544 s->exe_unknown);
3547 * Display data transfer statistics.
3549 if (s->xfer_cnt > 0) {
3550 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3551 s->xfer_cnt, s->xfer_elem);
3553 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3554 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3556 /* Scatter gather transfer statistics */
3557 seq_printf(m, " avg_num_elem %u.%01u, ",
3558 s->xfer_elem / s->xfer_cnt,
3559 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3561 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3562 (s->xfer_sect / 2) / s->xfer_elem,
3563 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3565 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3566 (s->xfer_sect / 2) / s->xfer_cnt,
3567 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3570 #endif /* ADVANSYS_STATS */
3573 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3575 * m: seq_file to print into
3576 * shost: Scsi_Host
3578 * Return the number of bytes read from or written to a
3579 * /proc/scsi/advansys/[0...] file.
3581 static int
3582 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3584 struct asc_board *boardp = shost_priv(shost);
3586 ASC_DBG(1, "begin\n");
3589 * User read of /proc/scsi/advansys/[0...] file.
3593 * Get board configuration information.
3595 * advansys_info() returns the board string from its own static buffer.
3597 /* Copy board information. */
3598 seq_printf(m, "%s\n", (char *)advansys_info(shost));
3600 * Display Wide Board BIOS Information.
3602 if (!ASC_NARROW_BOARD(boardp))
3603 asc_prt_adv_bios(m, shost);
3606 * Display driver information for each device attached to the board.
3608 asc_prt_board_devices(m, shost);
3611 * Display EEPROM configuration for the board.
3613 if (ASC_NARROW_BOARD(boardp))
3614 asc_prt_asc_board_eeprom(m, shost);
3615 else
3616 asc_prt_adv_board_eeprom(m, shost);
3619 * Display driver configuration and information for the board.
3621 asc_prt_driver_conf(m, shost);
3623 #ifdef ADVANSYS_STATS
3625 * Display driver statistics for the board.
3627 asc_prt_board_stats(m, shost);
3628 #endif /* ADVANSYS_STATS */
3631 * Display Asc Library dynamic configuration information
3632 * for the board.
3634 if (ASC_NARROW_BOARD(boardp))
3635 asc_prt_asc_board_info(m, shost);
3636 else
3637 asc_prt_adv_board_info(m, shost);
3638 return 0;
3640 #endif /* CONFIG_PROC_FS */
3642 static void asc_scsi_done(struct scsi_cmnd *scp)
3644 scsi_dma_unmap(scp);
3645 ASC_STATS(scp->device->host, done);
3646 scp->scsi_done(scp);
3649 static void AscSetBank(PortAddr iop_base, uchar bank)
3651 uchar val;
3653 val = AscGetChipControl(iop_base) &
3655 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3656 CC_CHIP_RESET));
3657 if (bank == 1) {
3658 val |= CC_BANK_ONE;
3659 } else if (bank == 2) {
3660 val |= CC_DIAG | CC_BANK_ONE;
3661 } else {
3662 val &= ~CC_BANK_ONE;
3664 AscSetChipControl(iop_base, val);
3667 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3669 AscSetBank(iop_base, 1);
3670 AscWriteChipIH(iop_base, ins_code);
3671 AscSetBank(iop_base, 0);
3674 static int AscStartChip(PortAddr iop_base)
3676 AscSetChipControl(iop_base, 0);
3677 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3678 return (0);
3680 return (1);
3683 static bool AscStopChip(PortAddr iop_base)
3685 uchar cc_val;
3687 cc_val =
3688 AscGetChipControl(iop_base) &
3689 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3690 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3691 AscSetChipIH(iop_base, INS_HALT);
3692 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3693 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3694 return false;
3696 return true;
3699 static bool AscIsChipHalted(PortAddr iop_base)
3701 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3702 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3703 return true;
3706 return false;
3709 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3711 PortAddr iop_base;
3712 int i = 10;
3714 iop_base = asc_dvc->iop_base;
3715 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3716 && (i-- > 0)) {
3717 mdelay(100);
3719 AscStopChip(iop_base);
3720 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3721 udelay(60);
3722 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3723 AscSetChipIH(iop_base, INS_HALT);
3724 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3725 AscSetChipControl(iop_base, CC_HALT);
3726 mdelay(200);
3727 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3728 AscSetChipStatus(iop_base, 0);
3729 return (AscIsChipHalted(iop_base));
3732 static int AscFindSignature(PortAddr iop_base)
3734 ushort sig_word;
3736 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3737 iop_base, AscGetChipSignatureByte(iop_base));
3738 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3739 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3740 iop_base, AscGetChipSignatureWord(iop_base));
3741 sig_word = AscGetChipSignatureWord(iop_base);
3742 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3743 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3744 return (1);
3747 return (0);
3750 static void AscEnableInterrupt(PortAddr iop_base)
3752 ushort cfg;
3754 cfg = AscGetChipCfgLsw(iop_base);
3755 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3758 static void AscDisableInterrupt(PortAddr iop_base)
3760 ushort cfg;
3762 cfg = AscGetChipCfgLsw(iop_base);
3763 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3766 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3768 unsigned char byte_data;
3769 unsigned short word_data;
3771 if (isodd_word(addr)) {
3772 AscSetChipLramAddr(iop_base, addr - 1);
3773 word_data = AscGetChipLramData(iop_base);
3774 byte_data = (word_data >> 8) & 0xFF;
3775 } else {
3776 AscSetChipLramAddr(iop_base, addr);
3777 word_data = AscGetChipLramData(iop_base);
3778 byte_data = word_data & 0xFF;
3780 return byte_data;
3783 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3785 ushort word_data;
3787 AscSetChipLramAddr(iop_base, addr);
3788 word_data = AscGetChipLramData(iop_base);
3789 return (word_data);
3792 static void
3793 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3795 int i;
3797 AscSetChipLramAddr(iop_base, s_addr);
3798 for (i = 0; i < words; i++) {
3799 AscSetChipLramData(iop_base, set_wval);
3803 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3805 AscSetChipLramAddr(iop_base, addr);
3806 AscSetChipLramData(iop_base, word_val);
3809 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3811 ushort word_data;
3813 if (isodd_word(addr)) {
3814 addr--;
3815 word_data = AscReadLramWord(iop_base, addr);
3816 word_data &= 0x00FF;
3817 word_data |= (((ushort)byte_val << 8) & 0xFF00);
3818 } else {
3819 word_data = AscReadLramWord(iop_base, addr);
3820 word_data &= 0xFF00;
3821 word_data |= ((ushort)byte_val & 0x00FF);
3823 AscWriteLramWord(iop_base, addr, word_data);
3827 * Copy 2 bytes to LRAM.
3829 * The source data is assumed to be in little-endian order in memory
3830 * and is maintained in little-endian order when written to LRAM.
3832 static void
3833 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3834 const uchar *s_buffer, int words)
3836 int i;
3838 AscSetChipLramAddr(iop_base, s_addr);
3839 for (i = 0; i < 2 * words; i += 2) {
3841 * On a little-endian system the second argument below
3842 * produces a little-endian ushort which is written to
3843 * LRAM in little-endian order. On a big-endian system
3844 * the second argument produces a big-endian ushort which
3845 * is "transparently" byte-swapped by outpw() and written
3846 * in little-endian order to LRAM.
3848 outpw(iop_base + IOP_RAM_DATA,
3849 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3854 * Copy 4 bytes to LRAM.
3856 * The source data is assumed to be in little-endian order in memory
3857 * and is maintained in little-endian order when written to LRAM.
3859 static void
3860 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3861 ushort s_addr, uchar *s_buffer, int dwords)
3863 int i;
3865 AscSetChipLramAddr(iop_base, s_addr);
3866 for (i = 0; i < 4 * dwords; i += 4) {
3867 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
3868 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
3873 * Copy 2 bytes from LRAM.
3875 * The source data is assumed to be in little-endian order in LRAM
3876 * and is maintained in little-endian order when written to memory.
3878 static void
3879 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3880 ushort s_addr, uchar *d_buffer, int words)
3882 int i;
3883 ushort word;
3885 AscSetChipLramAddr(iop_base, s_addr);
3886 for (i = 0; i < 2 * words; i += 2) {
3887 word = inpw(iop_base + IOP_RAM_DATA);
3888 d_buffer[i] = word & 0xff;
3889 d_buffer[i + 1] = (word >> 8) & 0xff;
3893 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3895 u32 sum = 0;
3896 int i;
3898 for (i = 0; i < words; i++, s_addr += 2) {
3899 sum += AscReadLramWord(iop_base, s_addr);
3901 return (sum);
3904 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3906 uchar i;
3907 ushort s_addr;
3908 PortAddr iop_base;
3910 iop_base = asc_dvc->iop_base;
3911 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3912 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3913 64) >> 1));
3914 i = ASC_MIN_ACTIVE_QNO;
3915 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3916 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3917 (uchar)(i + 1));
3918 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3919 (uchar)(asc_dvc->max_total_qng));
3920 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3921 (uchar)i);
3922 i++;
3923 s_addr += ASC_QBLK_SIZE;
3924 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3925 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3926 (uchar)(i + 1));
3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3928 (uchar)(i - 1));
3929 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3930 (uchar)i);
3932 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933 (uchar)ASC_QLINK_END);
3934 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935 (uchar)(asc_dvc->max_total_qng - 1));
3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937 (uchar)asc_dvc->max_total_qng);
3938 i++;
3939 s_addr += ASC_QBLK_SIZE;
3940 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3941 i++, s_addr += ASC_QBLK_SIZE) {
3942 AscWriteLramByte(iop_base,
3943 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3944 AscWriteLramByte(iop_base,
3945 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3946 AscWriteLramByte(iop_base,
3947 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3951 static u32
3952 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3953 const uchar *mcode_buf, ushort mcode_size)
3955 u32 chksum;
3956 ushort mcode_word_size;
3957 ushort mcode_chksum;
3959 /* Write the microcode buffer starting at LRAM address 0. */
3960 mcode_word_size = (ushort)(mcode_size >> 1);
3961 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3962 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3964 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3965 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3966 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3967 (ushort)ASC_CODE_SEC_BEG,
3968 (ushort)((mcode_size -
3969 s_addr - (ushort)
3970 ASC_CODE_SEC_BEG) /
3971 2));
3972 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3973 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3974 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3975 return chksum;
3978 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3980 PortAddr iop_base;
3981 int i;
3982 ushort lram_addr;
3984 iop_base = asc_dvc->iop_base;
3985 AscPutRiscVarFreeQHead(iop_base, 1);
3986 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3987 AscPutVarFreeQHead(iop_base, 1);
3988 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3989 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3990 (uchar)((int)asc_dvc->max_total_qng + 1));
3991 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3992 (uchar)((int)asc_dvc->max_total_qng + 2));
3993 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3994 asc_dvc->max_total_qng);
3995 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3996 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3997 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3998 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3999 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4000 AscPutQDoneInProgress(iop_base, 0);
4001 lram_addr = ASC_QADR_BEG;
4002 for (i = 0; i < 32; i++, lram_addr += 2) {
4003 AscWriteLramWord(iop_base, lram_addr, 0);
4007 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4009 int i;
4010 int warn_code;
4011 PortAddr iop_base;
4012 __le32 phy_addr;
4013 __le32 phy_size;
4014 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4016 iop_base = asc_dvc->iop_base;
4017 warn_code = 0;
4018 for (i = 0; i <= ASC_MAX_TID; i++) {
4019 AscPutMCodeInitSDTRAtID(iop_base, i,
4020 asc_dvc->cfg->sdtr_period_offset[i]);
4023 AscInitQLinkVar(asc_dvc);
4024 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4025 asc_dvc->cfg->disc_enable);
4026 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4027 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4029 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4030 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4031 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4032 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4033 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4034 warn_code = -ENOMEM;
4035 goto err_dma_map;
4037 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4038 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4039 (uchar *)&phy_addr, 1);
4040 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4041 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4042 (uchar *)&phy_size, 1);
4044 asc_dvc->cfg->mcode_date =
4045 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4046 asc_dvc->cfg->mcode_version =
4047 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4049 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4050 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4051 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4052 warn_code = -EINVAL;
4053 goto err_mcode_start;
4055 if (AscStartChip(iop_base) != 1) {
4056 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4057 warn_code = -EIO;
4058 goto err_mcode_start;
4061 return warn_code;
4063 err_mcode_start:
4064 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4065 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4066 err_dma_map:
4067 asc_dvc->overrun_dma = 0;
4068 return warn_code;
4071 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4073 const struct firmware *fw;
4074 const char fwname[] = "advansys/mcode.bin";
4075 int err;
4076 unsigned long chksum;
4077 int warn_code;
4078 PortAddr iop_base;
4080 iop_base = asc_dvc->iop_base;
4081 warn_code = 0;
4082 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4083 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4084 AscResetChipAndScsiBus(asc_dvc);
4085 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4087 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4088 if (asc_dvc->err_code != 0)
4089 return ASC_ERROR;
4090 if (!AscFindSignature(asc_dvc->iop_base)) {
4091 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4092 return warn_code;
4094 AscDisableInterrupt(iop_base);
4095 AscInitLram(asc_dvc);
4097 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4098 if (err) {
4099 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4100 fwname, err);
4101 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4102 return err;
4104 if (fw->size < 4) {
4105 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4106 fw->size, fwname);
4107 release_firmware(fw);
4108 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109 return -EINVAL;
4111 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4112 (fw->data[1] << 8) | fw->data[0];
4113 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4114 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4115 fw->size - 4) != chksum) {
4116 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4117 release_firmware(fw);
4118 return warn_code;
4120 release_firmware(fw);
4121 warn_code |= AscInitMicroCodeVar(asc_dvc);
4122 if (!asc_dvc->overrun_dma)
4123 return warn_code;
4124 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4125 AscEnableInterrupt(iop_base);
4126 return warn_code;
4130 * Load the Microcode
4132 * Write the microcode image to RISC memory starting at address 0.
4134 * The microcode is stored compressed in the following format:
4136 * 254 word (508 byte) table indexed by byte code followed
4137 * by the following byte codes:
4139 * 1-Byte Code:
4140 * 00: Emit word 0 in table.
4141 * 01: Emit word 1 in table.
4143 * FD: Emit word 253 in table.
4145 * Multi-Byte Code:
4146 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4147 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4149 * Returns 0 or an error if the checksum doesn't match
4151 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4152 int size, int memsize, int chksum)
4154 int i, j, end, len = 0;
4155 u32 sum;
4157 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4159 for (i = 253 * 2; i < size; i++) {
4160 if (buf[i] == 0xff) {
4161 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4162 for (j = 0; j < buf[i + 1]; j++) {
4163 AdvWriteWordAutoIncLram(iop_base, word);
4164 len += 2;
4166 i += 3;
4167 } else if (buf[i] == 0xfe) {
4168 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4169 AdvWriteWordAutoIncLram(iop_base, word);
4170 i += 2;
4171 len += 2;
4172 } else {
4173 unsigned int off = buf[i] * 2;
4174 unsigned short word = (buf[off + 1] << 8) | buf[off];
4175 AdvWriteWordAutoIncLram(iop_base, word);
4176 len += 2;
4180 end = len;
4182 while (len < memsize) {
4183 AdvWriteWordAutoIncLram(iop_base, 0);
4184 len += 2;
4187 /* Verify the microcode checksum. */
4188 sum = 0;
4189 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4191 for (len = 0; len < end; len += 2) {
4192 sum += AdvReadWordAutoIncLram(iop_base);
4195 if (sum != chksum)
4196 return ASC_IERR_MCODE_CHKSUM;
4198 return 0;
4201 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4203 off_t carr_offset = 0, next_offset;
4204 dma_addr_t carr_paddr;
4205 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4207 for (i = 0; i < carr_num; i++) {
4208 carr_offset = i * sizeof(ADV_CARR_T);
4209 /* Get physical address of the carrier 'carrp'. */
4210 carr_paddr = adv_dvc->carrier_addr + carr_offset;
4212 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4213 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4214 adv_dvc->carrier[i].areq_vpa = 0;
4215 next_offset = carr_offset + sizeof(ADV_CARR_T);
4216 if (i == carr_num)
4217 next_offset = ~0;
4218 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4221 * We cannot have a carrier with 'carr_va' of '0', as
4222 * a reference to this carrier would be interpreted as
4223 * list termination.
4224 * So start at carrier 1 with the freelist.
4226 adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4229 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4231 int index;
4233 BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4235 index = offset / sizeof(ADV_CARR_T);
4236 return &adv_dvc->carrier[index];
4239 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4241 ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4242 u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4244 if (next_vpa == 0 || next_vpa == ~0) {
4245 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4246 return NULL;
4249 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4251 * insert stopper carrier to terminate list
4253 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4255 return carrp;
4259 * 'offset' is the index in the request pointer array
4261 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4263 struct asc_board *boardp = adv_dvc->drv_ptr;
4265 BUG_ON(offset > adv_dvc->max_host_qng);
4266 return &boardp->adv_reqp[offset];
4270 * Send an idle command to the chip and wait for completion.
4272 * Command completion is polled for once per microsecond.
4274 * The function can be called from anywhere including an interrupt handler.
4275 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4276 * functions to prevent reentrancy.
4278 * Return Values:
4279 * ADV_TRUE - command completed successfully
4280 * ADV_FALSE - command failed
4281 * ADV_ERROR - command timed out
4283 static int
4284 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4285 ushort idle_cmd, u32 idle_cmd_parameter)
4287 int result, i, j;
4288 AdvPortAddr iop_base;
4290 iop_base = asc_dvc->iop_base;
4293 * Clear the idle command status which is set by the microcode
4294 * to a non-zero value to indicate when the command is completed.
4295 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4297 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4300 * Write the idle command value after the idle command parameter
4301 * has been written to avoid a race condition. If the order is not
4302 * followed, the microcode may process the idle command before the
4303 * parameters have been written to LRAM.
4305 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4306 cpu_to_le32(idle_cmd_parameter));
4307 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4310 * Tickle the RISC to tell it to process the idle command.
4312 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4313 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4315 * Clear the tickle value. In the ASC-3550 the RISC flag
4316 * command 'clr_tickle_b' does not work unless the host
4317 * value is cleared.
4319 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4322 /* Wait for up to 100 millisecond for the idle command to timeout. */
4323 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4324 /* Poll once each microsecond for command completion. */
4325 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4326 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4327 result);
4328 if (result != 0)
4329 return result;
4330 udelay(1);
4334 BUG(); /* The idle command should never timeout. */
4335 return ADV_ERROR;
4339 * Reset SCSI Bus and purge all outstanding requests.
4341 * Return Value:
4342 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4343 * ADV_FALSE(0) - Microcode command failed.
4344 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4345 * may be hung which requires driver recovery.
4347 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4349 int status;
4352 * Send the SCSI Bus Reset idle start idle command which asserts
4353 * the SCSI Bus Reset signal.
4355 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4356 if (status != ADV_TRUE) {
4357 return status;
4361 * Delay for the specified SCSI Bus Reset hold time.
4363 * The hold time delay is done on the host because the RISC has no
4364 * microsecond accurate timer.
4366 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4369 * Send the SCSI Bus Reset end idle command which de-asserts
4370 * the SCSI Bus Reset signal and purges any pending requests.
4372 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4373 if (status != ADV_TRUE) {
4374 return status;
4377 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4379 return status;
4383 * Initialize the ASC-3550.
4385 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4387 * For a non-fatal error return a warning code. If there are no warnings
4388 * then 0 is returned.
4390 * Needed after initialization for error recovery.
4392 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4394 const struct firmware *fw;
4395 const char fwname[] = "advansys/3550.bin";
4396 AdvPortAddr iop_base;
4397 ushort warn_code;
4398 int begin_addr;
4399 int end_addr;
4400 ushort code_sum;
4401 int word;
4402 int i;
4403 int err;
4404 unsigned long chksum;
4405 ushort scsi_cfg1;
4406 uchar tid;
4407 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4408 ushort wdtr_able = 0, sdtr_able, tagqng_able;
4409 uchar max_cmd[ADV_MAX_TID + 1];
4411 /* If there is already an error, don't continue. */
4412 if (asc_dvc->err_code != 0)
4413 return ADV_ERROR;
4416 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4418 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4419 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4420 return ADV_ERROR;
4423 warn_code = 0;
4424 iop_base = asc_dvc->iop_base;
4427 * Save the RISC memory BIOS region before writing the microcode.
4428 * The BIOS may already be loaded and using its RISC LRAM region
4429 * so its region must be saved and restored.
4431 * Note: This code makes the assumption, which is currently true,
4432 * that a chip reset does not clear RISC LRAM.
4434 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4435 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4436 bios_mem[i]);
4440 * Save current per TID negotiated values.
4442 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4443 ushort bios_version, major, minor;
4445 bios_version =
4446 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4447 major = (bios_version >> 12) & 0xF;
4448 minor = (bios_version >> 8) & 0xF;
4449 if (major < 3 || (major == 3 && minor == 1)) {
4450 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4451 AdvReadWordLram(iop_base, 0x120, wdtr_able);
4452 } else {
4453 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4456 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4457 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4458 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4459 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4460 max_cmd[tid]);
4463 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4464 if (err) {
4465 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4466 fwname, err);
4467 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4468 return err;
4470 if (fw->size < 4) {
4471 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4472 fw->size, fwname);
4473 release_firmware(fw);
4474 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475 return -EINVAL;
4477 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4478 (fw->data[1] << 8) | fw->data[0];
4479 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4480 fw->size - 4, ADV_3550_MEMSIZE,
4481 chksum);
4482 release_firmware(fw);
4483 if (asc_dvc->err_code)
4484 return ADV_ERROR;
4487 * Restore the RISC memory BIOS region.
4489 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4490 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4491 bios_mem[i]);
4495 * Calculate and write the microcode code checksum to the microcode
4496 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4498 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4499 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4500 code_sum = 0;
4501 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4502 for (word = begin_addr; word < end_addr; word += 2) {
4503 code_sum += AdvReadWordAutoIncLram(iop_base);
4505 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4508 * Read and save microcode version and date.
4510 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4511 asc_dvc->cfg->mcode_date);
4512 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4513 asc_dvc->cfg->mcode_version);
4516 * Set the chip type to indicate the ASC3550.
4518 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4521 * If the PCI Configuration Command Register "Parity Error Response
4522 * Control" Bit was clear (0), then set the microcode variable
4523 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4524 * to ignore DMA parity errors.
4526 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4527 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4528 word |= CONTROL_FLAG_IGNORE_PERR;
4529 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4533 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4534 * threshold of 128 bytes. This register is only accessible to the host.
4536 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4537 START_CTL_EMFU | READ_CMD_MRM);
4540 * Microcode operating variables for WDTR, SDTR, and command tag
4541 * queuing will be set in slave_configure() based on what a
4542 * device reports it is capable of in Inquiry byte 7.
4544 * If SCSI Bus Resets have been disabled, then directly set
4545 * SDTR and WDTR from the EEPROM configuration. This will allow
4546 * the BIOS and warm boot to work without a SCSI bus hang on
4547 * the Inquiry caused by host and target mismatched DTR values.
4548 * Without the SCSI Bus Reset, before an Inquiry a device can't
4549 * be assumed to be in Asynchronous, Narrow mode.
4551 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4552 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4553 asc_dvc->wdtr_able);
4554 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4555 asc_dvc->sdtr_able);
4559 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4560 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4561 * bitmask. These values determine the maximum SDTR speed negotiated
4562 * with a device.
4564 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4565 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4566 * without determining here whether the device supports SDTR.
4568 * 4-bit speed SDTR speed name
4569 * =========== ===============
4570 * 0000b (0x0) SDTR disabled
4571 * 0001b (0x1) 5 Mhz
4572 * 0010b (0x2) 10 Mhz
4573 * 0011b (0x3) 20 Mhz (Ultra)
4574 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4575 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4576 * 0110b (0x6) Undefined
4578 * 1111b (0xF) Undefined
4580 word = 0;
4581 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4582 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4583 /* Set Ultra speed for TID 'tid'. */
4584 word |= (0x3 << (4 * (tid % 4)));
4585 } else {
4586 /* Set Fast speed for TID 'tid'. */
4587 word |= (0x2 << (4 * (tid % 4)));
4589 if (tid == 3) { /* Check if done with sdtr_speed1. */
4590 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4591 word = 0;
4592 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
4593 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4594 word = 0;
4595 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4596 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4597 word = 0;
4598 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4599 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4600 /* End of loop. */
4605 * Set microcode operating variable for the disconnect per TID bitmask.
4607 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4608 asc_dvc->cfg->disc_enable);
4611 * Set SCSI_CFG0 Microcode Default Value.
4613 * The microcode will set the SCSI_CFG0 register using this value
4614 * after it is started below.
4616 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4617 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4618 asc_dvc->chip_scsi_id);
4621 * Determine SCSI_CFG1 Microcode Default Value.
4623 * The microcode will set the SCSI_CFG1 register using this value
4624 * after it is started below.
4627 /* Read current SCSI_CFG1 Register value. */
4628 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4631 * If all three connectors are in use, return an error.
4633 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4634 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4635 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4636 return ADV_ERROR;
4640 * If the internal narrow cable is reversed all of the SCSI_CTRL
4641 * register signals will be set. Check for and return an error if
4642 * this condition is found.
4644 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4645 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4646 return ADV_ERROR;
4650 * If this is a differential board and a single-ended device
4651 * is attached to one of the connectors, return an error.
4653 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4654 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4655 return ADV_ERROR;
4659 * If automatic termination control is enabled, then set the
4660 * termination value based on a table listed in a_condor.h.
4662 * If manual termination was specified with an EEPROM setting
4663 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4664 * is ready to be 'ored' into SCSI_CFG1.
4666 if (asc_dvc->cfg->termination == 0) {
4668 * The software always controls termination by setting TERM_CTL_SEL.
4669 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4671 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4673 switch (scsi_cfg1 & CABLE_DETECT) {
4674 /* TERM_CTL_H: on, TERM_CTL_L: on */
4675 case 0x3:
4676 case 0x7:
4677 case 0xB:
4678 case 0xD:
4679 case 0xE:
4680 case 0xF:
4681 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4682 break;
4684 /* TERM_CTL_H: on, TERM_CTL_L: off */
4685 case 0x1:
4686 case 0x5:
4687 case 0x9:
4688 case 0xA:
4689 case 0xC:
4690 asc_dvc->cfg->termination |= TERM_CTL_H;
4691 break;
4693 /* TERM_CTL_H: off, TERM_CTL_L: off */
4694 case 0x2:
4695 case 0x6:
4696 break;
4701 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4703 scsi_cfg1 &= ~TERM_CTL;
4706 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4707 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4708 * referenced, because the hardware internally inverts
4709 * the Termination High and Low bits if TERM_POL is set.
4711 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4714 * Set SCSI_CFG1 Microcode Default Value
4716 * Set filter value and possibly modified termination control
4717 * bits in the Microcode SCSI_CFG1 Register Value.
4719 * The microcode will set the SCSI_CFG1 register using this value
4720 * after it is started below.
4722 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4723 FLTR_DISABLE | scsi_cfg1);
4726 * Set MEM_CFG Microcode Default Value
4728 * The microcode will set the MEM_CFG register using this value
4729 * after it is started below.
4731 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4732 * are defined.
4734 * ASC-3550 has 8KB internal memory.
4736 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4737 BIOS_EN | RAM_SZ_8KB);
4740 * Set SEL_MASK Microcode Default Value
4742 * The microcode will set the SEL_MASK register using this value
4743 * after it is started below.
4745 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4746 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4748 AdvBuildCarrierFreelist(asc_dvc);
4751 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4754 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4755 if (!asc_dvc->icq_sp) {
4756 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4757 return ADV_ERROR;
4761 * Set RISC ICQ physical address start value.
4763 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4766 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4768 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4769 if (!asc_dvc->irq_sp) {
4770 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4771 return ADV_ERROR;
4775 * Set RISC IRQ physical address start value.
4777 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4778 asc_dvc->carr_pending_cnt = 0;
4780 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4781 (ADV_INTR_ENABLE_HOST_INTR |
4782 ADV_INTR_ENABLE_GLOBAL_INTR));
4784 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4785 AdvWriteWordRegister(iop_base, IOPW_PC, word);
4787 /* finally, finally, gentlemen, start your engine */
4788 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4791 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4792 * Resets should be performed. The RISC has to be running
4793 * to issue a SCSI Bus Reset.
4795 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4797 * If the BIOS Signature is present in memory, restore the
4798 * BIOS Handshake Configuration Table and do not perform
4799 * a SCSI Bus Reset.
4801 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4802 0x55AA) {
4804 * Restore per TID negotiated values.
4806 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4807 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4808 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4809 tagqng_able);
4810 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4811 AdvWriteByteLram(iop_base,
4812 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4813 max_cmd[tid]);
4815 } else {
4816 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4817 warn_code = ASC_WARN_BUSRESET_ERROR;
4822 return warn_code;
4826 * Initialize the ASC-38C0800.
4828 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4830 * For a non-fatal error return a warning code. If there are no warnings
4831 * then 0 is returned.
4833 * Needed after initialization for error recovery.
4835 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4837 const struct firmware *fw;
4838 const char fwname[] = "advansys/38C0800.bin";
4839 AdvPortAddr iop_base;
4840 ushort warn_code;
4841 int begin_addr;
4842 int end_addr;
4843 ushort code_sum;
4844 int word;
4845 int i;
4846 int err;
4847 unsigned long chksum;
4848 ushort scsi_cfg1;
4849 uchar byte;
4850 uchar tid;
4851 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4852 ushort wdtr_able, sdtr_able, tagqng_able;
4853 uchar max_cmd[ADV_MAX_TID + 1];
4855 /* If there is already an error, don't continue. */
4856 if (asc_dvc->err_code != 0)
4857 return ADV_ERROR;
4860 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4862 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4863 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4864 return ADV_ERROR;
4867 warn_code = 0;
4868 iop_base = asc_dvc->iop_base;
4871 * Save the RISC memory BIOS region before writing the microcode.
4872 * The BIOS may already be loaded and using its RISC LRAM region
4873 * so its region must be saved and restored.
4875 * Note: This code makes the assumption, which is currently true,
4876 * that a chip reset does not clear RISC LRAM.
4878 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4879 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4880 bios_mem[i]);
4884 * Save current per TID negotiated values.
4886 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4887 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4888 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4889 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4890 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4891 max_cmd[tid]);
4895 * RAM BIST (RAM Built-In Self Test)
4897 * Address : I/O base + offset 0x38h register (byte).
4898 * Function: Bit 7-6(RW) : RAM mode
4899 * Normal Mode : 0x00
4900 * Pre-test Mode : 0x40
4901 * RAM Test Mode : 0x80
4902 * Bit 5 : unused
4903 * Bit 4(RO) : Done bit
4904 * Bit 3-0(RO) : Status
4905 * Host Error : 0x08
4906 * Int_RAM Error : 0x04
4907 * RISC Error : 0x02
4908 * SCSI Error : 0x01
4909 * No Error : 0x00
4911 * Note: RAM BIST code should be put right here, before loading the
4912 * microcode and after saving the RISC memory BIOS region.
4916 * LRAM Pre-test
4918 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4919 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4920 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4921 * to NORMAL_MODE, return an error too.
4923 for (i = 0; i < 2; i++) {
4924 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4925 mdelay(10); /* Wait for 10ms before reading back. */
4926 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4927 if ((byte & RAM_TEST_DONE) == 0
4928 || (byte & 0x0F) != PRE_TEST_VALUE) {
4929 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4930 return ADV_ERROR;
4933 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4934 mdelay(10); /* Wait for 10ms before reading back. */
4935 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4936 != NORMAL_VALUE) {
4937 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4938 return ADV_ERROR;
4943 * LRAM Test - It takes about 1.5 ms to run through the test.
4945 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4946 * If Done bit not set or Status not 0, save register byte, set the
4947 * err_code, and return an error.
4949 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4950 mdelay(10); /* Wait for 10ms before checking status. */
4952 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4953 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4954 /* Get here if Done bit not set or Status not 0. */
4955 asc_dvc->bist_err_code = byte; /* for BIOS display message */
4956 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4957 return ADV_ERROR;
4960 /* We need to reset back to normal mode after LRAM test passes. */
4961 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4963 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4964 if (err) {
4965 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4966 fwname, err);
4967 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4968 return err;
4970 if (fw->size < 4) {
4971 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4972 fw->size, fwname);
4973 release_firmware(fw);
4974 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975 return -EINVAL;
4977 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4978 (fw->data[1] << 8) | fw->data[0];
4979 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4980 fw->size - 4, ADV_38C0800_MEMSIZE,
4981 chksum);
4982 release_firmware(fw);
4983 if (asc_dvc->err_code)
4984 return ADV_ERROR;
4987 * Restore the RISC memory BIOS region.
4989 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4990 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4991 bios_mem[i]);
4995 * Calculate and write the microcode code checksum to the microcode
4996 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4998 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4999 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5000 code_sum = 0;
5001 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5002 for (word = begin_addr; word < end_addr; word += 2) {
5003 code_sum += AdvReadWordAutoIncLram(iop_base);
5005 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5008 * Read microcode version and date.
5010 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5011 asc_dvc->cfg->mcode_date);
5012 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5013 asc_dvc->cfg->mcode_version);
5016 * Set the chip type to indicate the ASC38C0800.
5018 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5021 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5022 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5023 * cable detection and then we are able to read C_DET[3:0].
5025 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5026 * Microcode Default Value' section below.
5028 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5029 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5030 scsi_cfg1 | DIS_TERM_DRV);
5033 * If the PCI Configuration Command Register "Parity Error Response
5034 * Control" Bit was clear (0), then set the microcode variable
5035 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5036 * to ignore DMA parity errors.
5038 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5039 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5040 word |= CONTROL_FLAG_IGNORE_PERR;
5041 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5045 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5046 * bits for the default FIFO threshold.
5048 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5050 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5052 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5053 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5054 READ_CMD_MRM);
5057 * Microcode operating variables for WDTR, SDTR, and command tag
5058 * queuing will be set in slave_configure() based on what a
5059 * device reports it is capable of in Inquiry byte 7.
5061 * If SCSI Bus Resets have been disabled, then directly set
5062 * SDTR and WDTR from the EEPROM configuration. This will allow
5063 * the BIOS and warm boot to work without a SCSI bus hang on
5064 * the Inquiry caused by host and target mismatched DTR values.
5065 * Without the SCSI Bus Reset, before an Inquiry a device can't
5066 * be assumed to be in Asynchronous, Narrow mode.
5068 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5069 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5070 asc_dvc->wdtr_able);
5071 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5072 asc_dvc->sdtr_able);
5076 * Set microcode operating variables for DISC and SDTR_SPEED1,
5077 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5078 * configuration values.
5080 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5081 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5082 * without determining here whether the device supports SDTR.
5084 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5085 asc_dvc->cfg->disc_enable);
5086 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5087 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5088 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5089 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5092 * Set SCSI_CFG0 Microcode Default Value.
5094 * The microcode will set the SCSI_CFG0 register using this value
5095 * after it is started below.
5097 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5098 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5099 asc_dvc->chip_scsi_id);
5102 * Determine SCSI_CFG1 Microcode Default Value.
5104 * The microcode will set the SCSI_CFG1 register using this value
5105 * after it is started below.
5108 /* Read current SCSI_CFG1 Register value. */
5109 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5112 * If the internal narrow cable is reversed all of the SCSI_CTRL
5113 * register signals will be set. Check for and return an error if
5114 * this condition is found.
5116 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5117 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5118 return ADV_ERROR;
5122 * All kind of combinations of devices attached to one of four
5123 * connectors are acceptable except HVD device attached. For example,
5124 * LVD device can be attached to SE connector while SE device attached
5125 * to LVD connector. If LVD device attached to SE connector, it only
5126 * runs up to Ultra speed.
5128 * If an HVD device is attached to one of LVD connectors, return an
5129 * error. However, there is no way to detect HVD device attached to
5130 * SE connectors.
5132 if (scsi_cfg1 & HVD) {
5133 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5134 return ADV_ERROR;
5138 * If either SE or LVD automatic termination control is enabled, then
5139 * set the termination value based on a table listed in a_condor.h.
5141 * If manual termination was specified with an EEPROM setting then
5142 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5143 * to be 'ored' into SCSI_CFG1.
5145 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5146 /* SE automatic termination control is enabled. */
5147 switch (scsi_cfg1 & C_DET_SE) {
5148 /* TERM_SE_HI: on, TERM_SE_LO: on */
5149 case 0x1:
5150 case 0x2:
5151 case 0x3:
5152 asc_dvc->cfg->termination |= TERM_SE;
5153 break;
5155 /* TERM_SE_HI: on, TERM_SE_LO: off */
5156 case 0x0:
5157 asc_dvc->cfg->termination |= TERM_SE_HI;
5158 break;
5162 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5163 /* LVD automatic termination control is enabled. */
5164 switch (scsi_cfg1 & C_DET_LVD) {
5165 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5166 case 0x4:
5167 case 0x8:
5168 case 0xC:
5169 asc_dvc->cfg->termination |= TERM_LVD;
5170 break;
5172 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5173 case 0x0:
5174 break;
5179 * Clear any set TERM_SE and TERM_LVD bits.
5181 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5184 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5186 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5189 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5190 * bits and set possibly modified termination control bits in the
5191 * Microcode SCSI_CFG1 Register Value.
5193 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5196 * Set SCSI_CFG1 Microcode Default Value
5198 * Set possibly modified termination control and reset DIS_TERM_DRV
5199 * bits in the Microcode SCSI_CFG1 Register Value.
5201 * The microcode will set the SCSI_CFG1 register using this value
5202 * after it is started below.
5204 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5207 * Set MEM_CFG Microcode Default Value
5209 * The microcode will set the MEM_CFG register using this value
5210 * after it is started below.
5212 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5213 * are defined.
5215 * ASC-38C0800 has 16KB internal memory.
5217 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5218 BIOS_EN | RAM_SZ_16KB);
5221 * Set SEL_MASK Microcode Default Value
5223 * The microcode will set the SEL_MASK register using this value
5224 * after it is started below.
5226 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5227 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5229 AdvBuildCarrierFreelist(asc_dvc);
5232 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5235 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5236 if (!asc_dvc->icq_sp) {
5237 ASC_DBG(0, "Failed to get ICQ carrier\n");
5238 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5239 return ADV_ERROR;
5243 * Set RISC ICQ physical address start value.
5244 * carr_pa is LE, must be native before write
5246 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5249 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5251 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5252 if (!asc_dvc->irq_sp) {
5253 ASC_DBG(0, "Failed to get IRQ carrier\n");
5254 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5255 return ADV_ERROR;
5259 * Set RISC IRQ physical address start value.
5261 * carr_pa is LE, must be native before write *
5263 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5264 asc_dvc->carr_pending_cnt = 0;
5266 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5267 (ADV_INTR_ENABLE_HOST_INTR |
5268 ADV_INTR_ENABLE_GLOBAL_INTR));
5270 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5271 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5273 /* finally, finally, gentlemen, start your engine */
5274 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5277 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5278 * Resets should be performed. The RISC has to be running
5279 * to issue a SCSI Bus Reset.
5281 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5283 * If the BIOS Signature is present in memory, restore the
5284 * BIOS Handshake Configuration Table and do not perform
5285 * a SCSI Bus Reset.
5287 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5288 0x55AA) {
5290 * Restore per TID negotiated values.
5292 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5293 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5294 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5295 tagqng_able);
5296 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5297 AdvWriteByteLram(iop_base,
5298 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5299 max_cmd[tid]);
5301 } else {
5302 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5303 warn_code = ASC_WARN_BUSRESET_ERROR;
5308 return warn_code;
5312 * Initialize the ASC-38C1600.
5314 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5316 * For a non-fatal error return a warning code. If there are no warnings
5317 * then 0 is returned.
5319 * Needed after initialization for error recovery.
5321 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5323 const struct firmware *fw;
5324 const char fwname[] = "advansys/38C1600.bin";
5325 AdvPortAddr iop_base;
5326 ushort warn_code;
5327 int begin_addr;
5328 int end_addr;
5329 ushort code_sum;
5330 long word;
5331 int i;
5332 int err;
5333 unsigned long chksum;
5334 ushort scsi_cfg1;
5335 uchar byte;
5336 uchar tid;
5337 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5338 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5339 uchar max_cmd[ASC_MAX_TID + 1];
5341 /* If there is already an error, don't continue. */
5342 if (asc_dvc->err_code != 0) {
5343 return ADV_ERROR;
5347 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5349 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5350 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5351 return ADV_ERROR;
5354 warn_code = 0;
5355 iop_base = asc_dvc->iop_base;
5358 * Save the RISC memory BIOS region before writing the microcode.
5359 * The BIOS may already be loaded and using its RISC LRAM region
5360 * so its region must be saved and restored.
5362 * Note: This code makes the assumption, which is currently true,
5363 * that a chip reset does not clear RISC LRAM.
5365 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5366 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5367 bios_mem[i]);
5371 * Save current per TID negotiated values.
5373 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5374 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5375 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5376 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5377 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5378 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5379 max_cmd[tid]);
5383 * RAM BIST (Built-In Self Test)
5385 * Address : I/O base + offset 0x38h register (byte).
5386 * Function: Bit 7-6(RW) : RAM mode
5387 * Normal Mode : 0x00
5388 * Pre-test Mode : 0x40
5389 * RAM Test Mode : 0x80
5390 * Bit 5 : unused
5391 * Bit 4(RO) : Done bit
5392 * Bit 3-0(RO) : Status
5393 * Host Error : 0x08
5394 * Int_RAM Error : 0x04
5395 * RISC Error : 0x02
5396 * SCSI Error : 0x01
5397 * No Error : 0x00
5399 * Note: RAM BIST code should be put right here, before loading the
5400 * microcode and after saving the RISC memory BIOS region.
5404 * LRAM Pre-test
5406 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5407 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5408 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5409 * to NORMAL_MODE, return an error too.
5411 for (i = 0; i < 2; i++) {
5412 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5413 mdelay(10); /* Wait for 10ms before reading back. */
5414 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5415 if ((byte & RAM_TEST_DONE) == 0
5416 || (byte & 0x0F) != PRE_TEST_VALUE) {
5417 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5418 return ADV_ERROR;
5421 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5422 mdelay(10); /* Wait for 10ms before reading back. */
5423 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5424 != NORMAL_VALUE) {
5425 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5426 return ADV_ERROR;
5431 * LRAM Test - It takes about 1.5 ms to run through the test.
5433 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5434 * If Done bit not set or Status not 0, save register byte, set the
5435 * err_code, and return an error.
5437 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5438 mdelay(10); /* Wait for 10ms before checking status. */
5440 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5441 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5442 /* Get here if Done bit not set or Status not 0. */
5443 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5444 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5445 return ADV_ERROR;
5448 /* We need to reset back to normal mode after LRAM test passes. */
5449 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5451 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5452 if (err) {
5453 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5454 fwname, err);
5455 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5456 return err;
5458 if (fw->size < 4) {
5459 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5460 fw->size, fwname);
5461 release_firmware(fw);
5462 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463 return -EINVAL;
5465 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5466 (fw->data[1] << 8) | fw->data[0];
5467 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5468 fw->size - 4, ADV_38C1600_MEMSIZE,
5469 chksum);
5470 release_firmware(fw);
5471 if (asc_dvc->err_code)
5472 return ADV_ERROR;
5475 * Restore the RISC memory BIOS region.
5477 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5478 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5479 bios_mem[i]);
5483 * Calculate and write the microcode code checksum to the microcode
5484 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5486 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5487 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5488 code_sum = 0;
5489 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5490 for (word = begin_addr; word < end_addr; word += 2) {
5491 code_sum += AdvReadWordAutoIncLram(iop_base);
5493 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5496 * Read microcode version and date.
5498 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5499 asc_dvc->cfg->mcode_date);
5500 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5501 asc_dvc->cfg->mcode_version);
5504 * Set the chip type to indicate the ASC38C1600.
5506 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5509 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5510 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5511 * cable detection and then we are able to read C_DET[3:0].
5513 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5514 * Microcode Default Value' section below.
5516 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5517 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5518 scsi_cfg1 | DIS_TERM_DRV);
5521 * If the PCI Configuration Command Register "Parity Error Response
5522 * Control" Bit was clear (0), then set the microcode variable
5523 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5524 * to ignore DMA parity errors.
5526 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5527 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5528 word |= CONTROL_FLAG_IGNORE_PERR;
5529 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5533 * If the BIOS control flag AIPP (Asynchronous Information
5534 * Phase Protection) disable bit is not set, then set the firmware
5535 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5536 * AIPP checking and encoding.
5538 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5539 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5540 word |= CONTROL_FLAG_ENABLE_AIPP;
5541 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5545 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5546 * and START_CTL_TH [3:2].
5548 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5549 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5552 * Microcode operating variables for WDTR, SDTR, and command tag
5553 * queuing will be set in slave_configure() based on what a
5554 * device reports it is capable of in Inquiry byte 7.
5556 * If SCSI Bus Resets have been disabled, then directly set
5557 * SDTR and WDTR from the EEPROM configuration. This will allow
5558 * the BIOS and warm boot to work without a SCSI bus hang on
5559 * the Inquiry caused by host and target mismatched DTR values.
5560 * Without the SCSI Bus Reset, before an Inquiry a device can't
5561 * be assumed to be in Asynchronous, Narrow mode.
5563 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5564 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5565 asc_dvc->wdtr_able);
5566 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5567 asc_dvc->sdtr_able);
5571 * Set microcode operating variables for DISC and SDTR_SPEED1,
5572 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5573 * configuration values.
5575 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5576 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5577 * without determining here whether the device supports SDTR.
5579 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5580 asc_dvc->cfg->disc_enable);
5581 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5582 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5583 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5584 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5587 * Set SCSI_CFG0 Microcode Default Value.
5589 * The microcode will set the SCSI_CFG0 register using this value
5590 * after it is started below.
5592 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5593 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5594 asc_dvc->chip_scsi_id);
5597 * Calculate SCSI_CFG1 Microcode Default Value.
5599 * The microcode will set the SCSI_CFG1 register using this value
5600 * after it is started below.
5602 * Each ASC-38C1600 function has only two cable detect bits.
5603 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5605 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5608 * If the cable is reversed all of the SCSI_CTRL register signals
5609 * will be set. Check for and return an error if this condition is
5610 * found.
5612 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5613 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5614 return ADV_ERROR;
5618 * Each ASC-38C1600 function has two connectors. Only an HVD device
5619 * can not be connected to either connector. An LVD device or SE device
5620 * may be connected to either connecor. If an SE device is connected,
5621 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5623 * If an HVD device is attached, return an error.
5625 if (scsi_cfg1 & HVD) {
5626 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5627 return ADV_ERROR;
5631 * Each function in the ASC-38C1600 uses only the SE cable detect and
5632 * termination because there are two connectors for each function. Each
5633 * function may use either LVD or SE mode. Corresponding the SE automatic
5634 * termination control EEPROM bits are used for each function. Each
5635 * function has its own EEPROM. If SE automatic control is enabled for
5636 * the function, then set the termination value based on a table listed
5637 * in a_condor.h.
5639 * If manual termination is specified in the EEPROM for the function,
5640 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5641 * ready to be 'ored' into SCSI_CFG1.
5643 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5644 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5645 /* SE automatic termination control is enabled. */
5646 switch (scsi_cfg1 & C_DET_SE) {
5647 /* TERM_SE_HI: on, TERM_SE_LO: on */
5648 case 0x1:
5649 case 0x2:
5650 case 0x3:
5651 asc_dvc->cfg->termination |= TERM_SE;
5652 break;
5654 case 0x0:
5655 if (PCI_FUNC(pdev->devfn) == 0) {
5656 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5657 } else {
5658 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5659 asc_dvc->cfg->termination |= TERM_SE_HI;
5661 break;
5666 * Clear any set TERM_SE bits.
5668 scsi_cfg1 &= ~TERM_SE;
5671 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5673 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5676 * Clear Big Endian and Terminator Polarity bits and set possibly
5677 * modified termination control bits in the Microcode SCSI_CFG1
5678 * Register Value.
5680 * Big Endian bit is not used even on big endian machines.
5682 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5685 * Set SCSI_CFG1 Microcode Default Value
5687 * Set possibly modified termination control bits in the Microcode
5688 * SCSI_CFG1 Register Value.
5690 * The microcode will set the SCSI_CFG1 register using this value
5691 * after it is started below.
5693 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5696 * Set MEM_CFG Microcode Default Value
5698 * The microcode will set the MEM_CFG register using this value
5699 * after it is started below.
5701 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5702 * are defined.
5704 * ASC-38C1600 has 32KB internal memory.
5706 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5707 * out a special 16K Adv Library and Microcode version. After the issue
5708 * resolved, we should turn back to the 32K support. Both a_condor.h and
5709 * mcode.sas files also need to be updated.
5711 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5712 * BIOS_EN | RAM_SZ_32KB);
5714 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5715 BIOS_EN | RAM_SZ_16KB);
5718 * Set SEL_MASK Microcode Default Value
5720 * The microcode will set the SEL_MASK register using this value
5721 * after it is started below.
5723 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5724 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5726 AdvBuildCarrierFreelist(asc_dvc);
5729 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5731 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5732 if (!asc_dvc->icq_sp) {
5733 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5734 return ADV_ERROR;
5738 * Set RISC ICQ physical address start value. Initialize the
5739 * COMMA register to the same value otherwise the RISC will
5740 * prematurely detect a command is available.
5742 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5743 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5744 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5747 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5749 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5750 if (!asc_dvc->irq_sp) {
5751 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5752 return ADV_ERROR;
5756 * Set RISC IRQ physical address start value.
5758 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5759 asc_dvc->carr_pending_cnt = 0;
5761 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5762 (ADV_INTR_ENABLE_HOST_INTR |
5763 ADV_INTR_ENABLE_GLOBAL_INTR));
5764 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5765 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5767 /* finally, finally, gentlemen, start your engine */
5768 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5771 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5772 * Resets should be performed. The RISC has to be running
5773 * to issue a SCSI Bus Reset.
5775 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5777 * If the BIOS Signature is present in memory, restore the
5778 * per TID microcode operating variables.
5780 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5781 0x55AA) {
5783 * Restore per TID negotiated values.
5785 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5786 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5787 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5789 tagqng_able);
5790 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5791 AdvWriteByteLram(iop_base,
5792 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5793 max_cmd[tid]);
5795 } else {
5796 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5797 warn_code = ASC_WARN_BUSRESET_ERROR;
5802 return warn_code;
5806 * Reset chip and SCSI Bus.
5808 * Return Value:
5809 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
5810 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
5812 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5814 int status;
5815 ushort wdtr_able, sdtr_able, tagqng_able;
5816 ushort ppr_able = 0;
5817 uchar tid, max_cmd[ADV_MAX_TID + 1];
5818 AdvPortAddr iop_base;
5819 ushort bios_sig;
5821 iop_base = asc_dvc->iop_base;
5824 * Save current per TID negotiated values.
5826 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5827 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5828 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5829 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5831 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5832 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5833 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5834 max_cmd[tid]);
5838 * Force the AdvInitAsc3550/38C0800Driver() function to
5839 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5840 * The initialization functions assumes a SCSI Bus Reset is not
5841 * needed if the BIOS signature word is present.
5843 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5844 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5847 * Stop chip and reset it.
5849 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5850 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5851 mdelay(100);
5852 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5853 ADV_CTRL_REG_CMD_WR_IO_REG);
5856 * Reset Adv Library error code, if any, and try
5857 * re-initializing the chip.
5859 asc_dvc->err_code = 0;
5860 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5861 status = AdvInitAsc38C1600Driver(asc_dvc);
5862 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5863 status = AdvInitAsc38C0800Driver(asc_dvc);
5864 } else {
5865 status = AdvInitAsc3550Driver(asc_dvc);
5868 /* Translate initialization return value to status value. */
5869 if (status == 0) {
5870 status = ADV_TRUE;
5871 } else {
5872 status = ADV_FALSE;
5876 * Restore the BIOS signature word.
5878 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5881 * Restore per TID negotiated values.
5883 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5884 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5885 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5886 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5888 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5889 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5890 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5891 max_cmd[tid]);
5894 return status;
5898 * adv_async_callback() - Adv Library asynchronous event callback function.
5900 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5902 switch (code) {
5903 case ADV_ASYNC_SCSI_BUS_RESET_DET:
5905 * The firmware detected a SCSI Bus reset.
5907 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5908 break;
5910 case ADV_ASYNC_RDMA_FAILURE:
5912 * Handle RDMA failure by resetting the SCSI Bus and
5913 * possibly the chip if it is unresponsive. Log the error
5914 * with a unique code.
5916 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5917 AdvResetChipAndSB(adv_dvc_varp);
5918 break;
5920 case ADV_HOST_SCSI_BUS_RESET:
5922 * Host generated SCSI bus reset occurred.
5924 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5925 break;
5927 default:
5928 ASC_DBG(0, "unknown code 0x%x\n", code);
5929 break;
5934 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5936 * Callback function for the Wide SCSI Adv Library.
5938 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5940 struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5941 adv_req_t *reqp;
5942 adv_sgblk_t *sgblkp;
5943 struct scsi_cmnd *scp;
5944 u32 resid_cnt;
5945 dma_addr_t sense_addr;
5947 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5948 adv_dvc_varp, scsiqp);
5949 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5952 * Get the adv_req_t structure for the command that has been
5953 * completed. The adv_req_t structure actually contains the
5954 * completed ADV_SCSI_REQ_Q structure.
5956 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5958 ASC_DBG(1, "scp 0x%p\n", scp);
5959 if (scp == NULL) {
5960 ASC_PRINT
5961 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5962 return;
5964 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5966 reqp = (adv_req_t *)scp->host_scribble;
5967 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5968 if (reqp == NULL) {
5969 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5970 return;
5973 * Remove backreferences to avoid duplicate
5974 * command completions.
5976 scp->host_scribble = NULL;
5977 reqp->cmndp = NULL;
5979 ASC_STATS(boardp->shost, callback);
5980 ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5982 sense_addr = le32_to_cpu(scsiqp->sense_addr);
5983 dma_unmap_single(boardp->dev, sense_addr,
5984 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5987 * 'done_status' contains the command's ending status.
5989 switch (scsiqp->done_status) {
5990 case QD_NO_ERROR:
5991 ASC_DBG(2, "QD_NO_ERROR\n");
5992 scp->result = 0;
5995 * Check for an underrun condition.
5997 * If there was no error and an underrun condition, then
5998 * then return the number of underrun bytes.
6000 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6001 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6002 resid_cnt <= scsi_bufflen(scp)) {
6003 ASC_DBG(1, "underrun condition %lu bytes\n",
6004 (ulong)resid_cnt);
6005 scsi_set_resid(scp, resid_cnt);
6007 break;
6009 case QD_WITH_ERROR:
6010 ASC_DBG(2, "QD_WITH_ERROR\n");
6011 switch (scsiqp->host_status) {
6012 case QHSTA_NO_ERROR:
6013 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6014 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6015 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6016 SCSI_SENSE_BUFFERSIZE);
6018 * Note: The 'status_byte()' macro used by
6019 * target drivers defined in scsi.h shifts the
6020 * status byte returned by host drivers right
6021 * by 1 bit. This is why target drivers also
6022 * use right shifted status byte definitions.
6023 * For instance target drivers use
6024 * CHECK_CONDITION, defined to 0x1, instead of
6025 * the SCSI defined check condition value of
6026 * 0x2. Host drivers are supposed to return
6027 * the status byte as it is defined by SCSI.
6029 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6030 STATUS_BYTE(scsiqp->scsi_status);
6031 } else {
6032 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6034 break;
6036 default:
6037 /* Some other QHSTA error occurred. */
6038 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6039 scp->result = HOST_BYTE(DID_BAD_TARGET);
6040 break;
6042 break;
6044 case QD_ABORTED_BY_HOST:
6045 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6046 scp->result =
6047 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6048 break;
6050 default:
6051 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6052 scp->result =
6053 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6054 break;
6058 * If the 'init_tidmask' bit isn't already set for the target and the
6059 * current request finished normally, then set the bit for the target
6060 * to indicate that a device is present.
6062 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6063 scsiqp->done_status == QD_NO_ERROR &&
6064 scsiqp->host_status == QHSTA_NO_ERROR) {
6065 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6068 asc_scsi_done(scp);
6071 * Free all 'adv_sgblk_t' structures allocated for the request.
6073 while ((sgblkp = reqp->sgblkp) != NULL) {
6074 /* Remove 'sgblkp' from the request list. */
6075 reqp->sgblkp = sgblkp->next_sgblkp;
6077 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6078 sgblkp->sg_addr);
6081 ASC_DBG(1, "done\n");
6085 * Adv Library Interrupt Service Routine
6087 * This function is called by a driver's interrupt service routine.
6088 * The function disables and re-enables interrupts.
6090 * When a microcode idle command is completed, the ADV_DVC_VAR
6091 * 'idle_cmd_done' field is set to ADV_TRUE.
6093 * Note: AdvISR() can be called when interrupts are disabled or even
6094 * when there is no hardware interrupt condition present. It will
6095 * always check for completed idle commands and microcode requests.
6096 * This is an important feature that shouldn't be changed because it
6097 * allows commands to be completed from polling mode loops.
6099 * Return:
6100 * ADV_TRUE(1) - interrupt was pending
6101 * ADV_FALSE(0) - no interrupt was pending
6103 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6105 AdvPortAddr iop_base;
6106 uchar int_stat;
6107 ADV_CARR_T *free_carrp;
6108 __le32 irq_next_vpa;
6109 ADV_SCSI_REQ_Q *scsiq;
6110 adv_req_t *reqp;
6112 iop_base = asc_dvc->iop_base;
6114 /* Reading the register clears the interrupt. */
6115 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6117 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6118 ADV_INTR_STATUS_INTRC)) == 0) {
6119 return ADV_FALSE;
6123 * Notify the driver of an asynchronous microcode condition by
6124 * calling the adv_async_callback function. The function
6125 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6127 if (int_stat & ADV_INTR_STATUS_INTRB) {
6128 uchar intrb_code;
6130 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6132 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6133 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6134 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6135 asc_dvc->carr_pending_cnt != 0) {
6136 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6137 ADV_TICKLE_A);
6138 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6139 AdvWriteByteRegister(iop_base,
6140 IOPB_TICKLE,
6141 ADV_TICKLE_NOP);
6146 adv_async_callback(asc_dvc, intrb_code);
6150 * Check if the IRQ stopper carrier contains a completed request.
6152 while (((irq_next_vpa =
6153 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6155 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6156 * The RISC will have set 'areq_vpa' to a virtual address.
6158 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6159 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6160 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6161 * in AdvExeScsiQueue().
6163 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6164 ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6165 asc_dvc->irq_sp, pa_offset);
6166 reqp = adv_get_reqp(asc_dvc, pa_offset);
6167 scsiq = &reqp->scsi_req_q;
6170 * Request finished with good status and the queue was not
6171 * DMAed to host memory by the firmware. Set all status fields
6172 * to indicate good status.
6174 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6175 scsiq->done_status = QD_NO_ERROR;
6176 scsiq->host_status = scsiq->scsi_status = 0;
6177 scsiq->data_cnt = 0L;
6181 * Advance the stopper pointer to the next carrier
6182 * ignoring the lower four bits. Free the previous
6183 * stopper carrier.
6185 free_carrp = asc_dvc->irq_sp;
6186 asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6187 ADV_GET_CARRP(irq_next_vpa));
6189 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6190 asc_dvc->carr_freelist = free_carrp;
6191 asc_dvc->carr_pending_cnt--;
6194 * Clear request microcode control flag.
6196 scsiq->cntl = 0;
6199 * Notify the driver of the completed request by passing
6200 * the ADV_SCSI_REQ_Q pointer to its callback function.
6202 adv_isr_callback(asc_dvc, scsiq);
6204 * Note: After the driver callback function is called, 'scsiq'
6205 * can no longer be referenced.
6207 * Fall through and continue processing other completed
6208 * requests...
6211 return ADV_TRUE;
6214 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6216 if (asc_dvc->err_code == 0) {
6217 asc_dvc->err_code = err_code;
6218 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6219 err_code);
6221 return err_code;
6224 static void AscAckInterrupt(PortAddr iop_base)
6226 uchar host_flag;
6227 uchar risc_flag;
6228 ushort loop;
6230 loop = 0;
6231 do {
6232 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6233 if (loop++ > 0x7FFF) {
6234 break;
6236 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6237 host_flag =
6238 AscReadLramByte(iop_base,
6239 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6240 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6241 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6242 AscSetChipStatus(iop_base, CIW_INT_ACK);
6243 loop = 0;
6244 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6245 AscSetChipStatus(iop_base, CIW_INT_ACK);
6246 if (loop++ > 3) {
6247 break;
6250 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6253 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6255 const uchar *period_table;
6256 int max_index;
6257 int min_index;
6258 int i;
6260 period_table = asc_dvc->sdtr_period_tbl;
6261 max_index = (int)asc_dvc->max_sdtr_index;
6262 min_index = (int)asc_dvc->min_sdtr_index;
6263 if ((syn_time <= period_table[max_index])) {
6264 for (i = min_index; i < (max_index - 1); i++) {
6265 if (syn_time <= period_table[i]) {
6266 return (uchar)i;
6269 return (uchar)max_index;
6270 } else {
6271 return (uchar)(max_index + 1);
6275 static uchar
6276 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6278 PortAddr iop_base = asc_dvc->iop_base;
6279 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6280 EXT_MSG sdtr_buf = {
6281 .msg_type = EXTENDED_MESSAGE,
6282 .msg_len = MS_SDTR_LEN,
6283 .msg_req = EXTENDED_SDTR,
6284 .xfer_period = sdtr_period,
6285 .req_ack_offset = sdtr_offset,
6287 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6289 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6290 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6291 (uchar *)&sdtr_buf,
6292 sizeof(EXT_MSG) >> 1);
6293 return ((sdtr_period_index << 4) | sdtr_offset);
6294 } else {
6295 sdtr_buf.req_ack_offset = 0;
6296 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6297 (uchar *)&sdtr_buf,
6298 sizeof(EXT_MSG) >> 1);
6299 return 0;
6303 static uchar
6304 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6306 uchar byte;
6307 uchar sdtr_period_ix;
6309 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6310 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6311 return 0xFF;
6312 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6313 return byte;
6316 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6318 ASC_SCSI_BIT_ID_TYPE org_id;
6319 int i;
6320 bool sta = true;
6322 AscSetBank(iop_base, 1);
6323 org_id = AscReadChipDvcID(iop_base);
6324 for (i = 0; i <= ASC_MAX_TID; i++) {
6325 if (org_id == (0x01 << i))
6326 break;
6328 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6329 AscWriteChipDvcID(iop_base, id);
6330 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6331 AscSetBank(iop_base, 0);
6332 AscSetChipSyn(iop_base, sdtr_data);
6333 if (AscGetChipSyn(iop_base) != sdtr_data) {
6334 sta = false;
6336 } else {
6337 sta = false;
6339 AscSetBank(iop_base, 1);
6340 AscWriteChipDvcID(iop_base, org_id);
6341 AscSetBank(iop_base, 0);
6342 return (sta);
6345 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6347 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6348 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6351 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6353 EXT_MSG ext_msg;
6354 EXT_MSG out_msg;
6355 ushort halt_q_addr;
6356 bool sdtr_accept;
6357 ushort int_halt_code;
6358 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6359 ASC_SCSI_BIT_ID_TYPE target_id;
6360 PortAddr iop_base;
6361 uchar tag_code;
6362 uchar q_status;
6363 uchar halt_qp;
6364 uchar sdtr_data;
6365 uchar target_ix;
6366 uchar q_cntl, tid_no;
6367 uchar cur_dvc_qng;
6368 uchar asyn_sdtr;
6369 uchar scsi_status;
6370 struct asc_board *boardp;
6372 BUG_ON(!asc_dvc->drv_ptr);
6373 boardp = asc_dvc->drv_ptr;
6375 iop_base = asc_dvc->iop_base;
6376 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6378 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6379 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6380 target_ix = AscReadLramByte(iop_base,
6381 (ushort)(halt_q_addr +
6382 (ushort)ASC_SCSIQ_B_TARGET_IX));
6383 q_cntl = AscReadLramByte(iop_base,
6384 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6385 tid_no = ASC_TIX_TO_TID(target_ix);
6386 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6387 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6388 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6389 } else {
6390 asyn_sdtr = 0;
6392 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6393 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6394 AscSetChipSDTR(iop_base, 0, tid_no);
6395 boardp->sdtr_data[tid_no] = 0;
6397 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6398 return;
6399 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6400 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6401 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6402 boardp->sdtr_data[tid_no] = asyn_sdtr;
6404 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6405 return;
6406 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6407 AscMemWordCopyPtrFromLram(iop_base,
6408 ASCV_MSGIN_BEG,
6409 (uchar *)&ext_msg,
6410 sizeof(EXT_MSG) >> 1);
6412 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6413 ext_msg.msg_req == EXTENDED_SDTR &&
6414 ext_msg.msg_len == MS_SDTR_LEN) {
6415 sdtr_accept = true;
6416 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6418 sdtr_accept = false;
6419 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6421 if ((ext_msg.xfer_period <
6422 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6423 || (ext_msg.xfer_period >
6424 asc_dvc->sdtr_period_tbl[asc_dvc->
6425 max_sdtr_index])) {
6426 sdtr_accept = false;
6427 ext_msg.xfer_period =
6428 asc_dvc->sdtr_period_tbl[asc_dvc->
6429 min_sdtr_index];
6431 if (sdtr_accept) {
6432 sdtr_data =
6433 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6434 ext_msg.req_ack_offset);
6435 if (sdtr_data == 0xFF) {
6437 q_cntl |= QC_MSG_OUT;
6438 asc_dvc->init_sdtr &= ~target_id;
6439 asc_dvc->sdtr_done &= ~target_id;
6440 AscSetChipSDTR(iop_base, asyn_sdtr,
6441 tid_no);
6442 boardp->sdtr_data[tid_no] = asyn_sdtr;
6445 if (ext_msg.req_ack_offset == 0) {
6447 q_cntl &= ~QC_MSG_OUT;
6448 asc_dvc->init_sdtr &= ~target_id;
6449 asc_dvc->sdtr_done &= ~target_id;
6450 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6451 } else {
6452 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6453 q_cntl &= ~QC_MSG_OUT;
6454 asc_dvc->sdtr_done |= target_id;
6455 asc_dvc->init_sdtr |= target_id;
6456 asc_dvc->pci_fix_asyn_xfer &=
6457 ~target_id;
6458 sdtr_data =
6459 AscCalSDTRData(asc_dvc,
6460 ext_msg.xfer_period,
6461 ext_msg.
6462 req_ack_offset);
6463 AscSetChipSDTR(iop_base, sdtr_data,
6464 tid_no);
6465 boardp->sdtr_data[tid_no] = sdtr_data;
6466 } else {
6467 q_cntl |= QC_MSG_OUT;
6468 AscMsgOutSDTR(asc_dvc,
6469 ext_msg.xfer_period,
6470 ext_msg.req_ack_offset);
6471 asc_dvc->pci_fix_asyn_xfer &=
6472 ~target_id;
6473 sdtr_data =
6474 AscCalSDTRData(asc_dvc,
6475 ext_msg.xfer_period,
6476 ext_msg.
6477 req_ack_offset);
6478 AscSetChipSDTR(iop_base, sdtr_data,
6479 tid_no);
6480 boardp->sdtr_data[tid_no] = sdtr_data;
6481 asc_dvc->sdtr_done |= target_id;
6482 asc_dvc->init_sdtr |= target_id;
6486 AscWriteLramByte(iop_base,
6487 (ushort)(halt_q_addr +
6488 (ushort)ASC_SCSIQ_B_CNTL),
6489 q_cntl);
6490 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6491 return;
6492 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6493 ext_msg.msg_req == EXTENDED_WDTR &&
6494 ext_msg.msg_len == MS_WDTR_LEN) {
6496 ext_msg.wdtr_width = 0;
6497 AscMemWordCopyPtrToLram(iop_base,
6498 ASCV_MSGOUT_BEG,
6499 (uchar *)&ext_msg,
6500 sizeof(EXT_MSG) >> 1);
6501 q_cntl |= QC_MSG_OUT;
6502 AscWriteLramByte(iop_base,
6503 (ushort)(halt_q_addr +
6504 (ushort)ASC_SCSIQ_B_CNTL),
6505 q_cntl);
6506 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6507 return;
6508 } else {
6510 ext_msg.msg_type = MESSAGE_REJECT;
6511 AscMemWordCopyPtrToLram(iop_base,
6512 ASCV_MSGOUT_BEG,
6513 (uchar *)&ext_msg,
6514 sizeof(EXT_MSG) >> 1);
6515 q_cntl |= QC_MSG_OUT;
6516 AscWriteLramByte(iop_base,
6517 (ushort)(halt_q_addr +
6518 (ushort)ASC_SCSIQ_B_CNTL),
6519 q_cntl);
6520 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521 return;
6523 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6525 q_cntl |= QC_REQ_SENSE;
6527 if ((asc_dvc->init_sdtr & target_id) != 0) {
6529 asc_dvc->sdtr_done &= ~target_id;
6531 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6532 q_cntl |= QC_MSG_OUT;
6533 AscMsgOutSDTR(asc_dvc,
6534 asc_dvc->
6535 sdtr_period_tbl[(sdtr_data >> 4) &
6536 (uchar)(asc_dvc->
6537 max_sdtr_index -
6538 1)],
6539 (uchar)(sdtr_data & (uchar)
6540 ASC_SYN_MAX_OFFSET));
6543 AscWriteLramByte(iop_base,
6544 (ushort)(halt_q_addr +
6545 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6547 tag_code = AscReadLramByte(iop_base,
6548 (ushort)(halt_q_addr + (ushort)
6549 ASC_SCSIQ_B_TAG_CODE));
6550 tag_code &= 0xDC;
6551 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6552 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6555 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6556 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6559 AscWriteLramByte(iop_base,
6560 (ushort)(halt_q_addr +
6561 (ushort)ASC_SCSIQ_B_TAG_CODE),
6562 tag_code);
6564 q_status = AscReadLramByte(iop_base,
6565 (ushort)(halt_q_addr + (ushort)
6566 ASC_SCSIQ_B_STATUS));
6567 q_status |= (QS_READY | QS_BUSY);
6568 AscWriteLramByte(iop_base,
6569 (ushort)(halt_q_addr +
6570 (ushort)ASC_SCSIQ_B_STATUS),
6571 q_status);
6573 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6574 scsi_busy &= ~target_id;
6575 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6577 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6578 return;
6579 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6581 AscMemWordCopyPtrFromLram(iop_base,
6582 ASCV_MSGOUT_BEG,
6583 (uchar *)&out_msg,
6584 sizeof(EXT_MSG) >> 1);
6586 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6587 (out_msg.msg_len == MS_SDTR_LEN) &&
6588 (out_msg.msg_req == EXTENDED_SDTR)) {
6590 asc_dvc->init_sdtr &= ~target_id;
6591 asc_dvc->sdtr_done &= ~target_id;
6592 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6593 boardp->sdtr_data[tid_no] = asyn_sdtr;
6595 q_cntl &= ~QC_MSG_OUT;
6596 AscWriteLramByte(iop_base,
6597 (ushort)(halt_q_addr +
6598 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6599 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6600 return;
6601 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6603 scsi_status = AscReadLramByte(iop_base,
6604 (ushort)((ushort)halt_q_addr +
6605 (ushort)
6606 ASC_SCSIQ_SCSI_STATUS));
6607 cur_dvc_qng =
6608 AscReadLramByte(iop_base,
6609 (ushort)((ushort)ASC_QADR_BEG +
6610 (ushort)target_ix));
6611 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6613 scsi_busy = AscReadLramByte(iop_base,
6614 (ushort)ASCV_SCSIBUSY_B);
6615 scsi_busy |= target_id;
6616 AscWriteLramByte(iop_base,
6617 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6618 asc_dvc->queue_full_or_busy |= target_id;
6620 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6621 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6622 cur_dvc_qng -= 1;
6623 asc_dvc->max_dvc_qng[tid_no] =
6624 cur_dvc_qng;
6626 AscWriteLramByte(iop_base,
6627 (ushort)((ushort)
6628 ASCV_MAX_DVC_QNG_BEG
6629 + (ushort)
6630 tid_no),
6631 cur_dvc_qng);
6634 * Set the device queue depth to the
6635 * number of active requests when the
6636 * QUEUE FULL condition was encountered.
6638 boardp->queue_full |= target_id;
6639 boardp->queue_full_cnt[tid_no] =
6640 cur_dvc_qng;
6644 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6645 return;
6647 return;
6651 * void
6652 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6654 * Calling/Exit State:
6655 * none
6657 * Description:
6658 * Input an ASC_QDONE_INFO structure from the chip
6660 static void
6661 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6663 int i;
6664 ushort word;
6666 AscSetChipLramAddr(iop_base, s_addr);
6667 for (i = 0; i < 2 * words; i += 2) {
6668 if (i == 10) {
6669 continue;
6671 word = inpw(iop_base + IOP_RAM_DATA);
6672 inbuf[i] = word & 0xff;
6673 inbuf[i + 1] = (word >> 8) & 0xff;
6675 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6678 static uchar
6679 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6680 ushort q_addr,
6681 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6683 ushort _val;
6684 uchar sg_queue_cnt;
6686 DvcGetQinfo(iop_base,
6687 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6688 (uchar *)scsiq,
6689 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6691 _val = AscReadLramWord(iop_base,
6692 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6693 scsiq->q_status = (uchar)_val;
6694 scsiq->q_no = (uchar)(_val >> 8);
6695 _val = AscReadLramWord(iop_base,
6696 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6697 scsiq->cntl = (uchar)_val;
6698 sg_queue_cnt = (uchar)(_val >> 8);
6699 _val = AscReadLramWord(iop_base,
6700 (ushort)(q_addr +
6701 (ushort)ASC_SCSIQ_B_SENSE_LEN));
6702 scsiq->sense_len = (uchar)_val;
6703 scsiq->extra_bytes = (uchar)(_val >> 8);
6706 * Read high word of remain bytes from alternate location.
6708 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6709 (ushort)(q_addr +
6710 (ushort)
6711 ASC_SCSIQ_W_ALT_DC1)))
6712 << 16);
6714 * Read low word of remain bytes from original location.
6716 scsiq->remain_bytes += AscReadLramWord(iop_base,
6717 (ushort)(q_addr + (ushort)
6718 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6720 scsiq->remain_bytes &= max_dma_count;
6721 return sg_queue_cnt;
6725 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6727 * Interrupt callback function for the Narrow SCSI Asc Library.
6729 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6731 struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6732 u32 srb_tag;
6733 struct scsi_cmnd *scp;
6735 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6736 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6739 * Decrease the srb_tag by 1 to find the SCSI command
6741 srb_tag = qdonep->d2.srb_tag - 1;
6742 scp = scsi_host_find_tag(boardp->shost, srb_tag);
6743 if (!scp)
6744 return;
6746 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6748 ASC_STATS(boardp->shost, callback);
6750 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6751 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6753 * 'qdonep' contains the command's ending status.
6755 switch (qdonep->d3.done_stat) {
6756 case QD_NO_ERROR:
6757 ASC_DBG(2, "QD_NO_ERROR\n");
6758 scp->result = 0;
6761 * Check for an underrun condition.
6763 * If there was no error and an underrun condition, then
6764 * return the number of underrun bytes.
6766 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6767 qdonep->remain_bytes <= scsi_bufflen(scp)) {
6768 ASC_DBG(1, "underrun condition %u bytes\n",
6769 (unsigned)qdonep->remain_bytes);
6770 scsi_set_resid(scp, qdonep->remain_bytes);
6772 break;
6774 case QD_WITH_ERROR:
6775 ASC_DBG(2, "QD_WITH_ERROR\n");
6776 switch (qdonep->d3.host_stat) {
6777 case QHSTA_NO_ERROR:
6778 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6779 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6780 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6781 SCSI_SENSE_BUFFERSIZE);
6783 * Note: The 'status_byte()' macro used by
6784 * target drivers defined in scsi.h shifts the
6785 * status byte returned by host drivers right
6786 * by 1 bit. This is why target drivers also
6787 * use right shifted status byte definitions.
6788 * For instance target drivers use
6789 * CHECK_CONDITION, defined to 0x1, instead of
6790 * the SCSI defined check condition value of
6791 * 0x2. Host drivers are supposed to return
6792 * the status byte as it is defined by SCSI.
6794 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6795 STATUS_BYTE(qdonep->d3.scsi_stat);
6796 } else {
6797 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6799 break;
6801 default:
6802 /* QHSTA error occurred */
6803 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6804 scp->result = HOST_BYTE(DID_BAD_TARGET);
6805 break;
6807 break;
6809 case QD_ABORTED_BY_HOST:
6810 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6811 scp->result =
6812 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6813 scsi_msg) |
6814 STATUS_BYTE(qdonep->d3.scsi_stat);
6815 break;
6817 default:
6818 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6819 scp->result =
6820 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6821 scsi_msg) |
6822 STATUS_BYTE(qdonep->d3.scsi_stat);
6823 break;
6827 * If the 'init_tidmask' bit isn't already set for the target and the
6828 * current request finished normally, then set the bit for the target
6829 * to indicate that a device is present.
6831 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6832 qdonep->d3.done_stat == QD_NO_ERROR &&
6833 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6834 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6837 asc_scsi_done(scp);
6840 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6842 uchar next_qp;
6843 uchar n_q_used;
6844 uchar sg_list_qp;
6845 uchar sg_queue_cnt;
6846 uchar q_cnt;
6847 uchar done_q_tail;
6848 uchar tid_no;
6849 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6850 ASC_SCSI_BIT_ID_TYPE target_id;
6851 PortAddr iop_base;
6852 ushort q_addr;
6853 ushort sg_q_addr;
6854 uchar cur_target_qng;
6855 ASC_QDONE_INFO scsiq_buf;
6856 ASC_QDONE_INFO *scsiq;
6857 bool false_overrun;
6859 iop_base = asc_dvc->iop_base;
6860 n_q_used = 1;
6861 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6862 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6863 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6864 next_qp = AscReadLramByte(iop_base,
6865 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6866 if (next_qp != ASC_QLINK_END) {
6867 AscPutVarDoneQTail(iop_base, next_qp);
6868 q_addr = ASC_QNO_TO_QADDR(next_qp);
6869 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6870 asc_dvc->max_dma_count);
6871 AscWriteLramByte(iop_base,
6872 (ushort)(q_addr +
6873 (ushort)ASC_SCSIQ_B_STATUS),
6874 (uchar)(scsiq->
6875 q_status & (uchar)~(QS_READY |
6876 QS_ABORTED)));
6877 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6878 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6879 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6880 sg_q_addr = q_addr;
6881 sg_list_qp = next_qp;
6882 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6883 sg_list_qp = AscReadLramByte(iop_base,
6884 (ushort)(sg_q_addr
6885 + (ushort)
6886 ASC_SCSIQ_B_FWD));
6887 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6888 if (sg_list_qp == ASC_QLINK_END) {
6889 AscSetLibErrorCode(asc_dvc,
6890 ASCQ_ERR_SG_Q_LINKS);
6891 scsiq->d3.done_stat = QD_WITH_ERROR;
6892 scsiq->d3.host_stat =
6893 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6894 goto FATAL_ERR_QDONE;
6896 AscWriteLramByte(iop_base,
6897 (ushort)(sg_q_addr + (ushort)
6898 ASC_SCSIQ_B_STATUS),
6899 QS_FREE);
6901 n_q_used = sg_queue_cnt + 1;
6902 AscPutVarDoneQTail(iop_base, sg_list_qp);
6904 if (asc_dvc->queue_full_or_busy & target_id) {
6905 cur_target_qng = AscReadLramByte(iop_base,
6906 (ushort)((ushort)
6907 ASC_QADR_BEG
6908 + (ushort)
6909 scsiq->d2.
6910 target_ix));
6911 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6912 scsi_busy = AscReadLramByte(iop_base, (ushort)
6913 ASCV_SCSIBUSY_B);
6914 scsi_busy &= ~target_id;
6915 AscWriteLramByte(iop_base,
6916 (ushort)ASCV_SCSIBUSY_B,
6917 scsi_busy);
6918 asc_dvc->queue_full_or_busy &= ~target_id;
6921 if (asc_dvc->cur_total_qng >= n_q_used) {
6922 asc_dvc->cur_total_qng -= n_q_used;
6923 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6924 asc_dvc->cur_dvc_qng[tid_no]--;
6926 } else {
6927 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6928 scsiq->d3.done_stat = QD_WITH_ERROR;
6929 goto FATAL_ERR_QDONE;
6931 if ((scsiq->d2.srb_tag == 0UL) ||
6932 ((scsiq->q_status & QS_ABORTED) != 0)) {
6933 return (0x11);
6934 } else if (scsiq->q_status == QS_DONE) {
6936 * This is also curious.
6937 * false_overrun will _always_ be set to 'false'
6939 false_overrun = false;
6940 if (scsiq->extra_bytes != 0) {
6941 scsiq->remain_bytes += scsiq->extra_bytes;
6943 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6944 if (scsiq->d3.host_stat ==
6945 QHSTA_M_DATA_OVER_RUN) {
6946 if ((scsiq->
6947 cntl & (QC_DATA_IN | QC_DATA_OUT))
6948 == 0) {
6949 scsiq->d3.done_stat =
6950 QD_NO_ERROR;
6951 scsiq->d3.host_stat =
6952 QHSTA_NO_ERROR;
6953 } else if (false_overrun) {
6954 scsiq->d3.done_stat =
6955 QD_NO_ERROR;
6956 scsiq->d3.host_stat =
6957 QHSTA_NO_ERROR;
6959 } else if (scsiq->d3.host_stat ==
6960 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6961 AscStopChip(iop_base);
6962 AscSetChipControl(iop_base,
6963 (uchar)(CC_SCSI_RESET
6964 | CC_HALT));
6965 udelay(60);
6966 AscSetChipControl(iop_base, CC_HALT);
6967 AscSetChipStatus(iop_base,
6968 CIW_CLR_SCSI_RESET_INT);
6969 AscSetChipStatus(iop_base, 0);
6970 AscSetChipControl(iop_base, 0);
6973 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6974 asc_isr_callback(asc_dvc, scsiq);
6975 } else {
6976 if ((AscReadLramByte(iop_base,
6977 (ushort)(q_addr + (ushort)
6978 ASC_SCSIQ_CDB_BEG))
6979 == START_STOP)) {
6980 asc_dvc->unit_not_ready &= ~target_id;
6981 if (scsiq->d3.done_stat != QD_NO_ERROR) {
6982 asc_dvc->start_motor &=
6983 ~target_id;
6987 return (1);
6988 } else {
6989 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6990 FATAL_ERR_QDONE:
6991 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6992 asc_isr_callback(asc_dvc, scsiq);
6994 return (0x80);
6997 return (0);
7000 static int AscISR(ASC_DVC_VAR *asc_dvc)
7002 ASC_CS_TYPE chipstat;
7003 PortAddr iop_base;
7004 ushort saved_ram_addr;
7005 uchar ctrl_reg;
7006 uchar saved_ctrl_reg;
7007 int int_pending;
7008 int status;
7009 uchar host_flag;
7011 iop_base = asc_dvc->iop_base;
7012 int_pending = ASC_FALSE;
7014 if (AscIsIntPending(iop_base) == 0)
7015 return int_pending;
7017 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7018 return ASC_ERROR;
7020 if (asc_dvc->in_critical_cnt != 0) {
7021 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7022 return ASC_ERROR;
7024 if (asc_dvc->is_in_int) {
7025 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7026 return ASC_ERROR;
7028 asc_dvc->is_in_int = true;
7029 ctrl_reg = AscGetChipControl(iop_base);
7030 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7031 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7032 chipstat = AscGetChipStatus(iop_base);
7033 if (chipstat & CSW_SCSI_RESET_LATCH) {
7034 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7035 int i = 10;
7036 int_pending = ASC_TRUE;
7037 asc_dvc->sdtr_done = 0;
7038 saved_ctrl_reg &= (uchar)(~CC_HALT);
7039 while ((AscGetChipStatus(iop_base) &
7040 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7041 mdelay(100);
7043 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7044 AscSetChipControl(iop_base, CC_HALT);
7045 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7046 AscSetChipStatus(iop_base, 0);
7047 chipstat = AscGetChipStatus(iop_base);
7050 saved_ram_addr = AscGetChipLramAddr(iop_base);
7051 host_flag = AscReadLramByte(iop_base,
7052 ASCV_HOST_FLAG_B) &
7053 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7054 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7055 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7056 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7057 AscAckInterrupt(iop_base);
7058 int_pending = ASC_TRUE;
7059 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7060 AscIsrChipHalted(asc_dvc);
7061 saved_ctrl_reg &= (uchar)(~CC_HALT);
7062 } else {
7063 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7064 while (((status =
7065 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7067 } else {
7068 do {
7069 if ((status =
7070 AscIsrQDone(asc_dvc)) == 1) {
7071 break;
7073 } while (status == 0x11);
7075 if ((status & 0x80) != 0)
7076 int_pending = ASC_ERROR;
7079 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7080 AscSetChipLramAddr(iop_base, saved_ram_addr);
7081 AscSetChipControl(iop_base, saved_ctrl_reg);
7082 asc_dvc->is_in_int = false;
7083 return int_pending;
7087 * advansys_reset()
7089 * Reset the host associated with the command 'scp'.
7091 * This function runs its own thread. Interrupts must be blocked but
7092 * sleeping is allowed and no locking other than for host structures is
7093 * required. Returns SUCCESS or FAILED.
7095 static int advansys_reset(struct scsi_cmnd *scp)
7097 struct Scsi_Host *shost = scp->device->host;
7098 struct asc_board *boardp = shost_priv(shost);
7099 unsigned long flags;
7100 int status;
7101 int ret = SUCCESS;
7103 ASC_DBG(1, "0x%p\n", scp);
7105 ASC_STATS(shost, reset);
7107 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7109 if (ASC_NARROW_BOARD(boardp)) {
7110 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7112 /* Reset the chip and SCSI bus. */
7113 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7114 status = AscInitAsc1000Driver(asc_dvc);
7116 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7117 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7118 scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7119 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7120 status);
7121 ret = FAILED;
7122 } else if (status) {
7123 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7124 "0x%x\n", status);
7125 } else {
7126 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7127 "successful\n");
7130 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7131 } else {
7133 * If the suggest reset bus flags are set, then reset the bus.
7134 * Otherwise only reset the device.
7136 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7139 * Reset the chip and SCSI bus.
7141 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7142 switch (AdvResetChipAndSB(adv_dvc)) {
7143 case ASC_TRUE:
7144 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7145 "successful\n");
7146 break;
7147 case ASC_FALSE:
7148 default:
7149 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7150 ret = FAILED;
7151 break;
7153 spin_lock_irqsave(shost->host_lock, flags);
7154 AdvISR(adv_dvc);
7155 spin_unlock_irqrestore(shost->host_lock, flags);
7158 ASC_DBG(1, "ret %d\n", ret);
7160 return ret;
7164 * advansys_biosparam()
7166 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7167 * support is enabled for a drive.
7169 * ip (information pointer) is an int array with the following definition:
7170 * ip[0]: heads
7171 * ip[1]: sectors
7172 * ip[2]: cylinders
7174 static int
7175 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7176 sector_t capacity, int ip[])
7178 struct asc_board *boardp = shost_priv(sdev->host);
7180 ASC_DBG(1, "begin\n");
7181 ASC_STATS(sdev->host, biosparam);
7182 if (ASC_NARROW_BOARD(boardp)) {
7183 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7184 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7185 ip[0] = 255;
7186 ip[1] = 63;
7187 } else {
7188 ip[0] = 64;
7189 ip[1] = 32;
7191 } else {
7192 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7193 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7194 ip[0] = 255;
7195 ip[1] = 63;
7196 } else {
7197 ip[0] = 64;
7198 ip[1] = 32;
7201 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7202 ASC_DBG(1, "end\n");
7203 return 0;
7207 * First-level interrupt handler.
7209 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7211 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7213 struct Scsi_Host *shost = dev_id;
7214 struct asc_board *boardp = shost_priv(shost);
7215 irqreturn_t result = IRQ_NONE;
7216 unsigned long flags;
7218 ASC_DBG(2, "boardp 0x%p\n", boardp);
7219 spin_lock_irqsave(shost->host_lock, flags);
7220 if (ASC_NARROW_BOARD(boardp)) {
7221 if (AscIsIntPending(shost->io_port)) {
7222 result = IRQ_HANDLED;
7223 ASC_STATS(shost, interrupt);
7224 ASC_DBG(1, "before AscISR()\n");
7225 AscISR(&boardp->dvc_var.asc_dvc_var);
7227 } else {
7228 ASC_DBG(1, "before AdvISR()\n");
7229 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7230 result = IRQ_HANDLED;
7231 ASC_STATS(shost, interrupt);
7234 spin_unlock_irqrestore(shost->host_lock, flags);
7236 ASC_DBG(1, "end\n");
7237 return result;
7240 static bool AscHostReqRiscHalt(PortAddr iop_base)
7242 int count = 0;
7243 bool sta = false;
7244 uchar saved_stop_code;
7246 if (AscIsChipHalted(iop_base))
7247 return true;
7248 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7249 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7250 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7251 do {
7252 if (AscIsChipHalted(iop_base)) {
7253 sta = true;
7254 break;
7256 mdelay(100);
7257 } while (count++ < 20);
7258 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7259 return sta;
7262 static bool
7263 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7265 bool sta = false;
7267 if (AscHostReqRiscHalt(iop_base)) {
7268 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7269 AscStartChip(iop_base);
7271 return sta;
7274 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7276 char type = sdev->type;
7277 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7279 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7280 return;
7281 if (asc_dvc->init_sdtr & tid_bits)
7282 return;
7284 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7285 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7287 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7288 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7289 (type == TYPE_ROM) || (type == TYPE_TAPE))
7290 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7292 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7293 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7294 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7297 static void
7298 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7300 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7301 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7303 if (sdev->lun == 0) {
7304 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7305 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7306 asc_dvc->init_sdtr |= tid_bit;
7307 } else {
7308 asc_dvc->init_sdtr &= ~tid_bit;
7311 if (orig_init_sdtr != asc_dvc->init_sdtr)
7312 AscAsyncFix(asc_dvc, sdev);
7315 if (sdev->tagged_supported) {
7316 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7317 if (sdev->lun == 0) {
7318 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7319 asc_dvc->use_tagged_qng |= tid_bit;
7321 scsi_change_queue_depth(sdev,
7322 asc_dvc->max_dvc_qng[sdev->id]);
7324 } else {
7325 if (sdev->lun == 0) {
7326 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7327 asc_dvc->use_tagged_qng &= ~tid_bit;
7331 if ((sdev->lun == 0) &&
7332 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7333 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7334 asc_dvc->cfg->disc_enable);
7335 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7336 asc_dvc->use_tagged_qng);
7337 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7338 asc_dvc->cfg->can_tagged_qng);
7340 asc_dvc->max_dvc_qng[sdev->id] =
7341 asc_dvc->cfg->max_tag_qng[sdev->id];
7342 AscWriteLramByte(asc_dvc->iop_base,
7343 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7344 asc_dvc->max_dvc_qng[sdev->id]);
7349 * Wide Transfers
7351 * If the EEPROM enabled WDTR for the device and the device supports wide
7352 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7353 * write the new value to the microcode.
7355 static void
7356 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7358 unsigned short cfg_word;
7359 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7360 if ((cfg_word & tidmask) != 0)
7361 return;
7363 cfg_word |= tidmask;
7364 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7367 * Clear the microcode SDTR and WDTR negotiation done indicators for
7368 * the target to cause it to negotiate with the new setting set above.
7369 * WDTR when accepted causes the target to enter asynchronous mode, so
7370 * SDTR must be negotiated.
7372 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7373 cfg_word &= ~tidmask;
7374 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7375 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7376 cfg_word &= ~tidmask;
7377 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7381 * Synchronous Transfers
7383 * If the EEPROM enabled SDTR for the device and the device
7384 * supports synchronous transfers, then turn on the device's
7385 * 'sdtr_able' bit. Write the new value to the microcode.
7387 static void
7388 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7390 unsigned short cfg_word;
7391 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7392 if ((cfg_word & tidmask) != 0)
7393 return;
7395 cfg_word |= tidmask;
7396 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7399 * Clear the microcode "SDTR negotiation" done indicator for the
7400 * target to cause it to negotiate with the new setting set above.
7402 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7403 cfg_word &= ~tidmask;
7404 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7408 * PPR (Parallel Protocol Request) Capable
7410 * If the device supports DT mode, then it must be PPR capable.
7411 * The PPR message will be used in place of the SDTR and WDTR
7412 * messages to negotiate synchronous speed and offset, transfer
7413 * width, and protocol options.
7415 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7416 AdvPortAddr iop_base, unsigned short tidmask)
7418 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7419 adv_dvc->ppr_able |= tidmask;
7420 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7423 static void
7424 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7426 AdvPortAddr iop_base = adv_dvc->iop_base;
7427 unsigned short tidmask = 1 << sdev->id;
7429 if (sdev->lun == 0) {
7431 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7432 * is enabled in the EEPROM and the device supports the
7433 * feature, then enable it in the microcode.
7436 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7437 advansys_wide_enable_wdtr(iop_base, tidmask);
7438 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7439 advansys_wide_enable_sdtr(iop_base, tidmask);
7440 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7441 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7444 * Tag Queuing is disabled for the BIOS which runs in polled
7445 * mode and would see no benefit from Tag Queuing. Also by
7446 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7447 * bugs will at least work with the BIOS.
7449 if ((adv_dvc->tagqng_able & tidmask) &&
7450 sdev->tagged_supported) {
7451 unsigned short cfg_word;
7452 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7453 cfg_word |= tidmask;
7454 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7455 cfg_word);
7456 AdvWriteByteLram(iop_base,
7457 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7458 adv_dvc->max_dvc_qng);
7462 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7463 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7467 * Set the number of commands to queue per device for the
7468 * specified host adapter.
7470 static int advansys_slave_configure(struct scsi_device *sdev)
7472 struct asc_board *boardp = shost_priv(sdev->host);
7474 if (ASC_NARROW_BOARD(boardp))
7475 advansys_narrow_slave_configure(sdev,
7476 &boardp->dvc_var.asc_dvc_var);
7477 else
7478 advansys_wide_slave_configure(sdev,
7479 &boardp->dvc_var.adv_dvc_var);
7481 return 0;
7484 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7486 struct asc_board *board = shost_priv(scp->device->host);
7488 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7489 SCSI_SENSE_BUFFERSIZE,
7490 DMA_FROM_DEVICE);
7491 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7492 ASC_DBG(1, "failed to map sense buffer\n");
7493 return 0;
7495 return cpu_to_le32(scp->SCp.dma_handle);
7498 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7499 struct asc_scsi_q *asc_scsi_q)
7501 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7502 int use_sg;
7503 u32 srb_tag;
7505 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7508 * Set the srb_tag to the command tag + 1, as
7509 * srb_tag '0' is used internally by the chip.
7511 srb_tag = scp->request->tag + 1;
7512 asc_scsi_q->q2.srb_tag = srb_tag;
7515 * Build the ASC_SCSI_Q request.
7517 asc_scsi_q->cdbptr = &scp->cmnd[0];
7518 asc_scsi_q->q2.cdb_len = scp->cmd_len;
7519 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7520 asc_scsi_q->q1.target_lun = scp->device->lun;
7521 asc_scsi_q->q2.target_ix =
7522 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7523 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7524 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7525 if (!asc_scsi_q->q1.sense_addr)
7526 return ASC_BUSY;
7529 * If there are any outstanding requests for the current target,
7530 * then every 255th request send an ORDERED request. This heuristic
7531 * tries to retain the benefit of request sorting while preventing
7532 * request starvation. 255 is the max number of tags or pending commands
7533 * a device may have outstanding.
7535 * The request count is incremented below for every successfully
7536 * started request.
7539 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7540 (boardp->reqcnt[scp->device->id] % 255) == 0) {
7541 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7542 } else {
7543 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7546 /* Build ASC_SCSI_Q */
7547 use_sg = scsi_dma_map(scp);
7548 if (use_sg < 0) {
7549 ASC_DBG(1, "failed to map sglist\n");
7550 return ASC_BUSY;
7551 } else if (use_sg > 0) {
7552 int sgcnt;
7553 struct scatterlist *slp;
7554 struct asc_sg_head *asc_sg_head;
7556 if (use_sg > scp->device->host->sg_tablesize) {
7557 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7558 "sg_tablesize %d\n", use_sg,
7559 scp->device->host->sg_tablesize);
7560 scsi_dma_unmap(scp);
7561 scp->result = HOST_BYTE(DID_ERROR);
7562 return ASC_ERROR;
7565 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7566 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7567 if (!asc_sg_head) {
7568 scsi_dma_unmap(scp);
7569 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7570 return ASC_ERROR;
7573 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7574 asc_scsi_q->sg_head = asc_sg_head;
7575 asc_scsi_q->q1.data_cnt = 0;
7576 asc_scsi_q->q1.data_addr = 0;
7577 /* This is a byte value, otherwise it would need to be swapped. */
7578 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7579 ASC_STATS_ADD(scp->device->host, xfer_elem,
7580 asc_sg_head->entry_cnt);
7583 * Convert scatter-gather list into ASC_SG_HEAD list.
7585 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7586 asc_sg_head->sg_list[sgcnt].addr =
7587 cpu_to_le32(sg_dma_address(slp));
7588 asc_sg_head->sg_list[sgcnt].bytes =
7589 cpu_to_le32(sg_dma_len(slp));
7590 ASC_STATS_ADD(scp->device->host, xfer_sect,
7591 DIV_ROUND_UP(sg_dma_len(slp), 512));
7595 ASC_STATS(scp->device->host, xfer_cnt);
7597 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7598 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7600 return ASC_NOERROR;
7604 * Build scatter-gather list for Adv Library (Wide Board).
7606 * Additional ADV_SG_BLOCK structures will need to be allocated
7607 * if the total number of scatter-gather elements exceeds
7608 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7609 * assumed to be physically contiguous.
7611 * Return:
7612 * ADV_SUCCESS(1) - SG List successfully created
7613 * ADV_ERROR(-1) - SG List creation failed
7615 static int
7616 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7617 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7619 adv_sgblk_t *sgblkp, *prev_sgblkp;
7620 struct scatterlist *slp;
7621 int sg_elem_cnt;
7622 ADV_SG_BLOCK *sg_block, *prev_sg_block;
7623 dma_addr_t sgblk_paddr;
7624 int i;
7626 slp = scsi_sglist(scp);
7627 sg_elem_cnt = use_sg;
7628 prev_sgblkp = NULL;
7629 prev_sg_block = NULL;
7630 reqp->sgblkp = NULL;
7632 for (;;) {
7634 * Allocate a 'adv_sgblk_t' structure from the board free
7635 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7636 * (15) scatter-gather elements.
7638 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7639 &sgblk_paddr);
7640 if (!sgblkp) {
7641 ASC_DBG(1, "no free adv_sgblk_t\n");
7642 ASC_STATS(scp->device->host, adv_build_nosg);
7645 * Allocation failed. Free 'adv_sgblk_t' structures
7646 * already allocated for the request.
7648 while ((sgblkp = reqp->sgblkp) != NULL) {
7649 /* Remove 'sgblkp' from the request list. */
7650 reqp->sgblkp = sgblkp->next_sgblkp;
7651 sgblkp->next_sgblkp = NULL;
7652 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7653 sgblkp->sg_addr);
7655 return ASC_BUSY;
7657 /* Complete 'adv_sgblk_t' board allocation. */
7658 sgblkp->sg_addr = sgblk_paddr;
7659 sgblkp->next_sgblkp = NULL;
7660 sg_block = &sgblkp->sg_block;
7663 * Check if this is the first 'adv_sgblk_t' for the
7664 * request.
7666 if (reqp->sgblkp == NULL) {
7667 /* Request's first scatter-gather block. */
7668 reqp->sgblkp = sgblkp;
7671 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7672 * address pointers.
7674 scsiqp->sg_list_ptr = sg_block;
7675 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7676 } else {
7677 /* Request's second or later scatter-gather block. */
7678 prev_sgblkp->next_sgblkp = sgblkp;
7681 * Point the previous ADV_SG_BLOCK structure to
7682 * the newly allocated ADV_SG_BLOCK structure.
7684 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7687 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7688 sg_block->sg_list[i].sg_addr =
7689 cpu_to_le32(sg_dma_address(slp));
7690 sg_block->sg_list[i].sg_count =
7691 cpu_to_le32(sg_dma_len(slp));
7692 ASC_STATS_ADD(scp->device->host, xfer_sect,
7693 DIV_ROUND_UP(sg_dma_len(slp), 512));
7695 if (--sg_elem_cnt == 0) {
7697 * Last ADV_SG_BLOCK and scatter-gather entry.
7699 sg_block->sg_cnt = i + 1;
7700 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7701 return ADV_SUCCESS;
7703 slp = sg_next(slp);
7705 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7706 prev_sg_block = sg_block;
7707 prev_sgblkp = sgblkp;
7712 * Build a request structure for the Adv Library (Wide Board).
7714 * If an adv_req_t can not be allocated to issue the request,
7715 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7717 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7718 * microcode for DMA addresses or math operations are byte swapped
7719 * to little-endian order.
7721 static int
7722 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7723 adv_req_t **adv_reqpp)
7725 u32 srb_tag = scp->request->tag;
7726 adv_req_t *reqp;
7727 ADV_SCSI_REQ_Q *scsiqp;
7728 int ret;
7729 int use_sg;
7730 dma_addr_t sense_addr;
7733 * Allocate an adv_req_t structure from the board to execute
7734 * the command.
7736 reqp = &boardp->adv_reqp[srb_tag];
7737 if (reqp->cmndp && reqp->cmndp != scp ) {
7738 ASC_DBG(1, "no free adv_req_t\n");
7739 ASC_STATS(scp->device->host, adv_build_noreq);
7740 return ASC_BUSY;
7743 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7745 scsiqp = &reqp->scsi_req_q;
7748 * Initialize the structure.
7750 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7753 * Set the srb_tag to the command tag.
7755 scsiqp->srb_tag = srb_tag;
7758 * Set 'host_scribble' to point to the adv_req_t structure.
7760 reqp->cmndp = scp;
7761 scp->host_scribble = (void *)reqp;
7764 * Build the ADV_SCSI_REQ_Q request.
7767 /* Set CDB length and copy it to the request structure. */
7768 scsiqp->cdb_len = scp->cmd_len;
7769 /* Copy first 12 CDB bytes to cdb[]. */
7770 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7771 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7772 if (scp->cmd_len > 12) {
7773 int cdb16_len = scp->cmd_len - 12;
7775 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7778 scsiqp->target_id = scp->device->id;
7779 scsiqp->target_lun = scp->device->lun;
7781 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7782 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7783 if (dma_mapping_error(boardp->dev, sense_addr)) {
7784 ASC_DBG(1, "failed to map sense buffer\n");
7785 ASC_STATS(scp->device->host, adv_build_noreq);
7786 return ASC_BUSY;
7788 scsiqp->sense_addr = cpu_to_le32(sense_addr);
7789 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7791 /* Build ADV_SCSI_REQ_Q */
7793 use_sg = scsi_dma_map(scp);
7794 if (use_sg < 0) {
7795 ASC_DBG(1, "failed to map SG list\n");
7796 ASC_STATS(scp->device->host, adv_build_noreq);
7797 return ASC_BUSY;
7798 } else if (use_sg == 0) {
7799 /* Zero-length transfer */
7800 reqp->sgblkp = NULL;
7801 scsiqp->data_cnt = 0;
7803 scsiqp->data_addr = 0;
7804 scsiqp->sg_list_ptr = NULL;
7805 scsiqp->sg_real_addr = 0;
7806 } else {
7807 if (use_sg > ADV_MAX_SG_LIST) {
7808 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7809 "ADV_MAX_SG_LIST %d\n", use_sg,
7810 scp->device->host->sg_tablesize);
7811 scsi_dma_unmap(scp);
7812 scp->result = HOST_BYTE(DID_ERROR);
7813 reqp->cmndp = NULL;
7814 scp->host_scribble = NULL;
7816 return ASC_ERROR;
7819 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7821 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7822 if (ret != ADV_SUCCESS) {
7823 scsi_dma_unmap(scp);
7824 scp->result = HOST_BYTE(DID_ERROR);
7825 reqp->cmndp = NULL;
7826 scp->host_scribble = NULL;
7828 return ret;
7831 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7834 ASC_STATS(scp->device->host, xfer_cnt);
7836 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7837 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7839 *adv_reqpp = reqp;
7841 return ASC_NOERROR;
7844 static int AscSgListToQueue(int sg_list)
7846 int n_sg_list_qs;
7848 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7849 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7850 n_sg_list_qs++;
7851 return n_sg_list_qs + 1;
7854 static uint
7855 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7857 uint cur_used_qs;
7858 uint cur_free_qs;
7859 ASC_SCSI_BIT_ID_TYPE target_id;
7860 uchar tid_no;
7862 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7863 tid_no = ASC_TIX_TO_TID(target_ix);
7864 if ((asc_dvc->unit_not_ready & target_id) ||
7865 (asc_dvc->queue_full_or_busy & target_id)) {
7866 return 0;
7868 if (n_qs == 1) {
7869 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7870 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7871 } else {
7872 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7873 (uint) ASC_MIN_FREE_Q;
7875 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7876 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7877 if (asc_dvc->cur_dvc_qng[tid_no] >=
7878 asc_dvc->max_dvc_qng[tid_no]) {
7879 return 0;
7881 return cur_free_qs;
7883 if (n_qs > 1) {
7884 if ((n_qs > asc_dvc->last_q_shortage)
7885 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7886 asc_dvc->last_q_shortage = n_qs;
7889 return 0;
7892 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7894 ushort q_addr;
7895 uchar next_qp;
7896 uchar q_status;
7898 q_addr = ASC_QNO_TO_QADDR(free_q_head);
7899 q_status = (uchar)AscReadLramByte(iop_base,
7900 (ushort)(q_addr +
7901 ASC_SCSIQ_B_STATUS));
7902 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7903 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7904 return next_qp;
7905 return ASC_QLINK_END;
7908 static uchar
7909 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7911 uchar i;
7913 for (i = 0; i < n_free_q; i++) {
7914 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7915 if (free_q_head == ASC_QLINK_END)
7916 break;
7918 return free_q_head;
7922 * void
7923 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7925 * Calling/Exit State:
7926 * none
7928 * Description:
7929 * Output an ASC_SCSI_Q structure to the chip
7931 static void
7932 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7934 int i;
7936 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7937 AscSetChipLramAddr(iop_base, s_addr);
7938 for (i = 0; i < 2 * words; i += 2) {
7939 if (i == 4 || i == 20) {
7940 continue;
7942 outpw(iop_base + IOP_RAM_DATA,
7943 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7947 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7949 ushort q_addr;
7950 uchar tid_no;
7951 uchar sdtr_data;
7952 uchar syn_period_ix;
7953 uchar syn_offset;
7954 PortAddr iop_base;
7956 iop_base = asc_dvc->iop_base;
7957 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7958 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7959 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7960 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7961 syn_period_ix =
7962 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7963 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7964 AscMsgOutSDTR(asc_dvc,
7965 asc_dvc->sdtr_period_tbl[syn_period_ix],
7966 syn_offset);
7967 scsiq->q1.cntl |= QC_MSG_OUT;
7969 q_addr = ASC_QNO_TO_QADDR(q_no);
7970 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7971 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7973 scsiq->q1.status = QS_FREE;
7974 AscMemWordCopyPtrToLram(iop_base,
7975 q_addr + ASC_SCSIQ_CDB_BEG,
7976 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7978 DvcPutScsiQ(iop_base,
7979 q_addr + ASC_SCSIQ_CPY_BEG,
7980 (uchar *)&scsiq->q1.cntl,
7981 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7982 AscWriteLramWord(iop_base,
7983 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7984 (ushort)(((ushort)scsiq->q1.
7985 q_no << 8) | (ushort)QS_READY));
7986 return 1;
7989 static int
7990 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7992 int sta;
7993 int i;
7994 ASC_SG_HEAD *sg_head;
7995 ASC_SG_LIST_Q scsi_sg_q;
7996 __le32 saved_data_addr;
7997 __le32 saved_data_cnt;
7998 PortAddr iop_base;
7999 ushort sg_list_dwords;
8000 ushort sg_index;
8001 ushort sg_entry_cnt;
8002 ushort q_addr;
8003 uchar next_qp;
8005 iop_base = asc_dvc->iop_base;
8006 sg_head = scsiq->sg_head;
8007 saved_data_addr = scsiq->q1.data_addr;
8008 saved_data_cnt = scsiq->q1.data_cnt;
8009 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8010 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8012 * Set sg_entry_cnt to be the number of SG elements that
8013 * will fit in the allocated SG queues. It is minus 1, because
8014 * the first SG element is handled above.
8016 sg_entry_cnt = sg_head->entry_cnt - 1;
8018 if (sg_entry_cnt != 0) {
8019 scsiq->q1.cntl |= QC_SG_HEAD;
8020 q_addr = ASC_QNO_TO_QADDR(q_no);
8021 sg_index = 1;
8022 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8023 scsi_sg_q.sg_head_qp = q_no;
8024 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8025 for (i = 0; i < sg_head->queue_cnt; i++) {
8026 scsi_sg_q.seq_no = i + 1;
8027 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8028 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8029 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8030 if (i == 0) {
8031 scsi_sg_q.sg_list_cnt =
8032 ASC_SG_LIST_PER_Q;
8033 scsi_sg_q.sg_cur_list_cnt =
8034 ASC_SG_LIST_PER_Q;
8035 } else {
8036 scsi_sg_q.sg_list_cnt =
8037 ASC_SG_LIST_PER_Q - 1;
8038 scsi_sg_q.sg_cur_list_cnt =
8039 ASC_SG_LIST_PER_Q - 1;
8041 } else {
8042 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8043 sg_list_dwords = sg_entry_cnt << 1;
8044 if (i == 0) {
8045 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8046 scsi_sg_q.sg_cur_list_cnt =
8047 sg_entry_cnt;
8048 } else {
8049 scsi_sg_q.sg_list_cnt =
8050 sg_entry_cnt - 1;
8051 scsi_sg_q.sg_cur_list_cnt =
8052 sg_entry_cnt - 1;
8054 sg_entry_cnt = 0;
8056 next_qp = AscReadLramByte(iop_base,
8057 (ushort)(q_addr +
8058 ASC_SCSIQ_B_FWD));
8059 scsi_sg_q.q_no = next_qp;
8060 q_addr = ASC_QNO_TO_QADDR(next_qp);
8061 AscMemWordCopyPtrToLram(iop_base,
8062 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8063 (uchar *)&scsi_sg_q,
8064 sizeof(ASC_SG_LIST_Q) >> 1);
8065 AscMemDWordCopyPtrToLram(iop_base,
8066 q_addr + ASC_SGQ_LIST_BEG,
8067 (uchar *)&sg_head->
8068 sg_list[sg_index],
8069 sg_list_dwords);
8070 sg_index += ASC_SG_LIST_PER_Q;
8071 scsiq->next_sg_index = sg_index;
8073 } else {
8074 scsiq->q1.cntl &= ~QC_SG_HEAD;
8076 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8077 scsiq->q1.data_addr = saved_data_addr;
8078 scsiq->q1.data_cnt = saved_data_cnt;
8079 return (sta);
8082 static int
8083 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8085 PortAddr iop_base;
8086 uchar free_q_head;
8087 uchar next_qp;
8088 uchar tid_no;
8089 uchar target_ix;
8090 int sta;
8092 iop_base = asc_dvc->iop_base;
8093 target_ix = scsiq->q2.target_ix;
8094 tid_no = ASC_TIX_TO_TID(target_ix);
8095 sta = 0;
8096 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8097 if (n_q_required > 1) {
8098 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8099 (uchar)n_q_required);
8100 if (next_qp != ASC_QLINK_END) {
8101 asc_dvc->last_q_shortage = 0;
8102 scsiq->sg_head->queue_cnt = n_q_required - 1;
8103 scsiq->q1.q_no = free_q_head;
8104 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8105 free_q_head);
8107 } else if (n_q_required == 1) {
8108 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8109 if (next_qp != ASC_QLINK_END) {
8110 scsiq->q1.q_no = free_q_head;
8111 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8114 if (sta == 1) {
8115 AscPutVarFreeQHead(iop_base, next_qp);
8116 asc_dvc->cur_total_qng += n_q_required;
8117 asc_dvc->cur_dvc_qng[tid_no]++;
8119 return sta;
8122 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8123 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8124 INQUIRY,
8125 REQUEST_SENSE,
8126 READ_CAPACITY,
8127 READ_TOC,
8128 MODE_SELECT,
8129 MODE_SENSE,
8130 MODE_SELECT_10,
8131 MODE_SENSE_10,
8132 0xFF,
8133 0xFF,
8134 0xFF,
8135 0xFF,
8136 0xFF,
8137 0xFF,
8138 0xFF,
8139 0xFF
8142 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8144 PortAddr iop_base;
8145 int sta;
8146 int n_q_required;
8147 bool disable_syn_offset_one_fix;
8148 int i;
8149 u32 addr;
8150 ushort sg_entry_cnt = 0;
8151 ushort sg_entry_cnt_minus_one = 0;
8152 uchar target_ix;
8153 uchar tid_no;
8154 uchar sdtr_data;
8155 uchar extra_bytes;
8156 uchar scsi_cmd;
8157 uchar disable_cmd;
8158 ASC_SG_HEAD *sg_head;
8159 unsigned long data_cnt;
8161 iop_base = asc_dvc->iop_base;
8162 sg_head = scsiq->sg_head;
8163 if (asc_dvc->err_code != 0)
8164 return ASC_ERROR;
8165 scsiq->q1.q_no = 0;
8166 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8167 scsiq->q1.extra_bytes = 0;
8169 sta = 0;
8170 target_ix = scsiq->q2.target_ix;
8171 tid_no = ASC_TIX_TO_TID(target_ix);
8172 n_q_required = 1;
8173 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8174 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8175 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8176 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8177 AscMsgOutSDTR(asc_dvc,
8178 asc_dvc->
8179 sdtr_period_tbl[(sdtr_data >> 4) &
8180 (uchar)(asc_dvc->
8181 max_sdtr_index -
8182 1)],
8183 (uchar)(sdtr_data & (uchar)
8184 ASC_SYN_MAX_OFFSET));
8185 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8188 if (asc_dvc->in_critical_cnt != 0) {
8189 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8190 return ASC_ERROR;
8192 asc_dvc->in_critical_cnt++;
8193 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8194 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8195 asc_dvc->in_critical_cnt--;
8196 return ASC_ERROR;
8198 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8199 asc_dvc->in_critical_cnt--;
8200 return ASC_ERROR;
8202 if (sg_entry_cnt == 1) {
8203 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8204 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8205 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8207 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8209 scsi_cmd = scsiq->cdbptr[0];
8210 disable_syn_offset_one_fix = false;
8211 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8212 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8213 if (scsiq->q1.cntl & QC_SG_HEAD) {
8214 data_cnt = 0;
8215 for (i = 0; i < sg_entry_cnt; i++) {
8216 data_cnt += le32_to_cpu(sg_head->sg_list[i].
8217 bytes);
8219 } else {
8220 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8222 if (data_cnt != 0UL) {
8223 if (data_cnt < 512UL) {
8224 disable_syn_offset_one_fix = true;
8225 } else {
8226 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8227 i++) {
8228 disable_cmd =
8229 _syn_offset_one_disable_cmd[i];
8230 if (disable_cmd == 0xFF) {
8231 break;
8233 if (scsi_cmd == disable_cmd) {
8234 disable_syn_offset_one_fix =
8235 true;
8236 break;
8242 if (disable_syn_offset_one_fix) {
8243 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8244 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8245 ASC_TAG_FLAG_DISABLE_DISCONNECT);
8246 } else {
8247 scsiq->q2.tag_code &= 0x27;
8249 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8250 if (asc_dvc->bug_fix_cntl) {
8251 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8252 if ((scsi_cmd == READ_6) ||
8253 (scsi_cmd == READ_10)) {
8254 addr = le32_to_cpu(sg_head->
8255 sg_list
8256 [sg_entry_cnt_minus_one].
8257 addr) +
8258 le32_to_cpu(sg_head->
8259 sg_list
8260 [sg_entry_cnt_minus_one].
8261 bytes);
8262 extra_bytes =
8263 (uchar)((ushort)addr & 0x0003);
8264 if ((extra_bytes != 0)
8266 ((scsiq->q2.
8267 tag_code &
8268 ASC_TAG_FLAG_EXTRA_BYTES)
8269 == 0)) {
8270 scsiq->q2.tag_code |=
8271 ASC_TAG_FLAG_EXTRA_BYTES;
8272 scsiq->q1.extra_bytes =
8273 extra_bytes;
8274 data_cnt =
8275 le32_to_cpu(sg_head->
8276 sg_list
8277 [sg_entry_cnt_minus_one].
8278 bytes);
8279 data_cnt -= extra_bytes;
8280 sg_head->
8281 sg_list
8282 [sg_entry_cnt_minus_one].
8283 bytes =
8284 cpu_to_le32(data_cnt);
8289 sg_head->entry_to_copy = sg_head->entry_cnt;
8290 n_q_required = AscSgListToQueue(sg_entry_cnt);
8291 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8292 (uint) n_q_required)
8293 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8294 if ((sta =
8295 AscSendScsiQueue(asc_dvc, scsiq,
8296 n_q_required)) == 1) {
8297 asc_dvc->in_critical_cnt--;
8298 return (sta);
8301 } else {
8302 if (asc_dvc->bug_fix_cntl) {
8303 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8304 if ((scsi_cmd == READ_6) ||
8305 (scsi_cmd == READ_10)) {
8306 addr =
8307 le32_to_cpu(scsiq->q1.data_addr) +
8308 le32_to_cpu(scsiq->q1.data_cnt);
8309 extra_bytes =
8310 (uchar)((ushort)addr & 0x0003);
8311 if ((extra_bytes != 0)
8313 ((scsiq->q2.
8314 tag_code &
8315 ASC_TAG_FLAG_EXTRA_BYTES)
8316 == 0)) {
8317 data_cnt =
8318 le32_to_cpu(scsiq->q1.
8319 data_cnt);
8320 if (((ushort)data_cnt & 0x01FF)
8321 == 0) {
8322 scsiq->q2.tag_code |=
8323 ASC_TAG_FLAG_EXTRA_BYTES;
8324 data_cnt -= extra_bytes;
8325 scsiq->q1.data_cnt =
8326 cpu_to_le32
8327 (data_cnt);
8328 scsiq->q1.extra_bytes =
8329 extra_bytes;
8335 n_q_required = 1;
8336 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8337 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8338 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8339 n_q_required)) == 1) {
8340 asc_dvc->in_critical_cnt--;
8341 return (sta);
8345 asc_dvc->in_critical_cnt--;
8346 return (sta);
8350 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8352 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8353 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8354 * RISC to notify it a new command is ready to be executed.
8356 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8357 * set to SCSI_MAX_RETRY.
8359 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8360 * for DMA addresses or math operations are byte swapped to little-endian
8361 * order.
8363 * Return:
8364 * ADV_SUCCESS(1) - The request was successfully queued.
8365 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8366 * request completes.
8367 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8368 * host IC error.
8370 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8372 AdvPortAddr iop_base;
8373 ADV_CARR_T *new_carrp;
8374 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8377 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8379 if (scsiq->target_id > ADV_MAX_TID) {
8380 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8381 scsiq->done_status = QD_WITH_ERROR;
8382 return ADV_ERROR;
8385 iop_base = asc_dvc->iop_base;
8388 * Allocate a carrier ensuring at least one carrier always
8389 * remains on the freelist and initialize fields.
8391 new_carrp = adv_get_next_carrier(asc_dvc);
8392 if (!new_carrp) {
8393 ASC_DBG(1, "No free carriers\n");
8394 return ADV_BUSY;
8397 asc_dvc->carr_pending_cnt++;
8399 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8400 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8401 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8403 scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8404 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8407 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8408 * the microcode. The newly allocated stopper will become the new
8409 * stopper.
8411 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8414 * Set the 'next_vpa' pointer for the old stopper to be the
8415 * physical address of the new stopper. The RISC can only
8416 * follow physical addresses.
8418 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8421 * Set the host adapter stopper pointer to point to the new carrier.
8423 asc_dvc->icq_sp = new_carrp;
8425 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8426 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8428 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8430 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8431 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8433 * Clear the tickle value. In the ASC-3550 the RISC flag
8434 * command 'clr_tickle_a' does not work unless the host
8435 * value is cleared.
8437 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8438 ADV_TICKLE_NOP);
8440 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8442 * Notify the RISC a carrier is ready by writing the physical
8443 * address of the new carrier stopper to the COMMA register.
8445 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8446 le32_to_cpu(new_carrp->carr_pa));
8449 return ADV_SUCCESS;
8453 * Execute a single 'struct scsi_cmnd'.
8455 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8457 int ret, err_code;
8458 struct asc_board *boardp = shost_priv(scp->device->host);
8460 ASC_DBG(1, "scp 0x%p\n", scp);
8462 if (ASC_NARROW_BOARD(boardp)) {
8463 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8464 struct asc_scsi_q asc_scsi_q;
8466 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8467 if (ret != ASC_NOERROR) {
8468 ASC_STATS(scp->device->host, build_error);
8469 return ret;
8472 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8473 kfree(asc_scsi_q.sg_head);
8474 err_code = asc_dvc->err_code;
8475 } else {
8476 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8477 adv_req_t *adv_reqp;
8479 switch (adv_build_req(boardp, scp, &adv_reqp)) {
8480 case ASC_NOERROR:
8481 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8482 break;
8483 case ASC_BUSY:
8484 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8486 * The asc_stats fields 'adv_build_noreq' and
8487 * 'adv_build_nosg' count wide board busy conditions.
8488 * They are updated in adv_build_req and
8489 * adv_get_sglist, respectively.
8491 return ASC_BUSY;
8492 case ASC_ERROR:
8493 default:
8494 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8495 ASC_STATS(scp->device->host, build_error);
8496 return ASC_ERROR;
8499 ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8500 err_code = adv_dvc->err_code;
8503 switch (ret) {
8504 case ASC_NOERROR:
8505 ASC_STATS(scp->device->host, exe_noerror);
8507 * Increment monotonically increasing per device
8508 * successful request counter. Wrapping doesn't matter.
8510 boardp->reqcnt[scp->device->id]++;
8511 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8512 break;
8513 case ASC_BUSY:
8514 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8515 ASC_STATS(scp->device->host, exe_busy);
8516 break;
8517 case ASC_ERROR:
8518 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8519 "err_code 0x%x\n", err_code);
8520 ASC_STATS(scp->device->host, exe_error);
8521 scp->result = HOST_BYTE(DID_ERROR);
8522 break;
8523 default:
8524 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8525 "err_code 0x%x\n", err_code);
8526 ASC_STATS(scp->device->host, exe_unknown);
8527 scp->result = HOST_BYTE(DID_ERROR);
8528 break;
8531 ASC_DBG(1, "end\n");
8532 return ret;
8536 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8538 * This function always returns 0. Command return status is saved
8539 * in the 'scp' result field.
8541 static int
8542 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8544 struct Scsi_Host *shost = scp->device->host;
8545 int asc_res, result = 0;
8547 ASC_STATS(shost, queuecommand);
8548 scp->scsi_done = done;
8550 asc_res = asc_execute_scsi_cmnd(scp);
8552 switch (asc_res) {
8553 case ASC_NOERROR:
8554 break;
8555 case ASC_BUSY:
8556 result = SCSI_MLQUEUE_HOST_BUSY;
8557 break;
8558 case ASC_ERROR:
8559 default:
8560 asc_scsi_done(scp);
8561 break;
8564 return result;
8567 static DEF_SCSI_QCMD(advansys_queuecommand)
8569 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8571 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8572 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8573 return inpw(eisa_cfg_iop);
8577 * Return the BIOS address of the adapter at the specified
8578 * I/O port and with the specified bus type.
8580 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8581 unsigned short bus_type)
8583 unsigned short cfg_lsw;
8584 unsigned short bios_addr;
8587 * The PCI BIOS is re-located by the motherboard BIOS. Because
8588 * of this the driver can not determine where a PCI BIOS is
8589 * loaded and executes.
8591 if (bus_type & ASC_IS_PCI)
8592 return 0;
8594 if ((bus_type & ASC_IS_EISA) != 0) {
8595 cfg_lsw = AscGetEisaChipCfg(iop_base);
8596 cfg_lsw &= 0x000F;
8597 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8598 return bios_addr;
8601 cfg_lsw = AscGetChipCfgLsw(iop_base);
8604 * ISA PnP uses the top bit as the 32K BIOS flag
8606 if (bus_type == ASC_IS_ISAPNP)
8607 cfg_lsw &= 0x7FFF;
8608 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8609 return bios_addr;
8612 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8614 ushort cfg_lsw;
8616 if (AscGetChipScsiID(iop_base) == new_host_id) {
8617 return (new_host_id);
8619 cfg_lsw = AscGetChipCfgLsw(iop_base);
8620 cfg_lsw &= 0xF8FF;
8621 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8622 AscSetChipCfgLsw(iop_base, cfg_lsw);
8623 return (AscGetChipScsiID(iop_base));
8626 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8628 unsigned char sc;
8630 AscSetBank(iop_base, 1);
8631 sc = inp(iop_base + IOP_REG_SC);
8632 AscSetBank(iop_base, 0);
8633 return sc;
8636 static unsigned char AscGetChipVersion(PortAddr iop_base,
8637 unsigned short bus_type)
8639 if (bus_type & ASC_IS_EISA) {
8640 PortAddr eisa_iop;
8641 unsigned char revision;
8642 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8643 (PortAddr) ASC_EISA_REV_IOP_MASK;
8644 revision = inp(eisa_iop);
8645 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8647 return AscGetChipVerNo(iop_base);
8650 #ifdef CONFIG_ISA
8651 static void AscEnableIsaDma(uchar dma_channel)
8653 if (dma_channel < 4) {
8654 outp(0x000B, (ushort)(0xC0 | dma_channel));
8655 outp(0x000A, dma_channel);
8656 } else if (dma_channel < 8) {
8657 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8658 outp(0x00D4, (ushort)(dma_channel - 4));
8661 #endif /* CONFIG_ISA */
8663 static int AscStopQueueExe(PortAddr iop_base)
8665 int count = 0;
8667 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8668 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8669 ASC_STOP_REQ_RISC_STOP);
8670 do {
8671 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8672 ASC_STOP_ACK_RISC_STOP) {
8673 return (1);
8675 mdelay(100);
8676 } while (count++ < 20);
8678 return (0);
8681 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8683 if (bus_type & ASC_IS_ISA)
8684 return ASC_MAX_ISA_DMA_COUNT;
8685 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8686 return ASC_MAX_VL_DMA_COUNT;
8687 return ASC_MAX_PCI_DMA_COUNT;
8690 #ifdef CONFIG_ISA
8691 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8693 ushort channel;
8695 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8696 if (channel == 0x03)
8697 return (0);
8698 else if (channel == 0x00)
8699 return (7);
8700 return (channel + 4);
8703 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8705 ushort cfg_lsw;
8706 uchar value;
8708 if ((dma_channel >= 5) && (dma_channel <= 7)) {
8709 if (dma_channel == 7)
8710 value = 0x00;
8711 else
8712 value = dma_channel - 4;
8713 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8714 cfg_lsw |= value;
8715 AscSetChipCfgLsw(iop_base, cfg_lsw);
8716 return (AscGetIsaDmaChannel(iop_base));
8718 return 0;
8721 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8723 uchar speed_value;
8725 AscSetBank(iop_base, 1);
8726 speed_value = AscReadChipDmaSpeed(iop_base);
8727 speed_value &= 0x07;
8728 AscSetBank(iop_base, 0);
8729 return speed_value;
8732 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8734 speed_value &= 0x07;
8735 AscSetBank(iop_base, 1);
8736 AscWriteChipDmaSpeed(iop_base, speed_value);
8737 AscSetBank(iop_base, 0);
8738 return AscGetIsaDmaSpeed(iop_base);
8740 #endif /* CONFIG_ISA */
8742 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8744 int i;
8745 PortAddr iop_base;
8746 uchar chip_version;
8748 iop_base = asc_dvc->iop_base;
8749 asc_dvc->err_code = 0;
8750 if ((asc_dvc->bus_type &
8751 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8752 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8754 AscSetChipControl(iop_base, CC_HALT);
8755 AscSetChipStatus(iop_base, 0);
8756 asc_dvc->bug_fix_cntl = 0;
8757 asc_dvc->pci_fix_asyn_xfer = 0;
8758 asc_dvc->pci_fix_asyn_xfer_always = 0;
8759 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8760 asc_dvc->sdtr_done = 0;
8761 asc_dvc->cur_total_qng = 0;
8762 asc_dvc->is_in_int = false;
8763 asc_dvc->in_critical_cnt = 0;
8764 asc_dvc->last_q_shortage = 0;
8765 asc_dvc->use_tagged_qng = 0;
8766 asc_dvc->no_scam = 0;
8767 asc_dvc->unit_not_ready = 0;
8768 asc_dvc->queue_full_or_busy = 0;
8769 asc_dvc->redo_scam = 0;
8770 asc_dvc->res2 = 0;
8771 asc_dvc->min_sdtr_index = 0;
8772 asc_dvc->cfg->can_tagged_qng = 0;
8773 asc_dvc->cfg->cmd_qng_enabled = 0;
8774 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8775 asc_dvc->init_sdtr = 0;
8776 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8777 asc_dvc->scsi_reset_wait = 3;
8778 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8779 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8780 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8781 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8782 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8783 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8784 asc_dvc->cfg->chip_version = chip_version;
8785 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8786 asc_dvc->max_sdtr_index = 7;
8787 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8788 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8789 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8790 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8791 asc_dvc->max_sdtr_index = 15;
8792 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8793 AscSetExtraControl(iop_base,
8794 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8795 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8796 AscSetExtraControl(iop_base,
8797 (SEC_ACTIVE_NEGATE |
8798 SEC_ENABLE_FILTER));
8801 if (asc_dvc->bus_type == ASC_IS_PCI) {
8802 AscSetExtraControl(iop_base,
8803 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8806 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8807 #ifdef CONFIG_ISA
8808 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8809 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8810 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8811 asc_dvc->bus_type = ASC_IS_ISAPNP;
8813 asc_dvc->cfg->isa_dma_channel =
8814 (uchar)AscGetIsaDmaChannel(iop_base);
8816 #endif /* CONFIG_ISA */
8817 for (i = 0; i <= ASC_MAX_TID; i++) {
8818 asc_dvc->cur_dvc_qng[i] = 0;
8819 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8820 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8821 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8822 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8826 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8828 int retry;
8830 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8831 unsigned char read_back;
8832 AscSetChipEEPCmd(iop_base, cmd_reg);
8833 mdelay(1);
8834 read_back = AscGetChipEEPCmd(iop_base);
8835 if (read_back == cmd_reg)
8836 return 1;
8838 return 0;
8841 static void AscWaitEEPRead(void)
8843 mdelay(1);
8846 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8848 ushort read_wval;
8849 uchar cmd_reg;
8851 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8852 AscWaitEEPRead();
8853 cmd_reg = addr | ASC_EEP_CMD_READ;
8854 AscWriteEEPCmdReg(iop_base, cmd_reg);
8855 AscWaitEEPRead();
8856 read_wval = AscGetChipEEPData(iop_base);
8857 AscWaitEEPRead();
8858 return read_wval;
8861 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8862 ushort bus_type)
8864 ushort wval;
8865 ushort sum;
8866 ushort *wbuf;
8867 int cfg_beg;
8868 int cfg_end;
8869 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8870 int s_addr;
8872 wbuf = (ushort *)cfg_buf;
8873 sum = 0;
8874 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8875 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8876 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8877 sum += *wbuf;
8879 if (bus_type & ASC_IS_VL) {
8880 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8881 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8882 } else {
8883 cfg_beg = ASC_EEP_DVC_CFG_BEG;
8884 cfg_end = ASC_EEP_MAX_DVC_ADDR;
8886 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8887 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8888 if (s_addr <= uchar_end_in_config) {
8890 * Swap all char fields - must unswap bytes already swapped
8891 * by AscReadEEPWord().
8893 *wbuf = le16_to_cpu(wval);
8894 } else {
8895 /* Don't swap word field at the end - cntl field. */
8896 *wbuf = wval;
8898 sum += wval; /* Checksum treats all EEPROM data as words. */
8901 * Read the checksum word which will be compared against 'sum'
8902 * by the caller. Word field already swapped.
8904 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8905 return sum;
8908 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8910 PortAddr iop_base;
8911 ushort q_addr;
8912 ushort saved_word;
8913 int sta;
8915 iop_base = asc_dvc->iop_base;
8916 sta = 0;
8917 q_addr = ASC_QNO_TO_QADDR(241);
8918 saved_word = AscReadLramWord(iop_base, q_addr);
8919 AscSetChipLramAddr(iop_base, q_addr);
8920 AscSetChipLramData(iop_base, 0x55AA);
8921 mdelay(10);
8922 AscSetChipLramAddr(iop_base, q_addr);
8923 if (AscGetChipLramData(iop_base) == 0x55AA) {
8924 sta = 1;
8925 AscWriteLramWord(iop_base, q_addr, saved_word);
8927 return (sta);
8930 static void AscWaitEEPWrite(void)
8932 mdelay(20);
8935 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8937 ushort read_back;
8938 int retry;
8940 retry = 0;
8941 while (true) {
8942 AscSetChipEEPData(iop_base, data_reg);
8943 mdelay(1);
8944 read_back = AscGetChipEEPData(iop_base);
8945 if (read_back == data_reg) {
8946 return (1);
8948 if (retry++ > ASC_EEP_MAX_RETRY) {
8949 return (0);
8954 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8956 ushort read_wval;
8958 read_wval = AscReadEEPWord(iop_base, addr);
8959 if (read_wval != word_val) {
8960 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8961 AscWaitEEPRead();
8962 AscWriteEEPDataReg(iop_base, word_val);
8963 AscWaitEEPRead();
8964 AscWriteEEPCmdReg(iop_base,
8965 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8966 AscWaitEEPWrite();
8967 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8968 AscWaitEEPRead();
8969 return (AscReadEEPWord(iop_base, addr));
8971 return (read_wval);
8974 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8975 ushort bus_type)
8977 int n_error;
8978 ushort *wbuf;
8979 ushort word;
8980 ushort sum;
8981 int s_addr;
8982 int cfg_beg;
8983 int cfg_end;
8984 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8986 wbuf = (ushort *)cfg_buf;
8987 n_error = 0;
8988 sum = 0;
8989 /* Write two config words; AscWriteEEPWord() will swap bytes. */
8990 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8991 sum += *wbuf;
8992 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8993 n_error++;
8996 if (bus_type & ASC_IS_VL) {
8997 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8998 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8999 } else {
9000 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9001 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9003 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9004 if (s_addr <= uchar_end_in_config) {
9006 * This is a char field. Swap char fields before they are
9007 * swapped again by AscWriteEEPWord().
9009 word = cpu_to_le16(*wbuf);
9010 if (word !=
9011 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9012 n_error++;
9014 } else {
9015 /* Don't swap word field at the end - cntl field. */
9016 if (*wbuf !=
9017 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9018 n_error++;
9021 sum += *wbuf; /* Checksum calculated from word values. */
9023 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9024 *wbuf = sum;
9025 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9026 n_error++;
9029 /* Read EEPROM back again. */
9030 wbuf = (ushort *)cfg_buf;
9032 * Read two config words; Byte-swapping done by AscReadEEPWord().
9034 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9035 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9036 n_error++;
9039 if (bus_type & ASC_IS_VL) {
9040 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9041 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9042 } else {
9043 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9044 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9046 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9047 if (s_addr <= uchar_end_in_config) {
9049 * Swap all char fields. Must unswap bytes already swapped
9050 * by AscReadEEPWord().
9052 word =
9053 le16_to_cpu(AscReadEEPWord
9054 (iop_base, (uchar)s_addr));
9055 } else {
9056 /* Don't swap word field at the end - cntl field. */
9057 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9059 if (*wbuf != word) {
9060 n_error++;
9063 /* Read checksum; Byte swapping not needed. */
9064 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9065 n_error++;
9067 return n_error;
9070 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9071 ushort bus_type)
9073 int retry;
9074 int n_error;
9076 retry = 0;
9077 while (true) {
9078 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9079 bus_type)) == 0) {
9080 break;
9082 if (++retry > ASC_EEP_MAX_RETRY) {
9083 break;
9086 return n_error;
9089 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9091 ASCEEP_CONFIG eep_config_buf;
9092 ASCEEP_CONFIG *eep_config;
9093 PortAddr iop_base;
9094 ushort chksum;
9095 ushort warn_code;
9096 ushort cfg_msw, cfg_lsw;
9097 int i;
9098 int write_eep = 0;
9100 iop_base = asc_dvc->iop_base;
9101 warn_code = 0;
9102 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9103 AscStopQueueExe(iop_base);
9104 if ((AscStopChip(iop_base)) ||
9105 (AscGetChipScsiCtrl(iop_base) != 0)) {
9106 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9107 AscResetChipAndScsiBus(asc_dvc);
9108 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9110 if (!AscIsChipHalted(iop_base)) {
9111 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9112 return (warn_code);
9114 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9115 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9116 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9117 return (warn_code);
9119 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9120 cfg_msw = AscGetChipCfgMsw(iop_base);
9121 cfg_lsw = AscGetChipCfgLsw(iop_base);
9122 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9123 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9124 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9125 AscSetChipCfgMsw(iop_base, cfg_msw);
9127 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9128 ASC_DBG(1, "chksum 0x%x\n", chksum);
9129 if (chksum == 0) {
9130 chksum = 0xaa55;
9132 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9133 warn_code |= ASC_WARN_AUTO_CONFIG;
9134 if (asc_dvc->cfg->chip_version == 3) {
9135 if (eep_config->cfg_lsw != cfg_lsw) {
9136 warn_code |= ASC_WARN_EEPROM_RECOVER;
9137 eep_config->cfg_lsw =
9138 AscGetChipCfgLsw(iop_base);
9140 if (eep_config->cfg_msw != cfg_msw) {
9141 warn_code |= ASC_WARN_EEPROM_RECOVER;
9142 eep_config->cfg_msw =
9143 AscGetChipCfgMsw(iop_base);
9147 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9148 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9149 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9150 if (chksum != eep_config->chksum) {
9151 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9152 ASC_CHIP_VER_PCI_ULTRA_3050) {
9153 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9154 eep_config->init_sdtr = 0xFF;
9155 eep_config->disc_enable = 0xFF;
9156 eep_config->start_motor = 0xFF;
9157 eep_config->use_cmd_qng = 0;
9158 eep_config->max_total_qng = 0xF0;
9159 eep_config->max_tag_qng = 0x20;
9160 eep_config->cntl = 0xBFFF;
9161 ASC_EEP_SET_CHIP_ID(eep_config, 7);
9162 eep_config->no_scam = 0;
9163 eep_config->adapter_info[0] = 0;
9164 eep_config->adapter_info[1] = 0;
9165 eep_config->adapter_info[2] = 0;
9166 eep_config->adapter_info[3] = 0;
9167 eep_config->adapter_info[4] = 0;
9168 /* Indicate EEPROM-less board. */
9169 eep_config->adapter_info[5] = 0xBB;
9170 } else {
9171 ASC_PRINT
9172 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9173 write_eep = 1;
9174 warn_code |= ASC_WARN_EEPROM_CHKSUM;
9177 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9178 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9179 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9180 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9181 asc_dvc->start_motor = eep_config->start_motor;
9182 asc_dvc->dvc_cntl = eep_config->cntl;
9183 asc_dvc->no_scam = eep_config->no_scam;
9184 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9185 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9186 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9187 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9188 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9189 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9190 if (!AscTestExternalLram(asc_dvc)) {
9191 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9192 ASC_IS_PCI_ULTRA)) {
9193 eep_config->max_total_qng =
9194 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9195 eep_config->max_tag_qng =
9196 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9197 } else {
9198 eep_config->cfg_msw |= 0x0800;
9199 cfg_msw |= 0x0800;
9200 AscSetChipCfgMsw(iop_base, cfg_msw);
9201 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9202 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9204 } else {
9206 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9207 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9209 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9210 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9212 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9213 eep_config->max_tag_qng = eep_config->max_total_qng;
9215 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9216 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9218 asc_dvc->max_total_qng = eep_config->max_total_qng;
9219 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9220 eep_config->use_cmd_qng) {
9221 eep_config->disc_enable = eep_config->use_cmd_qng;
9222 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9224 ASC_EEP_SET_CHIP_ID(eep_config,
9225 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9226 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9227 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9228 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9229 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9232 for (i = 0; i <= ASC_MAX_TID; i++) {
9233 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9234 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9235 asc_dvc->cfg->sdtr_period_offset[i] =
9236 (uchar)(ASC_DEF_SDTR_OFFSET |
9237 (asc_dvc->min_sdtr_index << 4));
9239 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9240 if (write_eep) {
9241 if ((i = AscSetEEPConfig(iop_base, eep_config,
9242 asc_dvc->bus_type)) != 0) {
9243 ASC_PRINT1
9244 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9246 } else {
9247 ASC_PRINT
9248 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9251 return (warn_code);
9254 static int AscInitGetConfig(struct Scsi_Host *shost)
9256 struct asc_board *board = shost_priv(shost);
9257 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9258 unsigned short warn_code = 0;
9260 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9261 if (asc_dvc->err_code != 0)
9262 return asc_dvc->err_code;
9264 if (AscFindSignature(asc_dvc->iop_base)) {
9265 AscInitAscDvcVar(asc_dvc);
9266 warn_code = AscInitFromEEP(asc_dvc);
9267 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9268 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9269 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9270 } else {
9271 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9274 switch (warn_code) {
9275 case 0: /* No error */
9276 break;
9277 case ASC_WARN_IO_PORT_ROTATE:
9278 shost_printk(KERN_WARNING, shost, "I/O port address "
9279 "modified\n");
9280 break;
9281 case ASC_WARN_AUTO_CONFIG:
9282 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9283 "enabled\n");
9284 break;
9285 case ASC_WARN_EEPROM_CHKSUM:
9286 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9287 break;
9288 case ASC_WARN_IRQ_MODIFIED:
9289 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9290 break;
9291 case ASC_WARN_CMD_QNG_CONFLICT:
9292 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9293 "disconnects\n");
9294 break;
9295 default:
9296 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9297 warn_code);
9298 break;
9301 if (asc_dvc->err_code != 0)
9302 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9303 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9305 return asc_dvc->err_code;
9308 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9310 struct asc_board *board = shost_priv(shost);
9311 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9312 PortAddr iop_base = asc_dvc->iop_base;
9313 unsigned short cfg_msw;
9314 unsigned short warn_code = 0;
9316 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9317 if (asc_dvc->err_code != 0)
9318 return asc_dvc->err_code;
9319 if (!AscFindSignature(asc_dvc->iop_base)) {
9320 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9321 return asc_dvc->err_code;
9324 cfg_msw = AscGetChipCfgMsw(iop_base);
9325 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9326 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9327 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9328 AscSetChipCfgMsw(iop_base, cfg_msw);
9330 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9331 asc_dvc->cfg->cmd_qng_enabled) {
9332 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9333 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9335 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9336 warn_code |= ASC_WARN_AUTO_CONFIG;
9338 #ifdef CONFIG_PCI
9339 if (asc_dvc->bus_type & ASC_IS_PCI) {
9340 cfg_msw &= 0xFFC0;
9341 AscSetChipCfgMsw(iop_base, cfg_msw);
9342 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9343 } else {
9344 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9345 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9346 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9347 asc_dvc->bug_fix_cntl |=
9348 ASC_BUG_FIX_ASYN_USE_SYN;
9351 } else
9352 #endif /* CONFIG_PCI */
9353 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9354 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9355 == ASC_CHIP_VER_ASYN_BUG) {
9356 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9359 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9360 asc_dvc->cfg->chip_scsi_id) {
9361 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9363 #ifdef CONFIG_ISA
9364 if (asc_dvc->bus_type & ASC_IS_ISA) {
9365 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9366 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9368 #endif /* CONFIG_ISA */
9370 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9372 switch (warn_code) {
9373 case 0: /* No error. */
9374 break;
9375 case ASC_WARN_IO_PORT_ROTATE:
9376 shost_printk(KERN_WARNING, shost, "I/O port address "
9377 "modified\n");
9378 break;
9379 case ASC_WARN_AUTO_CONFIG:
9380 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9381 "enabled\n");
9382 break;
9383 case ASC_WARN_EEPROM_CHKSUM:
9384 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9385 break;
9386 case ASC_WARN_IRQ_MODIFIED:
9387 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9388 break;
9389 case ASC_WARN_CMD_QNG_CONFLICT:
9390 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9391 "disconnects\n");
9392 break;
9393 default:
9394 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9395 warn_code);
9396 break;
9399 if (asc_dvc->err_code != 0)
9400 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9401 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9403 return asc_dvc->err_code;
9407 * EEPROM Configuration.
9409 * All drivers should use this structure to set the default EEPROM
9410 * configuration. The BIOS now uses this structure when it is built.
9411 * Additional structure information can be found in a_condor.h where
9412 * the structure is defined.
9414 * The *_Field_IsChar structs are needed to correct for endianness.
9415 * These values are read from the board 16 bits at a time directly
9416 * into the structs. Because some fields are char, the values will be
9417 * in the wrong order. The *_Field_IsChar tells when to flip the
9418 * bytes. Data read and written to PCI memory is automatically swapped
9419 * on big-endian platforms so char fields read as words are actually being
9420 * unswapped on big-endian platforms.
9422 #ifdef CONFIG_PCI
9423 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9424 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9425 0x0000, /* cfg_msw */
9426 0xFFFF, /* disc_enable */
9427 0xFFFF, /* wdtr_able */
9428 0xFFFF, /* sdtr_able */
9429 0xFFFF, /* start_motor */
9430 0xFFFF, /* tagqng_able */
9431 0xFFFF, /* bios_scan */
9432 0, /* scam_tolerant */
9433 7, /* adapter_scsi_id */
9434 0, /* bios_boot_delay */
9435 3, /* scsi_reset_delay */
9436 0, /* bios_id_lun */
9437 0, /* termination */
9438 0, /* reserved1 */
9439 0xFFE7, /* bios_ctrl */
9440 0xFFFF, /* ultra_able */
9441 0, /* reserved2 */
9442 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
9443 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9444 0, /* dvc_cntl */
9445 0, /* bug_fix */
9446 0, /* serial_number_word1 */
9447 0, /* serial_number_word2 */
9448 0, /* serial_number_word3 */
9449 0, /* check_sum */
9450 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9451 , /* oem_name[16] */
9452 0, /* dvc_err_code */
9453 0, /* adv_err_code */
9454 0, /* adv_err_addr */
9455 0, /* saved_dvc_err_code */
9456 0, /* saved_adv_err_code */
9457 0, /* saved_adv_err_addr */
9458 0 /* num_of_err */
9461 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9462 0, /* cfg_lsw */
9463 0, /* cfg_msw */
9464 0, /* -disc_enable */
9465 0, /* wdtr_able */
9466 0, /* sdtr_able */
9467 0, /* start_motor */
9468 0, /* tagqng_able */
9469 0, /* bios_scan */
9470 0, /* scam_tolerant */
9471 1, /* adapter_scsi_id */
9472 1, /* bios_boot_delay */
9473 1, /* scsi_reset_delay */
9474 1, /* bios_id_lun */
9475 1, /* termination */
9476 1, /* reserved1 */
9477 0, /* bios_ctrl */
9478 0, /* ultra_able */
9479 0, /* reserved2 */
9480 1, /* max_host_qng */
9481 1, /* max_dvc_qng */
9482 0, /* dvc_cntl */
9483 0, /* bug_fix */
9484 0, /* serial_number_word1 */
9485 0, /* serial_number_word2 */
9486 0, /* serial_number_word3 */
9487 0, /* check_sum */
9488 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9489 , /* oem_name[16] */
9490 0, /* dvc_err_code */
9491 0, /* adv_err_code */
9492 0, /* adv_err_addr */
9493 0, /* saved_dvc_err_code */
9494 0, /* saved_adv_err_code */
9495 0, /* saved_adv_err_addr */
9496 0 /* num_of_err */
9499 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9500 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9501 0x0000, /* 01 cfg_msw */
9502 0xFFFF, /* 02 disc_enable */
9503 0xFFFF, /* 03 wdtr_able */
9504 0x4444, /* 04 sdtr_speed1 */
9505 0xFFFF, /* 05 start_motor */
9506 0xFFFF, /* 06 tagqng_able */
9507 0xFFFF, /* 07 bios_scan */
9508 0, /* 08 scam_tolerant */
9509 7, /* 09 adapter_scsi_id */
9510 0, /* bios_boot_delay */
9511 3, /* 10 scsi_reset_delay */
9512 0, /* bios_id_lun */
9513 0, /* 11 termination_se */
9514 0, /* termination_lvd */
9515 0xFFE7, /* 12 bios_ctrl */
9516 0x4444, /* 13 sdtr_speed2 */
9517 0x4444, /* 14 sdtr_speed3 */
9518 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9519 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9520 0, /* 16 dvc_cntl */
9521 0x4444, /* 17 sdtr_speed4 */
9522 0, /* 18 serial_number_word1 */
9523 0, /* 19 serial_number_word2 */
9524 0, /* 20 serial_number_word3 */
9525 0, /* 21 check_sum */
9526 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9527 , /* 22-29 oem_name[16] */
9528 0, /* 30 dvc_err_code */
9529 0, /* 31 adv_err_code */
9530 0, /* 32 adv_err_addr */
9531 0, /* 33 saved_dvc_err_code */
9532 0, /* 34 saved_adv_err_code */
9533 0, /* 35 saved_adv_err_addr */
9534 0, /* 36 reserved */
9535 0, /* 37 reserved */
9536 0, /* 38 reserved */
9537 0, /* 39 reserved */
9538 0, /* 40 reserved */
9539 0, /* 41 reserved */
9540 0, /* 42 reserved */
9541 0, /* 43 reserved */
9542 0, /* 44 reserved */
9543 0, /* 45 reserved */
9544 0, /* 46 reserved */
9545 0, /* 47 reserved */
9546 0, /* 48 reserved */
9547 0, /* 49 reserved */
9548 0, /* 50 reserved */
9549 0, /* 51 reserved */
9550 0, /* 52 reserved */
9551 0, /* 53 reserved */
9552 0, /* 54 reserved */
9553 0, /* 55 reserved */
9554 0, /* 56 cisptr_lsw */
9555 0, /* 57 cisprt_msw */
9556 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9557 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
9558 0, /* 60 reserved */
9559 0, /* 61 reserved */
9560 0, /* 62 reserved */
9561 0 /* 63 reserved */
9564 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9565 0, /* 00 cfg_lsw */
9566 0, /* 01 cfg_msw */
9567 0, /* 02 disc_enable */
9568 0, /* 03 wdtr_able */
9569 0, /* 04 sdtr_speed1 */
9570 0, /* 05 start_motor */
9571 0, /* 06 tagqng_able */
9572 0, /* 07 bios_scan */
9573 0, /* 08 scam_tolerant */
9574 1, /* 09 adapter_scsi_id */
9575 1, /* bios_boot_delay */
9576 1, /* 10 scsi_reset_delay */
9577 1, /* bios_id_lun */
9578 1, /* 11 termination_se */
9579 1, /* termination_lvd */
9580 0, /* 12 bios_ctrl */
9581 0, /* 13 sdtr_speed2 */
9582 0, /* 14 sdtr_speed3 */
9583 1, /* 15 max_host_qng */
9584 1, /* max_dvc_qng */
9585 0, /* 16 dvc_cntl */
9586 0, /* 17 sdtr_speed4 */
9587 0, /* 18 serial_number_word1 */
9588 0, /* 19 serial_number_word2 */
9589 0, /* 20 serial_number_word3 */
9590 0, /* 21 check_sum */
9591 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9592 , /* 22-29 oem_name[16] */
9593 0, /* 30 dvc_err_code */
9594 0, /* 31 adv_err_code */
9595 0, /* 32 adv_err_addr */
9596 0, /* 33 saved_dvc_err_code */
9597 0, /* 34 saved_adv_err_code */
9598 0, /* 35 saved_adv_err_addr */
9599 0, /* 36 reserved */
9600 0, /* 37 reserved */
9601 0, /* 38 reserved */
9602 0, /* 39 reserved */
9603 0, /* 40 reserved */
9604 0, /* 41 reserved */
9605 0, /* 42 reserved */
9606 0, /* 43 reserved */
9607 0, /* 44 reserved */
9608 0, /* 45 reserved */
9609 0, /* 46 reserved */
9610 0, /* 47 reserved */
9611 0, /* 48 reserved */
9612 0, /* 49 reserved */
9613 0, /* 50 reserved */
9614 0, /* 51 reserved */
9615 0, /* 52 reserved */
9616 0, /* 53 reserved */
9617 0, /* 54 reserved */
9618 0, /* 55 reserved */
9619 0, /* 56 cisptr_lsw */
9620 0, /* 57 cisprt_msw */
9621 0, /* 58 subsysvid */
9622 0, /* 59 subsysid */
9623 0, /* 60 reserved */
9624 0, /* 61 reserved */
9625 0, /* 62 reserved */
9626 0 /* 63 reserved */
9629 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9630 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9631 0x0000, /* 01 cfg_msw */
9632 0xFFFF, /* 02 disc_enable */
9633 0xFFFF, /* 03 wdtr_able */
9634 0x5555, /* 04 sdtr_speed1 */
9635 0xFFFF, /* 05 start_motor */
9636 0xFFFF, /* 06 tagqng_able */
9637 0xFFFF, /* 07 bios_scan */
9638 0, /* 08 scam_tolerant */
9639 7, /* 09 adapter_scsi_id */
9640 0, /* bios_boot_delay */
9641 3, /* 10 scsi_reset_delay */
9642 0, /* bios_id_lun */
9643 0, /* 11 termination_se */
9644 0, /* termination_lvd */
9645 0xFFE7, /* 12 bios_ctrl */
9646 0x5555, /* 13 sdtr_speed2 */
9647 0x5555, /* 14 sdtr_speed3 */
9648 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9649 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9650 0, /* 16 dvc_cntl */
9651 0x5555, /* 17 sdtr_speed4 */
9652 0, /* 18 serial_number_word1 */
9653 0, /* 19 serial_number_word2 */
9654 0, /* 20 serial_number_word3 */
9655 0, /* 21 check_sum */
9656 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9657 , /* 22-29 oem_name[16] */
9658 0, /* 30 dvc_err_code */
9659 0, /* 31 adv_err_code */
9660 0, /* 32 adv_err_addr */
9661 0, /* 33 saved_dvc_err_code */
9662 0, /* 34 saved_adv_err_code */
9663 0, /* 35 saved_adv_err_addr */
9664 0, /* 36 reserved */
9665 0, /* 37 reserved */
9666 0, /* 38 reserved */
9667 0, /* 39 reserved */
9668 0, /* 40 reserved */
9669 0, /* 41 reserved */
9670 0, /* 42 reserved */
9671 0, /* 43 reserved */
9672 0, /* 44 reserved */
9673 0, /* 45 reserved */
9674 0, /* 46 reserved */
9675 0, /* 47 reserved */
9676 0, /* 48 reserved */
9677 0, /* 49 reserved */
9678 0, /* 50 reserved */
9679 0, /* 51 reserved */
9680 0, /* 52 reserved */
9681 0, /* 53 reserved */
9682 0, /* 54 reserved */
9683 0, /* 55 reserved */
9684 0, /* 56 cisptr_lsw */
9685 0, /* 57 cisprt_msw */
9686 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9687 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
9688 0, /* 60 reserved */
9689 0, /* 61 reserved */
9690 0, /* 62 reserved */
9691 0 /* 63 reserved */
9694 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9695 0, /* 00 cfg_lsw */
9696 0, /* 01 cfg_msw */
9697 0, /* 02 disc_enable */
9698 0, /* 03 wdtr_able */
9699 0, /* 04 sdtr_speed1 */
9700 0, /* 05 start_motor */
9701 0, /* 06 tagqng_able */
9702 0, /* 07 bios_scan */
9703 0, /* 08 scam_tolerant */
9704 1, /* 09 adapter_scsi_id */
9705 1, /* bios_boot_delay */
9706 1, /* 10 scsi_reset_delay */
9707 1, /* bios_id_lun */
9708 1, /* 11 termination_se */
9709 1, /* termination_lvd */
9710 0, /* 12 bios_ctrl */
9711 0, /* 13 sdtr_speed2 */
9712 0, /* 14 sdtr_speed3 */
9713 1, /* 15 max_host_qng */
9714 1, /* max_dvc_qng */
9715 0, /* 16 dvc_cntl */
9716 0, /* 17 sdtr_speed4 */
9717 0, /* 18 serial_number_word1 */
9718 0, /* 19 serial_number_word2 */
9719 0, /* 20 serial_number_word3 */
9720 0, /* 21 check_sum */
9721 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9722 , /* 22-29 oem_name[16] */
9723 0, /* 30 dvc_err_code */
9724 0, /* 31 adv_err_code */
9725 0, /* 32 adv_err_addr */
9726 0, /* 33 saved_dvc_err_code */
9727 0, /* 34 saved_adv_err_code */
9728 0, /* 35 saved_adv_err_addr */
9729 0, /* 36 reserved */
9730 0, /* 37 reserved */
9731 0, /* 38 reserved */
9732 0, /* 39 reserved */
9733 0, /* 40 reserved */
9734 0, /* 41 reserved */
9735 0, /* 42 reserved */
9736 0, /* 43 reserved */
9737 0, /* 44 reserved */
9738 0, /* 45 reserved */
9739 0, /* 46 reserved */
9740 0, /* 47 reserved */
9741 0, /* 48 reserved */
9742 0, /* 49 reserved */
9743 0, /* 50 reserved */
9744 0, /* 51 reserved */
9745 0, /* 52 reserved */
9746 0, /* 53 reserved */
9747 0, /* 54 reserved */
9748 0, /* 55 reserved */
9749 0, /* 56 cisptr_lsw */
9750 0, /* 57 cisprt_msw */
9751 0, /* 58 subsysvid */
9752 0, /* 59 subsysid */
9753 0, /* 60 reserved */
9754 0, /* 61 reserved */
9755 0, /* 62 reserved */
9756 0 /* 63 reserved */
9760 * Wait for EEPROM command to complete
9762 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9764 int eep_delay_ms;
9766 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9767 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9768 ASC_EEP_CMD_DONE) {
9769 break;
9771 mdelay(1);
9773 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9775 BUG();
9779 * Read the EEPROM from specified location
9781 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9783 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9784 ASC_EEP_CMD_READ | eep_word_addr);
9785 AdvWaitEEPCmd(iop_base);
9786 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9790 * Write the EEPROM from 'cfg_buf'.
9792 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9793 ADVEEP_3550_CONFIG *cfg_buf)
9795 ushort *wbuf;
9796 ushort addr, chksum;
9797 ushort *charfields;
9799 wbuf = (ushort *)cfg_buf;
9800 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9801 chksum = 0;
9803 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9804 AdvWaitEEPCmd(iop_base);
9807 * Write EEPROM from word 0 to word 20.
9809 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9810 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9811 ushort word;
9813 if (*charfields++) {
9814 word = cpu_to_le16(*wbuf);
9815 } else {
9816 word = *wbuf;
9818 chksum += *wbuf; /* Checksum is calculated from word values. */
9819 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9820 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9821 ASC_EEP_CMD_WRITE | addr);
9822 AdvWaitEEPCmd(iop_base);
9823 mdelay(ADV_EEP_DELAY_MS);
9827 * Write EEPROM checksum at word 21.
9829 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9830 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9831 AdvWaitEEPCmd(iop_base);
9832 wbuf++;
9833 charfields++;
9836 * Write EEPROM OEM name at words 22 to 29.
9838 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9839 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9840 ushort word;
9842 if (*charfields++) {
9843 word = cpu_to_le16(*wbuf);
9844 } else {
9845 word = *wbuf;
9847 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9848 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9849 ASC_EEP_CMD_WRITE | addr);
9850 AdvWaitEEPCmd(iop_base);
9852 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9853 AdvWaitEEPCmd(iop_base);
9857 * Write the EEPROM from 'cfg_buf'.
9859 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9860 ADVEEP_38C0800_CONFIG *cfg_buf)
9862 ushort *wbuf;
9863 ushort *charfields;
9864 ushort addr, chksum;
9866 wbuf = (ushort *)cfg_buf;
9867 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9868 chksum = 0;
9870 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9871 AdvWaitEEPCmd(iop_base);
9874 * Write EEPROM from word 0 to word 20.
9876 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9877 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9878 ushort word;
9880 if (*charfields++) {
9881 word = cpu_to_le16(*wbuf);
9882 } else {
9883 word = *wbuf;
9885 chksum += *wbuf; /* Checksum is calculated from word values. */
9886 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9887 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9888 ASC_EEP_CMD_WRITE | addr);
9889 AdvWaitEEPCmd(iop_base);
9890 mdelay(ADV_EEP_DELAY_MS);
9894 * Write EEPROM checksum at word 21.
9896 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9897 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9898 AdvWaitEEPCmd(iop_base);
9899 wbuf++;
9900 charfields++;
9903 * Write EEPROM OEM name at words 22 to 29.
9905 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9906 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9907 ushort word;
9909 if (*charfields++) {
9910 word = cpu_to_le16(*wbuf);
9911 } else {
9912 word = *wbuf;
9914 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9915 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9916 ASC_EEP_CMD_WRITE | addr);
9917 AdvWaitEEPCmd(iop_base);
9919 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9920 AdvWaitEEPCmd(iop_base);
9924 * Write the EEPROM from 'cfg_buf'.
9926 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9927 ADVEEP_38C1600_CONFIG *cfg_buf)
9929 ushort *wbuf;
9930 ushort *charfields;
9931 ushort addr, chksum;
9933 wbuf = (ushort *)cfg_buf;
9934 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9935 chksum = 0;
9937 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9938 AdvWaitEEPCmd(iop_base);
9941 * Write EEPROM from word 0 to word 20.
9943 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9944 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9945 ushort word;
9947 if (*charfields++) {
9948 word = cpu_to_le16(*wbuf);
9949 } else {
9950 word = *wbuf;
9952 chksum += *wbuf; /* Checksum is calculated from word values. */
9953 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9954 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9955 ASC_EEP_CMD_WRITE | addr);
9956 AdvWaitEEPCmd(iop_base);
9957 mdelay(ADV_EEP_DELAY_MS);
9961 * Write EEPROM checksum at word 21.
9963 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9964 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9965 AdvWaitEEPCmd(iop_base);
9966 wbuf++;
9967 charfields++;
9970 * Write EEPROM OEM name at words 22 to 29.
9972 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9973 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9974 ushort word;
9976 if (*charfields++) {
9977 word = cpu_to_le16(*wbuf);
9978 } else {
9979 word = *wbuf;
9981 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9982 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9983 ASC_EEP_CMD_WRITE | addr);
9984 AdvWaitEEPCmd(iop_base);
9986 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9987 AdvWaitEEPCmd(iop_base);
9991 * Read EEPROM configuration into the specified buffer.
9993 * Return a checksum based on the EEPROM configuration read.
9995 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9996 ADVEEP_3550_CONFIG *cfg_buf)
9998 ushort wval, chksum;
9999 ushort *wbuf;
10000 int eep_addr;
10001 ushort *charfields;
10003 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10004 wbuf = (ushort *)cfg_buf;
10005 chksum = 0;
10007 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10008 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10009 wval = AdvReadEEPWord(iop_base, eep_addr);
10010 chksum += wval; /* Checksum is calculated from word values. */
10011 if (*charfields++) {
10012 *wbuf = le16_to_cpu(wval);
10013 } else {
10014 *wbuf = wval;
10017 /* Read checksum word. */
10018 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10019 wbuf++;
10020 charfields++;
10022 /* Read rest of EEPROM not covered by the checksum. */
10023 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10024 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10025 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10026 if (*charfields++) {
10027 *wbuf = le16_to_cpu(*wbuf);
10030 return chksum;
10034 * Read EEPROM configuration into the specified buffer.
10036 * Return a checksum based on the EEPROM configuration read.
10038 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10039 ADVEEP_38C0800_CONFIG *cfg_buf)
10041 ushort wval, chksum;
10042 ushort *wbuf;
10043 int eep_addr;
10044 ushort *charfields;
10046 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10047 wbuf = (ushort *)cfg_buf;
10048 chksum = 0;
10050 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10051 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10052 wval = AdvReadEEPWord(iop_base, eep_addr);
10053 chksum += wval; /* Checksum is calculated from word values. */
10054 if (*charfields++) {
10055 *wbuf = le16_to_cpu(wval);
10056 } else {
10057 *wbuf = wval;
10060 /* Read checksum word. */
10061 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10062 wbuf++;
10063 charfields++;
10065 /* Read rest of EEPROM not covered by the checksum. */
10066 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10067 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10068 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10069 if (*charfields++) {
10070 *wbuf = le16_to_cpu(*wbuf);
10073 return chksum;
10077 * Read EEPROM configuration into the specified buffer.
10079 * Return a checksum based on the EEPROM configuration read.
10081 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10082 ADVEEP_38C1600_CONFIG *cfg_buf)
10084 ushort wval, chksum;
10085 ushort *wbuf;
10086 int eep_addr;
10087 ushort *charfields;
10089 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10090 wbuf = (ushort *)cfg_buf;
10091 chksum = 0;
10093 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10094 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10095 wval = AdvReadEEPWord(iop_base, eep_addr);
10096 chksum += wval; /* Checksum is calculated from word values. */
10097 if (*charfields++) {
10098 *wbuf = le16_to_cpu(wval);
10099 } else {
10100 *wbuf = wval;
10103 /* Read checksum word. */
10104 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10105 wbuf++;
10106 charfields++;
10108 /* Read rest of EEPROM not covered by the checksum. */
10109 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10110 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10111 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10112 if (*charfields++) {
10113 *wbuf = le16_to_cpu(*wbuf);
10116 return chksum;
10120 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10121 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10122 * all of this is done.
10124 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10126 * For a non-fatal error return a warning code. If there are no warnings
10127 * then 0 is returned.
10129 * Note: Chip is stopped on entry.
10131 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10133 AdvPortAddr iop_base;
10134 ushort warn_code;
10135 ADVEEP_3550_CONFIG eep_config;
10137 iop_base = asc_dvc->iop_base;
10139 warn_code = 0;
10142 * Read the board's EEPROM configuration.
10144 * Set default values if a bad checksum is found.
10146 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10147 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10150 * Set EEPROM default values.
10152 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10153 sizeof(ADVEEP_3550_CONFIG));
10156 * Assume the 6 byte board serial number that was read from
10157 * EEPROM is correct even if the EEPROM checksum failed.
10159 eep_config.serial_number_word3 =
10160 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10162 eep_config.serial_number_word2 =
10163 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10165 eep_config.serial_number_word1 =
10166 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10168 AdvSet3550EEPConfig(iop_base, &eep_config);
10171 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10172 * EEPROM configuration that was read.
10174 * This is the mapping of EEPROM fields to Adv Library fields.
10176 asc_dvc->wdtr_able = eep_config.wdtr_able;
10177 asc_dvc->sdtr_able = eep_config.sdtr_able;
10178 asc_dvc->ultra_able = eep_config.ultra_able;
10179 asc_dvc->tagqng_able = eep_config.tagqng_able;
10180 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10181 asc_dvc->max_host_qng = eep_config.max_host_qng;
10182 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10183 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10184 asc_dvc->start_motor = eep_config.start_motor;
10185 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10186 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10187 asc_dvc->no_scam = eep_config.scam_tolerant;
10188 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10189 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10190 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10193 * Set the host maximum queuing (max. 253, min. 16) and the per device
10194 * maximum queuing (max. 63, min. 4).
10196 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10197 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10198 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10199 /* If the value is zero, assume it is uninitialized. */
10200 if (eep_config.max_host_qng == 0) {
10201 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10202 } else {
10203 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10207 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10208 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10209 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10210 /* If the value is zero, assume it is uninitialized. */
10211 if (eep_config.max_dvc_qng == 0) {
10212 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10213 } else {
10214 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10219 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10220 * set 'max_dvc_qng' to 'max_host_qng'.
10222 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10223 eep_config.max_dvc_qng = eep_config.max_host_qng;
10227 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10228 * values based on possibly adjusted EEPROM values.
10230 asc_dvc->max_host_qng = eep_config.max_host_qng;
10231 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10234 * If the EEPROM 'termination' field is set to automatic (0), then set
10235 * the ADV_DVC_CFG 'termination' field to automatic also.
10237 * If the termination is specified with a non-zero 'termination'
10238 * value check that a legal value is set and set the ADV_DVC_CFG
10239 * 'termination' field appropriately.
10241 if (eep_config.termination == 0) {
10242 asc_dvc->cfg->termination = 0; /* auto termination */
10243 } else {
10244 /* Enable manual control with low off / high off. */
10245 if (eep_config.termination == 1) {
10246 asc_dvc->cfg->termination = TERM_CTL_SEL;
10248 /* Enable manual control with low off / high on. */
10249 } else if (eep_config.termination == 2) {
10250 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10252 /* Enable manual control with low on / high on. */
10253 } else if (eep_config.termination == 3) {
10254 asc_dvc->cfg->termination =
10255 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10256 } else {
10258 * The EEPROM 'termination' field contains a bad value. Use
10259 * automatic termination instead.
10261 asc_dvc->cfg->termination = 0;
10262 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10266 return warn_code;
10270 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10271 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10272 * all of this is done.
10274 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10276 * For a non-fatal error return a warning code. If there are no warnings
10277 * then 0 is returned.
10279 * Note: Chip is stopped on entry.
10281 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10283 AdvPortAddr iop_base;
10284 ushort warn_code;
10285 ADVEEP_38C0800_CONFIG eep_config;
10286 uchar tid, termination;
10287 ushort sdtr_speed = 0;
10289 iop_base = asc_dvc->iop_base;
10291 warn_code = 0;
10294 * Read the board's EEPROM configuration.
10296 * Set default values if a bad checksum is found.
10298 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10299 eep_config.check_sum) {
10300 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10303 * Set EEPROM default values.
10305 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10306 sizeof(ADVEEP_38C0800_CONFIG));
10309 * Assume the 6 byte board serial number that was read from
10310 * EEPROM is correct even if the EEPROM checksum failed.
10312 eep_config.serial_number_word3 =
10313 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10315 eep_config.serial_number_word2 =
10316 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10318 eep_config.serial_number_word1 =
10319 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10321 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10324 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10325 * EEPROM configuration that was read.
10327 * This is the mapping of EEPROM fields to Adv Library fields.
10329 asc_dvc->wdtr_able = eep_config.wdtr_able;
10330 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10331 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10332 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10333 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10334 asc_dvc->tagqng_able = eep_config.tagqng_able;
10335 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10336 asc_dvc->max_host_qng = eep_config.max_host_qng;
10337 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10338 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10339 asc_dvc->start_motor = eep_config.start_motor;
10340 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10341 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10342 asc_dvc->no_scam = eep_config.scam_tolerant;
10343 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10344 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10345 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10348 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10349 * are set, then set an 'sdtr_able' bit for it.
10351 asc_dvc->sdtr_able = 0;
10352 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10353 if (tid == 0) {
10354 sdtr_speed = asc_dvc->sdtr_speed1;
10355 } else if (tid == 4) {
10356 sdtr_speed = asc_dvc->sdtr_speed2;
10357 } else if (tid == 8) {
10358 sdtr_speed = asc_dvc->sdtr_speed3;
10359 } else if (tid == 12) {
10360 sdtr_speed = asc_dvc->sdtr_speed4;
10362 if (sdtr_speed & ADV_MAX_TID) {
10363 asc_dvc->sdtr_able |= (1 << tid);
10365 sdtr_speed >>= 4;
10369 * Set the host maximum queuing (max. 253, min. 16) and the per device
10370 * maximum queuing (max. 63, min. 4).
10372 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10373 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10374 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10375 /* If the value is zero, assume it is uninitialized. */
10376 if (eep_config.max_host_qng == 0) {
10377 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10378 } else {
10379 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10383 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10384 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10385 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10386 /* If the value is zero, assume it is uninitialized. */
10387 if (eep_config.max_dvc_qng == 0) {
10388 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10389 } else {
10390 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10395 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10396 * set 'max_dvc_qng' to 'max_host_qng'.
10398 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10399 eep_config.max_dvc_qng = eep_config.max_host_qng;
10403 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10404 * values based on possibly adjusted EEPROM values.
10406 asc_dvc->max_host_qng = eep_config.max_host_qng;
10407 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10410 * If the EEPROM 'termination' field is set to automatic (0), then set
10411 * the ADV_DVC_CFG 'termination' field to automatic also.
10413 * If the termination is specified with a non-zero 'termination'
10414 * value check that a legal value is set and set the ADV_DVC_CFG
10415 * 'termination' field appropriately.
10417 if (eep_config.termination_se == 0) {
10418 termination = 0; /* auto termination for SE */
10419 } else {
10420 /* Enable manual control with low off / high off. */
10421 if (eep_config.termination_se == 1) {
10422 termination = 0;
10424 /* Enable manual control with low off / high on. */
10425 } else if (eep_config.termination_se == 2) {
10426 termination = TERM_SE_HI;
10428 /* Enable manual control with low on / high on. */
10429 } else if (eep_config.termination_se == 3) {
10430 termination = TERM_SE;
10431 } else {
10433 * The EEPROM 'termination_se' field contains a bad value.
10434 * Use automatic termination instead.
10436 termination = 0;
10437 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10441 if (eep_config.termination_lvd == 0) {
10442 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10443 } else {
10444 /* Enable manual control with low off / high off. */
10445 if (eep_config.termination_lvd == 1) {
10446 asc_dvc->cfg->termination = termination;
10448 /* Enable manual control with low off / high on. */
10449 } else if (eep_config.termination_lvd == 2) {
10450 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10452 /* Enable manual control with low on / high on. */
10453 } else if (eep_config.termination_lvd == 3) {
10454 asc_dvc->cfg->termination = termination | TERM_LVD;
10455 } else {
10457 * The EEPROM 'termination_lvd' field contains a bad value.
10458 * Use automatic termination instead.
10460 asc_dvc->cfg->termination = termination;
10461 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10465 return warn_code;
10469 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10470 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10471 * all of this is done.
10473 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10475 * For a non-fatal error return a warning code. If there are no warnings
10476 * then 0 is returned.
10478 * Note: Chip is stopped on entry.
10480 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10482 AdvPortAddr iop_base;
10483 ushort warn_code;
10484 ADVEEP_38C1600_CONFIG eep_config;
10485 uchar tid, termination;
10486 ushort sdtr_speed = 0;
10488 iop_base = asc_dvc->iop_base;
10490 warn_code = 0;
10493 * Read the board's EEPROM configuration.
10495 * Set default values if a bad checksum is found.
10497 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10498 eep_config.check_sum) {
10499 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10500 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10503 * Set EEPROM default values.
10505 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10506 sizeof(ADVEEP_38C1600_CONFIG));
10508 if (PCI_FUNC(pdev->devfn) != 0) {
10509 u8 ints;
10511 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10512 * and old Mac system booting problem. The Expansion
10513 * ROM must be disabled in Function 1 for these systems
10515 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10517 * Clear the INTAB (bit 11) if the GPIO 0 input
10518 * indicates the Function 1 interrupt line is wired
10519 * to INTB.
10521 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10522 * 1 - Function 1 interrupt line wired to INT A.
10523 * 0 - Function 1 interrupt line wired to INT B.
10525 * Note: Function 0 is always wired to INTA.
10526 * Put all 5 GPIO bits in input mode and then read
10527 * their input values.
10529 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10530 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10531 if ((ints & 0x01) == 0)
10532 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10536 * Assume the 6 byte board serial number that was read from
10537 * EEPROM is correct even if the EEPROM checksum failed.
10539 eep_config.serial_number_word3 =
10540 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10541 eep_config.serial_number_word2 =
10542 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10543 eep_config.serial_number_word1 =
10544 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10546 AdvSet38C1600EEPConfig(iop_base, &eep_config);
10550 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10551 * EEPROM configuration that was read.
10553 * This is the mapping of EEPROM fields to Adv Library fields.
10555 asc_dvc->wdtr_able = eep_config.wdtr_able;
10556 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10557 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10558 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10559 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10560 asc_dvc->ppr_able = 0;
10561 asc_dvc->tagqng_able = eep_config.tagqng_able;
10562 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10563 asc_dvc->max_host_qng = eep_config.max_host_qng;
10564 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10565 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10566 asc_dvc->start_motor = eep_config.start_motor;
10567 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10568 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10569 asc_dvc->no_scam = eep_config.scam_tolerant;
10572 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10573 * are set, then set an 'sdtr_able' bit for it.
10575 asc_dvc->sdtr_able = 0;
10576 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10577 if (tid == 0) {
10578 sdtr_speed = asc_dvc->sdtr_speed1;
10579 } else if (tid == 4) {
10580 sdtr_speed = asc_dvc->sdtr_speed2;
10581 } else if (tid == 8) {
10582 sdtr_speed = asc_dvc->sdtr_speed3;
10583 } else if (tid == 12) {
10584 sdtr_speed = asc_dvc->sdtr_speed4;
10586 if (sdtr_speed & ASC_MAX_TID) {
10587 asc_dvc->sdtr_able |= (1 << tid);
10589 sdtr_speed >>= 4;
10593 * Set the host maximum queuing (max. 253, min. 16) and the per device
10594 * maximum queuing (max. 63, min. 4).
10596 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10597 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10598 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10599 /* If the value is zero, assume it is uninitialized. */
10600 if (eep_config.max_host_qng == 0) {
10601 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10602 } else {
10603 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10607 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10608 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10609 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10610 /* If the value is zero, assume it is uninitialized. */
10611 if (eep_config.max_dvc_qng == 0) {
10612 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10613 } else {
10614 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10619 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10620 * set 'max_dvc_qng' to 'max_host_qng'.
10622 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10623 eep_config.max_dvc_qng = eep_config.max_host_qng;
10627 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10628 * values based on possibly adjusted EEPROM values.
10630 asc_dvc->max_host_qng = eep_config.max_host_qng;
10631 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10634 * If the EEPROM 'termination' field is set to automatic (0), then set
10635 * the ASC_DVC_CFG 'termination' field to automatic also.
10637 * If the termination is specified with a non-zero 'termination'
10638 * value check that a legal value is set and set the ASC_DVC_CFG
10639 * 'termination' field appropriately.
10641 if (eep_config.termination_se == 0) {
10642 termination = 0; /* auto termination for SE */
10643 } else {
10644 /* Enable manual control with low off / high off. */
10645 if (eep_config.termination_se == 1) {
10646 termination = 0;
10648 /* Enable manual control with low off / high on. */
10649 } else if (eep_config.termination_se == 2) {
10650 termination = TERM_SE_HI;
10652 /* Enable manual control with low on / high on. */
10653 } else if (eep_config.termination_se == 3) {
10654 termination = TERM_SE;
10655 } else {
10657 * The EEPROM 'termination_se' field contains a bad value.
10658 * Use automatic termination instead.
10660 termination = 0;
10661 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10665 if (eep_config.termination_lvd == 0) {
10666 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10667 } else {
10668 /* Enable manual control with low off / high off. */
10669 if (eep_config.termination_lvd == 1) {
10670 asc_dvc->cfg->termination = termination;
10672 /* Enable manual control with low off / high on. */
10673 } else if (eep_config.termination_lvd == 2) {
10674 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10676 /* Enable manual control with low on / high on. */
10677 } else if (eep_config.termination_lvd == 3) {
10678 asc_dvc->cfg->termination = termination | TERM_LVD;
10679 } else {
10681 * The EEPROM 'termination_lvd' field contains a bad value.
10682 * Use automatic termination instead.
10684 asc_dvc->cfg->termination = termination;
10685 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10689 return warn_code;
10693 * Initialize the ADV_DVC_VAR structure.
10695 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10697 * For a non-fatal error return a warning code. If there are no warnings
10698 * then 0 is returned.
10700 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10702 struct asc_board *board = shost_priv(shost);
10703 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10704 unsigned short warn_code = 0;
10705 AdvPortAddr iop_base = asc_dvc->iop_base;
10706 u16 cmd;
10707 int status;
10709 asc_dvc->err_code = 0;
10712 * Save the state of the PCI Configuration Command Register
10713 * "Parity Error Response Control" Bit. If the bit is clear (0),
10714 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10715 * DMA parity errors.
10717 asc_dvc->cfg->control_flag = 0;
10718 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10719 if ((cmd & PCI_COMMAND_PARITY) == 0)
10720 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10722 asc_dvc->cfg->chip_version =
10723 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10725 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10726 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10727 (ushort)ADV_CHIP_ID_BYTE);
10729 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10730 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10731 (ushort)ADV_CHIP_ID_WORD);
10734 * Reset the chip to start and allow register writes.
10736 if (AdvFindSignature(iop_base) == 0) {
10737 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10738 return ADV_ERROR;
10739 } else {
10741 * The caller must set 'chip_type' to a valid setting.
10743 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10744 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10745 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10746 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10747 return ADV_ERROR;
10751 * Reset Chip.
10753 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10754 ADV_CTRL_REG_CMD_RESET);
10755 mdelay(100);
10756 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10757 ADV_CTRL_REG_CMD_WR_IO_REG);
10759 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10760 status = AdvInitFrom38C1600EEP(asc_dvc);
10761 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10762 status = AdvInitFrom38C0800EEP(asc_dvc);
10763 } else {
10764 status = AdvInitFrom3550EEP(asc_dvc);
10766 warn_code |= status;
10769 if (warn_code != 0)
10770 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10772 if (asc_dvc->err_code)
10773 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10774 asc_dvc->err_code);
10776 return asc_dvc->err_code;
10778 #endif
10780 static struct scsi_host_template advansys_template = {
10781 .proc_name = DRV_NAME,
10782 #ifdef CONFIG_PROC_FS
10783 .show_info = advansys_show_info,
10784 #endif
10785 .name = DRV_NAME,
10786 .info = advansys_info,
10787 .queuecommand = advansys_queuecommand,
10788 .eh_host_reset_handler = advansys_reset,
10789 .bios_param = advansys_biosparam,
10790 .slave_configure = advansys_slave_configure,
10792 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10793 * must be set. The flag will be cleared in advansys_board_found
10794 * for non-ISA adapters.
10796 .unchecked_isa_dma = true,
10799 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10801 struct asc_board *board = shost_priv(shost);
10802 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10803 size_t sgblk_pool_size;
10804 int warn_code, err_code;
10807 * Allocate buffer carrier structures. The total size
10808 * is about 8 KB, so allocate all at once.
10810 adv_dvc->carrier = dma_alloc_coherent(board->dev,
10811 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10812 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10814 if (!adv_dvc->carrier)
10815 goto kmalloc_failed;
10818 * Allocate up to 'max_host_qng' request structures for the Wide
10819 * board. The total size is about 16 KB, so allocate all at once.
10820 * If the allocation fails decrement and try again.
10822 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10823 if (board->adv_reqp_size & 0x1f) {
10824 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10825 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10827 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10828 &board->adv_reqp_addr, GFP_KERNEL);
10830 if (!board->adv_reqp)
10831 goto kmalloc_failed;
10833 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10834 adv_dvc->max_host_qng, board->adv_reqp_size);
10837 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10838 * the Wide board. Each structure is about 136 bytes.
10840 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10841 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10842 sgblk_pool_size, 32, 0);
10844 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10845 sizeof(adv_sgblk_t), sgblk_pool_size);
10847 if (!board->adv_sgblk_pool)
10848 goto kmalloc_failed;
10850 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10851 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10852 warn_code = AdvInitAsc3550Driver(adv_dvc);
10853 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10854 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10855 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10856 } else {
10857 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10858 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10860 err_code = adv_dvc->err_code;
10862 if (warn_code || err_code) {
10863 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10864 "0x%x\n", warn_code, err_code);
10867 goto exit;
10869 kmalloc_failed:
10870 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10871 err_code = ADV_ERROR;
10872 exit:
10873 return err_code;
10876 static void advansys_wide_free_mem(struct asc_board *board)
10878 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10880 if (adv_dvc->carrier) {
10881 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10882 adv_dvc->carrier, adv_dvc->carrier_addr);
10883 adv_dvc->carrier = NULL;
10885 if (board->adv_reqp) {
10886 dma_free_coherent(board->dev, board->adv_reqp_size,
10887 board->adv_reqp, board->adv_reqp_addr);
10888 board->adv_reqp = NULL;
10890 if (board->adv_sgblk_pool) {
10891 dma_pool_destroy(board->adv_sgblk_pool);
10892 board->adv_sgblk_pool = NULL;
10896 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10897 int bus_type)
10899 struct pci_dev *pdev;
10900 struct asc_board *boardp = shost_priv(shost);
10901 ASC_DVC_VAR *asc_dvc_varp = NULL;
10902 ADV_DVC_VAR *adv_dvc_varp = NULL;
10903 int share_irq, warn_code, ret;
10905 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10907 if (ASC_NARROW_BOARD(boardp)) {
10908 ASC_DBG(1, "narrow board\n");
10909 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10910 asc_dvc_varp->bus_type = bus_type;
10911 asc_dvc_varp->drv_ptr = boardp;
10912 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10913 asc_dvc_varp->iop_base = iop;
10914 } else {
10915 #ifdef CONFIG_PCI
10916 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10917 adv_dvc_varp->drv_ptr = boardp;
10918 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10919 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10920 ASC_DBG(1, "wide board ASC-3550\n");
10921 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10922 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10923 ASC_DBG(1, "wide board ASC-38C0800\n");
10924 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10925 } else {
10926 ASC_DBG(1, "wide board ASC-38C1600\n");
10927 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10930 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10931 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10932 if (!boardp->ioremap_addr) {
10933 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10934 "returned NULL\n",
10935 (long)pci_resource_start(pdev, 1),
10936 boardp->asc_n_io_port);
10937 ret = -ENODEV;
10938 goto err_shost;
10940 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10941 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10944 * Even though it isn't used to access wide boards, other
10945 * than for the debug line below, save I/O Port address so
10946 * that it can be reported.
10948 boardp->ioport = iop;
10950 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10951 (ushort)inp(iop + 1), (ushort)inpw(iop));
10952 #endif /* CONFIG_PCI */
10955 if (ASC_NARROW_BOARD(boardp)) {
10957 * Set the board bus type and PCI IRQ before
10958 * calling AscInitGetConfig().
10960 switch (asc_dvc_varp->bus_type) {
10961 #ifdef CONFIG_ISA
10962 case ASC_IS_ISA:
10963 shost->unchecked_isa_dma = true;
10964 share_irq = 0;
10965 break;
10966 case ASC_IS_VL:
10967 shost->unchecked_isa_dma = false;
10968 share_irq = 0;
10969 break;
10970 case ASC_IS_EISA:
10971 shost->unchecked_isa_dma = false;
10972 share_irq = IRQF_SHARED;
10973 break;
10974 #endif /* CONFIG_ISA */
10975 #ifdef CONFIG_PCI
10976 case ASC_IS_PCI:
10977 shost->unchecked_isa_dma = false;
10978 share_irq = IRQF_SHARED;
10979 break;
10980 #endif /* CONFIG_PCI */
10981 default:
10982 shost_printk(KERN_ERR, shost, "unknown adapter type: "
10983 "%d\n", asc_dvc_varp->bus_type);
10984 shost->unchecked_isa_dma = false;
10985 share_irq = 0;
10986 break;
10990 * NOTE: AscInitGetConfig() may change the board's
10991 * bus_type value. The bus_type value should no
10992 * longer be used. If the bus_type field must be
10993 * referenced only use the bit-wise AND operator "&".
10995 ASC_DBG(2, "AscInitGetConfig()\n");
10996 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10997 } else {
10998 #ifdef CONFIG_PCI
11000 * For Wide boards set PCI information before calling
11001 * AdvInitGetConfig().
11003 shost->unchecked_isa_dma = false;
11004 share_irq = IRQF_SHARED;
11005 ASC_DBG(2, "AdvInitGetConfig()\n");
11007 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11008 #else
11009 share_irq = 0;
11010 ret = -ENODEV;
11011 #endif /* CONFIG_PCI */
11014 if (ret)
11015 goto err_unmap;
11018 * Save the EEPROM configuration so that it can be displayed
11019 * from /proc/scsi/advansys/[0...].
11021 if (ASC_NARROW_BOARD(boardp)) {
11023 ASCEEP_CONFIG *ep;
11026 * Set the adapter's target id bit in the 'init_tidmask' field.
11028 boardp->init_tidmask |=
11029 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11032 * Save EEPROM settings for the board.
11034 ep = &boardp->eep_config.asc_eep;
11036 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11037 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11038 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11039 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11040 ep->start_motor = asc_dvc_varp->start_motor;
11041 ep->cntl = asc_dvc_varp->dvc_cntl;
11042 ep->no_scam = asc_dvc_varp->no_scam;
11043 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11044 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11045 /* 'max_tag_qng' is set to the same value for every device. */
11046 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11047 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11048 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11049 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11050 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11051 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11052 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11055 * Modify board configuration.
11057 ASC_DBG(2, "AscInitSetConfig()\n");
11058 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11059 if (ret)
11060 goto err_unmap;
11061 } else {
11062 ADVEEP_3550_CONFIG *ep_3550;
11063 ADVEEP_38C0800_CONFIG *ep_38C0800;
11064 ADVEEP_38C1600_CONFIG *ep_38C1600;
11067 * Save Wide EEP Configuration Information.
11069 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11070 ep_3550 = &boardp->eep_config.adv_3550_eep;
11072 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11073 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11074 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11075 ep_3550->termination = adv_dvc_varp->cfg->termination;
11076 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11077 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11078 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11079 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11080 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11081 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11082 ep_3550->start_motor = adv_dvc_varp->start_motor;
11083 ep_3550->scsi_reset_delay =
11084 adv_dvc_varp->scsi_reset_wait;
11085 ep_3550->serial_number_word1 =
11086 adv_dvc_varp->cfg->serial1;
11087 ep_3550->serial_number_word2 =
11088 adv_dvc_varp->cfg->serial2;
11089 ep_3550->serial_number_word3 =
11090 adv_dvc_varp->cfg->serial3;
11091 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11092 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11094 ep_38C0800->adapter_scsi_id =
11095 adv_dvc_varp->chip_scsi_id;
11096 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11097 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11098 ep_38C0800->termination_lvd =
11099 adv_dvc_varp->cfg->termination;
11100 ep_38C0800->disc_enable =
11101 adv_dvc_varp->cfg->disc_enable;
11102 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11103 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11104 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11105 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11106 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11107 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11108 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11109 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11110 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11111 ep_38C0800->scsi_reset_delay =
11112 adv_dvc_varp->scsi_reset_wait;
11113 ep_38C0800->serial_number_word1 =
11114 adv_dvc_varp->cfg->serial1;
11115 ep_38C0800->serial_number_word2 =
11116 adv_dvc_varp->cfg->serial2;
11117 ep_38C0800->serial_number_word3 =
11118 adv_dvc_varp->cfg->serial3;
11119 } else {
11120 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11122 ep_38C1600->adapter_scsi_id =
11123 adv_dvc_varp->chip_scsi_id;
11124 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11125 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11126 ep_38C1600->termination_lvd =
11127 adv_dvc_varp->cfg->termination;
11128 ep_38C1600->disc_enable =
11129 adv_dvc_varp->cfg->disc_enable;
11130 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11131 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11132 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11133 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11134 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11135 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11136 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11137 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11138 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11139 ep_38C1600->scsi_reset_delay =
11140 adv_dvc_varp->scsi_reset_wait;
11141 ep_38C1600->serial_number_word1 =
11142 adv_dvc_varp->cfg->serial1;
11143 ep_38C1600->serial_number_word2 =
11144 adv_dvc_varp->cfg->serial2;
11145 ep_38C1600->serial_number_word3 =
11146 adv_dvc_varp->cfg->serial3;
11150 * Set the adapter's target id bit in the 'init_tidmask' field.
11152 boardp->init_tidmask |=
11153 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11157 * Channels are numbered beginning with 0. For AdvanSys one host
11158 * structure supports one channel. Multi-channel boards have a
11159 * separate host structure for each channel.
11161 shost->max_channel = 0;
11162 if (ASC_NARROW_BOARD(boardp)) {
11163 shost->max_id = ASC_MAX_TID + 1;
11164 shost->max_lun = ASC_MAX_LUN + 1;
11165 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11167 shost->io_port = asc_dvc_varp->iop_base;
11168 boardp->asc_n_io_port = ASC_IOADR_GAP;
11169 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11171 /* Set maximum number of queues the adapter can handle. */
11172 shost->can_queue = asc_dvc_varp->max_total_qng;
11173 } else {
11174 shost->max_id = ADV_MAX_TID + 1;
11175 shost->max_lun = ADV_MAX_LUN + 1;
11176 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11179 * Save the I/O Port address and length even though
11180 * I/O ports are not used to access Wide boards.
11181 * Instead the Wide boards are accessed with
11182 * PCI Memory Mapped I/O.
11184 shost->io_port = iop;
11186 shost->this_id = adv_dvc_varp->chip_scsi_id;
11188 /* Set maximum number of queues the adapter can handle. */
11189 shost->can_queue = adv_dvc_varp->max_host_qng;
11193 * Set the maximum number of scatter-gather elements the
11194 * adapter can handle.
11196 if (ASC_NARROW_BOARD(boardp)) {
11198 * Allow two commands with 'sg_tablesize' scatter-gather
11199 * elements to be executed simultaneously. This value is
11200 * the theoretical hardware limit. It may be decreased
11201 * below.
11203 shost->sg_tablesize =
11204 (((asc_dvc_varp->max_total_qng - 2) / 2) *
11205 ASC_SG_LIST_PER_Q) + 1;
11206 } else {
11207 shost->sg_tablesize = ADV_MAX_SG_LIST;
11211 * The value of 'sg_tablesize' can not exceed the SCSI
11212 * mid-level driver definition of SG_ALL. SG_ALL also
11213 * must not be exceeded, because it is used to define the
11214 * size of the scatter-gather table in 'struct asc_sg_head'.
11216 if (shost->sg_tablesize > SG_ALL) {
11217 shost->sg_tablesize = SG_ALL;
11220 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11222 /* BIOS start address. */
11223 if (ASC_NARROW_BOARD(boardp)) {
11224 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11225 asc_dvc_varp->bus_type);
11226 } else {
11228 * Fill-in BIOS board variables. The Wide BIOS saves
11229 * information in LRAM that is used by the driver.
11231 AdvReadWordLram(adv_dvc_varp->iop_base,
11232 BIOS_SIGNATURE, boardp->bios_signature);
11233 AdvReadWordLram(adv_dvc_varp->iop_base,
11234 BIOS_VERSION, boardp->bios_version);
11235 AdvReadWordLram(adv_dvc_varp->iop_base,
11236 BIOS_CODESEG, boardp->bios_codeseg);
11237 AdvReadWordLram(adv_dvc_varp->iop_base,
11238 BIOS_CODELEN, boardp->bios_codelen);
11240 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11241 boardp->bios_signature, boardp->bios_version);
11243 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11244 boardp->bios_codeseg, boardp->bios_codelen);
11247 * If the BIOS saved a valid signature, then fill in
11248 * the BIOS code segment base address.
11250 if (boardp->bios_signature == 0x55AA) {
11252 * Convert x86 realmode code segment to a linear
11253 * address by shifting left 4.
11255 shost->base = ((ulong)boardp->bios_codeseg << 4);
11256 } else {
11257 shost->base = 0;
11262 * Register Board Resources - I/O Port, DMA, IRQ
11265 /* Register DMA Channel for Narrow boards. */
11266 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
11267 #ifdef CONFIG_ISA
11268 if (ASC_NARROW_BOARD(boardp)) {
11269 /* Register DMA channel for ISA bus. */
11270 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11271 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11272 ret = request_dma(shost->dma_channel, DRV_NAME);
11273 if (ret) {
11274 shost_printk(KERN_ERR, shost, "request_dma() "
11275 "%d failed %d\n",
11276 shost->dma_channel, ret);
11277 goto err_unmap;
11279 AscEnableIsaDma(shost->dma_channel);
11282 #endif /* CONFIG_ISA */
11284 /* Register IRQ Number. */
11285 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11287 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11288 DRV_NAME, shost);
11290 if (ret) {
11291 if (ret == -EBUSY) {
11292 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11293 "already in use\n", boardp->irq);
11294 } else if (ret == -EINVAL) {
11295 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11296 "not valid\n", boardp->irq);
11297 } else {
11298 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11299 "failed with %d\n", boardp->irq, ret);
11301 goto err_free_dma;
11305 * Initialize board RISC chip and enable interrupts.
11307 if (ASC_NARROW_BOARD(boardp)) {
11308 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11310 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11311 if (!asc_dvc_varp->overrun_buf) {
11312 ret = -ENOMEM;
11313 goto err_free_irq;
11315 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11317 if (warn_code || asc_dvc_varp->err_code) {
11318 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11319 "warn 0x%x, error 0x%x\n",
11320 asc_dvc_varp->init_state, warn_code,
11321 asc_dvc_varp->err_code);
11322 if (!asc_dvc_varp->overrun_dma) {
11323 ret = -ENODEV;
11324 goto err_free_mem;
11327 } else {
11328 if (advansys_wide_init_chip(shost)) {
11329 ret = -ENODEV;
11330 goto err_free_mem;
11334 ASC_DBG_PRT_SCSI_HOST(2, shost);
11336 ret = scsi_add_host(shost, boardp->dev);
11337 if (ret)
11338 goto err_free_mem;
11340 scsi_scan_host(shost);
11341 return 0;
11343 err_free_mem:
11344 if (ASC_NARROW_BOARD(boardp)) {
11345 if (asc_dvc_varp->overrun_dma)
11346 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11347 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11348 kfree(asc_dvc_varp->overrun_buf);
11349 } else
11350 advansys_wide_free_mem(boardp);
11351 err_free_irq:
11352 free_irq(boardp->irq, shost);
11353 err_free_dma:
11354 #ifdef CONFIG_ISA
11355 if (shost->dma_channel != NO_ISA_DMA)
11356 free_dma(shost->dma_channel);
11357 #endif
11358 err_unmap:
11359 if (boardp->ioremap_addr)
11360 iounmap(boardp->ioremap_addr);
11361 #ifdef CONFIG_PCI
11362 err_shost:
11363 #endif
11364 return ret;
11368 * advansys_release()
11370 * Release resources allocated for a single AdvanSys adapter.
11372 static int advansys_release(struct Scsi_Host *shost)
11374 struct asc_board *board = shost_priv(shost);
11375 ASC_DBG(1, "begin\n");
11376 scsi_remove_host(shost);
11377 free_irq(board->irq, shost);
11378 #ifdef CONFIG_ISA
11379 if (shost->dma_channel != NO_ISA_DMA) {
11380 ASC_DBG(1, "free_dma()\n");
11381 free_dma(shost->dma_channel);
11383 #endif
11384 if (ASC_NARROW_BOARD(board)) {
11385 dma_unmap_single(board->dev,
11386 board->dvc_var.asc_dvc_var.overrun_dma,
11387 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11388 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11389 } else {
11390 iounmap(board->ioremap_addr);
11391 advansys_wide_free_mem(board);
11393 scsi_host_put(shost);
11394 ASC_DBG(1, "end\n");
11395 return 0;
11398 #define ASC_IOADR_TABLE_MAX_IX 11
11400 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11401 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11402 0x0210, 0x0230, 0x0250, 0x0330
11406 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11407 * 00: 10
11408 * 01: 11
11409 * 10: 12
11410 * 11: 15
11412 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11414 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11415 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11416 if (chip_irq == 13)
11417 chip_irq = 15;
11418 return chip_irq;
11421 static int advansys_isa_probe(struct device *dev, unsigned int id)
11423 int err = -ENODEV;
11424 PortAddr iop_base = _asc_def_iop_base[id];
11425 struct Scsi_Host *shost;
11426 struct asc_board *board;
11428 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11429 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11430 return -ENODEV;
11432 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11433 if (!AscFindSignature(iop_base))
11434 goto release_region;
11435 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11436 goto release_region;
11438 err = -ENOMEM;
11439 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11440 if (!shost)
11441 goto release_region;
11443 board = shost_priv(shost);
11444 board->irq = advansys_isa_irq_no(iop_base);
11445 board->dev = dev;
11446 board->shost = shost;
11448 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11449 if (err)
11450 goto free_host;
11452 dev_set_drvdata(dev, shost);
11453 return 0;
11455 free_host:
11456 scsi_host_put(shost);
11457 release_region:
11458 release_region(iop_base, ASC_IOADR_GAP);
11459 return err;
11462 static int advansys_isa_remove(struct device *dev, unsigned int id)
11464 int ioport = _asc_def_iop_base[id];
11465 advansys_release(dev_get_drvdata(dev));
11466 release_region(ioport, ASC_IOADR_GAP);
11467 return 0;
11470 static struct isa_driver advansys_isa_driver = {
11471 .probe = advansys_isa_probe,
11472 .remove = advansys_isa_remove,
11473 .driver = {
11474 .owner = THIS_MODULE,
11475 .name = DRV_NAME,
11480 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11481 * 000: invalid
11482 * 001: 10
11483 * 010: 11
11484 * 011: 12
11485 * 100: invalid
11486 * 101: 14
11487 * 110: 15
11488 * 111: invalid
11490 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11492 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11493 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11494 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11495 return 0;
11496 return chip_irq;
11499 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11501 int err = -ENODEV;
11502 PortAddr iop_base = _asc_def_iop_base[id];
11503 struct Scsi_Host *shost;
11504 struct asc_board *board;
11506 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11507 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11508 return -ENODEV;
11510 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11511 if (!AscFindSignature(iop_base))
11512 goto release_region;
11514 * I don't think this condition can actually happen, but the old
11515 * driver did it, and the chances of finding a VLB setup in 2007
11516 * to do testing with is slight to none.
11518 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11519 goto release_region;
11521 err = -ENOMEM;
11522 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11523 if (!shost)
11524 goto release_region;
11526 board = shost_priv(shost);
11527 board->irq = advansys_vlb_irq_no(iop_base);
11528 board->dev = dev;
11529 board->shost = shost;
11531 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11532 if (err)
11533 goto free_host;
11535 dev_set_drvdata(dev, shost);
11536 return 0;
11538 free_host:
11539 scsi_host_put(shost);
11540 release_region:
11541 release_region(iop_base, ASC_IOADR_GAP);
11542 return -ENODEV;
11545 static struct isa_driver advansys_vlb_driver = {
11546 .probe = advansys_vlb_probe,
11547 .remove = advansys_isa_remove,
11548 .driver = {
11549 .owner = THIS_MODULE,
11550 .name = "advansys_vlb",
11554 static struct eisa_device_id advansys_eisa_table[] = {
11555 { "ABP7401" },
11556 { "ABP7501" },
11557 { "" }
11560 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11563 * EISA is a little more tricky than PCI; each EISA device may have two
11564 * channels, and this driver is written to make each channel its own Scsi_Host
11566 struct eisa_scsi_data {
11567 struct Scsi_Host *host[2];
11571 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
11572 * 000: 10
11573 * 001: 11
11574 * 010: 12
11575 * 011: invalid
11576 * 100: 14
11577 * 101: 15
11578 * 110: invalid
11579 * 111: invalid
11581 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11583 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11584 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11585 if ((chip_irq == 13) || (chip_irq > 15))
11586 return 0;
11587 return chip_irq;
11590 static int advansys_eisa_probe(struct device *dev)
11592 int i, ioport, irq = 0;
11593 int err;
11594 struct eisa_device *edev = to_eisa_device(dev);
11595 struct eisa_scsi_data *data;
11597 err = -ENOMEM;
11598 data = kzalloc(sizeof(*data), GFP_KERNEL);
11599 if (!data)
11600 goto fail;
11601 ioport = edev->base_addr + 0xc30;
11603 err = -ENODEV;
11604 for (i = 0; i < 2; i++, ioport += 0x20) {
11605 struct asc_board *board;
11606 struct Scsi_Host *shost;
11607 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11608 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11609 ioport + ASC_IOADR_GAP - 1);
11610 continue;
11612 if (!AscFindSignature(ioport)) {
11613 release_region(ioport, ASC_IOADR_GAP);
11614 continue;
11618 * I don't know why we need to do this for EISA chips, but
11619 * not for any others. It looks to be equivalent to
11620 * AscGetChipCfgMsw, but I may have overlooked something,
11621 * so I'm not converting it until I get an EISA board to
11622 * test with.
11624 inw(ioport + 4);
11626 if (!irq)
11627 irq = advansys_eisa_irq_no(edev);
11629 err = -ENOMEM;
11630 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11631 if (!shost)
11632 goto release_region;
11634 board = shost_priv(shost);
11635 board->irq = irq;
11636 board->dev = dev;
11637 board->shost = shost;
11639 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11640 if (!err) {
11641 data->host[i] = shost;
11642 continue;
11645 scsi_host_put(shost);
11646 release_region:
11647 release_region(ioport, ASC_IOADR_GAP);
11648 break;
11651 if (err)
11652 goto free_data;
11653 dev_set_drvdata(dev, data);
11654 return 0;
11656 free_data:
11657 kfree(data->host[0]);
11658 kfree(data->host[1]);
11659 kfree(data);
11660 fail:
11661 return err;
11664 static int advansys_eisa_remove(struct device *dev)
11666 int i;
11667 struct eisa_scsi_data *data = dev_get_drvdata(dev);
11669 for (i = 0; i < 2; i++) {
11670 int ioport;
11671 struct Scsi_Host *shost = data->host[i];
11672 if (!shost)
11673 continue;
11674 ioport = shost->io_port;
11675 advansys_release(shost);
11676 release_region(ioport, ASC_IOADR_GAP);
11679 kfree(data);
11680 return 0;
11683 static struct eisa_driver advansys_eisa_driver = {
11684 .id_table = advansys_eisa_table,
11685 .driver = {
11686 .name = DRV_NAME,
11687 .probe = advansys_eisa_probe,
11688 .remove = advansys_eisa_remove,
11692 /* PCI Devices supported by this driver */
11693 static struct pci_device_id advansys_pci_tbl[] = {
11694 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11695 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11696 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11697 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11698 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11699 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11700 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11701 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11702 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11703 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11704 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11705 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11709 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11711 static void advansys_set_latency(struct pci_dev *pdev)
11713 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11714 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11715 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11716 } else {
11717 u8 latency;
11718 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11719 if (latency < 0x20)
11720 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11724 static int advansys_pci_probe(struct pci_dev *pdev,
11725 const struct pci_device_id *ent)
11727 int err, ioport;
11728 struct Scsi_Host *shost;
11729 struct asc_board *board;
11731 err = pci_enable_device(pdev);
11732 if (err)
11733 goto fail;
11734 err = pci_request_regions(pdev, DRV_NAME);
11735 if (err)
11736 goto disable_device;
11737 pci_set_master(pdev);
11738 advansys_set_latency(pdev);
11740 err = -ENODEV;
11741 if (pci_resource_len(pdev, 0) == 0)
11742 goto release_region;
11744 ioport = pci_resource_start(pdev, 0);
11746 err = -ENOMEM;
11747 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11748 if (!shost)
11749 goto release_region;
11751 board = shost_priv(shost);
11752 board->irq = pdev->irq;
11753 board->dev = &pdev->dev;
11754 board->shost = shost;
11756 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11757 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11758 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11759 board->flags |= ASC_IS_WIDE_BOARD;
11762 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11763 if (err)
11764 goto free_host;
11766 pci_set_drvdata(pdev, shost);
11767 return 0;
11769 free_host:
11770 scsi_host_put(shost);
11771 release_region:
11772 pci_release_regions(pdev);
11773 disable_device:
11774 pci_disable_device(pdev);
11775 fail:
11776 return err;
11779 static void advansys_pci_remove(struct pci_dev *pdev)
11781 advansys_release(pci_get_drvdata(pdev));
11782 pci_release_regions(pdev);
11783 pci_disable_device(pdev);
11786 static struct pci_driver advansys_pci_driver = {
11787 .name = DRV_NAME,
11788 .id_table = advansys_pci_tbl,
11789 .probe = advansys_pci_probe,
11790 .remove = advansys_pci_remove,
11793 static int __init advansys_init(void)
11795 int error;
11797 error = isa_register_driver(&advansys_isa_driver,
11798 ASC_IOADR_TABLE_MAX_IX);
11799 if (error)
11800 goto fail;
11802 error = isa_register_driver(&advansys_vlb_driver,
11803 ASC_IOADR_TABLE_MAX_IX);
11804 if (error)
11805 goto unregister_isa;
11807 error = eisa_driver_register(&advansys_eisa_driver);
11808 if (error)
11809 goto unregister_vlb;
11811 error = pci_register_driver(&advansys_pci_driver);
11812 if (error)
11813 goto unregister_eisa;
11815 return 0;
11817 unregister_eisa:
11818 eisa_driver_unregister(&advansys_eisa_driver);
11819 unregister_vlb:
11820 isa_unregister_driver(&advansys_vlb_driver);
11821 unregister_isa:
11822 isa_unregister_driver(&advansys_isa_driver);
11823 fail:
11824 return error;
11827 static void __exit advansys_exit(void)
11829 pci_unregister_driver(&advansys_pci_driver);
11830 eisa_driver_unregister(&advansys_eisa_driver);
11831 isa_unregister_driver(&advansys_vlb_driver);
11832 isa_unregister_driver(&advansys_isa_driver);
11835 module_init(advansys_init);
11836 module_exit(advansys_exit);
11838 MODULE_LICENSE("GPL");
11839 MODULE_FIRMWARE("advansys/mcode.bin");
11840 MODULE_FIRMWARE("advansys/3550.bin");
11841 MODULE_FIRMWARE("advansys/38C0800.bin");
11842 MODULE_FIRMWARE("advansys/38C1600.bin");