Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blob8d6bcc19359ffda33c6e4dcf181532553408ad2c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 * This file is licensed under GPLv2.
9 */
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
16 #include "sas_internal.h"
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "../scsi_sas_internal.h"
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
29 /* ---------- SMP task management ---------- */
31 static void smp_task_timedout(struct timer_list *t)
33 struct sas_task_slow *slow = from_timer(slow, t, timer);
34 struct sas_task *task = slow->task;
35 unsigned long flags;
37 spin_lock_irqsave(&task->task_state_lock, flags);
38 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40 complete(&task->slow_task->completion);
42 spin_unlock_irqrestore(&task->task_state_lock, flags);
45 static void smp_task_done(struct sas_task *task)
47 del_timer(&task->slow_task->timer);
48 complete(&task->slow_task->completion);
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
54 static int smp_execute_task_sg(struct domain_device *dev,
55 struct scatterlist *req, struct scatterlist *resp)
57 int res, retry;
58 struct sas_task *task = NULL;
59 struct sas_internal *i =
60 to_sas_internal(dev->port->ha->core.shost->transportt);
62 mutex_lock(&dev->ex_dev.cmd_mutex);
63 for (retry = 0; retry < 3; retry++) {
64 if (test_bit(SAS_DEV_GONE, &dev->state)) {
65 res = -ECOMM;
66 break;
69 task = sas_alloc_slow_task(GFP_KERNEL);
70 if (!task) {
71 res = -ENOMEM;
72 break;
74 task->dev = dev;
75 task->task_proto = dev->tproto;
76 task->smp_task.smp_req = *req;
77 task->smp_task.smp_resp = *resp;
79 task->task_done = smp_task_done;
81 task->slow_task->timer.function = smp_task_timedout;
82 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
83 add_timer(&task->slow_task->timer);
85 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
87 if (res) {
88 del_timer(&task->slow_task->timer);
89 pr_notice("executing SMP task failed:%d\n", res);
90 break;
93 wait_for_completion(&task->slow_task->completion);
94 res = -ECOMM;
95 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
96 pr_notice("smp task timed out or aborted\n");
97 i->dft->lldd_abort_task(task);
98 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
99 pr_notice("SMP task aborted and not done\n");
100 break;
103 if (task->task_status.resp == SAS_TASK_COMPLETE &&
104 task->task_status.stat == SAM_STAT_GOOD) {
105 res = 0;
106 break;
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAS_DATA_UNDERRUN) {
110 /* no error, but return the number of bytes of
111 * underrun */
112 res = task->task_status.residual;
113 break;
115 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116 task->task_status.stat == SAS_DATA_OVERRUN) {
117 res = -EMSGSIZE;
118 break;
120 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
121 task->task_status.stat == SAS_DEVICE_UNKNOWN)
122 break;
123 else {
124 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
125 __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 mutex_unlock(&dev->ex_dev.cmd_mutex);
135 BUG_ON(retry == 3 && task != NULL);
136 sas_free_task(task);
137 return res;
140 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
141 void *resp, int resp_size)
143 struct scatterlist req_sg;
144 struct scatterlist resp_sg;
146 sg_init_one(&req_sg, req, req_size);
147 sg_init_one(&resp_sg, resp, resp_size);
148 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
151 /* ---------- Allocations ---------- */
153 static inline void *alloc_smp_req(int size)
155 u8 *p = kzalloc(size, GFP_KERNEL);
156 if (p)
157 p[0] = SMP_REQUEST;
158 return p;
161 static inline void *alloc_smp_resp(int size)
163 return kzalloc(size, GFP_KERNEL);
166 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
168 switch (phy->routing_attr) {
169 case TABLE_ROUTING:
170 if (dev->ex_dev.t2t_supp)
171 return 'U';
172 else
173 return 'T';
174 case DIRECT_ROUTING:
175 return 'D';
176 case SUBTRACTIVE_ROUTING:
177 return 'S';
178 default:
179 return '?';
183 static enum sas_device_type to_dev_type(struct discover_resp *dr)
185 /* This is detecting a failure to transmit initial dev to host
186 * FIS as described in section J.5 of sas-2 r16
188 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
189 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
190 return SAS_SATA_PENDING;
191 else
192 return dr->attached_dev_type;
195 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
197 enum sas_device_type dev_type;
198 enum sas_linkrate linkrate;
199 u8 sas_addr[SAS_ADDR_SIZE];
200 struct smp_resp *resp = rsp;
201 struct discover_resp *dr = &resp->disc;
202 struct sas_ha_struct *ha = dev->port->ha;
203 struct expander_device *ex = &dev->ex_dev;
204 struct ex_phy *phy = &ex->ex_phy[phy_id];
205 struct sas_rphy *rphy = dev->rphy;
206 bool new_phy = !phy->phy;
207 char *type;
209 if (new_phy) {
210 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
211 return;
212 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
214 /* FIXME: error_handling */
215 BUG_ON(!phy->phy);
218 switch (resp->result) {
219 case SMP_RESP_PHY_VACANT:
220 phy->phy_state = PHY_VACANT;
221 break;
222 default:
223 phy->phy_state = PHY_NOT_PRESENT;
224 break;
225 case SMP_RESP_FUNC_ACC:
226 phy->phy_state = PHY_EMPTY; /* do not know yet */
227 break;
230 /* check if anything important changed to squelch debug */
231 dev_type = phy->attached_dev_type;
232 linkrate = phy->linkrate;
233 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
235 /* Handle vacant phy - rest of dr data is not valid so skip it */
236 if (phy->phy_state == PHY_VACANT) {
237 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
238 phy->attached_dev_type = SAS_PHY_UNUSED;
239 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
240 phy->phy_id = phy_id;
241 goto skip;
242 } else
243 goto out;
246 phy->attached_dev_type = to_dev_type(dr);
247 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
248 goto out;
249 phy->phy_id = phy_id;
250 phy->linkrate = dr->linkrate;
251 phy->attached_sata_host = dr->attached_sata_host;
252 phy->attached_sata_dev = dr->attached_sata_dev;
253 phy->attached_sata_ps = dr->attached_sata_ps;
254 phy->attached_iproto = dr->iproto << 1;
255 phy->attached_tproto = dr->tproto << 1;
256 /* help some expanders that fail to zero sas_address in the 'no
257 * device' case
259 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
260 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
261 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
262 else
263 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
264 phy->attached_phy_id = dr->attached_phy_id;
265 phy->phy_change_count = dr->change_count;
266 phy->routing_attr = dr->routing_attr;
267 phy->virtual = dr->virtual;
268 phy->last_da_index = -1;
270 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
271 phy->phy->identify.device_type = dr->attached_dev_type;
272 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
273 phy->phy->identify.target_port_protocols = phy->attached_tproto;
274 if (!phy->attached_tproto && dr->attached_sata_dev)
275 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
276 phy->phy->identify.phy_identifier = phy_id;
277 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
278 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
279 phy->phy->minimum_linkrate = dr->pmin_linkrate;
280 phy->phy->maximum_linkrate = dr->pmax_linkrate;
281 phy->phy->negotiated_linkrate = phy->linkrate;
282 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
284 skip:
285 if (new_phy)
286 if (sas_phy_add(phy->phy)) {
287 sas_phy_free(phy->phy);
288 return;
291 out:
292 switch (phy->attached_dev_type) {
293 case SAS_SATA_PENDING:
294 type = "stp pending";
295 break;
296 case SAS_PHY_UNUSED:
297 type = "no device";
298 break;
299 case SAS_END_DEVICE:
300 if (phy->attached_iproto) {
301 if (phy->attached_tproto)
302 type = "host+target";
303 else
304 type = "host";
305 } else {
306 if (dr->attached_sata_dev)
307 type = "stp";
308 else
309 type = "ssp";
311 break;
312 case SAS_EDGE_EXPANDER_DEVICE:
313 case SAS_FANOUT_EXPANDER_DEVICE:
314 type = "smp";
315 break;
316 default:
317 type = "unknown";
320 /* this routine is polled by libata error recovery so filter
321 * unimportant messages
323 if (new_phy || phy->attached_dev_type != dev_type ||
324 phy->linkrate != linkrate ||
325 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
326 /* pass */;
327 else
328 return;
330 /* if the attached device type changed and ata_eh is active,
331 * make sure we run revalidation when eh completes (see:
332 * sas_enable_revalidation)
334 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
335 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
337 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
338 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
339 SAS_ADDR(dev->sas_addr), phy->phy_id,
340 sas_route_char(dev, phy), phy->linkrate,
341 SAS_ADDR(phy->attached_sas_addr), type);
344 /* check if we have an existing attached ata device on this expander phy */
345 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
347 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
348 struct domain_device *dev;
349 struct sas_rphy *rphy;
351 if (!ex_phy->port)
352 return NULL;
354 rphy = ex_phy->port->rphy;
355 if (!rphy)
356 return NULL;
358 dev = sas_find_dev_by_rphy(rphy);
360 if (dev && dev_is_sata(dev))
361 return dev;
363 return NULL;
366 #define DISCOVER_REQ_SIZE 16
367 #define DISCOVER_RESP_SIZE 56
369 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
370 u8 *disc_resp, int single)
372 struct discover_resp *dr;
373 int res;
375 disc_req[9] = single;
377 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
378 disc_resp, DISCOVER_RESP_SIZE);
379 if (res)
380 return res;
381 dr = &((struct smp_resp *)disc_resp)->disc;
382 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
383 pr_notice("Found loopback topology, just ignore it!\n");
384 return 0;
386 sas_set_ex_phy(dev, single, disc_resp);
387 return 0;
390 int sas_ex_phy_discover(struct domain_device *dev, int single)
392 struct expander_device *ex = &dev->ex_dev;
393 int res = 0;
394 u8 *disc_req;
395 u8 *disc_resp;
397 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
398 if (!disc_req)
399 return -ENOMEM;
401 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
402 if (!disc_resp) {
403 kfree(disc_req);
404 return -ENOMEM;
407 disc_req[1] = SMP_DISCOVER;
409 if (0 <= single && single < ex->num_phys) {
410 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
411 } else {
412 int i;
414 for (i = 0; i < ex->num_phys; i++) {
415 res = sas_ex_phy_discover_helper(dev, disc_req,
416 disc_resp, i);
417 if (res)
418 goto out_err;
421 out_err:
422 kfree(disc_resp);
423 kfree(disc_req);
424 return res;
427 static int sas_expander_discover(struct domain_device *dev)
429 struct expander_device *ex = &dev->ex_dev;
430 int res;
432 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
433 if (!ex->ex_phy)
434 return -ENOMEM;
436 res = sas_ex_phy_discover(dev, -1);
437 if (res)
438 goto out_err;
440 return 0;
441 out_err:
442 kfree(ex->ex_phy);
443 ex->ex_phy = NULL;
444 return res;
447 #define MAX_EXPANDER_PHYS 128
449 static void ex_assign_report_general(struct domain_device *dev,
450 struct smp_resp *resp)
452 struct report_general_resp *rg = &resp->rg;
454 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
455 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
456 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
457 dev->ex_dev.t2t_supp = rg->t2t_supp;
458 dev->ex_dev.conf_route_table = rg->conf_route_table;
459 dev->ex_dev.configuring = rg->configuring;
460 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
463 #define RG_REQ_SIZE 8
464 #define RG_RESP_SIZE 32
466 static int sas_ex_general(struct domain_device *dev)
468 u8 *rg_req;
469 struct smp_resp *rg_resp;
470 int res;
471 int i;
473 rg_req = alloc_smp_req(RG_REQ_SIZE);
474 if (!rg_req)
475 return -ENOMEM;
477 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
478 if (!rg_resp) {
479 kfree(rg_req);
480 return -ENOMEM;
483 rg_req[1] = SMP_REPORT_GENERAL;
485 for (i = 0; i < 5; i++) {
486 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
487 RG_RESP_SIZE);
489 if (res) {
490 pr_notice("RG to ex %016llx failed:0x%x\n",
491 SAS_ADDR(dev->sas_addr), res);
492 goto out;
493 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
494 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
495 SAS_ADDR(dev->sas_addr), rg_resp->result);
496 res = rg_resp->result;
497 goto out;
500 ex_assign_report_general(dev, rg_resp);
502 if (dev->ex_dev.configuring) {
503 pr_debug("RG: ex %016llx self-configuring...\n",
504 SAS_ADDR(dev->sas_addr));
505 schedule_timeout_interruptible(5*HZ);
506 } else
507 break;
509 out:
510 kfree(rg_req);
511 kfree(rg_resp);
512 return res;
515 static void ex_assign_manuf_info(struct domain_device *dev, void
516 *_mi_resp)
518 u8 *mi_resp = _mi_resp;
519 struct sas_rphy *rphy = dev->rphy;
520 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
522 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
523 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
524 memcpy(edev->product_rev, mi_resp + 36,
525 SAS_EXPANDER_PRODUCT_REV_LEN);
527 if (mi_resp[8] & 1) {
528 memcpy(edev->component_vendor_id, mi_resp + 40,
529 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
530 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
531 edev->component_revision_id = mi_resp[50];
535 #define MI_REQ_SIZE 8
536 #define MI_RESP_SIZE 64
538 static int sas_ex_manuf_info(struct domain_device *dev)
540 u8 *mi_req;
541 u8 *mi_resp;
542 int res;
544 mi_req = alloc_smp_req(MI_REQ_SIZE);
545 if (!mi_req)
546 return -ENOMEM;
548 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
549 if (!mi_resp) {
550 kfree(mi_req);
551 return -ENOMEM;
554 mi_req[1] = SMP_REPORT_MANUF_INFO;
556 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
557 if (res) {
558 pr_notice("MI: ex %016llx failed:0x%x\n",
559 SAS_ADDR(dev->sas_addr), res);
560 goto out;
561 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
562 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
563 SAS_ADDR(dev->sas_addr), mi_resp[2]);
564 goto out;
567 ex_assign_manuf_info(dev, mi_resp);
568 out:
569 kfree(mi_req);
570 kfree(mi_resp);
571 return res;
574 #define PC_REQ_SIZE 44
575 #define PC_RESP_SIZE 8
577 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
578 enum phy_func phy_func,
579 struct sas_phy_linkrates *rates)
581 u8 *pc_req;
582 u8 *pc_resp;
583 int res;
585 pc_req = alloc_smp_req(PC_REQ_SIZE);
586 if (!pc_req)
587 return -ENOMEM;
589 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
590 if (!pc_resp) {
591 kfree(pc_req);
592 return -ENOMEM;
595 pc_req[1] = SMP_PHY_CONTROL;
596 pc_req[9] = phy_id;
597 pc_req[10]= phy_func;
598 if (rates) {
599 pc_req[32] = rates->minimum_linkrate << 4;
600 pc_req[33] = rates->maximum_linkrate << 4;
603 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
604 if (res) {
605 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
606 SAS_ADDR(dev->sas_addr), phy_id, res);
607 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
608 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
609 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
610 res = pc_resp[2];
612 kfree(pc_resp);
613 kfree(pc_req);
614 return res;
617 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
619 struct expander_device *ex = &dev->ex_dev;
620 struct ex_phy *phy = &ex->ex_phy[phy_id];
622 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
623 phy->linkrate = SAS_PHY_DISABLED;
626 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
628 struct expander_device *ex = &dev->ex_dev;
629 int i;
631 for (i = 0; i < ex->num_phys; i++) {
632 struct ex_phy *phy = &ex->ex_phy[i];
634 if (phy->phy_state == PHY_VACANT ||
635 phy->phy_state == PHY_NOT_PRESENT)
636 continue;
638 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
639 sas_ex_disable_phy(dev, i);
643 static int sas_dev_present_in_domain(struct asd_sas_port *port,
644 u8 *sas_addr)
646 struct domain_device *dev;
648 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
649 return 1;
650 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
651 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
652 return 1;
654 return 0;
657 #define RPEL_REQ_SIZE 16
658 #define RPEL_RESP_SIZE 32
659 int sas_smp_get_phy_events(struct sas_phy *phy)
661 int res;
662 u8 *req;
663 u8 *resp;
664 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
665 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
667 req = alloc_smp_req(RPEL_REQ_SIZE);
668 if (!req)
669 return -ENOMEM;
671 resp = alloc_smp_resp(RPEL_RESP_SIZE);
672 if (!resp) {
673 kfree(req);
674 return -ENOMEM;
677 req[1] = SMP_REPORT_PHY_ERR_LOG;
678 req[9] = phy->number;
680 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
681 resp, RPEL_RESP_SIZE);
683 if (res)
684 goto out;
686 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
687 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
688 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
689 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
691 out:
692 kfree(req);
693 kfree(resp);
694 return res;
698 #ifdef CONFIG_SCSI_SAS_ATA
700 #define RPS_REQ_SIZE 16
701 #define RPS_RESP_SIZE 60
703 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
704 struct smp_resp *rps_resp)
706 int res;
707 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
708 u8 *resp = (u8 *)rps_resp;
710 if (!rps_req)
711 return -ENOMEM;
713 rps_req[1] = SMP_REPORT_PHY_SATA;
714 rps_req[9] = phy_id;
716 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
717 rps_resp, RPS_RESP_SIZE);
719 /* 0x34 is the FIS type for the D2H fis. There's a potential
720 * standards cockup here. sas-2 explicitly specifies the FIS
721 * should be encoded so that FIS type is in resp[24].
722 * However, some expanders endian reverse this. Undo the
723 * reversal here */
724 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
725 int i;
727 for (i = 0; i < 5; i++) {
728 int j = 24 + (i*4);
729 u8 a, b;
730 a = resp[j + 0];
731 b = resp[j + 1];
732 resp[j + 0] = resp[j + 3];
733 resp[j + 1] = resp[j + 2];
734 resp[j + 2] = b;
735 resp[j + 3] = a;
739 kfree(rps_req);
740 return res;
742 #endif
744 static void sas_ex_get_linkrate(struct domain_device *parent,
745 struct domain_device *child,
746 struct ex_phy *parent_phy)
748 struct expander_device *parent_ex = &parent->ex_dev;
749 struct sas_port *port;
750 int i;
752 child->pathways = 0;
754 port = parent_phy->port;
756 for (i = 0; i < parent_ex->num_phys; i++) {
757 struct ex_phy *phy = &parent_ex->ex_phy[i];
759 if (phy->phy_state == PHY_VACANT ||
760 phy->phy_state == PHY_NOT_PRESENT)
761 continue;
763 if (SAS_ADDR(phy->attached_sas_addr) ==
764 SAS_ADDR(child->sas_addr)) {
766 child->min_linkrate = min(parent->min_linkrate,
767 phy->linkrate);
768 child->max_linkrate = max(parent->max_linkrate,
769 phy->linkrate);
770 child->pathways++;
771 sas_port_add_phy(port, phy->phy);
774 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
775 child->pathways = min(child->pathways, parent->pathways);
778 static struct domain_device *sas_ex_discover_end_dev(
779 struct domain_device *parent, int phy_id)
781 struct expander_device *parent_ex = &parent->ex_dev;
782 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
783 struct domain_device *child = NULL;
784 struct sas_rphy *rphy;
785 int res;
787 if (phy->attached_sata_host || phy->attached_sata_ps)
788 return NULL;
790 child = sas_alloc_device();
791 if (!child)
792 return NULL;
794 kref_get(&parent->kref);
795 child->parent = parent;
796 child->port = parent->port;
797 child->iproto = phy->attached_iproto;
798 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
799 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
800 if (!phy->port) {
801 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802 if (unlikely(!phy->port))
803 goto out_err;
804 if (unlikely(sas_port_add(phy->port) != 0)) {
805 sas_port_free(phy->port);
806 goto out_err;
809 sas_ex_get_linkrate(parent, child, phy);
810 sas_device_set_phy(child, phy->port);
812 #ifdef CONFIG_SCSI_SAS_ATA
813 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
814 if (child->linkrate > parent->min_linkrate) {
815 struct sas_phy *cphy = child->phy;
816 enum sas_linkrate min_prate = cphy->minimum_linkrate,
817 parent_min_lrate = parent->min_linkrate,
818 min_linkrate = (min_prate > parent_min_lrate) ?
819 parent_min_lrate : 0;
820 struct sas_phy_linkrates rates = {
821 .maximum_linkrate = parent->min_linkrate,
822 .minimum_linkrate = min_linkrate,
824 int ret;
826 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
827 SAS_ADDR(child->sas_addr), phy_id);
828 ret = sas_smp_phy_control(parent, phy_id,
829 PHY_FUNC_LINK_RESET, &rates);
830 if (ret) {
831 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
832 SAS_ADDR(child->sas_addr), phy_id, ret);
833 goto out_free;
835 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
836 SAS_ADDR(child->sas_addr), phy_id);
837 child->linkrate = child->min_linkrate;
839 res = sas_get_ata_info(child, phy);
840 if (res)
841 goto out_free;
843 sas_init_dev(child);
844 res = sas_ata_init(child);
845 if (res)
846 goto out_free;
847 rphy = sas_end_device_alloc(phy->port);
848 if (!rphy)
849 goto out_free;
850 rphy->identify.phy_identifier = phy_id;
852 child->rphy = rphy;
853 get_device(&rphy->dev);
855 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
857 res = sas_discover_sata(child);
858 if (res) {
859 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
860 SAS_ADDR(child->sas_addr),
861 SAS_ADDR(parent->sas_addr), phy_id, res);
862 goto out_list_del;
864 } else
865 #endif
866 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
867 child->dev_type = SAS_END_DEVICE;
868 rphy = sas_end_device_alloc(phy->port);
869 /* FIXME: error handling */
870 if (unlikely(!rphy))
871 goto out_free;
872 child->tproto = phy->attached_tproto;
873 sas_init_dev(child);
875 child->rphy = rphy;
876 get_device(&rphy->dev);
877 rphy->identify.phy_identifier = phy_id;
878 sas_fill_in_rphy(child, rphy);
880 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
882 res = sas_discover_end_dev(child);
883 if (res) {
884 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
885 SAS_ADDR(child->sas_addr),
886 SAS_ADDR(parent->sas_addr), phy_id, res);
887 goto out_list_del;
889 } else {
890 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
891 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
892 phy_id);
893 goto out_free;
896 list_add_tail(&child->siblings, &parent_ex->children);
897 return child;
899 out_list_del:
900 sas_rphy_free(child->rphy);
901 list_del(&child->disco_list_node);
902 spin_lock_irq(&parent->port->dev_list_lock);
903 list_del(&child->dev_list_node);
904 spin_unlock_irq(&parent->port->dev_list_lock);
905 out_free:
906 sas_port_delete(phy->port);
907 out_err:
908 phy->port = NULL;
909 sas_put_device(child);
910 return NULL;
913 /* See if this phy is part of a wide port */
914 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
916 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
917 int i;
919 for (i = 0; i < parent->ex_dev.num_phys; i++) {
920 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
922 if (ephy == phy)
923 continue;
925 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
926 SAS_ADDR_SIZE) && ephy->port) {
927 sas_port_add_phy(ephy->port, phy->phy);
928 phy->port = ephy->port;
929 phy->phy_state = PHY_DEVICE_DISCOVERED;
930 return true;
934 return false;
937 static struct domain_device *sas_ex_discover_expander(
938 struct domain_device *parent, int phy_id)
940 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
941 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
942 struct domain_device *child = NULL;
943 struct sas_rphy *rphy;
944 struct sas_expander_device *edev;
945 struct asd_sas_port *port;
946 int res;
948 if (phy->routing_attr == DIRECT_ROUTING) {
949 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
950 SAS_ADDR(parent->sas_addr), phy_id,
951 SAS_ADDR(phy->attached_sas_addr),
952 phy->attached_phy_id);
953 return NULL;
955 child = sas_alloc_device();
956 if (!child)
957 return NULL;
959 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
960 /* FIXME: better error handling */
961 BUG_ON(sas_port_add(phy->port) != 0);
964 switch (phy->attached_dev_type) {
965 case SAS_EDGE_EXPANDER_DEVICE:
966 rphy = sas_expander_alloc(phy->port,
967 SAS_EDGE_EXPANDER_DEVICE);
968 break;
969 case SAS_FANOUT_EXPANDER_DEVICE:
970 rphy = sas_expander_alloc(phy->port,
971 SAS_FANOUT_EXPANDER_DEVICE);
972 break;
973 default:
974 rphy = NULL; /* shut gcc up */
975 BUG();
977 port = parent->port;
978 child->rphy = rphy;
979 get_device(&rphy->dev);
980 edev = rphy_to_expander_device(rphy);
981 child->dev_type = phy->attached_dev_type;
982 kref_get(&parent->kref);
983 child->parent = parent;
984 child->port = port;
985 child->iproto = phy->attached_iproto;
986 child->tproto = phy->attached_tproto;
987 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
988 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
989 sas_ex_get_linkrate(parent, child, phy);
990 edev->level = parent_ex->level + 1;
991 parent->port->disc.max_level = max(parent->port->disc.max_level,
992 edev->level);
993 sas_init_dev(child);
994 sas_fill_in_rphy(child, rphy);
995 sas_rphy_add(rphy);
997 spin_lock_irq(&parent->port->dev_list_lock);
998 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
999 spin_unlock_irq(&parent->port->dev_list_lock);
1001 res = sas_discover_expander(child);
1002 if (res) {
1003 sas_rphy_delete(rphy);
1004 spin_lock_irq(&parent->port->dev_list_lock);
1005 list_del(&child->dev_list_node);
1006 spin_unlock_irq(&parent->port->dev_list_lock);
1007 sas_put_device(child);
1008 sas_port_delete(phy->port);
1009 phy->port = NULL;
1010 return NULL;
1012 list_add_tail(&child->siblings, &parent->ex_dev.children);
1013 return child;
1016 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1018 struct expander_device *ex = &dev->ex_dev;
1019 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020 struct domain_device *child = NULL;
1021 int res = 0;
1023 /* Phy state */
1024 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026 res = sas_ex_phy_discover(dev, phy_id);
1027 if (res)
1028 return res;
1031 /* Parent and domain coherency */
1032 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033 SAS_ADDR(dev->port->sas_addr))) {
1034 sas_add_parent_port(dev, phy_id);
1035 return 0;
1037 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038 SAS_ADDR(dev->parent->sas_addr))) {
1039 sas_add_parent_port(dev, phy_id);
1040 if (ex_phy->routing_attr == TABLE_ROUTING)
1041 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042 return 0;
1045 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1048 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1053 return 0;
1054 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055 return 0;
1057 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062 ex_phy->attached_dev_type,
1063 SAS_ADDR(dev->sas_addr),
1064 phy_id);
1065 return 0;
1068 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069 if (res) {
1070 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071 SAS_ADDR(ex_phy->attached_sas_addr), res);
1072 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073 return res;
1076 if (sas_ex_join_wide_port(dev, phy_id)) {
1077 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079 return res;
1082 switch (ex_phy->attached_dev_type) {
1083 case SAS_END_DEVICE:
1084 case SAS_SATA_PENDING:
1085 child = sas_ex_discover_end_dev(dev, phy_id);
1086 break;
1087 case SAS_FANOUT_EXPANDER_DEVICE:
1088 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090 SAS_ADDR(ex_phy->attached_sas_addr),
1091 ex_phy->attached_phy_id,
1092 SAS_ADDR(dev->sas_addr),
1093 phy_id);
1094 sas_ex_disable_phy(dev, phy_id);
1095 return res;
1096 } else
1097 memcpy(dev->port->disc.fanout_sas_addr,
1098 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099 fallthrough;
1100 case SAS_EDGE_EXPANDER_DEVICE:
1101 child = sas_ex_discover_expander(dev, phy_id);
1102 break;
1103 default:
1104 break;
1107 if (!child)
1108 pr_notice("ex %016llx phy%02d failed to discover\n",
1109 SAS_ADDR(dev->sas_addr), phy_id);
1110 return res;
1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1115 struct expander_device *ex = &dev->ex_dev;
1116 int i;
1118 for (i = 0; i < ex->num_phys; i++) {
1119 struct ex_phy *phy = &ex->ex_phy[i];
1121 if (phy->phy_state == PHY_VACANT ||
1122 phy->phy_state == PHY_NOT_PRESENT)
1123 continue;
1125 if (dev_is_expander(phy->attached_dev_type) &&
1126 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1128 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1130 return 1;
1133 return 0;
1136 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1138 struct expander_device *ex = &dev->ex_dev;
1139 struct domain_device *child;
1140 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1142 list_for_each_entry(child, &ex->children, siblings) {
1143 if (!dev_is_expander(child->dev_type))
1144 continue;
1145 if (sub_addr[0] == 0) {
1146 sas_find_sub_addr(child, sub_addr);
1147 continue;
1148 } else {
1149 u8 s2[SAS_ADDR_SIZE];
1151 if (sas_find_sub_addr(child, s2) &&
1152 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1154 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155 SAS_ADDR(dev->sas_addr),
1156 SAS_ADDR(child->sas_addr),
1157 SAS_ADDR(s2),
1158 SAS_ADDR(sub_addr));
1160 sas_ex_disable_port(child, s2);
1164 return 0;
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1174 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1176 struct expander_device *ex = &dev->ex_dev;
1177 int i = 0, end = ex->num_phys;
1178 int res = 0;
1180 if (0 <= single && single < end) {
1181 i = single;
1182 end = i+1;
1185 for ( ; i < end; i++) {
1186 struct ex_phy *ex_phy = &ex->ex_phy[i];
1188 if (ex_phy->phy_state == PHY_VACANT ||
1189 ex_phy->phy_state == PHY_NOT_PRESENT ||
1190 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191 continue;
1193 switch (ex_phy->linkrate) {
1194 case SAS_PHY_DISABLED:
1195 case SAS_PHY_RESET_PROBLEM:
1196 case SAS_SATA_PORT_SELECTOR:
1197 continue;
1198 default:
1199 res = sas_ex_discover_dev(dev, i);
1200 if (res)
1201 break;
1202 continue;
1206 if (!res)
1207 sas_check_level_subtractive_boundary(dev);
1209 return res;
1212 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1214 struct expander_device *ex = &dev->ex_dev;
1215 int i;
1216 u8 *sub_sas_addr = NULL;
1218 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219 return 0;
1221 for (i = 0; i < ex->num_phys; i++) {
1222 struct ex_phy *phy = &ex->ex_phy[i];
1224 if (phy->phy_state == PHY_VACANT ||
1225 phy->phy_state == PHY_NOT_PRESENT)
1226 continue;
1228 if (dev_is_expander(phy->attached_dev_type) &&
1229 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1231 if (!sub_sas_addr)
1232 sub_sas_addr = &phy->attached_sas_addr[0];
1233 else if (SAS_ADDR(sub_sas_addr) !=
1234 SAS_ADDR(phy->attached_sas_addr)) {
1236 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237 SAS_ADDR(dev->sas_addr), i,
1238 SAS_ADDR(phy->attached_sas_addr),
1239 SAS_ADDR(sub_sas_addr));
1240 sas_ex_disable_phy(dev, i);
1244 return 0;
1247 static void sas_print_parent_topology_bug(struct domain_device *child,
1248 struct ex_phy *parent_phy,
1249 struct ex_phy *child_phy)
1251 static const char *ex_type[] = {
1252 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1255 struct domain_device *parent = child->parent;
1257 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258 ex_type[parent->dev_type],
1259 SAS_ADDR(parent->sas_addr),
1260 parent_phy->phy_id,
1262 ex_type[child->dev_type],
1263 SAS_ADDR(child->sas_addr),
1264 child_phy->phy_id,
1266 sas_route_char(parent, parent_phy),
1267 sas_route_char(child, child_phy));
1270 static int sas_check_eeds(struct domain_device *child,
1271 struct ex_phy *parent_phy,
1272 struct ex_phy *child_phy)
1274 int res = 0;
1275 struct domain_device *parent = child->parent;
1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278 res = -ENODEV;
1279 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280 SAS_ADDR(parent->sas_addr),
1281 parent_phy->phy_id,
1282 SAS_ADDR(child->sas_addr),
1283 child_phy->phy_id,
1284 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287 SAS_ADDR_SIZE);
1288 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289 SAS_ADDR_SIZE);
1290 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291 SAS_ADDR(parent->sas_addr)) ||
1292 (SAS_ADDR(parent->port->disc.eeds_a) ==
1293 SAS_ADDR(child->sas_addr)))
1295 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296 SAS_ADDR(parent->sas_addr)) ||
1297 (SAS_ADDR(parent->port->disc.eeds_b) ==
1298 SAS_ADDR(child->sas_addr))))
1300 else {
1301 res = -ENODEV;
1302 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303 SAS_ADDR(parent->sas_addr),
1304 parent_phy->phy_id,
1305 SAS_ADDR(child->sas_addr),
1306 child_phy->phy_id);
1309 return res;
1312 /* Here we spill over 80 columns. It is intentional.
1314 static int sas_check_parent_topology(struct domain_device *child)
1316 struct expander_device *child_ex = &child->ex_dev;
1317 struct expander_device *parent_ex;
1318 int i;
1319 int res = 0;
1321 if (!child->parent)
1322 return 0;
1324 if (!dev_is_expander(child->parent->dev_type))
1325 return 0;
1327 parent_ex = &child->parent->ex_dev;
1329 for (i = 0; i < parent_ex->num_phys; i++) {
1330 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331 struct ex_phy *child_phy;
1333 if (parent_phy->phy_state == PHY_VACANT ||
1334 parent_phy->phy_state == PHY_NOT_PRESENT)
1335 continue;
1337 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338 continue;
1340 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342 switch (child->parent->dev_type) {
1343 case SAS_EDGE_EXPANDER_DEVICE:
1344 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346 child_phy->routing_attr != TABLE_ROUTING) {
1347 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348 res = -ENODEV;
1350 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352 res = sas_check_eeds(child, parent_phy, child_phy);
1353 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1354 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 res = -ENODEV;
1357 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359 (child_phy->routing_attr == TABLE_ROUTING &&
1360 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361 /* All good */;
1362 } else {
1363 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364 res = -ENODEV;
1367 break;
1368 case SAS_FANOUT_EXPANDER_DEVICE:
1369 if (parent_phy->routing_attr != TABLE_ROUTING ||
1370 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372 res = -ENODEV;
1374 break;
1375 default:
1376 break;
1380 return res;
1383 #define RRI_REQ_SIZE 16
1384 #define RRI_RESP_SIZE 44
1386 static int sas_configure_present(struct domain_device *dev, int phy_id,
1387 u8 *sas_addr, int *index, int *present)
1389 int i, res = 0;
1390 struct expander_device *ex = &dev->ex_dev;
1391 struct ex_phy *phy = &ex->ex_phy[phy_id];
1392 u8 *rri_req;
1393 u8 *rri_resp;
1395 *present = 0;
1396 *index = 0;
1398 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399 if (!rri_req)
1400 return -ENOMEM;
1402 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403 if (!rri_resp) {
1404 kfree(rri_req);
1405 return -ENOMEM;
1408 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409 rri_req[9] = phy_id;
1411 for (i = 0; i < ex->max_route_indexes ; i++) {
1412 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414 RRI_RESP_SIZE);
1415 if (res)
1416 goto out;
1417 res = rri_resp[2];
1418 if (res == SMP_RESP_NO_INDEX) {
1419 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420 SAS_ADDR(dev->sas_addr), phy_id, i);
1421 goto out;
1422 } else if (res != SMP_RESP_FUNC_ACC) {
1423 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425 i, res);
1426 goto out;
1428 if (SAS_ADDR(sas_addr) != 0) {
1429 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430 *index = i;
1431 if ((rri_resp[12] & 0x80) == 0x80)
1432 *present = 0;
1433 else
1434 *present = 1;
1435 goto out;
1436 } else if (SAS_ADDR(rri_resp+16) == 0) {
1437 *index = i;
1438 *present = 0;
1439 goto out;
1441 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1442 phy->last_da_index < i) {
1443 phy->last_da_index = i;
1444 *index = i;
1445 *present = 0;
1446 goto out;
1449 res = -1;
1450 out:
1451 kfree(rri_req);
1452 kfree(rri_resp);
1453 return res;
1456 #define CRI_REQ_SIZE 44
1457 #define CRI_RESP_SIZE 8
1459 static int sas_configure_set(struct domain_device *dev, int phy_id,
1460 u8 *sas_addr, int index, int include)
1462 int res;
1463 u8 *cri_req;
1464 u8 *cri_resp;
1466 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467 if (!cri_req)
1468 return -ENOMEM;
1470 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471 if (!cri_resp) {
1472 kfree(cri_req);
1473 return -ENOMEM;
1476 cri_req[1] = SMP_CONF_ROUTE_INFO;
1477 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478 cri_req[9] = phy_id;
1479 if (SAS_ADDR(sas_addr) == 0 || !include)
1480 cri_req[12] |= 0x80;
1481 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1483 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484 CRI_RESP_SIZE);
1485 if (res)
1486 goto out;
1487 res = cri_resp[2];
1488 if (res == SMP_RESP_NO_INDEX) {
1489 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490 SAS_ADDR(dev->sas_addr), phy_id, index);
1492 out:
1493 kfree(cri_req);
1494 kfree(cri_resp);
1495 return res;
1498 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499 u8 *sas_addr, int include)
1501 int index;
1502 int present;
1503 int res;
1505 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506 if (res)
1507 return res;
1508 if (include ^ present)
1509 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1511 return res;
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1521 static int sas_configure_parent(struct domain_device *parent,
1522 struct domain_device *child,
1523 u8 *sas_addr, int include)
1525 struct expander_device *ex_parent = &parent->ex_dev;
1526 int res = 0;
1527 int i;
1529 if (parent->parent) {
1530 res = sas_configure_parent(parent->parent, parent, sas_addr,
1531 include);
1532 if (res)
1533 return res;
1536 if (ex_parent->conf_route_table == 0) {
1537 pr_debug("ex %016llx has self-configuring routing table\n",
1538 SAS_ADDR(parent->sas_addr));
1539 return 0;
1542 for (i = 0; i < ex_parent->num_phys; i++) {
1543 struct ex_phy *phy = &ex_parent->ex_phy[i];
1545 if ((phy->routing_attr == TABLE_ROUTING) &&
1546 (SAS_ADDR(phy->attached_sas_addr) ==
1547 SAS_ADDR(child->sas_addr))) {
1548 res = sas_configure_phy(parent, i, sas_addr, include);
1549 if (res)
1550 return res;
1554 return res;
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1562 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1564 if (dev->parent)
1565 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566 return 0;
1569 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1571 if (dev->parent)
1572 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573 return 0;
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1580 * See comment in sas_discover_sata().
1582 static int sas_discover_expander(struct domain_device *dev)
1584 int res;
1586 res = sas_notify_lldd_dev_found(dev);
1587 if (res)
1588 return res;
1590 res = sas_ex_general(dev);
1591 if (res)
1592 goto out_err;
1593 res = sas_ex_manuf_info(dev);
1594 if (res)
1595 goto out_err;
1597 res = sas_expander_discover(dev);
1598 if (res) {
1599 pr_warn("expander %016llx discovery failed(0x%x)\n",
1600 SAS_ADDR(dev->sas_addr), res);
1601 goto out_err;
1604 sas_check_ex_subtractive_boundary(dev);
1605 res = sas_check_parent_topology(dev);
1606 if (res)
1607 goto out_err;
1608 return 0;
1609 out_err:
1610 sas_notify_lldd_dev_gone(dev);
1611 return res;
1614 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1616 int res = 0;
1617 struct domain_device *dev;
1619 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620 if (dev_is_expander(dev->dev_type)) {
1621 struct sas_expander_device *ex =
1622 rphy_to_expander_device(dev->rphy);
1624 if (level == ex->level)
1625 res = sas_ex_discover_devices(dev, -1);
1626 else if (level > 0)
1627 res = sas_ex_discover_devices(port->port_dev, -1);
1632 return res;
1635 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1637 int res;
1638 int level;
1640 do {
1641 level = port->disc.max_level;
1642 res = sas_ex_level_discovery(port, level);
1643 mb();
1644 } while (level < port->disc.max_level);
1646 return res;
1649 int sas_discover_root_expander(struct domain_device *dev)
1651 int res;
1652 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1654 res = sas_rphy_add(dev->rphy);
1655 if (res)
1656 goto out_err;
1658 ex->level = dev->port->disc.max_level; /* 0 */
1659 res = sas_discover_expander(dev);
1660 if (res)
1661 goto out_err2;
1663 sas_ex_bfs_disc(dev->port);
1665 return res;
1667 out_err2:
1668 sas_rphy_remove(dev->rphy);
1669 out_err:
1670 return res;
1673 /* ---------- Domain revalidation ---------- */
1675 static int sas_get_phy_discover(struct domain_device *dev,
1676 int phy_id, struct smp_resp *disc_resp)
1678 int res;
1679 u8 *disc_req;
1681 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682 if (!disc_req)
1683 return -ENOMEM;
1685 disc_req[1] = SMP_DISCOVER;
1686 disc_req[9] = phy_id;
1688 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689 disc_resp, DISCOVER_RESP_SIZE);
1690 if (res)
1691 goto out;
1692 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693 res = disc_resp->result;
1694 goto out;
1696 out:
1697 kfree(disc_req);
1698 return res;
1701 static int sas_get_phy_change_count(struct domain_device *dev,
1702 int phy_id, int *pcc)
1704 int res;
1705 struct smp_resp *disc_resp;
1707 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708 if (!disc_resp)
1709 return -ENOMEM;
1711 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712 if (!res)
1713 *pcc = disc_resp->disc.change_count;
1715 kfree(disc_resp);
1716 return res;
1719 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720 u8 *sas_addr, enum sas_device_type *type)
1722 int res;
1723 struct smp_resp *disc_resp;
1724 struct discover_resp *dr;
1726 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727 if (!disc_resp)
1728 return -ENOMEM;
1729 dr = &disc_resp->disc;
1731 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732 if (res == 0) {
1733 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734 SAS_ADDR_SIZE);
1735 *type = to_dev_type(dr);
1736 if (*type == 0)
1737 memset(sas_addr, 0, SAS_ADDR_SIZE);
1739 kfree(disc_resp);
1740 return res;
1743 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744 int from_phy, bool update)
1746 struct expander_device *ex = &dev->ex_dev;
1747 int res = 0;
1748 int i;
1750 for (i = from_phy; i < ex->num_phys; i++) {
1751 int phy_change_count = 0;
1753 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754 switch (res) {
1755 case SMP_RESP_PHY_VACANT:
1756 case SMP_RESP_NO_PHY:
1757 continue;
1758 case SMP_RESP_FUNC_ACC:
1759 break;
1760 default:
1761 return res;
1764 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765 if (update)
1766 ex->ex_phy[i].phy_change_count =
1767 phy_change_count;
1768 *phy_id = i;
1769 return 0;
1772 return 0;
1775 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1777 int res;
1778 u8 *rg_req;
1779 struct smp_resp *rg_resp;
1781 rg_req = alloc_smp_req(RG_REQ_SIZE);
1782 if (!rg_req)
1783 return -ENOMEM;
1785 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786 if (!rg_resp) {
1787 kfree(rg_req);
1788 return -ENOMEM;
1791 rg_req[1] = SMP_REPORT_GENERAL;
1793 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794 RG_RESP_SIZE);
1795 if (res)
1796 goto out;
1797 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798 res = rg_resp->result;
1799 goto out;
1802 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1803 out:
1804 kfree(rg_resp);
1805 kfree(rg_req);
1806 return res;
1809 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1823 static int sas_find_bcast_dev(struct domain_device *dev,
1824 struct domain_device **src_dev)
1826 struct expander_device *ex = &dev->ex_dev;
1827 int ex_change_count = -1;
1828 int phy_id = -1;
1829 int res;
1830 struct domain_device *ch;
1832 res = sas_get_ex_change_count(dev, &ex_change_count);
1833 if (res)
1834 goto out;
1835 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836 /* Just detect if this expander phys phy change count changed,
1837 * in order to determine if this expander originate BROADCAST,
1838 * and do not update phy change count field in our structure.
1840 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841 if (phy_id != -1) {
1842 *src_dev = dev;
1843 ex->ex_change_count = ex_change_count;
1844 pr_info("ex %016llx phy%02d change count has changed\n",
1845 SAS_ADDR(dev->sas_addr), phy_id);
1846 return res;
1847 } else
1848 pr_info("ex %016llx phys DID NOT change\n",
1849 SAS_ADDR(dev->sas_addr));
1851 list_for_each_entry(ch, &ex->children, siblings) {
1852 if (dev_is_expander(ch->dev_type)) {
1853 res = sas_find_bcast_dev(ch, src_dev);
1854 if (*src_dev)
1855 return res;
1858 out:
1859 return res;
1862 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct domain_device *child, *n;
1867 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868 set_bit(SAS_DEV_GONE, &child->state);
1869 if (dev_is_expander(child->dev_type))
1870 sas_unregister_ex_tree(port, child);
1871 else
1872 sas_unregister_dev(port, child);
1874 sas_unregister_dev(port, dev);
1877 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878 int phy_id, bool last)
1880 struct expander_device *ex_dev = &parent->ex_dev;
1881 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882 struct domain_device *child, *n, *found = NULL;
1883 if (last) {
1884 list_for_each_entry_safe(child, n,
1885 &ex_dev->children, siblings) {
1886 if (SAS_ADDR(child->sas_addr) ==
1887 SAS_ADDR(phy->attached_sas_addr)) {
1888 set_bit(SAS_DEV_GONE, &child->state);
1889 if (dev_is_expander(child->dev_type))
1890 sas_unregister_ex_tree(parent->port, child);
1891 else
1892 sas_unregister_dev(parent->port, child);
1893 found = child;
1894 break;
1897 sas_disable_routing(parent, phy->attached_sas_addr);
1899 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900 if (phy->port) {
1901 sas_port_delete_phy(phy->port, phy->phy);
1902 sas_device_set_phy(found, phy->port);
1903 if (phy->port->num_phys == 0)
1904 list_add_tail(&phy->port->del_list,
1905 &parent->port->sas_port_del_list);
1906 phy->port = NULL;
1910 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911 const int level)
1913 struct expander_device *ex_root = &root->ex_dev;
1914 struct domain_device *child;
1915 int res = 0;
1917 list_for_each_entry(child, &ex_root->children, siblings) {
1918 if (dev_is_expander(child->dev_type)) {
1919 struct sas_expander_device *ex =
1920 rphy_to_expander_device(child->rphy);
1922 if (level > ex->level)
1923 res = sas_discover_bfs_by_root_level(child,
1924 level);
1925 else if (level == ex->level)
1926 res = sas_ex_discover_devices(child, -1);
1929 return res;
1932 static int sas_discover_bfs_by_root(struct domain_device *dev)
1934 int res;
1935 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936 int level = ex->level+1;
1938 res = sas_ex_discover_devices(dev, -1);
1939 if (res)
1940 goto out;
1941 do {
1942 res = sas_discover_bfs_by_root_level(dev, level);
1943 mb();
1944 level += 1;
1945 } while (level <= dev->port->disc.max_level);
1946 out:
1947 return res;
1950 static int sas_discover_new(struct domain_device *dev, int phy_id)
1952 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953 struct domain_device *child;
1954 int res;
1956 pr_debug("ex %016llx phy%02d new device attached\n",
1957 SAS_ADDR(dev->sas_addr), phy_id);
1958 res = sas_ex_phy_discover(dev, phy_id);
1959 if (res)
1960 return res;
1962 if (sas_ex_join_wide_port(dev, phy_id))
1963 return 0;
1965 res = sas_ex_discover_devices(dev, phy_id);
1966 if (res)
1967 return res;
1968 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969 if (SAS_ADDR(child->sas_addr) ==
1970 SAS_ADDR(ex_phy->attached_sas_addr)) {
1971 if (dev_is_expander(child->dev_type))
1972 res = sas_discover_bfs_by_root(child);
1973 break;
1976 return res;
1979 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1981 if (old == new)
1982 return true;
1984 /* treat device directed resets as flutter, if we went
1985 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1987 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989 return true;
1991 return false;
1994 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995 bool last, int sibling)
1997 struct expander_device *ex = &dev->ex_dev;
1998 struct ex_phy *phy = &ex->ex_phy[phy_id];
1999 enum sas_device_type type = SAS_PHY_UNUSED;
2000 u8 sas_addr[SAS_ADDR_SIZE];
2001 char msg[80] = "";
2002 int res;
2004 if (!last)
2005 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2007 pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008 SAS_ADDR(dev->sas_addr), phy_id, msg);
2010 memset(sas_addr, 0, SAS_ADDR_SIZE);
2011 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012 switch (res) {
2013 case SMP_RESP_NO_PHY:
2014 phy->phy_state = PHY_NOT_PRESENT;
2015 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016 return res;
2017 case SMP_RESP_PHY_VACANT:
2018 phy->phy_state = PHY_VACANT;
2019 sas_unregister_devs_sas_addr(dev, phy_id, last);
2020 return res;
2021 case SMP_RESP_FUNC_ACC:
2022 break;
2023 case -ECOMM:
2024 break;
2025 default:
2026 return res;
2029 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030 phy->phy_state = PHY_EMPTY;
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2033 * Even though the PHY is empty, for convenience we discover
2034 * the PHY to update the PHY info, like negotiated linkrate.
2036 sas_ex_phy_discover(dev, phy_id);
2037 return res;
2038 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039 dev_type_flutter(type, phy->attached_dev_type)) {
2040 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041 char *action = "";
2043 sas_ex_phy_discover(dev, phy_id);
2045 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046 action = ", needs recovery";
2047 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048 SAS_ADDR(dev->sas_addr), phy_id, action);
2049 return res;
2052 /* we always have to delete the old device when we went here */
2053 pr_info("ex %016llx phy%02d replace %016llx\n",
2054 SAS_ADDR(dev->sas_addr), phy_id,
2055 SAS_ADDR(phy->attached_sas_addr));
2056 sas_unregister_devs_sas_addr(dev, phy_id, last);
2058 return sas_discover_new(dev, phy_id);
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered. Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2075 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2077 struct expander_device *ex = &dev->ex_dev;
2078 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079 int res = 0;
2080 int i;
2081 bool last = true; /* is this the last phy of the port */
2083 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084 SAS_ADDR(dev->sas_addr), phy_id);
2086 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087 for (i = 0; i < ex->num_phys; i++) {
2088 struct ex_phy *phy = &ex->ex_phy[i];
2090 if (i == phy_id)
2091 continue;
2092 if (SAS_ADDR(phy->attached_sas_addr) ==
2093 SAS_ADDR(changed_phy->attached_sas_addr)) {
2094 last = false;
2095 break;
2098 res = sas_rediscover_dev(dev, phy_id, last, i);
2099 } else
2100 res = sas_discover_new(dev, phy_id);
2101 return res;
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered. Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2113 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2115 int res;
2116 struct domain_device *dev = NULL;
2118 res = sas_find_bcast_dev(port_dev, &dev);
2119 if (res == 0 && dev) {
2120 struct expander_device *ex = &dev->ex_dev;
2121 int i = 0, phy_id;
2123 do {
2124 phy_id = -1;
2125 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126 if (phy_id == -1)
2127 break;
2128 res = sas_rediscover(dev, phy_id);
2129 i = phy_id + 1;
2130 } while (i < ex->num_phys);
2132 return res;
2135 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136 struct sas_rphy *rphy)
2138 struct domain_device *dev;
2139 unsigned int rcvlen = 0;
2140 int ret = -EINVAL;
2142 /* no rphy means no smp target support (ie aic94xx host) */
2143 if (!rphy)
2144 return sas_smp_host_handler(job, shost);
2146 switch (rphy->identify.device_type) {
2147 case SAS_EDGE_EXPANDER_DEVICE:
2148 case SAS_FANOUT_EXPANDER_DEVICE:
2149 break;
2150 default:
2151 pr_err("%s: can we send a smp request to a device?\n",
2152 __func__);
2153 goto out;
2156 dev = sas_find_dev_by_rphy(rphy);
2157 if (!dev) {
2158 pr_err("%s: fail to find a domain_device?\n", __func__);
2159 goto out;
2162 /* do we need to support multiple segments? */
2163 if (job->request_payload.sg_cnt > 1 ||
2164 job->reply_payload.sg_cnt > 1) {
2165 pr_info("%s: multiple segments req %u, rsp %u\n",
2166 __func__, job->request_payload.payload_len,
2167 job->reply_payload.payload_len);
2168 goto out;
2171 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172 job->reply_payload.sg_list);
2173 if (ret >= 0) {
2174 /* bsg_job_done() requires the length received */
2175 rcvlen = job->reply_payload.payload_len - ret;
2176 ret = 0;
2179 out:
2180 bsg_job_done(job, ret, rcvlen);