Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / scsi / lpfc / lpfc_nvmet.c
bloba71df8788fff3691aa32c8002b0fbea4fac25c7d
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channsel Host Bus Adapters. *
4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
39 #include "lpfc_version.h"
40 #include "lpfc_hw4.h"
41 #include "lpfc_hw.h"
42 #include "lpfc_sli.h"
43 #include "lpfc_sli4.h"
44 #include "lpfc_nl.h"
45 #include "lpfc_disc.h"
46 #include "lpfc.h"
47 #include "lpfc_scsi.h"
48 #include "lpfc_nvme.h"
49 #include "lpfc_logmsg.h"
50 #include "lpfc_crtn.h"
51 #include "lpfc_vport.h"
52 #include "lpfc_debugfs.h"
54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
55 struct lpfc_async_xchg_ctx *,
56 dma_addr_t rspbuf,
57 uint16_t rspsize);
58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
59 struct lpfc_async_xchg_ctx *);
60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
61 struct lpfc_async_xchg_ctx *,
62 uint32_t, uint16_t);
63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
64 struct lpfc_async_xchg_ctx *,
65 uint32_t, uint16_t);
66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
67 struct lpfc_async_xchg_ctx *);
68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
72 static union lpfc_wqe128 lpfc_tsend_cmd_template;
73 static union lpfc_wqe128 lpfc_treceive_cmd_template;
74 static union lpfc_wqe128 lpfc_trsp_cmd_template;
76 /* Setup WQE templates for NVME IOs */
77 void
78 lpfc_nvmet_cmd_template(void)
80 union lpfc_wqe128 *wqe;
82 /* TSEND template */
83 wqe = &lpfc_tsend_cmd_template;
84 memset(wqe, 0, sizeof(union lpfc_wqe128));
86 /* Word 0, 1, 2 - BDE is variable */
88 /* Word 3 - payload_offset_len is zero */
90 /* Word 4 - relative_offset is variable */
92 /* Word 5 - is zero */
94 /* Word 6 - ctxt_tag, xri_tag is variable */
96 /* Word 7 - wqe_ar is variable */
97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
103 /* Word 8 - abort_tag is variable */
105 /* Word 9 - reqtag, rcvoxid is variable */
107 /* Word 10 - wqes, xc is variable */
108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG);
109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
115 /* Word 11 - sup, irsp, irsplen is variable */
116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
123 /* Word 12 - fcp_data_len is variable */
125 /* Word 13, 14, 15 - PBDE is zero */
127 /* TRECEIVE template */
128 wqe = &lpfc_treceive_cmd_template;
129 memset(wqe, 0, sizeof(union lpfc_wqe128));
131 /* Word 0, 1, 2 - BDE is variable */
133 /* Word 3 */
134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
136 /* Word 4 - relative_offset is variable */
138 /* Word 5 - is zero */
140 /* Word 6 - ctxt_tag, xri_tag is variable */
142 /* Word 7 */
143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
149 /* Word 8 - abort_tag is variable */
151 /* Word 9 - reqtag, rcvoxid is variable */
153 /* Word 10 - xc is variable */
154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG);
157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
161 /* Word 11 - pbde is variable */
162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
169 /* Word 12 - fcp_data_len is variable */
171 /* Word 13, 14, 15 - PBDE is variable */
173 /* TRSP template */
174 wqe = &lpfc_trsp_cmd_template;
175 memset(wqe, 0, sizeof(union lpfc_wqe128));
177 /* Word 0, 1, 2 - BDE is variable */
179 /* Word 3 - response_len is variable */
181 /* Word 4, 5 - is zero */
183 /* Word 6 - ctxt_tag, xri_tag is variable */
185 /* Word 7 */
186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
192 /* Word 8 - abort_tag is variable */
194 /* Word 9 - reqtag is variable */
196 /* Word 10 wqes, xc is variable */
197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG);
199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
204 /* Word 11 irsp, irsplen is variable */
205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
212 /* Word 12, 13, 14, 15 - is zero */
215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
216 static struct lpfc_async_xchg_ctx *
217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
219 struct lpfc_async_xchg_ctx *ctxp;
220 unsigned long iflag;
221 bool found = false;
223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
226 continue;
228 found = true;
229 break;
231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
232 if (found)
233 return ctxp;
235 return NULL;
238 static struct lpfc_async_xchg_ctx *
239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
241 struct lpfc_async_xchg_ctx *ctxp;
242 unsigned long iflag;
243 bool found = false;
245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
247 if (ctxp->oxid != oxid || ctxp->sid != sid)
248 continue;
250 found = true;
251 break;
253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
254 if (found)
255 return ctxp;
257 return NULL;
259 #endif
261 static void
262 lpfc_nvmet_defer_release(struct lpfc_hba *phba,
263 struct lpfc_async_xchg_ctx *ctxp)
265 lockdep_assert_held(&ctxp->ctxlock);
267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n",
269 ctxp->oxid, ctxp->flag);
271 if (ctxp->flag & LPFC_NVME_CTX_RLS)
272 return;
274 ctxp->flag |= LPFC_NVME_CTX_RLS;
275 spin_lock(&phba->sli4_hba.t_active_list_lock);
276 list_del(&ctxp->list);
277 spin_unlock(&phba->sli4_hba.t_active_list_lock);
278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
285 * transmission of an NVME LS response.
286 * @phba: Pointer to HBA context object.
287 * @cmdwqe: Pointer to driver command WQE object.
288 * @wcqe: Pointer to driver response CQE object.
290 * The function is called from SLI ring event handler with no
291 * lock held. The function frees memory resources used for the command
292 * used to send the NVME LS RSP.
294 void
295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
296 struct lpfc_wcqe_complete *wcqe)
298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2;
299 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
300 uint32_t status, result;
302 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
303 result = wcqe->parameter;
305 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
307 "6410 NVMEx LS cmpl state mismatch IO x%x: "
308 "%d %d\n",
309 axchg->oxid, axchg->state, axchg->entry_cnt);
312 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n",
313 axchg->oxid, status, result);
315 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
316 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
317 status, result, axchg->oxid);
319 lpfc_nlp_put(cmdwqe->context1);
320 cmdwqe->context2 = NULL;
321 cmdwqe->context3 = NULL;
322 lpfc_sli_release_iocbq(phba, cmdwqe);
323 ls_rsp->done(ls_rsp);
324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
325 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
326 status, axchg->oxid);
327 kfree(axchg);
331 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
332 * @phba: Pointer to HBA context object.
333 * @cmdwqe: Pointer to driver command WQE object.
334 * @wcqe: Pointer to driver response CQE object.
336 * The function is called from SLI ring event handler with no
337 * lock held. This function is the completion handler for NVME LS commands
338 * The function updates any states and statistics, then calls the
339 * generic completion handler to free resources.
341 static void
342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
343 struct lpfc_wcqe_complete *wcqe)
345 struct lpfc_nvmet_tgtport *tgtp;
346 uint32_t status, result;
348 if (!phba->targetport)
349 goto finish;
351 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
352 result = wcqe->parameter;
354 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
355 if (tgtp) {
356 if (status) {
357 atomic_inc(&tgtp->xmt_ls_rsp_error);
358 if (result == IOERR_ABORT_REQUESTED)
359 atomic_inc(&tgtp->xmt_ls_rsp_aborted);
360 if (bf_get(lpfc_wcqe_c_xb, wcqe))
361 atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
362 } else {
363 atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
367 finish:
368 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe);
372 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
373 * @phba: HBA buffer is associated with
374 * @ctx_buf: ctx buffer context
376 * Description: Frees the given DMA buffer in the appropriate way given by
377 * reposting it to its associated RQ so it can be reused.
379 * Notes: Takes phba->hbalock. Can be called with or without other locks held.
381 * Returns: None
383 void
384 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
386 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
387 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
388 struct lpfc_nvmet_tgtport *tgtp;
389 struct fc_frame_header *fc_hdr;
390 struct rqb_dmabuf *nvmebuf;
391 struct lpfc_nvmet_ctx_info *infop;
392 uint32_t size, oxid, sid;
393 int cpu;
394 unsigned long iflag;
396 if (ctxp->state == LPFC_NVME_STE_FREE) {
397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
398 "6411 NVMET free, already free IO x%x: %d %d\n",
399 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
402 if (ctxp->rqb_buffer) {
403 spin_lock_irqsave(&ctxp->ctxlock, iflag);
404 nvmebuf = ctxp->rqb_buffer;
405 /* check if freed in another path whilst acquiring lock */
406 if (nvmebuf) {
407 ctxp->rqb_buffer = NULL;
408 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
409 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
410 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
411 nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
412 nvmebuf);
413 } else {
414 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
415 /* repost */
416 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
418 } else {
419 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
422 ctxp->state = LPFC_NVME_STE_FREE;
424 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
425 if (phba->sli4_hba.nvmet_io_wait_cnt) {
426 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
427 nvmebuf, struct rqb_dmabuf,
428 hbuf.list);
429 phba->sli4_hba.nvmet_io_wait_cnt--;
430 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
431 iflag);
433 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
434 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
435 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
436 size = nvmebuf->bytes_recv;
437 sid = sli4_sid_from_fc_hdr(fc_hdr);
439 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
440 ctxp->wqeq = NULL;
441 ctxp->offset = 0;
442 ctxp->phba = phba;
443 ctxp->size = size;
444 ctxp->oxid = oxid;
445 ctxp->sid = sid;
446 ctxp->state = LPFC_NVME_STE_RCV;
447 ctxp->entry_cnt = 1;
448 ctxp->flag = 0;
449 ctxp->ctxbuf = ctx_buf;
450 ctxp->rqb_buffer = (void *)nvmebuf;
451 spin_lock_init(&ctxp->ctxlock);
453 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
454 /* NOTE: isr time stamp is stale when context is re-assigned*/
455 if (ctxp->ts_isr_cmd) {
456 ctxp->ts_cmd_nvme = 0;
457 ctxp->ts_nvme_data = 0;
458 ctxp->ts_data_wqput = 0;
459 ctxp->ts_isr_data = 0;
460 ctxp->ts_data_nvme = 0;
461 ctxp->ts_nvme_status = 0;
462 ctxp->ts_status_wqput = 0;
463 ctxp->ts_isr_status = 0;
464 ctxp->ts_status_nvme = 0;
466 #endif
467 atomic_inc(&tgtp->rcv_fcp_cmd_in);
469 /* Indicate that a replacement buffer has been posted */
470 spin_lock_irqsave(&ctxp->ctxlock, iflag);
471 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
472 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
474 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
475 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
476 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
477 "6181 Unable to queue deferred work "
478 "for oxid x%x. "
479 "FCP Drop IO [x%x x%x x%x]\n",
480 ctxp->oxid,
481 atomic_read(&tgtp->rcv_fcp_cmd_in),
482 atomic_read(&tgtp->rcv_fcp_cmd_out),
483 atomic_read(&tgtp->xmt_fcp_release));
485 spin_lock_irqsave(&ctxp->ctxlock, iflag);
486 lpfc_nvmet_defer_release(phba, ctxp);
487 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
488 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
490 return;
492 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
495 * Use the CPU context list, from the MRQ the IO was received on
496 * (ctxp->idx), to save context structure.
498 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
499 list_del_init(&ctxp->list);
500 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
501 cpu = raw_smp_processor_id();
502 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
503 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
504 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
505 infop->nvmet_ctx_list_cnt++;
506 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
507 #endif
510 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
511 static void
512 lpfc_nvmet_ktime(struct lpfc_hba *phba,
513 struct lpfc_async_xchg_ctx *ctxp)
515 uint64_t seg1, seg2, seg3, seg4, seg5;
516 uint64_t seg6, seg7, seg8, seg9, seg10;
517 uint64_t segsum;
519 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
520 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
521 !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
522 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
523 !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
524 return;
526 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
527 return;
528 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
529 return;
530 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
531 return;
532 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
533 return;
534 if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
535 return;
536 if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
537 return;
538 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
539 return;
540 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
541 return;
542 if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
543 return;
544 if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
545 return;
547 * Segment 1 - Time from FCP command received by MSI-X ISR
548 * to FCP command is passed to NVME Layer.
549 * Segment 2 - Time from FCP command payload handed
550 * off to NVME Layer to Driver receives a Command op
551 * from NVME Layer.
552 * Segment 3 - Time from Driver receives a Command op
553 * from NVME Layer to Command is put on WQ.
554 * Segment 4 - Time from Driver WQ put is done
555 * to MSI-X ISR for Command cmpl.
556 * Segment 5 - Time from MSI-X ISR for Command cmpl to
557 * Command cmpl is passed to NVME Layer.
558 * Segment 6 - Time from Command cmpl is passed to NVME
559 * Layer to Driver receives a RSP op from NVME Layer.
560 * Segment 7 - Time from Driver receives a RSP op from
561 * NVME Layer to WQ put is done on TRSP FCP Status.
562 * Segment 8 - Time from Driver WQ put is done on TRSP
563 * FCP Status to MSI-X ISR for TRSP cmpl.
564 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
565 * TRSP cmpl is passed to NVME Layer.
566 * Segment 10 - Time from FCP command received by
567 * MSI-X ISR to command is completed on wire.
568 * (Segments 1 thru 8) for READDATA / WRITEDATA
569 * (Segments 1 thru 4) for READDATA_RSP
571 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
572 segsum = seg1;
574 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
575 if (segsum > seg2)
576 return;
577 seg2 -= segsum;
578 segsum += seg2;
580 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
581 if (segsum > seg3)
582 return;
583 seg3 -= segsum;
584 segsum += seg3;
586 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
587 if (segsum > seg4)
588 return;
589 seg4 -= segsum;
590 segsum += seg4;
592 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
593 if (segsum > seg5)
594 return;
595 seg5 -= segsum;
596 segsum += seg5;
599 /* For auto rsp commands seg6 thru seg10 will be 0 */
600 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
601 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
602 if (segsum > seg6)
603 return;
604 seg6 -= segsum;
605 segsum += seg6;
607 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
608 if (segsum > seg7)
609 return;
610 seg7 -= segsum;
611 segsum += seg7;
613 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
614 if (segsum > seg8)
615 return;
616 seg8 -= segsum;
617 segsum += seg8;
619 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
620 if (segsum > seg9)
621 return;
622 seg9 -= segsum;
623 segsum += seg9;
625 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
626 return;
627 seg10 = (ctxp->ts_isr_status -
628 ctxp->ts_isr_cmd);
629 } else {
630 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
631 return;
632 seg6 = 0;
633 seg7 = 0;
634 seg8 = 0;
635 seg9 = 0;
636 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
639 phba->ktime_seg1_total += seg1;
640 if (seg1 < phba->ktime_seg1_min)
641 phba->ktime_seg1_min = seg1;
642 else if (seg1 > phba->ktime_seg1_max)
643 phba->ktime_seg1_max = seg1;
645 phba->ktime_seg2_total += seg2;
646 if (seg2 < phba->ktime_seg2_min)
647 phba->ktime_seg2_min = seg2;
648 else if (seg2 > phba->ktime_seg2_max)
649 phba->ktime_seg2_max = seg2;
651 phba->ktime_seg3_total += seg3;
652 if (seg3 < phba->ktime_seg3_min)
653 phba->ktime_seg3_min = seg3;
654 else if (seg3 > phba->ktime_seg3_max)
655 phba->ktime_seg3_max = seg3;
657 phba->ktime_seg4_total += seg4;
658 if (seg4 < phba->ktime_seg4_min)
659 phba->ktime_seg4_min = seg4;
660 else if (seg4 > phba->ktime_seg4_max)
661 phba->ktime_seg4_max = seg4;
663 phba->ktime_seg5_total += seg5;
664 if (seg5 < phba->ktime_seg5_min)
665 phba->ktime_seg5_min = seg5;
666 else if (seg5 > phba->ktime_seg5_max)
667 phba->ktime_seg5_max = seg5;
669 phba->ktime_data_samples++;
670 if (!seg6)
671 goto out;
673 phba->ktime_seg6_total += seg6;
674 if (seg6 < phba->ktime_seg6_min)
675 phba->ktime_seg6_min = seg6;
676 else if (seg6 > phba->ktime_seg6_max)
677 phba->ktime_seg6_max = seg6;
679 phba->ktime_seg7_total += seg7;
680 if (seg7 < phba->ktime_seg7_min)
681 phba->ktime_seg7_min = seg7;
682 else if (seg7 > phba->ktime_seg7_max)
683 phba->ktime_seg7_max = seg7;
685 phba->ktime_seg8_total += seg8;
686 if (seg8 < phba->ktime_seg8_min)
687 phba->ktime_seg8_min = seg8;
688 else if (seg8 > phba->ktime_seg8_max)
689 phba->ktime_seg8_max = seg8;
691 phba->ktime_seg9_total += seg9;
692 if (seg9 < phba->ktime_seg9_min)
693 phba->ktime_seg9_min = seg9;
694 else if (seg9 > phba->ktime_seg9_max)
695 phba->ktime_seg9_max = seg9;
696 out:
697 phba->ktime_seg10_total += seg10;
698 if (seg10 < phba->ktime_seg10_min)
699 phba->ktime_seg10_min = seg10;
700 else if (seg10 > phba->ktime_seg10_max)
701 phba->ktime_seg10_max = seg10;
702 phba->ktime_status_samples++;
704 #endif
707 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
708 * @phba: Pointer to HBA context object.
709 * @cmdwqe: Pointer to driver command WQE object.
710 * @wcqe: Pointer to driver response CQE object.
712 * The function is called from SLI ring event handler with no
713 * lock held. This function is the completion handler for NVME FCP commands
714 * The function frees memory resources used for the NVME commands.
716 static void
717 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
718 struct lpfc_wcqe_complete *wcqe)
720 struct lpfc_nvmet_tgtport *tgtp;
721 struct nvmefc_tgt_fcp_req *rsp;
722 struct lpfc_async_xchg_ctx *ctxp;
723 uint32_t status, result, op, start_clean, logerr;
724 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
725 int id;
726 #endif
728 ctxp = cmdwqe->context2;
729 ctxp->flag &= ~LPFC_NVME_IO_INP;
731 rsp = &ctxp->hdlrctx.fcp_req;
732 op = rsp->op;
734 status = bf_get(lpfc_wcqe_c_status, wcqe);
735 result = wcqe->parameter;
737 if (phba->targetport)
738 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
739 else
740 tgtp = NULL;
742 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
743 ctxp->oxid, op, status);
745 if (status) {
746 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
747 rsp->transferred_length = 0;
748 if (tgtp) {
749 atomic_inc(&tgtp->xmt_fcp_rsp_error);
750 if (result == IOERR_ABORT_REQUESTED)
751 atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
754 logerr = LOG_NVME_IOERR;
756 /* pick up SLI4 exhange busy condition */
757 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
758 ctxp->flag |= LPFC_NVME_XBUSY;
759 logerr |= LOG_NVME_ABTS;
760 if (tgtp)
761 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
763 } else {
764 ctxp->flag &= ~LPFC_NVME_XBUSY;
767 lpfc_printf_log(phba, KERN_INFO, logerr,
768 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
769 "XBUSY:x%x\n",
770 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
771 status, result, ctxp->flag);
773 } else {
774 rsp->fcp_error = NVME_SC_SUCCESS;
775 if (op == NVMET_FCOP_RSP)
776 rsp->transferred_length = rsp->rsplen;
777 else
778 rsp->transferred_length = rsp->transfer_length;
779 if (tgtp)
780 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
783 if ((op == NVMET_FCOP_READDATA_RSP) ||
784 (op == NVMET_FCOP_RSP)) {
785 /* Sanity check */
786 ctxp->state = LPFC_NVME_STE_DONE;
787 ctxp->entry_cnt++;
789 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
790 if (ctxp->ts_cmd_nvme) {
791 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
792 ctxp->ts_isr_data =
793 cmdwqe->isr_timestamp;
794 ctxp->ts_data_nvme =
795 ktime_get_ns();
796 ctxp->ts_nvme_status =
797 ctxp->ts_data_nvme;
798 ctxp->ts_status_wqput =
799 ctxp->ts_data_nvme;
800 ctxp->ts_isr_status =
801 ctxp->ts_data_nvme;
802 ctxp->ts_status_nvme =
803 ctxp->ts_data_nvme;
804 } else {
805 ctxp->ts_isr_status =
806 cmdwqe->isr_timestamp;
807 ctxp->ts_status_nvme =
808 ktime_get_ns();
811 #endif
812 rsp->done(rsp);
813 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
814 if (ctxp->ts_cmd_nvme)
815 lpfc_nvmet_ktime(phba, ctxp);
816 #endif
817 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */
818 } else {
819 ctxp->entry_cnt++;
820 start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
821 memset(((char *)cmdwqe) + start_clean, 0,
822 (sizeof(struct lpfc_iocbq) - start_clean));
823 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
824 if (ctxp->ts_cmd_nvme) {
825 ctxp->ts_isr_data = cmdwqe->isr_timestamp;
826 ctxp->ts_data_nvme = ktime_get_ns();
828 #endif
829 rsp->done(rsp);
831 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
832 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
833 id = raw_smp_processor_id();
834 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
835 if (ctxp->cpu != id)
836 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
837 "6704 CPU Check cmdcmpl: "
838 "cpu %d expect %d\n",
839 id, ctxp->cpu);
841 #endif
845 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
846 * an NVME LS rsp for a prior NVME LS request that was received.
847 * @axchg: pointer to exchange context for the NVME LS request the response
848 * is for.
849 * @ls_rsp: pointer to the transport LS RSP that is to be sent
850 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
852 * This routine is used to format and send a WQE to transmit a NVME LS
853 * Response. The response is for a prior NVME LS request that was
854 * received and posted to the transport.
856 * Returns:
857 * 0 : if response successfully transmit
858 * non-zero : if response failed to transmit, of the form -Exxx.
861 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
862 struct nvmefc_ls_rsp *ls_rsp,
863 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
864 struct lpfc_iocbq *cmdwqe,
865 struct lpfc_wcqe_complete *wcqe))
867 struct lpfc_hba *phba = axchg->phba;
868 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
869 struct lpfc_iocbq *nvmewqeq;
870 struct lpfc_dmabuf dmabuf;
871 struct ulp_bde64 bpl;
872 int rc;
874 if (phba->pport->load_flag & FC_UNLOADING)
875 return -ENODEV;
877 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
878 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
880 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
882 "6412 NVMEx LS rsp state mismatch "
883 "oxid x%x: %d %d\n",
884 axchg->oxid, axchg->state, axchg->entry_cnt);
885 return -EALREADY;
887 axchg->state = LPFC_NVME_STE_LS_RSP;
888 axchg->entry_cnt++;
890 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
891 ls_rsp->rsplen);
892 if (nvmewqeq == NULL) {
893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
894 "6150 NVMEx LS Drop Rsp x%x: Prep\n",
895 axchg->oxid);
896 rc = -ENOMEM;
897 goto out_free_buf;
900 /* Save numBdes for bpl2sgl */
901 nvmewqeq->rsvd2 = 1;
902 nvmewqeq->hba_wqidx = 0;
903 nvmewqeq->context3 = &dmabuf;
904 dmabuf.virt = &bpl;
905 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
906 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
907 bpl.tus.f.bdeSize = ls_rsp->rsplen;
908 bpl.tus.f.bdeFlags = 0;
909 bpl.tus.w = le32_to_cpu(bpl.tus.w);
911 * Note: although we're using stack space for the dmabuf, the
912 * call to lpfc_sli4_issue_wqe is synchronous, so it will not
913 * be referenced after it returns back to this routine.
916 nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp;
917 nvmewqeq->iocb_cmpl = NULL;
918 nvmewqeq->context2 = axchg;
920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
925 /* clear to be sure there's no reference */
926 nvmewqeq->context3 = NULL;
928 if (rc == WQE_SUCCESS) {
930 * Okay to repost buffer here, but wait till cmpl
931 * before freeing ctxp and iocbq.
933 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
934 return 0;
937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n",
939 axchg->oxid, rc);
941 rc = -ENXIO;
943 lpfc_nlp_put(nvmewqeq->context1);
945 out_free_buf:
946 /* Give back resources */
947 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
950 * As transport doesn't track completions of responses, if the rsp
951 * fails to send, the transport will effectively ignore the rsp
952 * and consider the LS done. However, the driver has an active
953 * exchange open for the LS - so be sure to abort the exchange
954 * if the response isn't sent.
956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
957 return rc;
961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
962 * @tgtport: pointer to target port that NVME LS is to be transmit from.
963 * @ls_rsp: pointer to the transport LS RSP that is to be sent
965 * Driver registers this routine to transmit responses for received NVME
966 * LS requests.
968 * This routine is used to format and send a WQE to transmit a NVME LS
969 * Response. The ls_rsp is used to reverse-map the LS to the original
970 * NVME LS request sequence, which provides addressing information for
971 * the remote port the LS to be sent to, as well as the exchange id
972 * that is the LS is bound to.
974 * Returns:
975 * 0 : if response successfully transmit
976 * non-zero : if response failed to transmit, of the form -Exxx.
978 static int
979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
980 struct nvmefc_ls_rsp *ls_rsp)
982 struct lpfc_async_xchg_ctx *axchg =
983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
985 int rc;
987 if (axchg->phba->pport->load_flag & FC_UNLOADING)
988 return -ENODEV;
990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
992 if (rc) {
993 atomic_inc(&nvmep->xmt_ls_drop);
995 * unless the failure is due to having already sent
996 * the response, an abort will be generated for the
997 * exchange if the rsp can't be sent.
999 if (rc != -EALREADY)
1000 atomic_inc(&nvmep->xmt_ls_abort);
1001 return rc;
1004 atomic_inc(&nvmep->xmt_ls_rsp);
1005 return 0;
1008 static int
1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
1010 struct nvmefc_tgt_fcp_req *rsp)
1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1013 struct lpfc_async_xchg_ctx *ctxp =
1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1015 struct lpfc_hba *phba = ctxp->phba;
1016 struct lpfc_queue *wq;
1017 struct lpfc_iocbq *nvmewqeq;
1018 struct lpfc_sli_ring *pring;
1019 unsigned long iflags;
1020 int rc;
1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1022 int id;
1023 #endif
1025 if (phba->pport->load_flag & FC_UNLOADING) {
1026 rc = -ENODEV;
1027 goto aerr;
1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1031 if (ctxp->ts_cmd_nvme) {
1032 if (rsp->op == NVMET_FCOP_RSP)
1033 ctxp->ts_nvme_status = ktime_get_ns();
1034 else
1035 ctxp->ts_nvme_data = ktime_get_ns();
1038 /* Setup the hdw queue if not already set */
1039 if (!ctxp->hdwq)
1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
1043 id = raw_smp_processor_id();
1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
1045 if (rsp->hwqid != id)
1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1047 "6705 CPU Check OP: "
1048 "cpu %d expect %d\n",
1049 id, rsp->hwqid);
1050 ctxp->cpu = id; /* Setup cpu for cmpl check */
1052 #endif
1054 /* Sanity check */
1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
1056 (ctxp->state == LPFC_NVME_STE_ABORT)) {
1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1059 "6102 IO oxid x%x aborted\n",
1060 ctxp->oxid);
1061 rc = -ENXIO;
1062 goto aerr;
1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
1066 if (nvmewqeq == NULL) {
1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1069 "6152 FCP Drop IO x%x: Prep\n",
1070 ctxp->oxid);
1071 rc = -ENXIO;
1072 goto aerr;
1075 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
1076 nvmewqeq->iocb_cmpl = NULL;
1077 nvmewqeq->context2 = ctxp;
1078 nvmewqeq->iocb_flag |= LPFC_IO_NVMET;
1079 ctxp->wqeq->hba_wqidx = rsp->hwqid;
1081 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
1082 ctxp->oxid, rsp->op, rsp->rsplen);
1084 ctxp->flag |= LPFC_NVME_IO_INP;
1085 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
1086 if (rc == WQE_SUCCESS) {
1087 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1088 if (!ctxp->ts_cmd_nvme)
1089 return 0;
1090 if (rsp->op == NVMET_FCOP_RSP)
1091 ctxp->ts_status_wqput = ktime_get_ns();
1092 else
1093 ctxp->ts_data_wqput = ktime_get_ns();
1094 #endif
1095 return 0;
1098 if (rc == -EBUSY) {
1100 * WQ was full, so queue nvmewqeq to be sent after
1101 * WQE release CQE
1103 ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
1104 wq = ctxp->hdwq->io_wq;
1105 pring = wq->pring;
1106 spin_lock_irqsave(&pring->ring_lock, iflags);
1107 list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
1108 wq->q_flag |= HBA_NVMET_WQFULL;
1109 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1110 atomic_inc(&lpfc_nvmep->defer_wqfull);
1111 return 0;
1114 /* Give back resources */
1115 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1117 "6153 FCP Drop IO x%x: Issue: %d\n",
1118 ctxp->oxid, rc);
1120 ctxp->wqeq->hba_wqidx = 0;
1121 nvmewqeq->context2 = NULL;
1122 nvmewqeq->context3 = NULL;
1123 rc = -EBUSY;
1124 aerr:
1125 return rc;
1128 static void
1129 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1131 struct lpfc_nvmet_tgtport *tport = targetport->private;
1133 /* release any threads waiting for the unreg to complete */
1134 if (tport->phba->targetport)
1135 complete(tport->tport_unreg_cmp);
1138 static void
1139 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1140 struct nvmefc_tgt_fcp_req *req)
1142 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1143 struct lpfc_async_xchg_ctx *ctxp =
1144 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1145 struct lpfc_hba *phba = ctxp->phba;
1146 struct lpfc_queue *wq;
1147 unsigned long flags;
1149 if (phba->pport->load_flag & FC_UNLOADING)
1150 return;
1152 if (!ctxp->hdwq)
1153 ctxp->hdwq = &phba->sli4_hba.hdwq[0];
1155 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1156 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
1157 ctxp->oxid, ctxp->flag, ctxp->state);
1159 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1160 ctxp->oxid, ctxp->flag, ctxp->state);
1162 atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1164 spin_lock_irqsave(&ctxp->ctxlock, flags);
1166 /* Since iaab/iaar are NOT set, we need to check
1167 * if the firmware is in process of aborting IO
1169 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
1170 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1171 return;
1173 ctxp->flag |= LPFC_NVME_ABORT_OP;
1175 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
1176 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1177 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1178 ctxp->oxid);
1179 wq = ctxp->hdwq->io_wq;
1180 lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1181 return;
1183 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1185 /* A state of LPFC_NVME_STE_RCV means we have just received
1186 * the NVME command and have not started processing it.
1187 * (by issuing any IO WQEs on this exchange yet)
1189 if (ctxp->state == LPFC_NVME_STE_RCV)
1190 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1191 ctxp->oxid);
1192 else
1193 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1194 ctxp->oxid);
1197 static void
1198 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1199 struct nvmefc_tgt_fcp_req *rsp)
1201 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1202 struct lpfc_async_xchg_ctx *ctxp =
1203 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1204 struct lpfc_hba *phba = ctxp->phba;
1205 unsigned long flags;
1206 bool aborting = false;
1208 spin_lock_irqsave(&ctxp->ctxlock, flags);
1209 if (ctxp->flag & LPFC_NVME_XBUSY)
1210 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1211 "6027 NVMET release with XBUSY flag x%x"
1212 " oxid x%x\n",
1213 ctxp->flag, ctxp->oxid);
1214 else if (ctxp->state != LPFC_NVME_STE_DONE &&
1215 ctxp->state != LPFC_NVME_STE_ABORT)
1216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1217 "6413 NVMET release bad state %d %d oxid x%x\n",
1218 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1220 if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
1221 (ctxp->flag & LPFC_NVME_XBUSY)) {
1222 aborting = true;
1223 /* let the abort path do the real release */
1224 lpfc_nvmet_defer_release(phba, ctxp);
1226 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1228 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1229 ctxp->state, aborting);
1231 atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1232 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
1234 if (aborting)
1235 return;
1237 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1240 static void
1241 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1242 struct nvmefc_tgt_fcp_req *rsp)
1244 struct lpfc_nvmet_tgtport *tgtp;
1245 struct lpfc_async_xchg_ctx *ctxp =
1246 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1247 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1248 struct lpfc_hba *phba = ctxp->phba;
1249 unsigned long iflag;
1252 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1253 ctxp->oxid, ctxp->size, raw_smp_processor_id());
1255 if (!nvmebuf) {
1256 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1257 "6425 Defer rcv: no buffer oxid x%x: "
1258 "flg %x ste %x\n",
1259 ctxp->oxid, ctxp->flag, ctxp->state);
1260 return;
1263 tgtp = phba->targetport->private;
1264 if (tgtp)
1265 atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1267 /* Free the nvmebuf since a new buffer already replaced it */
1268 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1269 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1270 ctxp->rqb_buffer = NULL;
1271 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1275 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
1276 * @phba: Pointer to HBA context object
1277 * @cmdwqe: Pointer to driver command WQE object.
1278 * @wcqe: Pointer to driver response CQE object.
1280 * This function is the completion handler for NVME LS requests.
1281 * The function updates any states and statistics, then calls the
1282 * generic completion handler to finish completion of the request.
1284 static void
1285 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
1286 struct lpfc_wcqe_complete *wcqe)
1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
1292 * lpfc_nvmet_ls_req - Issue an Link Service request
1293 * @targetport: pointer to target instance registered with nvmet transport.
1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1295 * Driver sets this value to the ndlp pointer.
1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS
1298 * Driver registers this routine to handle any link service request
1299 * from the nvme_fc transport to a remote nvme-aware port.
1301 * Return value :
1302 * 0 - Success
1303 * non-zero: various error codes, in form of -Exxx
1305 static int
1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
1307 void *hosthandle,
1308 struct nvmefc_ls_req *pnvme_lsreq)
1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1311 struct lpfc_hba *phba;
1312 struct lpfc_nodelist *ndlp;
1313 int ret;
1314 u32 hstate;
1316 if (!lpfc_nvmet)
1317 return -EINVAL;
1319 phba = lpfc_nvmet->phba;
1320 if (phba->pport->load_flag & FC_UNLOADING)
1321 return -EINVAL;
1323 hstate = atomic_read(&lpfc_nvmet->state);
1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
1325 return -EACCES;
1327 ndlp = (struct lpfc_nodelist *)hosthandle;
1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
1330 lpfc_nvmet_ls_req_cmp);
1332 return ret;
1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request
1337 * @targetport: Transport targetport, that LS was issued from.
1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1339 * Driver sets this value to the ndlp pointer.
1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted
1342 * Driver registers this routine to abort an NVME LS request that is
1343 * in progress (from the transports perspective).
1345 static void
1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
1347 void *hosthandle,
1348 struct nvmefc_ls_req *pnvme_lsreq)
1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1351 struct lpfc_hba *phba;
1352 struct lpfc_nodelist *ndlp;
1353 int ret;
1355 phba = lpfc_nvmet->phba;
1356 if (phba->pport->load_flag & FC_UNLOADING)
1357 return;
1359 ndlp = (struct lpfc_nodelist *)hosthandle;
1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
1362 if (!ret)
1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort);
1366 static void
1367 lpfc_nvmet_host_release(void *hosthandle)
1369 struct lpfc_nodelist *ndlp = hosthandle;
1370 struct lpfc_hba *phba = NULL;
1371 struct lpfc_nvmet_tgtport *tgtp;
1373 phba = ndlp->phba;
1374 if (!phba->targetport || !phba->targetport->private)
1375 return;
1377 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1378 "6202 NVMET XPT releasing hosthandle x%px\n",
1379 hosthandle);
1380 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1381 atomic_set(&tgtp->state, 0);
1384 static void
1385 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
1387 struct lpfc_nvmet_tgtport *tgtp;
1388 struct lpfc_hba *phba;
1389 uint32_t rc;
1391 tgtp = tgtport->private;
1392 phba = tgtp->phba;
1394 rc = lpfc_issue_els_rscn(phba->pport, 0);
1395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1396 "6420 NVMET subsystem change: Notification %s\n",
1397 (rc) ? "Failed" : "Sent");
1400 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1401 .targetport_delete = lpfc_nvmet_targetport_delete,
1402 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
1403 .fcp_op = lpfc_nvmet_xmt_fcp_op,
1404 .fcp_abort = lpfc_nvmet_xmt_fcp_abort,
1405 .fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1406 .defer_rcv = lpfc_nvmet_defer_rcv,
1407 .discovery_event = lpfc_nvmet_discovery_event,
1408 .ls_req = lpfc_nvmet_ls_req,
1409 .ls_abort = lpfc_nvmet_ls_abort,
1410 .host_release = lpfc_nvmet_host_release,
1412 .max_hw_queues = 1,
1413 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1414 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1415 .dma_boundary = 0xFFFFFFFF,
1417 /* optional features */
1418 .target_features = 0,
1419 /* sizes of additional private data for data structures */
1420 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1421 .lsrqst_priv_sz = 0,
1424 static void
1425 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1426 struct lpfc_nvmet_ctx_info *infop)
1428 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1429 unsigned long flags;
1431 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1432 list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1433 &infop->nvmet_ctx_list, list) {
1434 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1435 list_del_init(&ctx_buf->list);
1436 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1438 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1439 ctx_buf->sglq->state = SGL_FREED;
1440 ctx_buf->sglq->ndlp = NULL;
1442 spin_lock(&phba->sli4_hba.sgl_list_lock);
1443 list_add_tail(&ctx_buf->sglq->list,
1444 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1445 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1447 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1448 kfree(ctx_buf->context);
1450 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1453 static void
1454 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1456 struct lpfc_nvmet_ctx_info *infop;
1457 int i, j;
1459 /* The first context list, MRQ 0 CPU 0 */
1460 infop = phba->sli4_hba.nvmet_ctx_info;
1461 if (!infop)
1462 return;
1464 /* Cycle the the entire CPU context list for every MRQ */
1465 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1466 for_each_present_cpu(j) {
1467 infop = lpfc_get_ctx_list(phba, j, i);
1468 __lpfc_nvmet_clean_io_for_cpu(phba, infop);
1471 kfree(phba->sli4_hba.nvmet_ctx_info);
1472 phba->sli4_hba.nvmet_ctx_info = NULL;
1475 static int
1476 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1478 struct lpfc_nvmet_ctxbuf *ctx_buf;
1479 struct lpfc_iocbq *nvmewqe;
1480 union lpfc_wqe128 *wqe;
1481 struct lpfc_nvmet_ctx_info *last_infop;
1482 struct lpfc_nvmet_ctx_info *infop;
1483 int i, j, idx, cpu;
1485 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1486 "6403 Allocate NVMET resources for %d XRIs\n",
1487 phba->sli4_hba.nvmet_xri_cnt);
1489 phba->sli4_hba.nvmet_ctx_info = kcalloc(
1490 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
1491 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1492 if (!phba->sli4_hba.nvmet_ctx_info) {
1493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1494 "6419 Failed allocate memory for "
1495 "nvmet context lists\n");
1496 return -ENOMEM;
1500 * Assuming X CPUs in the system, and Y MRQs, allocate some
1501 * lpfc_nvmet_ctx_info structures as follows:
1503 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1504 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1505 * ...
1506 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1508 * Each line represents a MRQ "silo" containing an entry for
1509 * every CPU.
1511 * MRQ X is initially assumed to be associated with CPU X, thus
1512 * contexts are initially distributed across all MRQs using
1513 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1514 * freed, the are freed to the MRQ silo based on the CPU number
1515 * of the IO completion. Thus a context that was allocated for MRQ A
1516 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1518 for_each_possible_cpu(i) {
1519 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1520 infop = lpfc_get_ctx_list(phba, i, j);
1521 INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1522 spin_lock_init(&infop->nvmet_ctx_list_lock);
1523 infop->nvmet_ctx_list_cnt = 0;
1528 * Setup the next CPU context info ptr for each MRQ.
1529 * MRQ 0 will cycle thru CPUs 0 - X separately from
1530 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1532 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1533 last_infop = lpfc_get_ctx_list(phba,
1534 cpumask_first(cpu_present_mask),
1536 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) {
1537 infop = lpfc_get_ctx_list(phba, i, j);
1538 infop->nvmet_ctx_next_cpu = last_infop;
1539 last_infop = infop;
1543 /* For all nvmet xris, allocate resources needed to process a
1544 * received command on a per xri basis.
1546 idx = 0;
1547 cpu = cpumask_first(cpu_present_mask);
1548 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1549 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1550 if (!ctx_buf) {
1551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1552 "6404 Ran out of memory for NVMET\n");
1553 return -ENOMEM;
1556 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1557 GFP_KERNEL);
1558 if (!ctx_buf->context) {
1559 kfree(ctx_buf);
1560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1561 "6405 Ran out of NVMET "
1562 "context memory\n");
1563 return -ENOMEM;
1565 ctx_buf->context->ctxbuf = ctx_buf;
1566 ctx_buf->context->state = LPFC_NVME_STE_FREE;
1568 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1569 if (!ctx_buf->iocbq) {
1570 kfree(ctx_buf->context);
1571 kfree(ctx_buf);
1572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1573 "6406 Ran out of NVMET iocb/WQEs\n");
1574 return -ENOMEM;
1576 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1577 nvmewqe = ctx_buf->iocbq;
1578 wqe = &nvmewqe->wqe;
1580 /* Initialize WQE */
1581 memset(wqe, 0, sizeof(union lpfc_wqe));
1583 ctx_buf->iocbq->context1 = NULL;
1584 spin_lock(&phba->sli4_hba.sgl_list_lock);
1585 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1586 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1587 if (!ctx_buf->sglq) {
1588 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1589 kfree(ctx_buf->context);
1590 kfree(ctx_buf);
1591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1592 "6407 Ran out of NVMET XRIs\n");
1593 return -ENOMEM;
1595 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
1598 * Add ctx to MRQidx context list. Our initial assumption
1599 * is MRQidx will be associated with CPUidx. This association
1600 * can change on the fly.
1602 infop = lpfc_get_ctx_list(phba, cpu, idx);
1603 spin_lock(&infop->nvmet_ctx_list_lock);
1604 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1605 infop->nvmet_ctx_list_cnt++;
1606 spin_unlock(&infop->nvmet_ctx_list_lock);
1608 /* Spread ctx structures evenly across all MRQs */
1609 idx++;
1610 if (idx >= phba->cfg_nvmet_mrq) {
1611 idx = 0;
1612 cpu = cpumask_first(cpu_present_mask);
1613 continue;
1615 cpu = cpumask_next(cpu, cpu_present_mask);
1616 if (cpu == nr_cpu_ids)
1617 cpu = cpumask_first(cpu_present_mask);
1621 for_each_present_cpu(i) {
1622 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1623 infop = lpfc_get_ctx_list(phba, i, j);
1624 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1625 "6408 TOTAL NVMET ctx for CPU %d "
1626 "MRQ %d: cnt %d nextcpu x%px\n",
1627 i, j, infop->nvmet_ctx_list_cnt,
1628 infop->nvmet_ctx_next_cpu);
1631 return 0;
1635 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1637 struct lpfc_vport *vport = phba->pport;
1638 struct lpfc_nvmet_tgtport *tgtp;
1639 struct nvmet_fc_port_info pinfo;
1640 int error;
1642 if (phba->targetport)
1643 return 0;
1645 error = lpfc_nvmet_setup_io_context(phba);
1646 if (error)
1647 return error;
1649 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1650 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1651 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1652 pinfo.port_id = vport->fc_myDID;
1654 /* We need to tell the transport layer + 1 because it takes page
1655 * alignment into account. When space for the SGL is allocated we
1656 * allocate + 3, one for cmd, one for rsp and one for this alignment
1658 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1659 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
1660 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1662 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1663 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1664 &phba->pcidev->dev,
1665 &phba->targetport);
1666 #else
1667 error = -ENOENT;
1668 #endif
1669 if (error) {
1670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1671 "6025 Cannot register NVME targetport x%x: "
1672 "portnm %llx nodenm %llx segs %d qs %d\n",
1673 error,
1674 pinfo.port_name, pinfo.node_name,
1675 lpfc_tgttemplate.max_sgl_segments,
1676 lpfc_tgttemplate.max_hw_queues);
1677 phba->targetport = NULL;
1678 phba->nvmet_support = 0;
1680 lpfc_nvmet_cleanup_io_context(phba);
1682 } else {
1683 tgtp = (struct lpfc_nvmet_tgtport *)
1684 phba->targetport->private;
1685 tgtp->phba = phba;
1687 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1688 "6026 Registered NVME "
1689 "targetport: x%px, private x%px "
1690 "portnm %llx nodenm %llx segs %d qs %d\n",
1691 phba->targetport, tgtp,
1692 pinfo.port_name, pinfo.node_name,
1693 lpfc_tgttemplate.max_sgl_segments,
1694 lpfc_tgttemplate.max_hw_queues);
1696 atomic_set(&tgtp->rcv_ls_req_in, 0);
1697 atomic_set(&tgtp->rcv_ls_req_out, 0);
1698 atomic_set(&tgtp->rcv_ls_req_drop, 0);
1699 atomic_set(&tgtp->xmt_ls_abort, 0);
1700 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1701 atomic_set(&tgtp->xmt_ls_rsp, 0);
1702 atomic_set(&tgtp->xmt_ls_drop, 0);
1703 atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1704 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1705 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1706 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1707 atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1708 atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1709 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1710 atomic_set(&tgtp->xmt_fcp_drop, 0);
1711 atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1712 atomic_set(&tgtp->xmt_fcp_read, 0);
1713 atomic_set(&tgtp->xmt_fcp_write, 0);
1714 atomic_set(&tgtp->xmt_fcp_rsp, 0);
1715 atomic_set(&tgtp->xmt_fcp_release, 0);
1716 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1717 atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1718 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1719 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1720 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1721 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1722 atomic_set(&tgtp->xmt_fcp_abort, 0);
1723 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1724 atomic_set(&tgtp->xmt_abort_unsol, 0);
1725 atomic_set(&tgtp->xmt_abort_sol, 0);
1726 atomic_set(&tgtp->xmt_abort_rsp, 0);
1727 atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1728 atomic_set(&tgtp->defer_ctx, 0);
1729 atomic_set(&tgtp->defer_fod, 0);
1730 atomic_set(&tgtp->defer_wqfull, 0);
1732 return error;
1736 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1738 struct lpfc_vport *vport = phba->pport;
1740 if (!phba->targetport)
1741 return 0;
1743 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1744 "6007 Update NVMET port x%px did x%x\n",
1745 phba->targetport, vport->fc_myDID);
1747 phba->targetport->port_id = vport->fc_myDID;
1748 return 0;
1752 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1753 * @phba: pointer to lpfc hba data structure.
1754 * @axri: pointer to the nvmet xri abort wcqe structure.
1756 * This routine is invoked by the worker thread to process a SLI4 fast-path
1757 * NVMET aborted xri.
1759 void
1760 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1761 struct sli4_wcqe_xri_aborted *axri)
1763 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1764 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1765 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1766 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1767 struct lpfc_nvmet_tgtport *tgtp;
1768 struct nvmefc_tgt_fcp_req *req = NULL;
1769 struct lpfc_nodelist *ndlp;
1770 unsigned long iflag = 0;
1771 int rrq_empty = 0;
1772 bool released = false;
1774 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1775 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1777 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1778 return;
1780 if (phba->targetport) {
1781 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1782 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1785 spin_lock_irqsave(&phba->hbalock, iflag);
1786 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1787 list_for_each_entry_safe(ctxp, next_ctxp,
1788 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1789 list) {
1790 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1791 continue;
1793 spin_lock(&ctxp->ctxlock);
1794 /* Check if we already received a free context call
1795 * and we have completed processing an abort situation.
1797 if (ctxp->flag & LPFC_NVME_CTX_RLS &&
1798 !(ctxp->flag & LPFC_NVME_ABORT_OP)) {
1799 list_del_init(&ctxp->list);
1800 released = true;
1802 ctxp->flag &= ~LPFC_NVME_XBUSY;
1803 spin_unlock(&ctxp->ctxlock);
1804 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1806 rrq_empty = list_empty(&phba->active_rrq_list);
1807 spin_unlock_irqrestore(&phba->hbalock, iflag);
1808 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1809 if (ndlp &&
1810 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1811 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1812 lpfc_set_rrq_active(phba, ndlp,
1813 ctxp->ctxbuf->sglq->sli4_lxritag,
1814 rxid, 1);
1815 lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1818 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1819 "6318 XB aborted oxid x%x flg x%x (%x)\n",
1820 ctxp->oxid, ctxp->flag, released);
1821 if (released)
1822 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1824 if (rrq_empty)
1825 lpfc_worker_wake_up(phba);
1826 return;
1828 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1829 spin_unlock_irqrestore(&phba->hbalock, iflag);
1831 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
1832 if (ctxp) {
1834 * Abort already done by FW, so BA_ACC sent.
1835 * However, the transport may be unaware.
1837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1838 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
1839 "flag x%x oxid x%x rxid x%x\n",
1840 xri, ctxp->state, ctxp->flag, ctxp->oxid,
1841 rxid);
1843 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1844 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1845 ctxp->state = LPFC_NVME_STE_ABORT;
1846 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1848 lpfc_nvmeio_data(phba,
1849 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1850 xri, raw_smp_processor_id(), 0);
1852 req = &ctxp->hdlrctx.fcp_req;
1853 if (req)
1854 nvmet_fc_rcv_fcp_abort(phba->targetport, req);
1856 #endif
1860 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1861 struct fc_frame_header *fc_hdr)
1863 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1864 struct lpfc_hba *phba = vport->phba;
1865 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1866 struct nvmefc_tgt_fcp_req *rsp;
1867 uint32_t sid;
1868 uint16_t oxid, xri;
1869 unsigned long iflag = 0;
1871 sid = sli4_sid_from_fc_hdr(fc_hdr);
1872 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1874 spin_lock_irqsave(&phba->hbalock, iflag);
1875 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1876 list_for_each_entry_safe(ctxp, next_ctxp,
1877 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1878 list) {
1879 if (ctxp->oxid != oxid || ctxp->sid != sid)
1880 continue;
1882 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1884 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1885 spin_unlock_irqrestore(&phba->hbalock, iflag);
1887 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1888 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1889 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1891 lpfc_nvmeio_data(phba,
1892 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1893 xri, raw_smp_processor_id(), 0);
1895 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1896 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1898 rsp = &ctxp->hdlrctx.fcp_req;
1899 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1901 /* Respond with BA_ACC accordingly */
1902 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1903 return 0;
1905 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1906 spin_unlock_irqrestore(&phba->hbalock, iflag);
1908 /* check the wait list */
1909 if (phba->sli4_hba.nvmet_io_wait_cnt) {
1910 struct rqb_dmabuf *nvmebuf;
1911 struct fc_frame_header *fc_hdr_tmp;
1912 u32 sid_tmp;
1913 u16 oxid_tmp;
1914 bool found = false;
1916 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1918 /* match by oxid and s_id */
1919 list_for_each_entry(nvmebuf,
1920 &phba->sli4_hba.lpfc_nvmet_io_wait_list,
1921 hbuf.list) {
1922 fc_hdr_tmp = (struct fc_frame_header *)
1923 (nvmebuf->hbuf.virt);
1924 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
1925 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
1926 if (oxid_tmp != oxid || sid_tmp != sid)
1927 continue;
1929 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1930 "6321 NVMET Rcv ABTS oxid x%x from x%x "
1931 "is waiting for a ctxp\n",
1932 oxid, sid);
1934 list_del_init(&nvmebuf->hbuf.list);
1935 phba->sli4_hba.nvmet_io_wait_cnt--;
1936 found = true;
1937 break;
1939 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1940 iflag);
1942 /* free buffer since already posted a new DMA buffer to RQ */
1943 if (found) {
1944 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1945 /* Respond with BA_ACC accordingly */
1946 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1947 return 0;
1951 /* check active list */
1952 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
1953 if (ctxp) {
1954 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1956 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1957 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
1958 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1960 lpfc_nvmeio_data(phba,
1961 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1962 xri, raw_smp_processor_id(), 0);
1964 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1965 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
1966 "flag x%x state x%x\n",
1967 ctxp->oxid, xri, ctxp->flag, ctxp->state);
1969 if (ctxp->flag & LPFC_NVME_TNOTIFY) {
1970 /* Notify the transport */
1971 nvmet_fc_rcv_fcp_abort(phba->targetport,
1972 &ctxp->hdlrctx.fcp_req);
1973 } else {
1974 cancel_work_sync(&ctxp->ctxbuf->defer_work);
1975 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1976 lpfc_nvmet_defer_release(phba, ctxp);
1977 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1979 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1980 ctxp->oxid);
1982 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1983 return 0;
1986 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
1987 oxid, raw_smp_processor_id(), 1);
1989 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1990 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
1992 /* Respond with BA_RJT accordingly */
1993 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1994 #endif
1995 return 0;
1998 static void
1999 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
2000 struct lpfc_async_xchg_ctx *ctxp)
2002 struct lpfc_sli_ring *pring;
2003 struct lpfc_iocbq *nvmewqeq;
2004 struct lpfc_iocbq *next_nvmewqeq;
2005 unsigned long iflags;
2006 struct lpfc_wcqe_complete wcqe;
2007 struct lpfc_wcqe_complete *wcqep;
2009 pring = wq->pring;
2010 wcqep = &wcqe;
2012 /* Fake an ABORT error code back to cmpl routine */
2013 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
2014 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
2015 wcqep->parameter = IOERR_ABORT_REQUESTED;
2017 spin_lock_irqsave(&pring->ring_lock, iflags);
2018 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
2019 &wq->wqfull_list, list) {
2020 if (ctxp) {
2021 /* Checking for a specific IO to flush */
2022 if (nvmewqeq->context2 == ctxp) {
2023 list_del(&nvmewqeq->list);
2024 spin_unlock_irqrestore(&pring->ring_lock,
2025 iflags);
2026 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
2027 wcqep);
2028 return;
2030 continue;
2031 } else {
2032 /* Flush all IOs */
2033 list_del(&nvmewqeq->list);
2034 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2035 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep);
2036 spin_lock_irqsave(&pring->ring_lock, iflags);
2039 if (!ctxp)
2040 wq->q_flag &= ~HBA_NVMET_WQFULL;
2041 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2044 void
2045 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
2046 struct lpfc_queue *wq)
2048 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2049 struct lpfc_sli_ring *pring;
2050 struct lpfc_iocbq *nvmewqeq;
2051 struct lpfc_async_xchg_ctx *ctxp;
2052 unsigned long iflags;
2053 int rc;
2056 * Some WQE slots are available, so try to re-issue anything
2057 * on the WQ wqfull_list.
2059 pring = wq->pring;
2060 spin_lock_irqsave(&pring->ring_lock, iflags);
2061 while (!list_empty(&wq->wqfull_list)) {
2062 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
2063 list);
2064 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2065 ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2;
2066 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
2067 spin_lock_irqsave(&pring->ring_lock, iflags);
2068 if (rc == -EBUSY) {
2069 /* WQ was full again, so put it back on the list */
2070 list_add(&nvmewqeq->list, &wq->wqfull_list);
2071 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2072 return;
2074 if (rc == WQE_SUCCESS) {
2075 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2076 if (ctxp->ts_cmd_nvme) {
2077 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
2078 ctxp->ts_status_wqput = ktime_get_ns();
2079 else
2080 ctxp->ts_data_wqput = ktime_get_ns();
2082 #endif
2083 } else {
2084 WARN_ON(rc);
2087 wq->q_flag &= ~HBA_NVMET_WQFULL;
2088 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2090 #endif
2093 void
2094 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
2096 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2097 struct lpfc_nvmet_tgtport *tgtp;
2098 struct lpfc_queue *wq;
2099 uint32_t qidx;
2100 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
2102 if (phba->nvmet_support == 0)
2103 return;
2104 if (phba->targetport) {
2105 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2106 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
2107 wq = phba->sli4_hba.hdwq[qidx].io_wq;
2108 lpfc_nvmet_wqfull_flush(phba, wq, NULL);
2110 tgtp->tport_unreg_cmp = &tport_unreg_cmp;
2111 nvmet_fc_unregister_targetport(phba->targetport);
2112 if (!wait_for_completion_timeout(&tport_unreg_cmp,
2113 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
2114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2115 "6179 Unreg targetport x%px timeout "
2116 "reached.\n", phba->targetport);
2117 lpfc_nvmet_cleanup_io_context(phba);
2119 phba->targetport = NULL;
2120 #endif
2124 * lpfc_nvmet_handle_lsreq - Process an NVME LS request
2125 * @phba: pointer to lpfc hba data structure.
2126 * @axchg: pointer to exchange context for the NVME LS request
2128 * This routine is used for processing an asychronously received NVME LS
2129 * request. Any remaining validation is done and the LS is then forwarded
2130 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
2132 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
2133 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
2134 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
2136 * Returns 0 if LS was handled and delivered to the transport
2137 * Returns 1 if LS failed to be handled and should be dropped
2140 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
2141 struct lpfc_async_xchg_ctx *axchg)
2143 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2144 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
2145 uint32_t *payload = axchg->payload;
2146 int rc;
2148 atomic_inc(&tgtp->rcv_ls_req_in);
2151 * Driver passes the ndlp as the hosthandle argument allowing
2152 * the transport to generate LS requests for any associateions
2153 * that are created.
2155 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
2156 axchg->payload, axchg->size);
2158 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2159 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
2160 "%08x %08x %08x\n", axchg->size, rc,
2161 *payload, *(payload+1), *(payload+2),
2162 *(payload+3), *(payload+4), *(payload+5));
2164 if (!rc) {
2165 atomic_inc(&tgtp->rcv_ls_req_out);
2166 return 0;
2169 atomic_inc(&tgtp->rcv_ls_req_drop);
2170 #endif
2171 return 1;
2174 static void
2175 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
2177 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2178 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
2179 struct lpfc_hba *phba = ctxp->phba;
2180 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
2181 struct lpfc_nvmet_tgtport *tgtp;
2182 uint32_t *payload, qno;
2183 uint32_t rc;
2184 unsigned long iflags;
2186 if (!nvmebuf) {
2187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2188 "6159 process_rcv_fcp_req, nvmebuf is NULL, "
2189 "oxid: x%x flg: x%x state: x%x\n",
2190 ctxp->oxid, ctxp->flag, ctxp->state);
2191 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2192 lpfc_nvmet_defer_release(phba, ctxp);
2193 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2194 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
2195 ctxp->oxid);
2196 return;
2199 if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
2200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2201 "6324 IO oxid x%x aborted\n",
2202 ctxp->oxid);
2203 return;
2206 payload = (uint32_t *)(nvmebuf->dbuf.virt);
2207 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2208 ctxp->flag |= LPFC_NVME_TNOTIFY;
2209 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2210 if (ctxp->ts_isr_cmd)
2211 ctxp->ts_cmd_nvme = ktime_get_ns();
2212 #endif
2214 * The calling sequence should be:
2215 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
2216 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2217 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
2218 * the NVME command / FC header is stored.
2219 * A buffer has already been reposted for this IO, so just free
2220 * the nvmebuf.
2222 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
2223 payload, ctxp->size);
2224 /* Process FCP command */
2225 if (rc == 0) {
2226 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2227 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2228 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
2229 (nvmebuf != ctxp->rqb_buffer)) {
2230 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2231 return;
2233 ctxp->rqb_buffer = NULL;
2234 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2235 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2236 return;
2239 /* Processing of FCP command is deferred */
2240 if (rc == -EOVERFLOW) {
2241 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
2242 "from %06x\n",
2243 ctxp->oxid, ctxp->size, ctxp->sid);
2244 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2245 atomic_inc(&tgtp->defer_fod);
2246 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2247 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
2248 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2249 return;
2251 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2253 * Post a replacement DMA buffer to RQ and defer
2254 * freeing rcv buffer till .defer_rcv callback
2256 qno = nvmebuf->idx;
2257 lpfc_post_rq_buffer(
2258 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2259 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2260 return;
2262 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
2263 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2265 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2266 ctxp->oxid, rc,
2267 atomic_read(&tgtp->rcv_fcp_cmd_in),
2268 atomic_read(&tgtp->rcv_fcp_cmd_out),
2269 atomic_read(&tgtp->xmt_fcp_release));
2270 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2271 ctxp->oxid, ctxp->size, ctxp->sid);
2272 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2273 lpfc_nvmet_defer_release(phba, ctxp);
2274 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2275 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
2276 #endif
2279 static void
2280 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
2282 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2283 struct lpfc_nvmet_ctxbuf *ctx_buf =
2284 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
2286 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2287 #endif
2290 static struct lpfc_nvmet_ctxbuf *
2291 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
2292 struct lpfc_nvmet_ctx_info *current_infop)
2294 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2295 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
2296 struct lpfc_nvmet_ctx_info *get_infop;
2297 int i;
2300 * The current_infop for the MRQ a NVME command IU was received
2301 * on is empty. Our goal is to replenish this MRQs context
2302 * list from a another CPUs.
2304 * First we need to pick a context list to start looking on.
2305 * nvmet_ctx_start_cpu has available context the last time
2306 * we needed to replenish this CPU where nvmet_ctx_next_cpu
2307 * is just the next sequential CPU for this MRQ.
2309 if (current_infop->nvmet_ctx_start_cpu)
2310 get_infop = current_infop->nvmet_ctx_start_cpu;
2311 else
2312 get_infop = current_infop->nvmet_ctx_next_cpu;
2314 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
2315 if (get_infop == current_infop) {
2316 get_infop = get_infop->nvmet_ctx_next_cpu;
2317 continue;
2319 spin_lock(&get_infop->nvmet_ctx_list_lock);
2321 /* Just take the entire context list, if there are any */
2322 if (get_infop->nvmet_ctx_list_cnt) {
2323 list_splice_init(&get_infop->nvmet_ctx_list,
2324 &current_infop->nvmet_ctx_list);
2325 current_infop->nvmet_ctx_list_cnt =
2326 get_infop->nvmet_ctx_list_cnt - 1;
2327 get_infop->nvmet_ctx_list_cnt = 0;
2328 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2330 current_infop->nvmet_ctx_start_cpu = get_infop;
2331 list_remove_head(&current_infop->nvmet_ctx_list,
2332 ctx_buf, struct lpfc_nvmet_ctxbuf,
2333 list);
2334 return ctx_buf;
2337 /* Otherwise, move on to the next CPU for this MRQ */
2338 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2339 get_infop = get_infop->nvmet_ctx_next_cpu;
2342 #endif
2343 /* Nothing found, all contexts for the MRQ are in-flight */
2344 return NULL;
2348 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
2349 * @phba: pointer to lpfc hba data structure.
2350 * @idx: relative index of MRQ vector
2351 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
2352 * @isr_timestamp: in jiffies.
2353 * @cqflag: cq processing information regarding workload.
2355 * This routine is used for processing the WQE associated with a unsolicited
2356 * event. It first determines whether there is an existing ndlp that matches
2357 * the DID from the unsolicited WQE. If not, it will create a new one with
2358 * the DID from the unsolicited WQE. The ELS command from the unsolicited
2359 * WQE is then used to invoke the proper routine and to set up proper state
2360 * of the discovery state machine.
2362 static void
2363 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
2364 uint32_t idx,
2365 struct rqb_dmabuf *nvmebuf,
2366 uint64_t isr_timestamp,
2367 uint8_t cqflag)
2369 struct lpfc_async_xchg_ctx *ctxp;
2370 struct lpfc_nvmet_tgtport *tgtp;
2371 struct fc_frame_header *fc_hdr;
2372 struct lpfc_nvmet_ctxbuf *ctx_buf;
2373 struct lpfc_nvmet_ctx_info *current_infop;
2374 uint32_t size, oxid, sid, qno;
2375 unsigned long iflag;
2376 int current_cpu;
2378 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
2379 return;
2381 ctx_buf = NULL;
2382 if (!nvmebuf || !phba->targetport) {
2383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2384 "6157 NVMET FCP Drop IO\n");
2385 if (nvmebuf)
2386 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2387 return;
2391 * Get a pointer to the context list for this MRQ based on
2392 * the CPU this MRQ IRQ is associated with. If the CPU association
2393 * changes from our initial assumption, the context list could
2394 * be empty, thus it would need to be replenished with the
2395 * context list from another CPU for this MRQ.
2397 current_cpu = raw_smp_processor_id();
2398 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
2399 spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
2400 if (current_infop->nvmet_ctx_list_cnt) {
2401 list_remove_head(&current_infop->nvmet_ctx_list,
2402 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
2403 current_infop->nvmet_ctx_list_cnt--;
2404 } else {
2405 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
2407 spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
2409 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
2410 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2411 size = nvmebuf->bytes_recv;
2413 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2414 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
2415 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
2416 if (idx != current_cpu)
2417 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2418 "6703 CPU Check rcv: "
2419 "cpu %d expect %d\n",
2420 current_cpu, idx);
2422 #endif
2424 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
2425 oxid, size, raw_smp_processor_id());
2427 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2429 if (!ctx_buf) {
2430 /* Queue this NVME IO to process later */
2431 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
2432 list_add_tail(&nvmebuf->hbuf.list,
2433 &phba->sli4_hba.lpfc_nvmet_io_wait_list);
2434 phba->sli4_hba.nvmet_io_wait_cnt++;
2435 phba->sli4_hba.nvmet_io_wait_total++;
2436 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
2437 iflag);
2439 /* Post a brand new DMA buffer to RQ */
2440 qno = nvmebuf->idx;
2441 lpfc_post_rq_buffer(
2442 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2443 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2445 atomic_inc(&tgtp->defer_ctx);
2446 return;
2449 sid = sli4_sid_from_fc_hdr(fc_hdr);
2451 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
2452 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
2453 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
2454 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
2455 if (ctxp->state != LPFC_NVME_STE_FREE) {
2456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2457 "6414 NVMET Context corrupt %d %d oxid x%x\n",
2458 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2460 ctxp->wqeq = NULL;
2461 ctxp->offset = 0;
2462 ctxp->phba = phba;
2463 ctxp->size = size;
2464 ctxp->oxid = oxid;
2465 ctxp->sid = sid;
2466 ctxp->idx = idx;
2467 ctxp->state = LPFC_NVME_STE_RCV;
2468 ctxp->entry_cnt = 1;
2469 ctxp->flag = 0;
2470 ctxp->ctxbuf = ctx_buf;
2471 ctxp->rqb_buffer = (void *)nvmebuf;
2472 ctxp->hdwq = NULL;
2473 spin_lock_init(&ctxp->ctxlock);
2475 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2476 if (isr_timestamp)
2477 ctxp->ts_isr_cmd = isr_timestamp;
2478 ctxp->ts_cmd_nvme = 0;
2479 ctxp->ts_nvme_data = 0;
2480 ctxp->ts_data_wqput = 0;
2481 ctxp->ts_isr_data = 0;
2482 ctxp->ts_data_nvme = 0;
2483 ctxp->ts_nvme_status = 0;
2484 ctxp->ts_status_wqput = 0;
2485 ctxp->ts_isr_status = 0;
2486 ctxp->ts_status_nvme = 0;
2487 #endif
2489 atomic_inc(&tgtp->rcv_fcp_cmd_in);
2490 /* check for cq processing load */
2491 if (!cqflag) {
2492 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2493 return;
2496 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
2497 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2499 "6325 Unable to queue work for oxid x%x. "
2500 "FCP Drop IO [x%x x%x x%x]\n",
2501 ctxp->oxid,
2502 atomic_read(&tgtp->rcv_fcp_cmd_in),
2503 atomic_read(&tgtp->rcv_fcp_cmd_out),
2504 atomic_read(&tgtp->xmt_fcp_release));
2506 spin_lock_irqsave(&ctxp->ctxlock, iflag);
2507 lpfc_nvmet_defer_release(phba, ctxp);
2508 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
2509 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2514 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2515 * @phba: pointer to lpfc hba data structure.
2516 * @idx: relative index of MRQ vector
2517 * @nvmebuf: pointer to received nvme data structure.
2518 * @isr_timestamp: in jiffies.
2519 * @cqflag: cq processing information regarding workload.
2521 * This routine is used to process an unsolicited event received from a SLI
2522 * (Service Level Interface) ring. The actual processing of the data buffer
2523 * associated with the unsolicited event is done by invoking the routine
2524 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2525 * SLI RQ on which the unsolicited event was received.
2527 void
2528 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2529 uint32_t idx,
2530 struct rqb_dmabuf *nvmebuf,
2531 uint64_t isr_timestamp,
2532 uint8_t cqflag)
2534 if (!nvmebuf) {
2535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2536 "3167 NVMET FCP Drop IO\n");
2537 return;
2539 if (phba->nvmet_support == 0) {
2540 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2541 return;
2543 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
2547 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2548 * @phba: pointer to a host N_Port data structure.
2549 * @ctxp: Context info for NVME LS Request
2550 * @rspbuf: DMA buffer of NVME command.
2551 * @rspsize: size of the NVME command.
2553 * This routine is used for allocating a lpfc-WQE data structure from
2554 * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2555 * passed into the routine for discovery state machine to issue an Extended
2556 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2557 * and preparation routine that is used by all the discovery state machine
2558 * routines and the NVME command-specific fields will be later set up by
2559 * the individual discovery machine routines after calling this routine
2560 * allocating and preparing a generic WQE data structure. It fills in the
2561 * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2562 * payload and response payload (if expected). The reference count on the
2563 * ndlp is incremented by 1 and the reference to the ndlp is put into
2564 * context1 of the WQE data structure for this WQE to hold the ndlp
2565 * reference for the command's callback function to access later.
2567 * Return code
2568 * Pointer to the newly allocated/prepared nvme wqe data structure
2569 * NULL - when nvme wqe data structure allocation/preparation failed
2571 static struct lpfc_iocbq *
2572 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2573 struct lpfc_async_xchg_ctx *ctxp,
2574 dma_addr_t rspbuf, uint16_t rspsize)
2576 struct lpfc_nodelist *ndlp;
2577 struct lpfc_iocbq *nvmewqe;
2578 union lpfc_wqe128 *wqe;
2580 if (!lpfc_is_link_up(phba)) {
2581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2582 "6104 NVMET prep LS wqe: link err: "
2583 "NPORT x%x oxid:x%x ste %d\n",
2584 ctxp->sid, ctxp->oxid, ctxp->state);
2585 return NULL;
2588 /* Allocate buffer for command wqe */
2589 nvmewqe = lpfc_sli_get_iocbq(phba);
2590 if (nvmewqe == NULL) {
2591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2592 "6105 NVMET prep LS wqe: No WQE: "
2593 "NPORT x%x oxid x%x ste %d\n",
2594 ctxp->sid, ctxp->oxid, ctxp->state);
2595 return NULL;
2598 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2599 if (!ndlp ||
2600 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2601 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2603 "6106 NVMET prep LS wqe: No ndlp: "
2604 "NPORT x%x oxid x%x ste %d\n",
2605 ctxp->sid, ctxp->oxid, ctxp->state);
2606 goto nvme_wqe_free_wqeq_exit;
2608 ctxp->wqeq = nvmewqe;
2610 /* prevent preparing wqe with NULL ndlp reference */
2611 nvmewqe->context1 = lpfc_nlp_get(ndlp);
2612 if (nvmewqe->context1 == NULL)
2613 goto nvme_wqe_free_wqeq_exit;
2614 nvmewqe->context2 = ctxp;
2616 wqe = &nvmewqe->wqe;
2617 memset(wqe, 0, sizeof(union lpfc_wqe));
2619 /* Words 0 - 2 */
2620 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2621 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2622 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2623 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2625 /* Word 3 */
2627 /* Word 4 */
2629 /* Word 5 */
2630 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2631 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2632 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2633 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2634 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2636 /* Word 6 */
2637 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2638 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2639 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2641 /* Word 7 */
2642 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2643 CMD_XMIT_SEQUENCE64_WQE);
2644 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2645 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2646 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2648 /* Word 8 */
2649 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2651 /* Word 9 */
2652 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2653 /* Needs to be set by caller */
2654 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2656 /* Word 10 */
2657 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2658 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2659 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2660 LPFC_WQE_LENLOC_WORD12);
2661 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2663 /* Word 11 */
2664 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2665 LPFC_WQE_CQ_ID_DEFAULT);
2666 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2667 OTHER_COMMAND);
2669 /* Word 12 */
2670 wqe->xmit_sequence.xmit_len = rspsize;
2672 nvmewqe->retry = 1;
2673 nvmewqe->vport = phba->pport;
2674 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2675 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
2677 /* Xmit NVMET response to remote NPORT <did> */
2678 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2679 "6039 Xmit NVMET LS response to remote "
2680 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2681 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2682 rspsize);
2683 return nvmewqe;
2685 nvme_wqe_free_wqeq_exit:
2686 nvmewqe->context2 = NULL;
2687 nvmewqe->context3 = NULL;
2688 lpfc_sli_release_iocbq(phba, nvmewqe);
2689 return NULL;
2693 static struct lpfc_iocbq *
2694 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2695 struct lpfc_async_xchg_ctx *ctxp)
2697 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
2698 struct lpfc_nvmet_tgtport *tgtp;
2699 struct sli4_sge *sgl;
2700 struct lpfc_nodelist *ndlp;
2701 struct lpfc_iocbq *nvmewqe;
2702 struct scatterlist *sgel;
2703 union lpfc_wqe128 *wqe;
2704 struct ulp_bde64 *bde;
2705 dma_addr_t physaddr;
2706 int i, cnt, nsegs;
2707 int do_pbde;
2708 int xc = 1;
2710 if (!lpfc_is_link_up(phba)) {
2711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2712 "6107 NVMET prep FCP wqe: link err:"
2713 "NPORT x%x oxid x%x ste %d\n",
2714 ctxp->sid, ctxp->oxid, ctxp->state);
2715 return NULL;
2718 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2719 if (!ndlp ||
2720 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2721 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2723 "6108 NVMET prep FCP wqe: no ndlp: "
2724 "NPORT x%x oxid x%x ste %d\n",
2725 ctxp->sid, ctxp->oxid, ctxp->state);
2726 return NULL;
2729 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2731 "6109 NVMET prep FCP wqe: seg cnt err: "
2732 "NPORT x%x oxid x%x ste %d cnt %d\n",
2733 ctxp->sid, ctxp->oxid, ctxp->state,
2734 phba->cfg_nvme_seg_cnt);
2735 return NULL;
2737 nsegs = rsp->sg_cnt;
2739 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2740 nvmewqe = ctxp->wqeq;
2741 if (nvmewqe == NULL) {
2742 /* Allocate buffer for command wqe */
2743 nvmewqe = ctxp->ctxbuf->iocbq;
2744 if (nvmewqe == NULL) {
2745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2746 "6110 NVMET prep FCP wqe: No "
2747 "WQE: NPORT x%x oxid x%x ste %d\n",
2748 ctxp->sid, ctxp->oxid, ctxp->state);
2749 return NULL;
2751 ctxp->wqeq = nvmewqe;
2752 xc = 0; /* create new XRI */
2753 nvmewqe->sli4_lxritag = NO_XRI;
2754 nvmewqe->sli4_xritag = NO_XRI;
2757 /* Sanity check */
2758 if (((ctxp->state == LPFC_NVME_STE_RCV) &&
2759 (ctxp->entry_cnt == 1)) ||
2760 (ctxp->state == LPFC_NVME_STE_DATA)) {
2761 wqe = &nvmewqe->wqe;
2762 } else {
2763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2764 "6111 Wrong state NVMET FCP: %d cnt %d\n",
2765 ctxp->state, ctxp->entry_cnt);
2766 return NULL;
2769 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2770 switch (rsp->op) {
2771 case NVMET_FCOP_READDATA:
2772 case NVMET_FCOP_READDATA_RSP:
2773 /* From the tsend template, initialize words 7 - 11 */
2774 memcpy(&wqe->words[7],
2775 &lpfc_tsend_cmd_template.words[7],
2776 sizeof(uint32_t) * 5);
2778 /* Words 0 - 2 : The first sg segment */
2779 sgel = &rsp->sg[0];
2780 physaddr = sg_dma_address(sgel);
2781 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2782 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2783 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2784 wqe->fcp_tsend.bde.addrHigh =
2785 cpu_to_le32(putPaddrHigh(physaddr));
2787 /* Word 3 */
2788 wqe->fcp_tsend.payload_offset_len = 0;
2790 /* Word 4 */
2791 wqe->fcp_tsend.relative_offset = ctxp->offset;
2793 /* Word 5 */
2794 wqe->fcp_tsend.reserved = 0;
2796 /* Word 6 */
2797 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2798 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2799 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2800 nvmewqe->sli4_xritag);
2802 /* Word 7 - set ar later */
2804 /* Word 8 */
2805 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2807 /* Word 9 */
2808 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2809 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2811 /* Word 10 - set wqes later, in template xc=1 */
2812 if (!xc)
2813 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2815 /* Word 11 - set sup, irsp, irsplen later */
2816 do_pbde = 0;
2818 /* Word 12 */
2819 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2821 /* Setup 2 SKIP SGEs */
2822 sgl->addr_hi = 0;
2823 sgl->addr_lo = 0;
2824 sgl->word2 = 0;
2825 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2826 sgl->word2 = cpu_to_le32(sgl->word2);
2827 sgl->sge_len = 0;
2828 sgl++;
2829 sgl->addr_hi = 0;
2830 sgl->addr_lo = 0;
2831 sgl->word2 = 0;
2832 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2833 sgl->word2 = cpu_to_le32(sgl->word2);
2834 sgl->sge_len = 0;
2835 sgl++;
2836 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2837 atomic_inc(&tgtp->xmt_fcp_read_rsp);
2839 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2841 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2842 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2843 bf_set(wqe_sup,
2844 &wqe->fcp_tsend.wqe_com, 1);
2845 } else {
2846 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2847 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2848 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2849 ((rsp->rsplen >> 2) - 1));
2850 memcpy(&wqe->words[16], rsp->rspaddr,
2851 rsp->rsplen);
2853 } else {
2854 atomic_inc(&tgtp->xmt_fcp_read);
2856 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2857 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2859 break;
2861 case NVMET_FCOP_WRITEDATA:
2862 /* From the treceive template, initialize words 3 - 11 */
2863 memcpy(&wqe->words[3],
2864 &lpfc_treceive_cmd_template.words[3],
2865 sizeof(uint32_t) * 9);
2867 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
2868 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
2869 wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
2870 wqe->fcp_treceive.bde.addrLow = 0;
2871 wqe->fcp_treceive.bde.addrHigh = 0;
2873 /* Word 4 */
2874 wqe->fcp_treceive.relative_offset = ctxp->offset;
2876 /* Word 6 */
2877 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2878 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2879 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2880 nvmewqe->sli4_xritag);
2882 /* Word 7 */
2884 /* Word 8 */
2885 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2887 /* Word 9 */
2888 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2889 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2891 /* Word 10 - in template xc=1 */
2892 if (!xc)
2893 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2895 /* Word 11 - set pbde later */
2896 if (phba->cfg_enable_pbde) {
2897 do_pbde = 1;
2898 } else {
2899 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2900 do_pbde = 0;
2903 /* Word 12 */
2904 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2906 /* Setup 2 SKIP SGEs */
2907 sgl->addr_hi = 0;
2908 sgl->addr_lo = 0;
2909 sgl->word2 = 0;
2910 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2911 sgl->word2 = cpu_to_le32(sgl->word2);
2912 sgl->sge_len = 0;
2913 sgl++;
2914 sgl->addr_hi = 0;
2915 sgl->addr_lo = 0;
2916 sgl->word2 = 0;
2917 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2918 sgl->word2 = cpu_to_le32(sgl->word2);
2919 sgl->sge_len = 0;
2920 sgl++;
2921 atomic_inc(&tgtp->xmt_fcp_write);
2922 break;
2924 case NVMET_FCOP_RSP:
2925 /* From the treceive template, initialize words 4 - 11 */
2926 memcpy(&wqe->words[4],
2927 &lpfc_trsp_cmd_template.words[4],
2928 sizeof(uint32_t) * 8);
2930 /* Words 0 - 2 */
2931 physaddr = rsp->rspdma;
2932 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2933 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2934 wqe->fcp_trsp.bde.addrLow =
2935 cpu_to_le32(putPaddrLow(physaddr));
2936 wqe->fcp_trsp.bde.addrHigh =
2937 cpu_to_le32(putPaddrHigh(physaddr));
2939 /* Word 3 */
2940 wqe->fcp_trsp.response_len = rsp->rsplen;
2942 /* Word 6 */
2943 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2944 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2945 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2946 nvmewqe->sli4_xritag);
2948 /* Word 7 */
2950 /* Word 8 */
2951 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2953 /* Word 9 */
2954 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2955 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2957 /* Word 10 */
2958 if (xc)
2959 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2961 /* Word 11 */
2962 /* In template wqes=0 irsp=0 irsplen=0 - good response */
2963 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2964 /* Bad response - embed it */
2965 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2966 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2967 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2968 ((rsp->rsplen >> 2) - 1));
2969 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2971 do_pbde = 0;
2973 /* Word 12 */
2974 wqe->fcp_trsp.rsvd_12_15[0] = 0;
2976 /* Use rspbuf, NOT sg list */
2977 nsegs = 0;
2978 sgl->word2 = 0;
2979 atomic_inc(&tgtp->xmt_fcp_rsp);
2980 break;
2982 default:
2983 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2984 "6064 Unknown Rsp Op %d\n",
2985 rsp->op);
2986 return NULL;
2989 nvmewqe->retry = 1;
2990 nvmewqe->vport = phba->pport;
2991 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2992 nvmewqe->context1 = ndlp;
2994 for_each_sg(rsp->sg, sgel, nsegs, i) {
2995 physaddr = sg_dma_address(sgel);
2996 cnt = sg_dma_len(sgel);
2997 sgl->addr_hi = putPaddrHigh(physaddr);
2998 sgl->addr_lo = putPaddrLow(physaddr);
2999 sgl->word2 = 0;
3000 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
3001 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
3002 if ((i+1) == rsp->sg_cnt)
3003 bf_set(lpfc_sli4_sge_last, sgl, 1);
3004 sgl->word2 = cpu_to_le32(sgl->word2);
3005 sgl->sge_len = cpu_to_le32(cnt);
3006 if (i == 0) {
3007 bde = (struct ulp_bde64 *)&wqe->words[13];
3008 if (do_pbde) {
3009 /* Words 13-15 (PBDE) */
3010 bde->addrLow = sgl->addr_lo;
3011 bde->addrHigh = sgl->addr_hi;
3012 bde->tus.f.bdeSize =
3013 le32_to_cpu(sgl->sge_len);
3014 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
3015 bde->tus.w = cpu_to_le32(bde->tus.w);
3016 } else {
3017 memset(bde, 0, sizeof(struct ulp_bde64));
3020 sgl++;
3021 ctxp->offset += cnt;
3023 ctxp->state = LPFC_NVME_STE_DATA;
3024 ctxp->entry_cnt++;
3025 return nvmewqe;
3029 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
3030 * @phba: Pointer to HBA context object.
3031 * @cmdwqe: Pointer to driver command WQE object.
3032 * @wcqe: Pointer to driver response CQE object.
3034 * The function is called from SLI ring event handler with no
3035 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3036 * The function frees memory resources used for the NVME commands.
3038 static void
3039 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3040 struct lpfc_wcqe_complete *wcqe)
3042 struct lpfc_async_xchg_ctx *ctxp;
3043 struct lpfc_nvmet_tgtport *tgtp;
3044 uint32_t result;
3045 unsigned long flags;
3046 bool released = false;
3048 ctxp = cmdwqe->context2;
3049 result = wcqe->parameter;
3051 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3052 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3053 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3055 spin_lock_irqsave(&ctxp->ctxlock, flags);
3056 ctxp->state = LPFC_NVME_STE_DONE;
3058 /* Check if we already received a free context call
3059 * and we have completed processing an abort situation.
3061 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3062 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3063 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3064 list_del_init(&ctxp->list);
3065 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3066 released = true;
3068 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3069 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3070 atomic_inc(&tgtp->xmt_abort_rsp);
3072 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3073 "6165 ABORT cmpl: oxid x%x flg x%x (%d) "
3074 "WCQE: %08x %08x %08x %08x\n",
3075 ctxp->oxid, ctxp->flag, released,
3076 wcqe->word0, wcqe->total_data_placed,
3077 result, wcqe->word3);
3079 cmdwqe->context2 = NULL;
3080 cmdwqe->context3 = NULL;
3082 * if transport has released ctx, then can reuse it. Otherwise,
3083 * will be recycled by transport release call.
3085 if (released)
3086 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3088 /* This is the iocbq for the abort, not the command */
3089 lpfc_sli_release_iocbq(phba, cmdwqe);
3091 /* Since iaab/iaar are NOT set, there is no work left.
3092 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3093 * should have been called already.
3098 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
3099 * @phba: Pointer to HBA context object.
3100 * @cmdwqe: Pointer to driver command WQE object.
3101 * @wcqe: Pointer to driver response CQE object.
3103 * The function is called from SLI ring event handler with no
3104 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3105 * The function frees memory resources used for the NVME commands.
3107 static void
3108 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3109 struct lpfc_wcqe_complete *wcqe)
3111 struct lpfc_async_xchg_ctx *ctxp;
3112 struct lpfc_nvmet_tgtport *tgtp;
3113 unsigned long flags;
3114 uint32_t result;
3115 bool released = false;
3117 ctxp = cmdwqe->context2;
3118 result = wcqe->parameter;
3120 if (!ctxp) {
3121 /* if context is clear, related io alrady complete */
3122 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3123 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
3124 wcqe->word0, wcqe->total_data_placed,
3125 result, wcqe->word3);
3126 return;
3129 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3130 spin_lock_irqsave(&ctxp->ctxlock, flags);
3131 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3132 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3134 /* Sanity check */
3135 if (ctxp->state != LPFC_NVME_STE_ABORT) {
3136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3137 "6112 ABTS Wrong state:%d oxid x%x\n",
3138 ctxp->state, ctxp->oxid);
3141 /* Check if we already received a free context call
3142 * and we have completed processing an abort situation.
3144 ctxp->state = LPFC_NVME_STE_DONE;
3145 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3146 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3147 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3148 list_del_init(&ctxp->list);
3149 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3150 released = true;
3152 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3153 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3154 atomic_inc(&tgtp->xmt_abort_rsp);
3156 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3157 "6316 ABTS cmpl oxid x%x flg x%x (%x) "
3158 "WCQE: %08x %08x %08x %08x\n",
3159 ctxp->oxid, ctxp->flag, released,
3160 wcqe->word0, wcqe->total_data_placed,
3161 result, wcqe->word3);
3163 cmdwqe->context2 = NULL;
3164 cmdwqe->context3 = NULL;
3166 * if transport has released ctx, then can reuse it. Otherwise,
3167 * will be recycled by transport release call.
3169 if (released)
3170 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3172 /* Since iaab/iaar are NOT set, there is no work left.
3173 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3174 * should have been called already.
3179 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
3180 * @phba: Pointer to HBA context object.
3181 * @cmdwqe: Pointer to driver command WQE object.
3182 * @wcqe: Pointer to driver response CQE object.
3184 * The function is called from SLI ring event handler with no
3185 * lock held. This function is the completion handler for NVME ABTS for LS cmds
3186 * The function frees memory resources used for the NVME commands.
3188 static void
3189 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3190 struct lpfc_wcqe_complete *wcqe)
3192 struct lpfc_async_xchg_ctx *ctxp;
3193 struct lpfc_nvmet_tgtport *tgtp;
3194 uint32_t result;
3196 ctxp = cmdwqe->context2;
3197 result = wcqe->parameter;
3199 if (phba->nvmet_support) {
3200 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3201 atomic_inc(&tgtp->xmt_ls_abort_cmpl);
3204 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3205 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
3206 ctxp, wcqe->word0, wcqe->total_data_placed,
3207 result, wcqe->word3);
3209 if (!ctxp) {
3210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3211 "6415 NVMET LS Abort No ctx: WCQE: "
3212 "%08x %08x %08x %08x\n",
3213 wcqe->word0, wcqe->total_data_placed,
3214 result, wcqe->word3);
3216 lpfc_sli_release_iocbq(phba, cmdwqe);
3217 return;
3220 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
3221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3222 "6416 NVMET LS abort cmpl state mismatch: "
3223 "oxid x%x: %d %d\n",
3224 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3227 cmdwqe->context2 = NULL;
3228 cmdwqe->context3 = NULL;
3229 lpfc_sli_release_iocbq(phba, cmdwqe);
3230 kfree(ctxp);
3233 static int
3234 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
3235 struct lpfc_async_xchg_ctx *ctxp,
3236 uint32_t sid, uint16_t xri)
3238 struct lpfc_nvmet_tgtport *tgtp = NULL;
3239 struct lpfc_iocbq *abts_wqeq;
3240 union lpfc_wqe128 *wqe_abts;
3241 struct lpfc_nodelist *ndlp;
3243 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3244 "6067 ABTS: sid %x xri x%x/x%x\n",
3245 sid, xri, ctxp->wqeq->sli4_xritag);
3247 if (phba->nvmet_support && phba->targetport)
3248 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3250 ndlp = lpfc_findnode_did(phba->pport, sid);
3251 if (!ndlp ||
3252 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3253 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3254 if (tgtp)
3255 atomic_inc(&tgtp->xmt_abort_rsp_error);
3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3257 "6134 Drop ABTS - wrong NDLP state x%x.\n",
3258 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3260 /* No failure to an ABTS request. */
3261 return 0;
3264 abts_wqeq = ctxp->wqeq;
3265 wqe_abts = &abts_wqeq->wqe;
3268 * Since we zero the whole WQE, we need to ensure we set the WQE fields
3269 * that were initialized in lpfc_sli4_nvmet_alloc.
3271 memset(wqe_abts, 0, sizeof(union lpfc_wqe));
3273 /* Word 5 */
3274 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
3275 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
3276 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
3277 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
3278 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
3280 /* Word 6 */
3281 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
3282 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
3283 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
3284 abts_wqeq->sli4_xritag);
3286 /* Word 7 */
3287 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
3288 CMD_XMIT_SEQUENCE64_WQE);
3289 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
3290 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
3291 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
3293 /* Word 8 */
3294 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
3296 /* Word 9 */
3297 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
3298 /* Needs to be set by caller */
3299 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
3301 /* Word 10 */
3302 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
3303 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
3304 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
3305 LPFC_WQE_LENLOC_WORD12);
3306 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
3307 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
3309 /* Word 11 */
3310 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
3311 LPFC_WQE_CQ_ID_DEFAULT);
3312 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
3313 OTHER_COMMAND);
3315 abts_wqeq->vport = phba->pport;
3316 abts_wqeq->context1 = ndlp;
3317 abts_wqeq->context2 = ctxp;
3318 abts_wqeq->context3 = NULL;
3319 abts_wqeq->rsvd2 = 0;
3320 /* hba_wqidx should already be setup from command we are aborting */
3321 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
3322 abts_wqeq->iocb.ulpLe = 1;
3324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3325 "6069 Issue ABTS to xri x%x reqtag x%x\n",
3326 xri, abts_wqeq->iotag);
3327 return 1;
3331 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry.
3332 * @pwqeq: Pointer to command iocb.
3333 * @xritag: Tag that uniqely identifies the local exchange resource.
3334 * @opt: Option bits -
3335 * bit 0 = inhibit sending abts on the link
3337 * This function is called with hbalock held.
3339 static void
3340 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt)
3342 union lpfc_wqe128 *wqe = &pwqeq->wqe;
3344 /* WQEs are reused. Clear stale data and set key fields to
3345 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
3347 memset(wqe, 0, sizeof(*wqe));
3349 if (opt & INHIBIT_ABORT)
3350 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
3351 /* Abort specified xri tag, with the mask deliberately zeroed */
3352 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
3354 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
3356 /* Abort the I/O associated with this outstanding exchange ID. */
3357 wqe->abort_cmd.wqe_com.abort_tag = xritag;
3359 /* iotag for the wqe completion. */
3360 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag);
3362 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
3363 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
3365 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
3366 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
3367 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
3370 static int
3371 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
3372 struct lpfc_async_xchg_ctx *ctxp,
3373 uint32_t sid, uint16_t xri)
3375 struct lpfc_nvmet_tgtport *tgtp;
3376 struct lpfc_iocbq *abts_wqeq;
3377 struct lpfc_nodelist *ndlp;
3378 unsigned long flags;
3379 u8 opt;
3380 int rc;
3382 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3383 if (!ctxp->wqeq) {
3384 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3385 ctxp->wqeq->hba_wqidx = 0;
3388 ndlp = lpfc_findnode_did(phba->pport, sid);
3389 if (!ndlp ||
3390 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3391 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3392 atomic_inc(&tgtp->xmt_abort_rsp_error);
3393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3394 "6160 Drop ABORT - wrong NDLP state x%x.\n",
3395 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3397 /* No failure to an ABTS request. */
3398 spin_lock_irqsave(&ctxp->ctxlock, flags);
3399 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3400 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3401 return 0;
3404 /* Issue ABTS for this WQE based on iotag */
3405 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
3406 spin_lock_irqsave(&ctxp->ctxlock, flags);
3407 if (!ctxp->abort_wqeq) {
3408 atomic_inc(&tgtp->xmt_abort_rsp_error);
3409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3410 "6161 ABORT failed: No wqeqs: "
3411 "xri: x%x\n", ctxp->oxid);
3412 /* No failure to an ABTS request. */
3413 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3414 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3415 return 0;
3417 abts_wqeq = ctxp->abort_wqeq;
3418 ctxp->state = LPFC_NVME_STE_ABORT;
3419 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0;
3420 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3422 /* Announce entry to new IO submit field. */
3423 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3424 "6162 ABORT Request to rport DID x%06x "
3425 "for xri x%x x%x\n",
3426 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
3428 /* If the hba is getting reset, this flag is set. It is
3429 * cleared when the reset is complete and rings reestablished.
3431 spin_lock_irqsave(&phba->hbalock, flags);
3432 /* driver queued commands are in process of being flushed */
3433 if (phba->hba_flag & HBA_IOQ_FLUSH) {
3434 spin_unlock_irqrestore(&phba->hbalock, flags);
3435 atomic_inc(&tgtp->xmt_abort_rsp_error);
3436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3437 "6163 Driver in reset cleanup - flushing "
3438 "NVME Req now. hba_flag x%x oxid x%x\n",
3439 phba->hba_flag, ctxp->oxid);
3440 lpfc_sli_release_iocbq(phba, abts_wqeq);
3441 spin_lock_irqsave(&ctxp->ctxlock, flags);
3442 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3443 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3444 return 0;
3447 /* Outstanding abort is in progress */
3448 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
3449 spin_unlock_irqrestore(&phba->hbalock, flags);
3450 atomic_inc(&tgtp->xmt_abort_rsp_error);
3451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3452 "6164 Outstanding NVME I/O Abort Request "
3453 "still pending on oxid x%x\n",
3454 ctxp->oxid);
3455 lpfc_sli_release_iocbq(phba, abts_wqeq);
3456 spin_lock_irqsave(&ctxp->ctxlock, flags);
3457 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3458 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3459 return 0;
3462 /* Ready - mark outstanding as aborted by driver. */
3463 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
3465 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt);
3467 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3468 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3469 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3470 abts_wqeq->iocb_cmpl = NULL;
3471 abts_wqeq->iocb_flag |= LPFC_IO_NVME;
3472 abts_wqeq->context2 = ctxp;
3473 abts_wqeq->vport = phba->pport;
3474 if (!ctxp->hdwq)
3475 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3477 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3478 spin_unlock_irqrestore(&phba->hbalock, flags);
3479 if (rc == WQE_SUCCESS) {
3480 atomic_inc(&tgtp->xmt_abort_sol);
3481 return 0;
3484 atomic_inc(&tgtp->xmt_abort_rsp_error);
3485 spin_lock_irqsave(&ctxp->ctxlock, flags);
3486 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3487 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3488 lpfc_sli_release_iocbq(phba, abts_wqeq);
3489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3490 "6166 Failed ABORT issue_wqe with status x%x "
3491 "for oxid x%x.\n",
3492 rc, ctxp->oxid);
3493 return 1;
3496 static int
3497 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3498 struct lpfc_async_xchg_ctx *ctxp,
3499 uint32_t sid, uint16_t xri)
3501 struct lpfc_nvmet_tgtport *tgtp;
3502 struct lpfc_iocbq *abts_wqeq;
3503 unsigned long flags;
3504 bool released = false;
3505 int rc;
3507 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3508 if (!ctxp->wqeq) {
3509 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3510 ctxp->wqeq->hba_wqidx = 0;
3513 if (ctxp->state == LPFC_NVME_STE_FREE) {
3514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3515 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3516 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3517 rc = WQE_BUSY;
3518 goto aerr;
3520 ctxp->state = LPFC_NVME_STE_ABORT;
3521 ctxp->entry_cnt++;
3522 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3523 if (rc == 0)
3524 goto aerr;
3526 spin_lock_irqsave(&phba->hbalock, flags);
3527 abts_wqeq = ctxp->wqeq;
3528 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3529 abts_wqeq->iocb_cmpl = NULL;
3530 abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
3531 if (!ctxp->hdwq)
3532 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3534 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3535 spin_unlock_irqrestore(&phba->hbalock, flags);
3536 if (rc == WQE_SUCCESS) {
3537 return 0;
3540 aerr:
3541 spin_lock_irqsave(&ctxp->ctxlock, flags);
3542 if (ctxp->flag & LPFC_NVME_CTX_RLS) {
3543 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3544 list_del_init(&ctxp->list);
3545 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3546 released = true;
3548 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
3549 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3551 atomic_inc(&tgtp->xmt_abort_rsp_error);
3552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3553 "6135 Failed to Issue ABTS for oxid x%x. Status x%x "
3554 "(%x)\n",
3555 ctxp->oxid, rc, released);
3556 if (released)
3557 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3558 return 1;
3562 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
3563 * via async frame receive where the frame is not handled.
3564 * @phba: pointer to adapter structure
3565 * @ctxp: pointer to the asynchronously received received sequence
3566 * @sid: address of the remote port to send the ABTS to
3567 * @xri: oxid value to for the ABTS (other side's exchange id).
3570 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
3571 struct lpfc_async_xchg_ctx *ctxp,
3572 uint32_t sid, uint16_t xri)
3574 struct lpfc_nvmet_tgtport *tgtp = NULL;
3575 struct lpfc_iocbq *abts_wqeq;
3576 unsigned long flags;
3577 int rc;
3579 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3580 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3581 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3582 ctxp->entry_cnt++;
3583 } else {
3584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3585 "6418 NVMET LS abort state mismatch "
3586 "IO x%x: %d %d\n",
3587 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3588 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3591 if (phba->nvmet_support && phba->targetport)
3592 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3594 if (!ctxp->wqeq) {
3595 /* Issue ABTS for this WQE based on iotag */
3596 ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3597 if (!ctxp->wqeq) {
3598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3599 "6068 Abort failed: No wqeqs: "
3600 "xri: x%x\n", xri);
3601 /* No failure to an ABTS request. */
3602 kfree(ctxp);
3603 return 0;
3606 abts_wqeq = ctxp->wqeq;
3608 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3609 rc = WQE_BUSY;
3610 goto out;
3613 spin_lock_irqsave(&phba->hbalock, flags);
3614 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3615 abts_wqeq->iocb_cmpl = NULL;
3616 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS;
3617 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3618 spin_unlock_irqrestore(&phba->hbalock, flags);
3619 if (rc == WQE_SUCCESS) {
3620 if (tgtp)
3621 atomic_inc(&tgtp->xmt_abort_unsol);
3622 return 0;
3624 out:
3625 if (tgtp)
3626 atomic_inc(&tgtp->xmt_abort_rsp_error);
3627 abts_wqeq->context2 = NULL;
3628 abts_wqeq->context3 = NULL;
3629 lpfc_sli_release_iocbq(phba, abts_wqeq);
3630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3631 "6056 Failed to Issue ABTS. Status x%x\n", rc);
3632 return 1;
3636 * lpfc_nvmet_invalidate_host
3638 * @phba: pointer to the driver instance bound to an adapter port.
3639 * @ndlp: pointer to an lpfc_nodelist type
3641 * This routine upcalls the nvmet transport to invalidate an NVME
3642 * host to which this target instance had active connections.
3644 void
3645 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
3647 struct lpfc_nvmet_tgtport *tgtp;
3649 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_NVME_ABTS,
3650 "6203 Invalidating hosthandle x%px\n",
3651 ndlp);
3653 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3654 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
3656 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
3657 /* Need to get the nvmet_fc_target_port pointer here.*/
3658 nvmet_fc_invalidate_host(phba->targetport, ndlp);
3659 #endif