Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / scsi / lpfc / lpfc_sli.c
blob95caad764fb7b8a36c4e2c31e48072d0f8f70c07
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 LPFC_UNKNOWN_IOCB,
62 LPFC_UNSOL_IOCB,
63 LPFC_SOL_IOCB,
64 LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_queue *eq,
85 struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 struct lpfc_queue *cq,
91 struct lpfc_cqe *cqe);
93 union lpfc_wqe128 lpfc_iread_cmd_template;
94 union lpfc_wqe128 lpfc_iwrite_cmd_template;
95 union lpfc_wqe128 lpfc_icmnd_cmd_template;
97 static IOCB_t *
98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
100 return &iocbq->iocb;
103 /* Setup WQE templates for IOs */
104 void lpfc_wqe_cmd_template(void)
106 union lpfc_wqe128 *wqe;
108 /* IREAD template */
109 wqe = &lpfc_iread_cmd_template;
110 memset(wqe, 0, sizeof(union lpfc_wqe128));
112 /* Word 0, 1, 2 - BDE is variable */
114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
116 /* Word 4 - total_xfer_len is variable */
118 /* Word 5 - is zero */
120 /* Word 6 - ctxt_tag, xri_tag is variable */
122 /* Word 7 */
123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
128 /* Word 8 - abort_tag is variable */
130 /* Word 9 - reqtag is variable */
132 /* Word 10 - dbde, wqes is variable */
133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
139 /* Word 11 - pbde is variable */
140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
144 /* Word 12 - is zero */
146 /* Word 13, 14, 15 - PBDE is variable */
148 /* IWRITE template */
149 wqe = &lpfc_iwrite_cmd_template;
150 memset(wqe, 0, sizeof(union lpfc_wqe128));
152 /* Word 0, 1, 2 - BDE is variable */
154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
156 /* Word 4 - total_xfer_len is variable */
158 /* Word 5 - initial_xfer_len is variable */
160 /* Word 6 - ctxt_tag, xri_tag is variable */
162 /* Word 7 */
163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
168 /* Word 8 - abort_tag is variable */
170 /* Word 9 - reqtag is variable */
172 /* Word 10 - dbde, wqes is variable */
173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
179 /* Word 11 - pbde is variable */
180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
184 /* Word 12 - is zero */
186 /* Word 13, 14, 15 - PBDE is variable */
188 /* ICMND template */
189 wqe = &lpfc_icmnd_cmd_template;
190 memset(wqe, 0, sizeof(union lpfc_wqe128));
192 /* Word 0, 1, 2 - BDE is variable */
194 /* Word 3 - payload_offset_len is variable */
196 /* Word 4, 5 - is zero */
198 /* Word 6 - ctxt_tag, xri_tag is variable */
200 /* Word 7 */
201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
206 /* Word 8 - abort_tag is variable */
208 /* Word 9 - reqtag is variable */
210 /* Word 10 - dbde, wqes is variable */
211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
217 /* Word 11 */
218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
222 /* Word 12, 13, 14, 15 - is zero */
225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
228 * @srcp: Source memory pointer.
229 * @destp: Destination memory pointer.
230 * @cnt: Number of words required to be copied.
231 * Must be a multiple of sizeof(uint64_t)
233 * This function is used for copying data between driver memory
234 * and the SLI WQ. This function also changes the endianness
235 * of each word if native endianness is different from SLI
236 * endianness. This function can be called with or without
237 * lock.
239 static void
240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
242 uint64_t *src = srcp;
243 uint64_t *dest = destp;
244 int i;
246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
247 *dest++ = *src++;
249 #else
250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
251 #endif
254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
255 * @q: The Work Queue to operate on.
256 * @wqe: The work Queue Entry to put on the Work queue.
258 * This routine will copy the contents of @wqe to the next available entry on
259 * the @q. This function will then ring the Work Queue Doorbell to signal the
260 * HBA to start processing the Work Queue Entry. This function returns 0 if
261 * successful. If no entries are available on @q then this function will return
262 * -ENOMEM.
263 * The caller is expected to hold the hbalock when calling this routine.
265 static int
266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
268 union lpfc_wqe *temp_wqe;
269 struct lpfc_register doorbell;
270 uint32_t host_index;
271 uint32_t idx;
272 uint32_t i = 0;
273 uint8_t *tmp;
274 u32 if_type;
276 /* sanity check on queue memory */
277 if (unlikely(!q))
278 return -ENOMEM;
280 temp_wqe = lpfc_sli4_qe(q, q->host_index);
282 /* If the host has not yet processed the next entry then we are done */
283 idx = ((q->host_index + 1) % q->entry_count);
284 if (idx == q->hba_index) {
285 q->WQ_overflow++;
286 return -EBUSY;
288 q->WQ_posted++;
289 /* set consumption flag every once in a while */
290 if (!((q->host_index + 1) % q->notify_interval))
291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
292 else
293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
297 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
298 /* write to DPP aperture taking advatage of Combined Writes */
299 tmp = (uint8_t *)temp_wqe;
300 #ifdef __raw_writeq
301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
302 __raw_writeq(*((uint64_t *)(tmp + i)),
303 q->dpp_regaddr + i);
304 #else
305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
306 __raw_writel(*((uint32_t *)(tmp + i)),
307 q->dpp_regaddr + i);
308 #endif
310 /* ensure WQE bcopy and DPP flushed before doorbell write */
311 wmb();
313 /* Update the host index before invoking device */
314 host_index = q->host_index;
316 q->host_index = idx;
318 /* Ring Doorbell */
319 doorbell.word0 = 0;
320 if (q->db_format == LPFC_DB_LIST_FORMAT) {
321 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
325 q->dpp_id);
326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
327 q->queue_id);
328 } else {
329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
332 /* Leave bits <23:16> clear for if_type 6 dpp */
333 if_type = bf_get(lpfc_sli_intf_if_type,
334 &q->phba->sli4_hba.sli_intf);
335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
336 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
337 host_index);
339 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
342 } else {
343 return -EINVAL;
345 writel(doorbell.word0, q->db_regaddr);
347 return 0;
351 * lpfc_sli4_wq_release - Updates internal hba index for WQ
352 * @q: The Work Queue to operate on.
353 * @index: The index to advance the hba index to.
355 * This routine will update the HBA index of a queue to reflect consumption of
356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
357 * an entry the host calls this function to update the queue's internal
358 * pointers.
360 static void
361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
363 /* sanity check on queue memory */
364 if (unlikely(!q))
365 return;
367 q->hba_index = index;
371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
372 * @q: The Mailbox Queue to operate on.
373 * @mqe: The Mailbox Queue Entry to put on the Work queue.
375 * This routine will copy the contents of @mqe to the next available entry on
376 * the @q. This function will then ring the Work Queue Doorbell to signal the
377 * HBA to start processing the Work Queue Entry. This function returns 0 if
378 * successful. If no entries are available on @q then this function will return
379 * -ENOMEM.
380 * The caller is expected to hold the hbalock when calling this routine.
382 static uint32_t
383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
385 struct lpfc_mqe *temp_mqe;
386 struct lpfc_register doorbell;
388 /* sanity check on queue memory */
389 if (unlikely(!q))
390 return -ENOMEM;
391 temp_mqe = lpfc_sli4_qe(q, q->host_index);
393 /* If the host has not yet processed the next entry then we are done */
394 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
395 return -ENOMEM;
396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
397 /* Save off the mailbox pointer for completion */
398 q->phba->mbox = (MAILBOX_t *)temp_mqe;
400 /* Update the host index before invoking device */
401 q->host_index = ((q->host_index + 1) % q->entry_count);
403 /* Ring Doorbell */
404 doorbell.word0 = 0;
405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
408 return 0;
412 * lpfc_sli4_mq_release - Updates internal hba index for MQ
413 * @q: The Mailbox Queue to operate on.
415 * This routine will update the HBA index of a queue to reflect consumption of
416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
417 * an entry the host calls this function to update the queue's internal
418 * pointers. This routine returns the number of entries that were consumed by
419 * the HBA.
421 static uint32_t
422 lpfc_sli4_mq_release(struct lpfc_queue *q)
424 /* sanity check on queue memory */
425 if (unlikely(!q))
426 return 0;
428 /* Clear the mailbox pointer for completion */
429 q->phba->mbox = NULL;
430 q->hba_index = ((q->hba_index + 1) % q->entry_count);
431 return 1;
435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
436 * @q: The Event Queue to get the first valid EQE from
438 * This routine will get the first valid Event Queue Entry from @q, update
439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
440 * the Queue (no more work to do), or the Queue is full of EQEs that have been
441 * processed, but not popped back to the HBA then this routine will return NULL.
443 static struct lpfc_eqe *
444 lpfc_sli4_eq_get(struct lpfc_queue *q)
446 struct lpfc_eqe *eqe;
448 /* sanity check on queue memory */
449 if (unlikely(!q))
450 return NULL;
451 eqe = lpfc_sli4_qe(q, q->host_index);
453 /* If the next EQE is not valid then we are done */
454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
455 return NULL;
458 * insert barrier for instruction interlock : data from the hardware
459 * must have the valid bit checked before it can be copied and acted
460 * upon. Speculative instructions were allowing a bcopy at the start
461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
462 * after our return, to copy data before the valid bit check above
463 * was done. As such, some of the copied data was stale. The barrier
464 * ensures the check is before any data is copied.
466 mb();
467 return eqe;
471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
472 * @q: The Event Queue to disable interrupts
475 void
476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
478 struct lpfc_register doorbell;
480 doorbell.word0 = 0;
481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
491 * @q: The Event Queue to disable interrupts
494 void
495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
497 struct lpfc_register doorbell;
499 doorbell.word0 = 0;
500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
506 * @phba: adapter with EQ
507 * @q: The Event Queue that the host has completed processing for.
508 * @count: Number of elements that have been consumed
509 * @arm: Indicates whether the host wants to arms this CQ.
511 * This routine will notify the HBA, by ringing the doorbell, that count
512 * number of EQEs have been processed. The @arm parameter indicates whether
513 * the queue should be rearmed when ringing the doorbell.
515 void
516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
517 uint32_t count, bool arm)
519 struct lpfc_register doorbell;
521 /* sanity check on queue memory */
522 if (unlikely(!q || (count == 0 && !arm)))
523 return;
525 /* ring doorbell for number popped */
526 doorbell.word0 = 0;
527 if (arm) {
528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
539 readl(q->phba->sli4_hba.EQDBregaddr);
543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
544 * @phba: adapter with EQ
545 * @q: The Event Queue that the host has completed processing for.
546 * @count: Number of elements that have been consumed
547 * @arm: Indicates whether the host wants to arms this CQ.
549 * This routine will notify the HBA, by ringing the doorbell, that count
550 * number of EQEs have been processed. The @arm parameter indicates whether
551 * the queue should be rearmed when ringing the doorbell.
553 void
554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
555 uint32_t count, bool arm)
557 struct lpfc_register doorbell;
559 /* sanity check on queue memory */
560 if (unlikely(!q || (count == 0 && !arm)))
561 return;
563 /* ring doorbell for number popped */
564 doorbell.word0 = 0;
565 if (arm)
566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
572 readl(q->phba->sli4_hba.EQDBregaddr);
575 static void
576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
577 struct lpfc_eqe *eqe)
579 if (!phba->sli4_hba.pc_sli4_params.eqav)
580 bf_set_le32(lpfc_eqe_valid, eqe, 0);
582 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
584 /* if the index wrapped around, toggle the valid bit */
585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
586 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
589 static void
590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
592 struct lpfc_eqe *eqe = NULL;
593 u32 eq_count = 0, cq_count = 0;
594 struct lpfc_cqe *cqe = NULL;
595 struct lpfc_queue *cq = NULL, *childq = NULL;
596 int cqid = 0;
598 /* walk all the EQ entries and drop on the floor */
599 eqe = lpfc_sli4_eq_get(eq);
600 while (eqe) {
601 /* Get the reference to the corresponding CQ */
602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
603 cq = NULL;
605 list_for_each_entry(childq, &eq->child_list, list) {
606 if (childq->queue_id == cqid) {
607 cq = childq;
608 break;
611 /* If CQ is valid, iterate through it and drop all the CQEs */
612 if (cq) {
613 cqe = lpfc_sli4_cq_get(cq);
614 while (cqe) {
615 __lpfc_sli4_consume_cqe(phba, cq, cqe);
616 cq_count++;
617 cqe = lpfc_sli4_cq_get(cq);
619 /* Clear and re-arm the CQ */
620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
621 LPFC_QUEUE_REARM);
622 cq_count = 0;
624 __lpfc_sli4_consume_eqe(phba, eq, eqe);
625 eq_count++;
626 eqe = lpfc_sli4_eq_get(eq);
629 /* Clear and re-arm the EQ */
630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
633 static int
634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
635 uint8_t rearm)
637 struct lpfc_eqe *eqe;
638 int count = 0, consumed = 0;
640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
641 goto rearm_and_exit;
643 eqe = lpfc_sli4_eq_get(eq);
644 while (eqe) {
645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
646 __lpfc_sli4_consume_eqe(phba, eq, eqe);
648 consumed++;
649 if (!(++count % eq->max_proc_limit))
650 break;
652 if (!(count % eq->notify_interval)) {
653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
654 LPFC_QUEUE_NOARM);
655 consumed = 0;
658 eqe = lpfc_sli4_eq_get(eq);
660 eq->EQ_processed += count;
662 /* Track the max number of EQEs processed in 1 intr */
663 if (count > eq->EQ_max_eqe)
664 eq->EQ_max_eqe = count;
666 xchg(&eq->queue_claimed, 0);
668 rearm_and_exit:
669 /* Always clear the EQ. */
670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
672 return count;
676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
677 * @q: The Completion Queue to get the first valid CQE from
679 * This routine will get the first valid Completion Queue Entry from @q, update
680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
681 * the Queue (no more work to do), or the Queue is full of CQEs that have been
682 * processed, but not popped back to the HBA then this routine will return NULL.
684 static struct lpfc_cqe *
685 lpfc_sli4_cq_get(struct lpfc_queue *q)
687 struct lpfc_cqe *cqe;
689 /* sanity check on queue memory */
690 if (unlikely(!q))
691 return NULL;
692 cqe = lpfc_sli4_qe(q, q->host_index);
694 /* If the next CQE is not valid then we are done */
695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
696 return NULL;
699 * insert barrier for instruction interlock : data from the hardware
700 * must have the valid bit checked before it can be copied and acted
701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
702 * instructions allowing action on content before valid bit checked,
703 * add barrier here as well. May not be needed as "content" is a
704 * single 32-bit entity here (vs multi word structure for cq's).
706 mb();
707 return cqe;
710 static void
711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
712 struct lpfc_cqe *cqe)
714 if (!phba->sli4_hba.pc_sli4_params.cqav)
715 bf_set_le32(lpfc_cqe_valid, cqe, 0);
717 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
719 /* if the index wrapped around, toggle the valid bit */
720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
721 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
726 * @phba: the adapter with the CQ
727 * @q: The Completion Queue that the host has completed processing for.
728 * @count: the number of elements that were consumed
729 * @arm: Indicates whether the host wants to arms this CQ.
731 * This routine will notify the HBA, by ringing the doorbell, that the
732 * CQEs have been processed. The @arm parameter specifies whether the
733 * queue should be rearmed when ringing the doorbell.
735 void
736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
737 uint32_t count, bool arm)
739 struct lpfc_register doorbell;
741 /* sanity check on queue memory */
742 if (unlikely(!q || (count == 0 && !arm)))
743 return;
745 /* ring doorbell for number popped */
746 doorbell.word0 = 0;
747 if (arm)
748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
759 * @phba: the adapter with the CQ
760 * @q: The Completion Queue that the host has completed processing for.
761 * @count: the number of elements that were consumed
762 * @arm: Indicates whether the host wants to arms this CQ.
764 * This routine will notify the HBA, by ringing the doorbell, that the
765 * CQEs have been processed. The @arm parameter specifies whether the
766 * queue should be rearmed when ringing the doorbell.
768 void
769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
770 uint32_t count, bool arm)
772 struct lpfc_register doorbell;
774 /* sanity check on queue memory */
775 if (unlikely(!q || (count == 0 && !arm)))
776 return;
778 /* ring doorbell for number popped */
779 doorbell.word0 = 0;
780 if (arm)
781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
790 * This routine will copy the contents of @wqe to the next available entry on
791 * the @q. This function will then ring the Receive Queue Doorbell to signal the
792 * HBA to start processing the Receive Queue Entry. This function returns the
793 * index that the rqe was copied to if successful. If no entries are available
794 * on @q then this function will return -ENOMEM.
795 * The caller is expected to hold the hbalock when calling this routine.
798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
801 struct lpfc_rqe *temp_hrqe;
802 struct lpfc_rqe *temp_drqe;
803 struct lpfc_register doorbell;
804 int hq_put_index;
805 int dq_put_index;
807 /* sanity check on queue memory */
808 if (unlikely(!hq) || unlikely(!dq))
809 return -ENOMEM;
810 hq_put_index = hq->host_index;
811 dq_put_index = dq->host_index;
812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
816 return -EINVAL;
817 if (hq_put_index != dq_put_index)
818 return -EINVAL;
819 /* If the host has not yet processed the next entry then we are done */
820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
821 return -EBUSY;
822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
825 /* Update the host index to point to the next slot */
826 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
827 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
828 hq->RQ_buf_posted++;
830 /* Ring The Header Receive Queue Doorbell */
831 if (!(hq->host_index % hq->notify_interval)) {
832 doorbell.word0 = 0;
833 if (hq->db_format == LPFC_DB_RING_FORMAT) {
834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
835 hq->notify_interval);
836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
839 hq->notify_interval);
840 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
841 hq->host_index);
842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
843 } else {
844 return -EINVAL;
846 writel(doorbell.word0, hq->db_regaddr);
848 return hq_put_index;
852 * lpfc_sli4_rq_release - Updates internal hba index for RQ
854 * This routine will update the HBA index of a queue to reflect consumption of
855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
856 * consumed an entry the host calls this function to update the queue's
857 * internal pointers. This routine returns the number of entries that were
858 * consumed by the HBA.
860 static uint32_t
861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
863 /* sanity check on queue memory */
864 if (unlikely(!hq) || unlikely(!dq))
865 return 0;
867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
868 return 0;
869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
871 return 1;
875 * lpfc_cmd_iocb - Get next command iocb entry in the ring
876 * @phba: Pointer to HBA context object.
877 * @pring: Pointer to driver SLI ring object.
879 * This function returns pointer to next command iocb entry
880 * in the command ring. The caller must hold hbalock to prevent
881 * other threads consume the next command iocb.
882 * SLI-2/SLI-3 provide different sized iocbs.
884 static inline IOCB_t *
885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
892 * lpfc_resp_iocb - Get next response iocb entry in the ring
893 * @phba: Pointer to HBA context object.
894 * @pring: Pointer to driver SLI ring object.
896 * This function returns pointer to next response iocb entry
897 * in the response ring. The caller must hold hbalock to make sure
898 * that no other thread consume the next response iocb.
899 * SLI-2/SLI-3 provide different sized iocbs.
901 static inline IOCB_t *
902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
905 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910 * @phba: Pointer to HBA context object.
912 * This function is called with hbalock held. This function
913 * allocates a new driver iocb object from the iocb pool. If the
914 * allocation is successful, it returns pointer to the newly
915 * allocated iocb object else it returns NULL.
917 struct lpfc_iocbq *
918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
921 struct lpfc_iocbq * iocbq = NULL;
923 lockdep_assert_held(&phba->hbalock);
925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
926 if (iocbq)
927 phba->iocb_cnt++;
928 if (phba->iocb_cnt > phba->iocb_max)
929 phba->iocb_max = phba->iocb_cnt;
930 return iocbq;
934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
935 * @phba: Pointer to HBA context object.
936 * @xritag: XRI value.
938 * This function clears the sglq pointer from the array of acive
939 * sglq's. The xritag that is passed in is used to index into the
940 * array. Before the xritag can be used it needs to be adjusted
941 * by subtracting the xribase.
943 * Returns sglq ponter = success, NULL = Failure.
945 struct lpfc_sglq *
946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
948 struct lpfc_sglq *sglq;
950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
952 return sglq;
956 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
957 * @phba: Pointer to HBA context object.
958 * @xritag: XRI value.
960 * This function returns the sglq pointer from the array of acive
961 * sglq's. The xritag that is passed in is used to index into the
962 * array. Before the xritag can be used it needs to be adjusted
963 * by subtracting the xribase.
965 * Returns sglq ponter = success, NULL = Failure.
967 struct lpfc_sglq *
968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
970 struct lpfc_sglq *sglq;
972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
973 return sglq;
977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
978 * @phba: Pointer to HBA context object.
979 * @xritag: xri used in this exchange.
980 * @rrq: The RRQ to be cleared.
983 void
984 lpfc_clr_rrq_active(struct lpfc_hba *phba,
985 uint16_t xritag,
986 struct lpfc_node_rrq *rrq)
988 struct lpfc_nodelist *ndlp = NULL;
990 if (rrq->vport)
991 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
993 /* The target DID could have been swapped (cable swap)
994 * we should use the ndlp from the findnode if it is
995 * available.
997 if ((!ndlp) && rrq->ndlp)
998 ndlp = rrq->ndlp;
1000 if (!ndlp)
1001 goto out;
1003 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
1004 rrq->send_rrq = 0;
1005 rrq->xritag = 0;
1006 rrq->rrq_stop_time = 0;
1008 out:
1009 mempool_free(rrq, phba->rrq_pool);
1013 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1014 * @phba: Pointer to HBA context object.
1016 * This function is called with hbalock held. This function
1017 * Checks if stop_time (ratov from setting rrq active) has
1018 * been reached, if it has and the send_rrq flag is set then
1019 * it will call lpfc_send_rrq. If the send_rrq flag is not set
1020 * then it will just call the routine to clear the rrq and
1021 * free the rrq resource.
1022 * The timer is set to the next rrq that is going to expire before
1023 * leaving the routine.
1026 void
1027 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1029 struct lpfc_node_rrq *rrq;
1030 struct lpfc_node_rrq *nextrrq;
1031 unsigned long next_time;
1032 unsigned long iflags;
1033 LIST_HEAD(send_rrq);
1035 spin_lock_irqsave(&phba->hbalock, iflags);
1036 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1037 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1038 list_for_each_entry_safe(rrq, nextrrq,
1039 &phba->active_rrq_list, list) {
1040 if (time_after(jiffies, rrq->rrq_stop_time))
1041 list_move(&rrq->list, &send_rrq);
1042 else if (time_before(rrq->rrq_stop_time, next_time))
1043 next_time = rrq->rrq_stop_time;
1045 spin_unlock_irqrestore(&phba->hbalock, iflags);
1046 if ((!list_empty(&phba->active_rrq_list)) &&
1047 (!(phba->pport->load_flag & FC_UNLOADING)))
1048 mod_timer(&phba->rrq_tmr, next_time);
1049 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1050 list_del(&rrq->list);
1051 if (!rrq->send_rrq) {
1052 /* this call will free the rrq */
1053 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1054 } else if (lpfc_send_rrq(phba, rrq)) {
1055 /* if we send the rrq then the completion handler
1056 * will clear the bit in the xribitmap.
1058 lpfc_clr_rrq_active(phba, rrq->xritag,
1059 rrq);
1065 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1066 * @vport: Pointer to vport context object.
1067 * @xri: The xri used in the exchange.
1068 * @did: The targets DID for this exchange.
1070 * returns NULL = rrq not found in the phba->active_rrq_list.
1071 * rrq = rrq for this xri and target.
1073 struct lpfc_node_rrq *
1074 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1076 struct lpfc_hba *phba = vport->phba;
1077 struct lpfc_node_rrq *rrq;
1078 struct lpfc_node_rrq *nextrrq;
1079 unsigned long iflags;
1081 if (phba->sli_rev != LPFC_SLI_REV4)
1082 return NULL;
1083 spin_lock_irqsave(&phba->hbalock, iflags);
1084 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1085 if (rrq->vport == vport && rrq->xritag == xri &&
1086 rrq->nlp_DID == did){
1087 list_del(&rrq->list);
1088 spin_unlock_irqrestore(&phba->hbalock, iflags);
1089 return rrq;
1092 spin_unlock_irqrestore(&phba->hbalock, iflags);
1093 return NULL;
1097 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1098 * @vport: Pointer to vport context object.
1099 * @ndlp: Pointer to the lpfc_node_list structure.
1100 * If ndlp is NULL Remove all active RRQs for this vport from the
1101 * phba->active_rrq_list and clear the rrq.
1102 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1104 void
1105 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1108 struct lpfc_hba *phba = vport->phba;
1109 struct lpfc_node_rrq *rrq;
1110 struct lpfc_node_rrq *nextrrq;
1111 unsigned long iflags;
1112 LIST_HEAD(rrq_list);
1114 if (phba->sli_rev != LPFC_SLI_REV4)
1115 return;
1116 if (!ndlp) {
1117 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1118 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1120 spin_lock_irqsave(&phba->hbalock, iflags);
1121 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
1122 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
1123 list_move(&rrq->list, &rrq_list);
1124 spin_unlock_irqrestore(&phba->hbalock, iflags);
1126 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1127 list_del(&rrq->list);
1128 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1133 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1134 * @phba: Pointer to HBA context object.
1135 * @ndlp: Targets nodelist pointer for this exchange.
1136 * @xritag: the xri in the bitmap to test.
1138 * This function returns:
1139 * 0 = rrq not active for this xri
1140 * 1 = rrq is valid for this xri.
1143 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1144 uint16_t xritag)
1146 if (!ndlp)
1147 return 0;
1148 if (!ndlp->active_rrqs_xri_bitmap)
1149 return 0;
1150 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1151 return 1;
1152 else
1153 return 0;
1157 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1158 * @phba: Pointer to HBA context object.
1159 * @ndlp: nodelist pointer for this target.
1160 * @xritag: xri used in this exchange.
1161 * @rxid: Remote Exchange ID.
1162 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1164 * This function takes the hbalock.
1165 * The active bit is always set in the active rrq xri_bitmap even
1166 * if there is no slot avaiable for the other rrq information.
1168 * returns 0 rrq actived for this xri
1169 * < 0 No memory or invalid ndlp.
1172 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1173 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1175 unsigned long iflags;
1176 struct lpfc_node_rrq *rrq;
1177 int empty;
1179 if (!ndlp)
1180 return -EINVAL;
1182 if (!phba->cfg_enable_rrq)
1183 return -EINVAL;
1185 spin_lock_irqsave(&phba->hbalock, iflags);
1186 if (phba->pport->load_flag & FC_UNLOADING) {
1187 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1188 goto out;
1191 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1192 goto out;
1194 if (!ndlp->active_rrqs_xri_bitmap)
1195 goto out;
1197 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1198 goto out;
1200 spin_unlock_irqrestore(&phba->hbalock, iflags);
1201 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1202 if (!rrq) {
1203 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1204 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1205 " DID:0x%x Send:%d\n",
1206 xritag, rxid, ndlp->nlp_DID, send_rrq);
1207 return -EINVAL;
1209 if (phba->cfg_enable_rrq == 1)
1210 rrq->send_rrq = send_rrq;
1211 else
1212 rrq->send_rrq = 0;
1213 rrq->xritag = xritag;
1214 rrq->rrq_stop_time = jiffies +
1215 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1216 rrq->ndlp = ndlp;
1217 rrq->nlp_DID = ndlp->nlp_DID;
1218 rrq->vport = ndlp->vport;
1219 rrq->rxid = rxid;
1220 spin_lock_irqsave(&phba->hbalock, iflags);
1221 empty = list_empty(&phba->active_rrq_list);
1222 list_add_tail(&rrq->list, &phba->active_rrq_list);
1223 phba->hba_flag |= HBA_RRQ_ACTIVE;
1224 if (empty)
1225 lpfc_worker_wake_up(phba);
1226 spin_unlock_irqrestore(&phba->hbalock, iflags);
1227 return 0;
1228 out:
1229 spin_unlock_irqrestore(&phba->hbalock, iflags);
1230 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1231 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1232 " DID:0x%x Send:%d\n",
1233 xritag, rxid, ndlp->nlp_DID, send_rrq);
1234 return -EINVAL;
1238 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1239 * @phba: Pointer to HBA context object.
1240 * @piocbq: Pointer to the iocbq.
1242 * The driver calls this function with either the nvme ls ring lock
1243 * or the fc els ring lock held depending on the iocb usage. This function
1244 * gets a new driver sglq object from the sglq list. If the list is not empty
1245 * then it is successful, it returns pointer to the newly allocated sglq
1246 * object else it returns NULL.
1248 static struct lpfc_sglq *
1249 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1251 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1252 struct lpfc_sglq *sglq = NULL;
1253 struct lpfc_sglq *start_sglq = NULL;
1254 struct lpfc_io_buf *lpfc_cmd;
1255 struct lpfc_nodelist *ndlp;
1256 struct lpfc_sli_ring *pring = NULL;
1257 int found = 0;
1259 if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1260 pring = phba->sli4_hba.nvmels_wq->pring;
1261 else
1262 pring = lpfc_phba_elsring(phba);
1264 lockdep_assert_held(&pring->ring_lock);
1266 if (piocbq->iocb_flag & LPFC_IO_FCP) {
1267 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1268 ndlp = lpfc_cmd->rdata->pnode;
1269 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1270 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1271 ndlp = piocbq->context_un.ndlp;
1272 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1273 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1274 ndlp = NULL;
1275 else
1276 ndlp = piocbq->context_un.ndlp;
1277 } else {
1278 ndlp = piocbq->context1;
1281 spin_lock(&phba->sli4_hba.sgl_list_lock);
1282 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1283 start_sglq = sglq;
1284 while (!found) {
1285 if (!sglq)
1286 break;
1287 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1288 test_bit(sglq->sli4_lxritag,
1289 ndlp->active_rrqs_xri_bitmap)) {
1290 /* This xri has an rrq outstanding for this DID.
1291 * put it back in the list and get another xri.
1293 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1294 sglq = NULL;
1295 list_remove_head(lpfc_els_sgl_list, sglq,
1296 struct lpfc_sglq, list);
1297 if (sglq == start_sglq) {
1298 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1299 sglq = NULL;
1300 break;
1301 } else
1302 continue;
1304 sglq->ndlp = ndlp;
1305 found = 1;
1306 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1307 sglq->state = SGL_ALLOCATED;
1309 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1310 return sglq;
1314 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1315 * @phba: Pointer to HBA context object.
1316 * @piocbq: Pointer to the iocbq.
1318 * This function is called with the sgl_list lock held. This function
1319 * gets a new driver sglq object from the sglq list. If the
1320 * list is not empty then it is successful, it returns pointer to the newly
1321 * allocated sglq object else it returns NULL.
1323 struct lpfc_sglq *
1324 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1326 struct list_head *lpfc_nvmet_sgl_list;
1327 struct lpfc_sglq *sglq = NULL;
1329 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1331 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1333 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1334 if (!sglq)
1335 return NULL;
1336 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1337 sglq->state = SGL_ALLOCATED;
1338 return sglq;
1342 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1343 * @phba: Pointer to HBA context object.
1345 * This function is called with no lock held. This function
1346 * allocates a new driver iocb object from the iocb pool. If the
1347 * allocation is successful, it returns pointer to the newly
1348 * allocated iocb object else it returns NULL.
1350 struct lpfc_iocbq *
1351 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1353 struct lpfc_iocbq * iocbq = NULL;
1354 unsigned long iflags;
1356 spin_lock_irqsave(&phba->hbalock, iflags);
1357 iocbq = __lpfc_sli_get_iocbq(phba);
1358 spin_unlock_irqrestore(&phba->hbalock, iflags);
1359 return iocbq;
1363 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1364 * @phba: Pointer to HBA context object.
1365 * @iocbq: Pointer to driver iocb object.
1367 * This function is called to release the driver iocb object
1368 * to the iocb pool. The iotag in the iocb object
1369 * does not change for each use of the iocb object. This function
1370 * clears all other fields of the iocb object when it is freed.
1371 * The sqlq structure that holds the xritag and phys and virtual
1372 * mappings for the scatter gather list is retrieved from the
1373 * active array of sglq. The get of the sglq pointer also clears
1374 * the entry in the array. If the status of the IO indiactes that
1375 * this IO was aborted then the sglq entry it put on the
1376 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1377 * IO has good status or fails for any other reason then the sglq
1378 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1379 * asserted held in the code path calling this routine.
1381 static void
1382 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1384 struct lpfc_sglq *sglq;
1385 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1386 unsigned long iflag = 0;
1387 struct lpfc_sli_ring *pring;
1389 if (iocbq->sli4_xritag == NO_XRI)
1390 sglq = NULL;
1391 else
1392 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1395 if (sglq) {
1396 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1397 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1398 iflag);
1399 sglq->state = SGL_FREED;
1400 sglq->ndlp = NULL;
1401 list_add_tail(&sglq->list,
1402 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1403 spin_unlock_irqrestore(
1404 &phba->sli4_hba.sgl_list_lock, iflag);
1405 goto out;
1408 pring = phba->sli4_hba.els_wq->pring;
1409 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1410 (sglq->state != SGL_XRI_ABORTED)) {
1411 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1412 iflag);
1414 /* Check if we can get a reference on ndlp */
1415 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1416 sglq->ndlp = NULL;
1418 list_add(&sglq->list,
1419 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1420 spin_unlock_irqrestore(
1421 &phba->sli4_hba.sgl_list_lock, iflag);
1422 } else {
1423 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1424 iflag);
1425 sglq->state = SGL_FREED;
1426 sglq->ndlp = NULL;
1427 list_add_tail(&sglq->list,
1428 &phba->sli4_hba.lpfc_els_sgl_list);
1429 spin_unlock_irqrestore(
1430 &phba->sli4_hba.sgl_list_lock, iflag);
1432 /* Check if TXQ queue needs to be serviced */
1433 if (!list_empty(&pring->txq))
1434 lpfc_worker_wake_up(phba);
1438 out:
1440 * Clean all volatile data fields, preserve iotag and node struct.
1442 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1443 iocbq->sli4_lxritag = NO_XRI;
1444 iocbq->sli4_xritag = NO_XRI;
1445 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1446 LPFC_IO_NVME_LS);
1447 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1452 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1453 * @phba: Pointer to HBA context object.
1454 * @iocbq: Pointer to driver iocb object.
1456 * This function is called to release the driver iocb object to the
1457 * iocb pool. The iotag in the iocb object does not change for each
1458 * use of the iocb object. This function clears all other fields of
1459 * the iocb object when it is freed. The hbalock is asserted held in
1460 * the code path calling this routine.
1462 static void
1463 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1465 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1468 * Clean all volatile data fields, preserve iotag and node struct.
1470 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1471 iocbq->sli4_xritag = NO_XRI;
1472 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1476 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1477 * @phba: Pointer to HBA context object.
1478 * @iocbq: Pointer to driver iocb object.
1480 * This function is called with hbalock held to release driver
1481 * iocb object to the iocb pool. The iotag in the iocb object
1482 * does not change for each use of the iocb object. This function
1483 * clears all other fields of the iocb object when it is freed.
1485 static void
1486 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1488 lockdep_assert_held(&phba->hbalock);
1490 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1491 phba->iocb_cnt--;
1495 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1496 * @phba: Pointer to HBA context object.
1497 * @iocbq: Pointer to driver iocb object.
1499 * This function is called with no lock held to release the iocb to
1500 * iocb pool.
1502 void
1503 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1505 unsigned long iflags;
1508 * Clean all volatile data fields, preserve iotag and node struct.
1510 spin_lock_irqsave(&phba->hbalock, iflags);
1511 __lpfc_sli_release_iocbq(phba, iocbq);
1512 spin_unlock_irqrestore(&phba->hbalock, iflags);
1516 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1517 * @phba: Pointer to HBA context object.
1518 * @iocblist: List of IOCBs.
1519 * @ulpstatus: ULP status in IOCB command field.
1520 * @ulpWord4: ULP word-4 in IOCB command field.
1522 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1523 * on the list by invoking the complete callback function associated with the
1524 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1525 * fields.
1527 void
1528 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1529 uint32_t ulpstatus, uint32_t ulpWord4)
1531 struct lpfc_iocbq *piocb;
1533 while (!list_empty(iocblist)) {
1534 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1535 if (!piocb->iocb_cmpl) {
1536 if (piocb->iocb_flag & LPFC_IO_NVME)
1537 lpfc_nvme_cancel_iocb(phba, piocb);
1538 else
1539 lpfc_sli_release_iocbq(phba, piocb);
1540 } else {
1541 piocb->iocb.ulpStatus = ulpstatus;
1542 piocb->iocb.un.ulpWord[4] = ulpWord4;
1543 (piocb->iocb_cmpl) (phba, piocb, piocb);
1546 return;
1550 * lpfc_sli_iocb_cmd_type - Get the iocb type
1551 * @iocb_cmnd: iocb command code.
1553 * This function is called by ring event handler function to get the iocb type.
1554 * This function translates the iocb command to an iocb command type used to
1555 * decide the final disposition of each completed IOCB.
1556 * The function returns
1557 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1558 * LPFC_SOL_IOCB if it is a solicited iocb completion
1559 * LPFC_ABORT_IOCB if it is an abort iocb
1560 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1562 * The caller is not required to hold any lock.
1564 static lpfc_iocb_type
1565 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1567 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1569 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1570 return 0;
1572 switch (iocb_cmnd) {
1573 case CMD_XMIT_SEQUENCE_CR:
1574 case CMD_XMIT_SEQUENCE_CX:
1575 case CMD_XMIT_BCAST_CN:
1576 case CMD_XMIT_BCAST_CX:
1577 case CMD_ELS_REQUEST_CR:
1578 case CMD_ELS_REQUEST_CX:
1579 case CMD_CREATE_XRI_CR:
1580 case CMD_CREATE_XRI_CX:
1581 case CMD_GET_RPI_CN:
1582 case CMD_XMIT_ELS_RSP_CX:
1583 case CMD_GET_RPI_CR:
1584 case CMD_FCP_IWRITE_CR:
1585 case CMD_FCP_IWRITE_CX:
1586 case CMD_FCP_IREAD_CR:
1587 case CMD_FCP_IREAD_CX:
1588 case CMD_FCP_ICMND_CR:
1589 case CMD_FCP_ICMND_CX:
1590 case CMD_FCP_TSEND_CX:
1591 case CMD_FCP_TRSP_CX:
1592 case CMD_FCP_TRECEIVE_CX:
1593 case CMD_FCP_AUTO_TRSP_CX:
1594 case CMD_ADAPTER_MSG:
1595 case CMD_ADAPTER_DUMP:
1596 case CMD_XMIT_SEQUENCE64_CR:
1597 case CMD_XMIT_SEQUENCE64_CX:
1598 case CMD_XMIT_BCAST64_CN:
1599 case CMD_XMIT_BCAST64_CX:
1600 case CMD_ELS_REQUEST64_CR:
1601 case CMD_ELS_REQUEST64_CX:
1602 case CMD_FCP_IWRITE64_CR:
1603 case CMD_FCP_IWRITE64_CX:
1604 case CMD_FCP_IREAD64_CR:
1605 case CMD_FCP_IREAD64_CX:
1606 case CMD_FCP_ICMND64_CR:
1607 case CMD_FCP_ICMND64_CX:
1608 case CMD_FCP_TSEND64_CX:
1609 case CMD_FCP_TRSP64_CX:
1610 case CMD_FCP_TRECEIVE64_CX:
1611 case CMD_GEN_REQUEST64_CR:
1612 case CMD_GEN_REQUEST64_CX:
1613 case CMD_XMIT_ELS_RSP64_CX:
1614 case DSSCMD_IWRITE64_CR:
1615 case DSSCMD_IWRITE64_CX:
1616 case DSSCMD_IREAD64_CR:
1617 case DSSCMD_IREAD64_CX:
1618 case CMD_SEND_FRAME:
1619 type = LPFC_SOL_IOCB;
1620 break;
1621 case CMD_ABORT_XRI_CN:
1622 case CMD_ABORT_XRI_CX:
1623 case CMD_CLOSE_XRI_CN:
1624 case CMD_CLOSE_XRI_CX:
1625 case CMD_XRI_ABORTED_CX:
1626 case CMD_ABORT_MXRI64_CN:
1627 case CMD_XMIT_BLS_RSP64_CX:
1628 type = LPFC_ABORT_IOCB;
1629 break;
1630 case CMD_RCV_SEQUENCE_CX:
1631 case CMD_RCV_ELS_REQ_CX:
1632 case CMD_RCV_SEQUENCE64_CX:
1633 case CMD_RCV_ELS_REQ64_CX:
1634 case CMD_ASYNC_STATUS:
1635 case CMD_IOCB_RCV_SEQ64_CX:
1636 case CMD_IOCB_RCV_ELS64_CX:
1637 case CMD_IOCB_RCV_CONT64_CX:
1638 case CMD_IOCB_RET_XRI64_CX:
1639 type = LPFC_UNSOL_IOCB;
1640 break;
1641 case CMD_IOCB_XMIT_MSEQ64_CR:
1642 case CMD_IOCB_XMIT_MSEQ64_CX:
1643 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1644 case CMD_IOCB_RCV_ELS_LIST64_CX:
1645 case CMD_IOCB_CLOSE_EXTENDED_CN:
1646 case CMD_IOCB_ABORT_EXTENDED_CN:
1647 case CMD_IOCB_RET_HBQE64_CN:
1648 case CMD_IOCB_FCP_IBIDIR64_CR:
1649 case CMD_IOCB_FCP_IBIDIR64_CX:
1650 case CMD_IOCB_FCP_ITASKMGT64_CX:
1651 case CMD_IOCB_LOGENTRY_CN:
1652 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1653 printk("%s - Unhandled SLI-3 Command x%x\n",
1654 __func__, iocb_cmnd);
1655 type = LPFC_UNKNOWN_IOCB;
1656 break;
1657 default:
1658 type = LPFC_UNKNOWN_IOCB;
1659 break;
1662 return type;
1666 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1667 * @phba: Pointer to HBA context object.
1669 * This function is called from SLI initialization code
1670 * to configure every ring of the HBA's SLI interface. The
1671 * caller is not required to hold any lock. This function issues
1672 * a config_ring mailbox command for each ring.
1673 * This function returns zero if successful else returns a negative
1674 * error code.
1676 static int
1677 lpfc_sli_ring_map(struct lpfc_hba *phba)
1679 struct lpfc_sli *psli = &phba->sli;
1680 LPFC_MBOXQ_t *pmb;
1681 MAILBOX_t *pmbox;
1682 int i, rc, ret = 0;
1684 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1685 if (!pmb)
1686 return -ENOMEM;
1687 pmbox = &pmb->u.mb;
1688 phba->link_state = LPFC_INIT_MBX_CMDS;
1689 for (i = 0; i < psli->num_rings; i++) {
1690 lpfc_config_ring(phba, i, pmb);
1691 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1692 if (rc != MBX_SUCCESS) {
1693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1694 "0446 Adapter failed to init (%d), "
1695 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1696 "ring %d\n",
1697 rc, pmbox->mbxCommand,
1698 pmbox->mbxStatus, i);
1699 phba->link_state = LPFC_HBA_ERROR;
1700 ret = -ENXIO;
1701 break;
1704 mempool_free(pmb, phba->mbox_mem_pool);
1705 return ret;
1709 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1710 * @phba: Pointer to HBA context object.
1711 * @pring: Pointer to driver SLI ring object.
1712 * @piocb: Pointer to the driver iocb object.
1714 * The driver calls this function with the hbalock held for SLI3 ports or
1715 * the ring lock held for SLI4 ports. The function adds the
1716 * new iocb to txcmplq of the given ring. This function always returns
1717 * 0. If this function is called for ELS ring, this function checks if
1718 * there is a vport associated with the ELS command. This function also
1719 * starts els_tmofunc timer if this is an ELS command.
1721 static int
1722 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1723 struct lpfc_iocbq *piocb)
1725 if (phba->sli_rev == LPFC_SLI_REV4)
1726 lockdep_assert_held(&pring->ring_lock);
1727 else
1728 lockdep_assert_held(&phba->hbalock);
1730 BUG_ON(!piocb);
1732 list_add_tail(&piocb->list, &pring->txcmplq);
1733 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1734 pring->txcmplq_cnt++;
1736 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1737 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1738 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1739 BUG_ON(!piocb->vport);
1740 if (!(piocb->vport->load_flag & FC_UNLOADING))
1741 mod_timer(&piocb->vport->els_tmofunc,
1742 jiffies +
1743 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1746 return 0;
1750 * lpfc_sli_ringtx_get - Get first element of the txq
1751 * @phba: Pointer to HBA context object.
1752 * @pring: Pointer to driver SLI ring object.
1754 * This function is called with hbalock held to get next
1755 * iocb in txq of the given ring. If there is any iocb in
1756 * the txq, the function returns first iocb in the list after
1757 * removing the iocb from the list, else it returns NULL.
1759 struct lpfc_iocbq *
1760 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1762 struct lpfc_iocbq *cmd_iocb;
1764 lockdep_assert_held(&phba->hbalock);
1766 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1767 return cmd_iocb;
1771 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1772 * @phba: Pointer to HBA context object.
1773 * @pring: Pointer to driver SLI ring object.
1775 * This function is called with hbalock held and the caller must post the
1776 * iocb without releasing the lock. If the caller releases the lock,
1777 * iocb slot returned by the function is not guaranteed to be available.
1778 * The function returns pointer to the next available iocb slot if there
1779 * is available slot in the ring, else it returns NULL.
1780 * If the get index of the ring is ahead of the put index, the function
1781 * will post an error attention event to the worker thread to take the
1782 * HBA to offline state.
1784 static IOCB_t *
1785 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1787 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1788 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1790 lockdep_assert_held(&phba->hbalock);
1792 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1793 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1794 pring->sli.sli3.next_cmdidx = 0;
1796 if (unlikely(pring->sli.sli3.local_getidx ==
1797 pring->sli.sli3.next_cmdidx)) {
1799 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1801 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1803 "0315 Ring %d issue: portCmdGet %d "
1804 "is bigger than cmd ring %d\n",
1805 pring->ringno,
1806 pring->sli.sli3.local_getidx,
1807 max_cmd_idx);
1809 phba->link_state = LPFC_HBA_ERROR;
1811 * All error attention handlers are posted to
1812 * worker thread
1814 phba->work_ha |= HA_ERATT;
1815 phba->work_hs = HS_FFER3;
1817 lpfc_worker_wake_up(phba);
1819 return NULL;
1822 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1823 return NULL;
1826 return lpfc_cmd_iocb(phba, pring);
1830 * lpfc_sli_next_iotag - Get an iotag for the iocb
1831 * @phba: Pointer to HBA context object.
1832 * @iocbq: Pointer to driver iocb object.
1834 * This function gets an iotag for the iocb. If there is no unused iotag and
1835 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1836 * array and assigns a new iotag.
1837 * The function returns the allocated iotag if successful, else returns zero.
1838 * Zero is not a valid iotag.
1839 * The caller is not required to hold any lock.
1841 uint16_t
1842 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1844 struct lpfc_iocbq **new_arr;
1845 struct lpfc_iocbq **old_arr;
1846 size_t new_len;
1847 struct lpfc_sli *psli = &phba->sli;
1848 uint16_t iotag;
1850 spin_lock_irq(&phba->hbalock);
1851 iotag = psli->last_iotag;
1852 if(++iotag < psli->iocbq_lookup_len) {
1853 psli->last_iotag = iotag;
1854 psli->iocbq_lookup[iotag] = iocbq;
1855 spin_unlock_irq(&phba->hbalock);
1856 iocbq->iotag = iotag;
1857 return iotag;
1858 } else if (psli->iocbq_lookup_len < (0xffff
1859 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1860 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1861 spin_unlock_irq(&phba->hbalock);
1862 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1863 GFP_KERNEL);
1864 if (new_arr) {
1865 spin_lock_irq(&phba->hbalock);
1866 old_arr = psli->iocbq_lookup;
1867 if (new_len <= psli->iocbq_lookup_len) {
1868 /* highly unprobable case */
1869 kfree(new_arr);
1870 iotag = psli->last_iotag;
1871 if(++iotag < psli->iocbq_lookup_len) {
1872 psli->last_iotag = iotag;
1873 psli->iocbq_lookup[iotag] = iocbq;
1874 spin_unlock_irq(&phba->hbalock);
1875 iocbq->iotag = iotag;
1876 return iotag;
1878 spin_unlock_irq(&phba->hbalock);
1879 return 0;
1881 if (psli->iocbq_lookup)
1882 memcpy(new_arr, old_arr,
1883 ((psli->last_iotag + 1) *
1884 sizeof (struct lpfc_iocbq *)));
1885 psli->iocbq_lookup = new_arr;
1886 psli->iocbq_lookup_len = new_len;
1887 psli->last_iotag = iotag;
1888 psli->iocbq_lookup[iotag] = iocbq;
1889 spin_unlock_irq(&phba->hbalock);
1890 iocbq->iotag = iotag;
1891 kfree(old_arr);
1892 return iotag;
1894 } else
1895 spin_unlock_irq(&phba->hbalock);
1897 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1898 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1899 psli->last_iotag);
1901 return 0;
1905 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1906 * @phba: Pointer to HBA context object.
1907 * @pring: Pointer to driver SLI ring object.
1908 * @iocb: Pointer to iocb slot in the ring.
1909 * @nextiocb: Pointer to driver iocb object which need to be
1910 * posted to firmware.
1912 * This function is called to post a new iocb to the firmware. This
1913 * function copies the new iocb to ring iocb slot and updates the
1914 * ring pointers. It adds the new iocb to txcmplq if there is
1915 * a completion call back for this iocb else the function will free the
1916 * iocb object. The hbalock is asserted held in the code path calling
1917 * this routine.
1919 static void
1920 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1921 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1924 * Set up an iotag
1926 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1929 if (pring->ringno == LPFC_ELS_RING) {
1930 lpfc_debugfs_slow_ring_trc(phba,
1931 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1932 *(((uint32_t *) &nextiocb->iocb) + 4),
1933 *(((uint32_t *) &nextiocb->iocb) + 6),
1934 *(((uint32_t *) &nextiocb->iocb) + 7));
1938 * Issue iocb command to adapter
1940 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1941 wmb();
1942 pring->stats.iocb_cmd++;
1945 * If there is no completion routine to call, we can release the
1946 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1947 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1949 if (nextiocb->iocb_cmpl)
1950 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1951 else
1952 __lpfc_sli_release_iocbq(phba, nextiocb);
1955 * Let the HBA know what IOCB slot will be the next one the
1956 * driver will put a command into.
1958 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1959 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1963 * lpfc_sli_update_full_ring - Update the chip attention register
1964 * @phba: Pointer to HBA context object.
1965 * @pring: Pointer to driver SLI ring object.
1967 * The caller is not required to hold any lock for calling this function.
1968 * This function updates the chip attention bits for the ring to inform firmware
1969 * that there are pending work to be done for this ring and requests an
1970 * interrupt when there is space available in the ring. This function is
1971 * called when the driver is unable to post more iocbs to the ring due
1972 * to unavailability of space in the ring.
1974 static void
1975 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1977 int ringno = pring->ringno;
1979 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1981 wmb();
1984 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1985 * The HBA will tell us when an IOCB entry is available.
1987 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1988 readl(phba->CAregaddr); /* flush */
1990 pring->stats.iocb_cmd_full++;
1994 * lpfc_sli_update_ring - Update chip attention register
1995 * @phba: Pointer to HBA context object.
1996 * @pring: Pointer to driver SLI ring object.
1998 * This function updates the chip attention register bit for the
1999 * given ring to inform HBA that there is more work to be done
2000 * in this ring. The caller is not required to hold any lock.
2002 static void
2003 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2005 int ringno = pring->ringno;
2008 * Tell the HBA that there is work to do in this ring.
2010 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2011 wmb();
2012 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2013 readl(phba->CAregaddr); /* flush */
2018 * lpfc_sli_resume_iocb - Process iocbs in the txq
2019 * @phba: Pointer to HBA context object.
2020 * @pring: Pointer to driver SLI ring object.
2022 * This function is called with hbalock held to post pending iocbs
2023 * in the txq to the firmware. This function is called when driver
2024 * detects space available in the ring.
2026 static void
2027 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2029 IOCB_t *iocb;
2030 struct lpfc_iocbq *nextiocb;
2032 lockdep_assert_held(&phba->hbalock);
2035 * Check to see if:
2036 * (a) there is anything on the txq to send
2037 * (b) link is up
2038 * (c) link attention events can be processed (fcp ring only)
2039 * (d) IOCB processing is not blocked by the outstanding mbox command.
2042 if (lpfc_is_link_up(phba) &&
2043 (!list_empty(&pring->txq)) &&
2044 (pring->ringno != LPFC_FCP_RING ||
2045 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2047 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2048 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2049 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2051 if (iocb)
2052 lpfc_sli_update_ring(phba, pring);
2053 else
2054 lpfc_sli_update_full_ring(phba, pring);
2057 return;
2061 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2062 * @phba: Pointer to HBA context object.
2063 * @hbqno: HBQ number.
2065 * This function is called with hbalock held to get the next
2066 * available slot for the given HBQ. If there is free slot
2067 * available for the HBQ it will return pointer to the next available
2068 * HBQ entry else it will return NULL.
2070 static struct lpfc_hbq_entry *
2071 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2073 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2075 lockdep_assert_held(&phba->hbalock);
2077 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2078 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2079 hbqp->next_hbqPutIdx = 0;
2081 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2082 uint32_t raw_index = phba->hbq_get[hbqno];
2083 uint32_t getidx = le32_to_cpu(raw_index);
2085 hbqp->local_hbqGetIdx = getidx;
2087 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2089 "1802 HBQ %d: local_hbqGetIdx "
2090 "%u is > than hbqp->entry_count %u\n",
2091 hbqno, hbqp->local_hbqGetIdx,
2092 hbqp->entry_count);
2094 phba->link_state = LPFC_HBA_ERROR;
2095 return NULL;
2098 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2099 return NULL;
2102 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2103 hbqp->hbqPutIdx;
2107 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2108 * @phba: Pointer to HBA context object.
2110 * This function is called with no lock held to free all the
2111 * hbq buffers while uninitializing the SLI interface. It also
2112 * frees the HBQ buffers returned by the firmware but not yet
2113 * processed by the upper layers.
2115 void
2116 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2118 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2119 struct hbq_dmabuf *hbq_buf;
2120 unsigned long flags;
2121 int i, hbq_count;
2123 hbq_count = lpfc_sli_hbq_count();
2124 /* Return all memory used by all HBQs */
2125 spin_lock_irqsave(&phba->hbalock, flags);
2126 for (i = 0; i < hbq_count; ++i) {
2127 list_for_each_entry_safe(dmabuf, next_dmabuf,
2128 &phba->hbqs[i].hbq_buffer_list, list) {
2129 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2130 list_del(&hbq_buf->dbuf.list);
2131 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2133 phba->hbqs[i].buffer_count = 0;
2136 /* Mark the HBQs not in use */
2137 phba->hbq_in_use = 0;
2138 spin_unlock_irqrestore(&phba->hbalock, flags);
2142 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2143 * @phba: Pointer to HBA context object.
2144 * @hbqno: HBQ number.
2145 * @hbq_buf: Pointer to HBQ buffer.
2147 * This function is called with the hbalock held to post a
2148 * hbq buffer to the firmware. If the function finds an empty
2149 * slot in the HBQ, it will post the buffer. The function will return
2150 * pointer to the hbq entry if it successfully post the buffer
2151 * else it will return NULL.
2153 static int
2154 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2155 struct hbq_dmabuf *hbq_buf)
2157 lockdep_assert_held(&phba->hbalock);
2158 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2162 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2163 * @phba: Pointer to HBA context object.
2164 * @hbqno: HBQ number.
2165 * @hbq_buf: Pointer to HBQ buffer.
2167 * This function is called with the hbalock held to post a hbq buffer to the
2168 * firmware. If the function finds an empty slot in the HBQ, it will post the
2169 * buffer and place it on the hbq_buffer_list. The function will return zero if
2170 * it successfully post the buffer else it will return an error.
2172 static int
2173 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2174 struct hbq_dmabuf *hbq_buf)
2176 struct lpfc_hbq_entry *hbqe;
2177 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2179 lockdep_assert_held(&phba->hbalock);
2180 /* Get next HBQ entry slot to use */
2181 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2182 if (hbqe) {
2183 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2185 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2186 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2187 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2188 hbqe->bde.tus.f.bdeFlags = 0;
2189 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2190 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2191 /* Sync SLIM */
2192 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2193 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2194 /* flush */
2195 readl(phba->hbq_put + hbqno);
2196 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2197 return 0;
2198 } else
2199 return -ENOMEM;
2203 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2204 * @phba: Pointer to HBA context object.
2205 * @hbqno: HBQ number.
2206 * @hbq_buf: Pointer to HBQ buffer.
2208 * This function is called with the hbalock held to post an RQE to the SLI4
2209 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2210 * the hbq_buffer_list and return zero, otherwise it will return an error.
2212 static int
2213 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2214 struct hbq_dmabuf *hbq_buf)
2216 int rc;
2217 struct lpfc_rqe hrqe;
2218 struct lpfc_rqe drqe;
2219 struct lpfc_queue *hrq;
2220 struct lpfc_queue *drq;
2222 if (hbqno != LPFC_ELS_HBQ)
2223 return 1;
2224 hrq = phba->sli4_hba.hdr_rq;
2225 drq = phba->sli4_hba.dat_rq;
2227 lockdep_assert_held(&phba->hbalock);
2228 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2229 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2230 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2231 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2232 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2233 if (rc < 0)
2234 return rc;
2235 hbq_buf->tag = (rc | (hbqno << 16));
2236 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2237 return 0;
2240 /* HBQ for ELS and CT traffic. */
2241 static struct lpfc_hbq_init lpfc_els_hbq = {
2242 .rn = 1,
2243 .entry_count = 256,
2244 .mask_count = 0,
2245 .profile = 0,
2246 .ring_mask = (1 << LPFC_ELS_RING),
2247 .buffer_count = 0,
2248 .init_count = 40,
2249 .add_count = 40,
2252 /* Array of HBQs */
2253 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2254 &lpfc_els_hbq,
2258 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2259 * @phba: Pointer to HBA context object.
2260 * @hbqno: HBQ number.
2261 * @count: Number of HBQ buffers to be posted.
2263 * This function is called with no lock held to post more hbq buffers to the
2264 * given HBQ. The function returns the number of HBQ buffers successfully
2265 * posted.
2267 static int
2268 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2270 uint32_t i, posted = 0;
2271 unsigned long flags;
2272 struct hbq_dmabuf *hbq_buffer;
2273 LIST_HEAD(hbq_buf_list);
2274 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2275 return 0;
2277 if ((phba->hbqs[hbqno].buffer_count + count) >
2278 lpfc_hbq_defs[hbqno]->entry_count)
2279 count = lpfc_hbq_defs[hbqno]->entry_count -
2280 phba->hbqs[hbqno].buffer_count;
2281 if (!count)
2282 return 0;
2283 /* Allocate HBQ entries */
2284 for (i = 0; i < count; i++) {
2285 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2286 if (!hbq_buffer)
2287 break;
2288 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2290 /* Check whether HBQ is still in use */
2291 spin_lock_irqsave(&phba->hbalock, flags);
2292 if (!phba->hbq_in_use)
2293 goto err;
2294 while (!list_empty(&hbq_buf_list)) {
2295 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2296 dbuf.list);
2297 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2298 (hbqno << 16));
2299 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2300 phba->hbqs[hbqno].buffer_count++;
2301 posted++;
2302 } else
2303 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2305 spin_unlock_irqrestore(&phba->hbalock, flags);
2306 return posted;
2307 err:
2308 spin_unlock_irqrestore(&phba->hbalock, flags);
2309 while (!list_empty(&hbq_buf_list)) {
2310 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2311 dbuf.list);
2312 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2314 return 0;
2318 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2319 * @phba: Pointer to HBA context object.
2320 * @qno: HBQ number.
2322 * This function posts more buffers to the HBQ. This function
2323 * is called with no lock held. The function returns the number of HBQ entries
2324 * successfully allocated.
2327 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2329 if (phba->sli_rev == LPFC_SLI_REV4)
2330 return 0;
2331 else
2332 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2333 lpfc_hbq_defs[qno]->add_count);
2337 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2338 * @phba: Pointer to HBA context object.
2339 * @qno: HBQ queue number.
2341 * This function is called from SLI initialization code path with
2342 * no lock held to post initial HBQ buffers to firmware. The
2343 * function returns the number of HBQ entries successfully allocated.
2345 static int
2346 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2348 if (phba->sli_rev == LPFC_SLI_REV4)
2349 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2350 lpfc_hbq_defs[qno]->entry_count);
2351 else
2352 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2353 lpfc_hbq_defs[qno]->init_count);
2357 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2359 * This function removes the first hbq buffer on an hbq list and returns a
2360 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2362 static struct hbq_dmabuf *
2363 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2365 struct lpfc_dmabuf *d_buf;
2367 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2368 if (!d_buf)
2369 return NULL;
2370 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2374 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2375 * @phba: Pointer to HBA context object.
2376 * @hrq: HBQ number.
2378 * This function removes the first RQ buffer on an RQ buffer list and returns a
2379 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2381 static struct rqb_dmabuf *
2382 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2384 struct lpfc_dmabuf *h_buf;
2385 struct lpfc_rqb *rqbp;
2387 rqbp = hrq->rqbp;
2388 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2389 struct lpfc_dmabuf, list);
2390 if (!h_buf)
2391 return NULL;
2392 rqbp->buffer_count--;
2393 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2397 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2398 * @phba: Pointer to HBA context object.
2399 * @tag: Tag of the hbq buffer.
2401 * This function searches for the hbq buffer associated with the given tag in
2402 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2403 * otherwise it returns NULL.
2405 static struct hbq_dmabuf *
2406 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2408 struct lpfc_dmabuf *d_buf;
2409 struct hbq_dmabuf *hbq_buf;
2410 uint32_t hbqno;
2412 hbqno = tag >> 16;
2413 if (hbqno >= LPFC_MAX_HBQS)
2414 return NULL;
2416 spin_lock_irq(&phba->hbalock);
2417 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2418 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2419 if (hbq_buf->tag == tag) {
2420 spin_unlock_irq(&phba->hbalock);
2421 return hbq_buf;
2424 spin_unlock_irq(&phba->hbalock);
2425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2426 "1803 Bad hbq tag. Data: x%x x%x\n",
2427 tag, phba->hbqs[tag >> 16].buffer_count);
2428 return NULL;
2432 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2433 * @phba: Pointer to HBA context object.
2434 * @hbq_buffer: Pointer to HBQ buffer.
2436 * This function is called with hbalock. This function gives back
2437 * the hbq buffer to firmware. If the HBQ does not have space to
2438 * post the buffer, it will free the buffer.
2440 void
2441 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2443 uint32_t hbqno;
2445 if (hbq_buffer) {
2446 hbqno = hbq_buffer->tag >> 16;
2447 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2448 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2453 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2454 * @mbxCommand: mailbox command code.
2456 * This function is called by the mailbox event handler function to verify
2457 * that the completed mailbox command is a legitimate mailbox command. If the
2458 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2459 * and the mailbox event handler will take the HBA offline.
2461 static int
2462 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2464 uint8_t ret;
2466 switch (mbxCommand) {
2467 case MBX_LOAD_SM:
2468 case MBX_READ_NV:
2469 case MBX_WRITE_NV:
2470 case MBX_WRITE_VPARMS:
2471 case MBX_RUN_BIU_DIAG:
2472 case MBX_INIT_LINK:
2473 case MBX_DOWN_LINK:
2474 case MBX_CONFIG_LINK:
2475 case MBX_CONFIG_RING:
2476 case MBX_RESET_RING:
2477 case MBX_READ_CONFIG:
2478 case MBX_READ_RCONFIG:
2479 case MBX_READ_SPARM:
2480 case MBX_READ_STATUS:
2481 case MBX_READ_RPI:
2482 case MBX_READ_XRI:
2483 case MBX_READ_REV:
2484 case MBX_READ_LNK_STAT:
2485 case MBX_REG_LOGIN:
2486 case MBX_UNREG_LOGIN:
2487 case MBX_CLEAR_LA:
2488 case MBX_DUMP_MEMORY:
2489 case MBX_DUMP_CONTEXT:
2490 case MBX_RUN_DIAGS:
2491 case MBX_RESTART:
2492 case MBX_UPDATE_CFG:
2493 case MBX_DOWN_LOAD:
2494 case MBX_DEL_LD_ENTRY:
2495 case MBX_RUN_PROGRAM:
2496 case MBX_SET_MASK:
2497 case MBX_SET_VARIABLE:
2498 case MBX_UNREG_D_ID:
2499 case MBX_KILL_BOARD:
2500 case MBX_CONFIG_FARP:
2501 case MBX_BEACON:
2502 case MBX_LOAD_AREA:
2503 case MBX_RUN_BIU_DIAG64:
2504 case MBX_CONFIG_PORT:
2505 case MBX_READ_SPARM64:
2506 case MBX_READ_RPI64:
2507 case MBX_REG_LOGIN64:
2508 case MBX_READ_TOPOLOGY:
2509 case MBX_WRITE_WWN:
2510 case MBX_SET_DEBUG:
2511 case MBX_LOAD_EXP_ROM:
2512 case MBX_ASYNCEVT_ENABLE:
2513 case MBX_REG_VPI:
2514 case MBX_UNREG_VPI:
2515 case MBX_HEARTBEAT:
2516 case MBX_PORT_CAPABILITIES:
2517 case MBX_PORT_IOV_CONTROL:
2518 case MBX_SLI4_CONFIG:
2519 case MBX_SLI4_REQ_FTRS:
2520 case MBX_REG_FCFI:
2521 case MBX_UNREG_FCFI:
2522 case MBX_REG_VFI:
2523 case MBX_UNREG_VFI:
2524 case MBX_INIT_VPI:
2525 case MBX_INIT_VFI:
2526 case MBX_RESUME_RPI:
2527 case MBX_READ_EVENT_LOG_STATUS:
2528 case MBX_READ_EVENT_LOG:
2529 case MBX_SECURITY_MGMT:
2530 case MBX_AUTH_PORT:
2531 case MBX_ACCESS_VDATA:
2532 ret = mbxCommand;
2533 break;
2534 default:
2535 ret = MBX_SHUTDOWN;
2536 break;
2538 return ret;
2542 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2543 * @phba: Pointer to HBA context object.
2544 * @pmboxq: Pointer to mailbox command.
2546 * This is completion handler function for mailbox commands issued from
2547 * lpfc_sli_issue_mbox_wait function. This function is called by the
2548 * mailbox event handler function with no lock held. This function
2549 * will wake up thread waiting on the wait queue pointed by context1
2550 * of the mailbox.
2552 void
2553 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2555 unsigned long drvr_flag;
2556 struct completion *pmbox_done;
2559 * If pmbox_done is empty, the driver thread gave up waiting and
2560 * continued running.
2562 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2563 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2564 pmbox_done = (struct completion *)pmboxq->context3;
2565 if (pmbox_done)
2566 complete(pmbox_done);
2567 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2568 return;
2571 static void
2572 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2574 unsigned long iflags;
2576 if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2577 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2578 spin_lock_irqsave(&ndlp->lock, iflags);
2579 ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2580 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2581 spin_unlock_irqrestore(&ndlp->lock, iflags);
2583 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2587 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2588 * @phba: Pointer to HBA context object.
2589 * @pmb: Pointer to mailbox object.
2591 * This function is the default mailbox completion handler. It
2592 * frees the memory resources associated with the completed mailbox
2593 * command. If the completed command is a REG_LOGIN mailbox command,
2594 * this function will issue a UREG_LOGIN to re-claim the RPI.
2596 void
2597 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2599 struct lpfc_vport *vport = pmb->vport;
2600 struct lpfc_dmabuf *mp;
2601 struct lpfc_nodelist *ndlp;
2602 struct Scsi_Host *shost;
2603 uint16_t rpi, vpi;
2604 int rc;
2606 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2608 if (mp) {
2609 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2610 kfree(mp);
2614 * If a REG_LOGIN succeeded after node is destroyed or node
2615 * is in re-discovery driver need to cleanup the RPI.
2617 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2618 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2619 !pmb->u.mb.mbxStatus) {
2620 rpi = pmb->u.mb.un.varWords[0];
2621 vpi = pmb->u.mb.un.varRegLogin.vpi;
2622 if (phba->sli_rev == LPFC_SLI_REV4)
2623 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2624 lpfc_unreg_login(phba, vpi, rpi, pmb);
2625 pmb->vport = vport;
2626 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2627 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2628 if (rc != MBX_NOT_FINISHED)
2629 return;
2632 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2633 !(phba->pport->load_flag & FC_UNLOADING) &&
2634 !pmb->u.mb.mbxStatus) {
2635 shost = lpfc_shost_from_vport(vport);
2636 spin_lock_irq(shost->host_lock);
2637 vport->vpi_state |= LPFC_VPI_REGISTERED;
2638 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2639 spin_unlock_irq(shost->host_lock);
2642 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2643 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2644 lpfc_nlp_put(ndlp);
2645 pmb->ctx_buf = NULL;
2646 pmb->ctx_ndlp = NULL;
2649 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2650 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2652 /* Check to see if there are any deferred events to process */
2653 if (ndlp) {
2654 lpfc_printf_vlog(
2655 vport,
2656 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2657 "1438 UNREG cmpl deferred mbox x%x "
2658 "on NPort x%x Data: x%x x%x %px x%x x%x\n",
2659 ndlp->nlp_rpi, ndlp->nlp_DID,
2660 ndlp->nlp_flag, ndlp->nlp_defer_did,
2661 ndlp, vport->load_flag, kref_read(&ndlp->kref));
2663 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2664 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2665 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2666 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2667 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2668 } else {
2669 __lpfc_sli_rpi_release(vport, ndlp);
2672 /* The unreg_login mailbox is complete and had a
2673 * reference that has to be released. The PLOGI
2674 * got its own ref.
2676 lpfc_nlp_put(ndlp);
2677 pmb->ctx_ndlp = NULL;
2681 /* Check security permission status on INIT_LINK mailbox command */
2682 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2683 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2685 "2860 SLI authentication is required "
2686 "for INIT_LINK but has not done yet\n");
2688 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2689 lpfc_sli4_mbox_cmd_free(phba, pmb);
2690 else
2691 mempool_free(pmb, phba->mbox_mem_pool);
2694 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2695 * @phba: Pointer to HBA context object.
2696 * @pmb: Pointer to mailbox object.
2698 * This function is the unreg rpi mailbox completion handler. It
2699 * frees the memory resources associated with the completed mailbox
2700 * command. An additional reference is put on the ndlp to prevent
2701 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2702 * the unreg mailbox command completes, this routine puts the
2703 * reference back.
2706 void
2707 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2709 struct lpfc_vport *vport = pmb->vport;
2710 struct lpfc_nodelist *ndlp;
2712 ndlp = pmb->ctx_ndlp;
2713 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2714 if (phba->sli_rev == LPFC_SLI_REV4 &&
2715 (bf_get(lpfc_sli_intf_if_type,
2716 &phba->sli4_hba.sli_intf) >=
2717 LPFC_SLI_INTF_IF_TYPE_2)) {
2718 if (ndlp) {
2719 lpfc_printf_vlog(
2720 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2721 "0010 UNREG_LOGIN vpi:%x "
2722 "rpi:%x DID:%x defer x%x flg x%x "
2723 "%px\n",
2724 vport->vpi, ndlp->nlp_rpi,
2725 ndlp->nlp_DID, ndlp->nlp_defer_did,
2726 ndlp->nlp_flag,
2727 ndlp);
2728 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2730 /* Check to see if there are any deferred
2731 * events to process
2733 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2734 (ndlp->nlp_defer_did !=
2735 NLP_EVT_NOTHING_PENDING)) {
2736 lpfc_printf_vlog(
2737 vport, KERN_INFO, LOG_DISCOVERY,
2738 "4111 UNREG cmpl deferred "
2739 "clr x%x on "
2740 "NPort x%x Data: x%x x%px\n",
2741 ndlp->nlp_rpi, ndlp->nlp_DID,
2742 ndlp->nlp_defer_did, ndlp);
2743 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2744 ndlp->nlp_defer_did =
2745 NLP_EVT_NOTHING_PENDING;
2746 lpfc_issue_els_plogi(
2747 vport, ndlp->nlp_DID, 0);
2748 } else {
2749 __lpfc_sli_rpi_release(vport, ndlp);
2752 lpfc_nlp_put(ndlp);
2757 mempool_free(pmb, phba->mbox_mem_pool);
2761 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2762 * @phba: Pointer to HBA context object.
2764 * This function is called with no lock held. This function processes all
2765 * the completed mailbox commands and gives it to upper layers. The interrupt
2766 * service routine processes mailbox completion interrupt and adds completed
2767 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2768 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2769 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2770 * function returns the mailbox commands to the upper layer by calling the
2771 * completion handler function of each mailbox.
2774 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2776 MAILBOX_t *pmbox;
2777 LPFC_MBOXQ_t *pmb;
2778 int rc;
2779 LIST_HEAD(cmplq);
2781 phba->sli.slistat.mbox_event++;
2783 /* Get all completed mailboxe buffers into the cmplq */
2784 spin_lock_irq(&phba->hbalock);
2785 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2786 spin_unlock_irq(&phba->hbalock);
2788 /* Get a Mailbox buffer to setup mailbox commands for callback */
2789 do {
2790 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2791 if (pmb == NULL)
2792 break;
2794 pmbox = &pmb->u.mb;
2796 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2797 if (pmb->vport) {
2798 lpfc_debugfs_disc_trc(pmb->vport,
2799 LPFC_DISC_TRC_MBOX_VPORT,
2800 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2801 (uint32_t)pmbox->mbxCommand,
2802 pmbox->un.varWords[0],
2803 pmbox->un.varWords[1]);
2805 else {
2806 lpfc_debugfs_disc_trc(phba->pport,
2807 LPFC_DISC_TRC_MBOX,
2808 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2809 (uint32_t)pmbox->mbxCommand,
2810 pmbox->un.varWords[0],
2811 pmbox->un.varWords[1]);
2816 * It is a fatal error if unknown mbox command completion.
2818 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2819 MBX_SHUTDOWN) {
2820 /* Unknown mailbox command compl */
2821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2822 "(%d):0323 Unknown Mailbox command "
2823 "x%x (x%x/x%x) Cmpl\n",
2824 pmb->vport ? pmb->vport->vpi :
2825 LPFC_VPORT_UNKNOWN,
2826 pmbox->mbxCommand,
2827 lpfc_sli_config_mbox_subsys_get(phba,
2828 pmb),
2829 lpfc_sli_config_mbox_opcode_get(phba,
2830 pmb));
2831 phba->link_state = LPFC_HBA_ERROR;
2832 phba->work_hs = HS_FFER3;
2833 lpfc_handle_eratt(phba);
2834 continue;
2837 if (pmbox->mbxStatus) {
2838 phba->sli.slistat.mbox_stat_err++;
2839 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2840 /* Mbox cmd cmpl error - RETRYing */
2841 lpfc_printf_log(phba, KERN_INFO,
2842 LOG_MBOX | LOG_SLI,
2843 "(%d):0305 Mbox cmd cmpl "
2844 "error - RETRYing Data: x%x "
2845 "(x%x/x%x) x%x x%x x%x\n",
2846 pmb->vport ? pmb->vport->vpi :
2847 LPFC_VPORT_UNKNOWN,
2848 pmbox->mbxCommand,
2849 lpfc_sli_config_mbox_subsys_get(phba,
2850 pmb),
2851 lpfc_sli_config_mbox_opcode_get(phba,
2852 pmb),
2853 pmbox->mbxStatus,
2854 pmbox->un.varWords[0],
2855 pmb->vport ? pmb->vport->port_state :
2856 LPFC_VPORT_UNKNOWN);
2857 pmbox->mbxStatus = 0;
2858 pmbox->mbxOwner = OWN_HOST;
2859 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2860 if (rc != MBX_NOT_FINISHED)
2861 continue;
2865 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2866 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2867 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2868 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2869 "x%x x%x x%x\n",
2870 pmb->vport ? pmb->vport->vpi : 0,
2871 pmbox->mbxCommand,
2872 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2873 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2874 pmb->mbox_cmpl,
2875 *((uint32_t *) pmbox),
2876 pmbox->un.varWords[0],
2877 pmbox->un.varWords[1],
2878 pmbox->un.varWords[2],
2879 pmbox->un.varWords[3],
2880 pmbox->un.varWords[4],
2881 pmbox->un.varWords[5],
2882 pmbox->un.varWords[6],
2883 pmbox->un.varWords[7],
2884 pmbox->un.varWords[8],
2885 pmbox->un.varWords[9],
2886 pmbox->un.varWords[10]);
2888 if (pmb->mbox_cmpl)
2889 pmb->mbox_cmpl(phba,pmb);
2890 } while (1);
2891 return 0;
2895 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2896 * @phba: Pointer to HBA context object.
2897 * @pring: Pointer to driver SLI ring object.
2898 * @tag: buffer tag.
2900 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2901 * is set in the tag the buffer is posted for a particular exchange,
2902 * the function will return the buffer without replacing the buffer.
2903 * If the buffer is for unsolicited ELS or CT traffic, this function
2904 * returns the buffer and also posts another buffer to the firmware.
2906 static struct lpfc_dmabuf *
2907 lpfc_sli_get_buff(struct lpfc_hba *phba,
2908 struct lpfc_sli_ring *pring,
2909 uint32_t tag)
2911 struct hbq_dmabuf *hbq_entry;
2913 if (tag & QUE_BUFTAG_BIT)
2914 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2915 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2916 if (!hbq_entry)
2917 return NULL;
2918 return &hbq_entry->dbuf;
2922 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2923 * containing a NVME LS request.
2924 * @phba: pointer to lpfc hba data structure.
2925 * @piocb: pointer to the iocbq struct representing the sequence starting
2926 * frame.
2928 * This routine initially validates the NVME LS, validates there is a login
2929 * with the port that sent the LS, and then calls the appropriate nvme host
2930 * or target LS request handler.
2932 static void
2933 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2935 struct lpfc_nodelist *ndlp;
2936 struct lpfc_dmabuf *d_buf;
2937 struct hbq_dmabuf *nvmebuf;
2938 struct fc_frame_header *fc_hdr;
2939 struct lpfc_async_xchg_ctx *axchg = NULL;
2940 char *failwhy = NULL;
2941 uint32_t oxid, sid, did, fctl, size;
2942 int ret = 1;
2944 d_buf = piocb->context2;
2946 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2947 fc_hdr = nvmebuf->hbuf.virt;
2948 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2949 sid = sli4_sid_from_fc_hdr(fc_hdr);
2950 did = sli4_did_from_fc_hdr(fc_hdr);
2951 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2952 fc_hdr->fh_f_ctl[1] << 8 |
2953 fc_hdr->fh_f_ctl[2]);
2954 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2956 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
2957 oxid, size, sid);
2959 if (phba->pport->load_flag & FC_UNLOADING) {
2960 failwhy = "Driver Unloading";
2961 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2962 failwhy = "NVME FC4 Disabled";
2963 } else if (!phba->nvmet_support && !phba->pport->localport) {
2964 failwhy = "No Localport";
2965 } else if (phba->nvmet_support && !phba->targetport) {
2966 failwhy = "No Targetport";
2967 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2968 failwhy = "Bad NVME LS R_CTL";
2969 } else if (unlikely((fctl & 0x00FF0000) !=
2970 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2971 failwhy = "Bad NVME LS F_CTL";
2972 } else {
2973 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2974 if (!axchg)
2975 failwhy = "No CTX memory";
2978 if (unlikely(failwhy)) {
2979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2980 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2981 sid, oxid, failwhy);
2982 goto out_fail;
2985 /* validate the source of the LS is logged in */
2986 ndlp = lpfc_findnode_did(phba->pport, sid);
2987 if (!ndlp ||
2988 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2989 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2990 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2991 "6216 NVME Unsol rcv: No ndlp: "
2992 "NPort_ID x%x oxid x%x\n",
2993 sid, oxid);
2994 goto out_fail;
2997 axchg->phba = phba;
2998 axchg->ndlp = ndlp;
2999 axchg->size = size;
3000 axchg->oxid = oxid;
3001 axchg->sid = sid;
3002 axchg->wqeq = NULL;
3003 axchg->state = LPFC_NVME_STE_LS_RCV;
3004 axchg->entry_cnt = 1;
3005 axchg->rqb_buffer = (void *)nvmebuf;
3006 axchg->hdwq = &phba->sli4_hba.hdwq[0];
3007 axchg->payload = nvmebuf->dbuf.virt;
3008 INIT_LIST_HEAD(&axchg->list);
3010 if (phba->nvmet_support)
3011 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3012 else
3013 ret = lpfc_nvme_handle_lsreq(phba, axchg);
3015 /* if zero, LS was successfully handled. If non-zero, LS not handled */
3016 if (!ret)
3017 return;
3019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3020 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3021 "NVMe%s handler failed %d\n",
3022 did, sid, oxid,
3023 (phba->nvmet_support) ? "T" : "I", ret);
3025 out_fail:
3027 /* recycle receive buffer */
3028 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3030 /* If start of new exchange, abort it */
3031 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3032 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3034 if (ret)
3035 kfree(axchg);
3039 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3040 * @phba: Pointer to HBA context object.
3041 * @pring: Pointer to driver SLI ring object.
3042 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3043 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3044 * @fch_type: the type for the first frame of the sequence.
3046 * This function is called with no lock held. This function uses the r_ctl and
3047 * type of the received sequence to find the correct callback function to call
3048 * to process the sequence.
3050 static int
3051 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3052 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3053 uint32_t fch_type)
3055 int i;
3057 switch (fch_type) {
3058 case FC_TYPE_NVME:
3059 lpfc_nvme_unsol_ls_handler(phba, saveq);
3060 return 1;
3061 default:
3062 break;
3065 /* unSolicited Responses */
3066 if (pring->prt[0].profile) {
3067 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3068 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3069 saveq);
3070 return 1;
3072 /* We must search, based on rctl / type
3073 for the right routine */
3074 for (i = 0; i < pring->num_mask; i++) {
3075 if ((pring->prt[i].rctl == fch_r_ctl) &&
3076 (pring->prt[i].type == fch_type)) {
3077 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3078 (pring->prt[i].lpfc_sli_rcv_unsol_event)
3079 (phba, pring, saveq);
3080 return 1;
3083 return 0;
3087 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3088 * @phba: Pointer to HBA context object.
3089 * @pring: Pointer to driver SLI ring object.
3090 * @saveq: Pointer to the unsolicited iocb.
3092 * This function is called with no lock held by the ring event handler
3093 * when there is an unsolicited iocb posted to the response ring by the
3094 * firmware. This function gets the buffer associated with the iocbs
3095 * and calls the event handler for the ring. This function handles both
3096 * qring buffers and hbq buffers.
3097 * When the function returns 1 the caller can free the iocb object otherwise
3098 * upper layer functions will free the iocb objects.
3100 static int
3101 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3102 struct lpfc_iocbq *saveq)
3104 IOCB_t * irsp;
3105 WORD5 * w5p;
3106 uint32_t Rctl, Type;
3107 struct lpfc_iocbq *iocbq;
3108 struct lpfc_dmabuf *dmzbuf;
3110 irsp = &(saveq->iocb);
3112 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3113 if (pring->lpfc_sli_rcv_async_status)
3114 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3115 else
3116 lpfc_printf_log(phba,
3117 KERN_WARNING,
3118 LOG_SLI,
3119 "0316 Ring %d handler: unexpected "
3120 "ASYNC_STATUS iocb received evt_code "
3121 "0x%x\n",
3122 pring->ringno,
3123 irsp->un.asyncstat.evt_code);
3124 return 1;
3127 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3128 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3129 if (irsp->ulpBdeCount > 0) {
3130 dmzbuf = lpfc_sli_get_buff(phba, pring,
3131 irsp->un.ulpWord[3]);
3132 lpfc_in_buf_free(phba, dmzbuf);
3135 if (irsp->ulpBdeCount > 1) {
3136 dmzbuf = lpfc_sli_get_buff(phba, pring,
3137 irsp->unsli3.sli3Words[3]);
3138 lpfc_in_buf_free(phba, dmzbuf);
3141 if (irsp->ulpBdeCount > 2) {
3142 dmzbuf = lpfc_sli_get_buff(phba, pring,
3143 irsp->unsli3.sli3Words[7]);
3144 lpfc_in_buf_free(phba, dmzbuf);
3147 return 1;
3150 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3151 if (irsp->ulpBdeCount != 0) {
3152 saveq->context2 = lpfc_sli_get_buff(phba, pring,
3153 irsp->un.ulpWord[3]);
3154 if (!saveq->context2)
3155 lpfc_printf_log(phba,
3156 KERN_ERR,
3157 LOG_SLI,
3158 "0341 Ring %d Cannot find buffer for "
3159 "an unsolicited iocb. tag 0x%x\n",
3160 pring->ringno,
3161 irsp->un.ulpWord[3]);
3163 if (irsp->ulpBdeCount == 2) {
3164 saveq->context3 = lpfc_sli_get_buff(phba, pring,
3165 irsp->unsli3.sli3Words[7]);
3166 if (!saveq->context3)
3167 lpfc_printf_log(phba,
3168 KERN_ERR,
3169 LOG_SLI,
3170 "0342 Ring %d Cannot find buffer for an"
3171 " unsolicited iocb. tag 0x%x\n",
3172 pring->ringno,
3173 irsp->unsli3.sli3Words[7]);
3175 list_for_each_entry(iocbq, &saveq->list, list) {
3176 irsp = &(iocbq->iocb);
3177 if (irsp->ulpBdeCount != 0) {
3178 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3179 irsp->un.ulpWord[3]);
3180 if (!iocbq->context2)
3181 lpfc_printf_log(phba,
3182 KERN_ERR,
3183 LOG_SLI,
3184 "0343 Ring %d Cannot find "
3185 "buffer for an unsolicited iocb"
3186 ". tag 0x%x\n", pring->ringno,
3187 irsp->un.ulpWord[3]);
3189 if (irsp->ulpBdeCount == 2) {
3190 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3191 irsp->unsli3.sli3Words[7]);
3192 if (!iocbq->context3)
3193 lpfc_printf_log(phba,
3194 KERN_ERR,
3195 LOG_SLI,
3196 "0344 Ring %d Cannot find "
3197 "buffer for an unsolicited "
3198 "iocb. tag 0x%x\n",
3199 pring->ringno,
3200 irsp->unsli3.sli3Words[7]);
3204 if (irsp->ulpBdeCount != 0 &&
3205 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3206 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3207 int found = 0;
3209 /* search continue save q for same XRI */
3210 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3211 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3212 saveq->iocb.unsli3.rcvsli3.ox_id) {
3213 list_add_tail(&saveq->list, &iocbq->list);
3214 found = 1;
3215 break;
3218 if (!found)
3219 list_add_tail(&saveq->clist,
3220 &pring->iocb_continue_saveq);
3221 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3222 list_del_init(&iocbq->clist);
3223 saveq = iocbq;
3224 irsp = &(saveq->iocb);
3225 } else
3226 return 0;
3228 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3229 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3230 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3231 Rctl = FC_RCTL_ELS_REQ;
3232 Type = FC_TYPE_ELS;
3233 } else {
3234 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3235 Rctl = w5p->hcsw.Rctl;
3236 Type = w5p->hcsw.Type;
3238 /* Firmware Workaround */
3239 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3240 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3241 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3242 Rctl = FC_RCTL_ELS_REQ;
3243 Type = FC_TYPE_ELS;
3244 w5p->hcsw.Rctl = Rctl;
3245 w5p->hcsw.Type = Type;
3249 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3250 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3251 "0313 Ring %d handler: unexpected Rctl x%x "
3252 "Type x%x received\n",
3253 pring->ringno, Rctl, Type);
3255 return 1;
3259 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3260 * @phba: Pointer to HBA context object.
3261 * @pring: Pointer to driver SLI ring object.
3262 * @prspiocb: Pointer to response iocb object.
3264 * This function looks up the iocb_lookup table to get the command iocb
3265 * corresponding to the given response iocb using the iotag of the
3266 * response iocb. The driver calls this function with the hbalock held
3267 * for SLI3 ports or the ring lock held for SLI4 ports.
3268 * This function returns the command iocb object if it finds the command
3269 * iocb else returns NULL.
3271 static struct lpfc_iocbq *
3272 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3273 struct lpfc_sli_ring *pring,
3274 struct lpfc_iocbq *prspiocb)
3276 struct lpfc_iocbq *cmd_iocb = NULL;
3277 uint16_t iotag;
3278 spinlock_t *temp_lock = NULL;
3279 unsigned long iflag = 0;
3281 if (phba->sli_rev == LPFC_SLI_REV4)
3282 temp_lock = &pring->ring_lock;
3283 else
3284 temp_lock = &phba->hbalock;
3286 spin_lock_irqsave(temp_lock, iflag);
3287 iotag = prspiocb->iocb.ulpIoTag;
3289 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3290 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3291 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3292 /* remove from txcmpl queue list */
3293 list_del_init(&cmd_iocb->list);
3294 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3295 pring->txcmplq_cnt--;
3296 spin_unlock_irqrestore(temp_lock, iflag);
3297 return cmd_iocb;
3301 spin_unlock_irqrestore(temp_lock, iflag);
3302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3303 "0317 iotag x%x is out of "
3304 "range: max iotag x%x wd0 x%x\n",
3305 iotag, phba->sli.last_iotag,
3306 *(((uint32_t *) &prspiocb->iocb) + 7));
3307 return NULL;
3311 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3312 * @phba: Pointer to HBA context object.
3313 * @pring: Pointer to driver SLI ring object.
3314 * @iotag: IOCB tag.
3316 * This function looks up the iocb_lookup table to get the command iocb
3317 * corresponding to the given iotag. The driver calls this function with
3318 * the ring lock held because this function is an SLI4 port only helper.
3319 * This function returns the command iocb object if it finds the command
3320 * iocb else returns NULL.
3322 static struct lpfc_iocbq *
3323 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3324 struct lpfc_sli_ring *pring, uint16_t iotag)
3326 struct lpfc_iocbq *cmd_iocb = NULL;
3327 spinlock_t *temp_lock = NULL;
3328 unsigned long iflag = 0;
3330 if (phba->sli_rev == LPFC_SLI_REV4)
3331 temp_lock = &pring->ring_lock;
3332 else
3333 temp_lock = &phba->hbalock;
3335 spin_lock_irqsave(temp_lock, iflag);
3336 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3337 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3338 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3339 /* remove from txcmpl queue list */
3340 list_del_init(&cmd_iocb->list);
3341 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3342 pring->txcmplq_cnt--;
3343 spin_unlock_irqrestore(temp_lock, iflag);
3344 return cmd_iocb;
3348 spin_unlock_irqrestore(temp_lock, iflag);
3349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3350 "0372 iotag x%x lookup error: max iotag (x%x) "
3351 "iocb_flag x%x\n",
3352 iotag, phba->sli.last_iotag,
3353 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3354 return NULL;
3358 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3359 * @phba: Pointer to HBA context object.
3360 * @pring: Pointer to driver SLI ring object.
3361 * @saveq: Pointer to the response iocb to be processed.
3363 * This function is called by the ring event handler for non-fcp
3364 * rings when there is a new response iocb in the response ring.
3365 * The caller is not required to hold any locks. This function
3366 * gets the command iocb associated with the response iocb and
3367 * calls the completion handler for the command iocb. If there
3368 * is no completion handler, the function will free the resources
3369 * associated with command iocb. If the response iocb is for
3370 * an already aborted command iocb, the status of the completion
3371 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3372 * This function always returns 1.
3374 static int
3375 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3376 struct lpfc_iocbq *saveq)
3378 struct lpfc_iocbq *cmdiocbp;
3379 int rc = 1;
3380 unsigned long iflag;
3382 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3383 if (cmdiocbp) {
3384 if (cmdiocbp->iocb_cmpl) {
3386 * If an ELS command failed send an event to mgmt
3387 * application.
3389 if (saveq->iocb.ulpStatus &&
3390 (pring->ringno == LPFC_ELS_RING) &&
3391 (cmdiocbp->iocb.ulpCommand ==
3392 CMD_ELS_REQUEST64_CR))
3393 lpfc_send_els_failure_event(phba,
3394 cmdiocbp, saveq);
3397 * Post all ELS completions to the worker thread.
3398 * All other are passed to the completion callback.
3400 if (pring->ringno == LPFC_ELS_RING) {
3401 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3402 (cmdiocbp->iocb_flag &
3403 LPFC_DRIVER_ABORTED)) {
3404 spin_lock_irqsave(&phba->hbalock,
3405 iflag);
3406 cmdiocbp->iocb_flag &=
3407 ~LPFC_DRIVER_ABORTED;
3408 spin_unlock_irqrestore(&phba->hbalock,
3409 iflag);
3410 saveq->iocb.ulpStatus =
3411 IOSTAT_LOCAL_REJECT;
3412 saveq->iocb.un.ulpWord[4] =
3413 IOERR_SLI_ABORTED;
3415 /* Firmware could still be in progress
3416 * of DMAing payload, so don't free data
3417 * buffer till after a hbeat.
3419 spin_lock_irqsave(&phba->hbalock,
3420 iflag);
3421 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3422 spin_unlock_irqrestore(&phba->hbalock,
3423 iflag);
3425 if (phba->sli_rev == LPFC_SLI_REV4) {
3426 if (saveq->iocb_flag &
3427 LPFC_EXCHANGE_BUSY) {
3428 /* Set cmdiocb flag for the
3429 * exchange busy so sgl (xri)
3430 * will not be released until
3431 * the abort xri is received
3432 * from hba.
3434 spin_lock_irqsave(
3435 &phba->hbalock, iflag);
3436 cmdiocbp->iocb_flag |=
3437 LPFC_EXCHANGE_BUSY;
3438 spin_unlock_irqrestore(
3439 &phba->hbalock, iflag);
3441 if (cmdiocbp->iocb_flag &
3442 LPFC_DRIVER_ABORTED) {
3444 * Clear LPFC_DRIVER_ABORTED
3445 * bit in case it was driver
3446 * initiated abort.
3448 spin_lock_irqsave(
3449 &phba->hbalock, iflag);
3450 cmdiocbp->iocb_flag &=
3451 ~LPFC_DRIVER_ABORTED;
3452 spin_unlock_irqrestore(
3453 &phba->hbalock, iflag);
3454 cmdiocbp->iocb.ulpStatus =
3455 IOSTAT_LOCAL_REJECT;
3456 cmdiocbp->iocb.un.ulpWord[4] =
3457 IOERR_ABORT_REQUESTED;
3459 * For SLI4, irsiocb contains
3460 * NO_XRI in sli_xritag, it
3461 * shall not affect releasing
3462 * sgl (xri) process.
3464 saveq->iocb.ulpStatus =
3465 IOSTAT_LOCAL_REJECT;
3466 saveq->iocb.un.ulpWord[4] =
3467 IOERR_SLI_ABORTED;
3468 spin_lock_irqsave(
3469 &phba->hbalock, iflag);
3470 saveq->iocb_flag |=
3471 LPFC_DELAY_MEM_FREE;
3472 spin_unlock_irqrestore(
3473 &phba->hbalock, iflag);
3477 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3478 } else
3479 lpfc_sli_release_iocbq(phba, cmdiocbp);
3480 } else {
3482 * Unknown initiating command based on the response iotag.
3483 * This could be the case on the ELS ring because of
3484 * lpfc_els_abort().
3486 if (pring->ringno != LPFC_ELS_RING) {
3488 * Ring <ringno> handler: unexpected completion IoTag
3489 * <IoTag>
3491 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3492 "0322 Ring %d handler: "
3493 "unexpected completion IoTag x%x "
3494 "Data: x%x x%x x%x x%x\n",
3495 pring->ringno,
3496 saveq->iocb.ulpIoTag,
3497 saveq->iocb.ulpStatus,
3498 saveq->iocb.un.ulpWord[4],
3499 saveq->iocb.ulpCommand,
3500 saveq->iocb.ulpContext);
3504 return rc;
3508 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3509 * @phba: Pointer to HBA context object.
3510 * @pring: Pointer to driver SLI ring object.
3512 * This function is called from the iocb ring event handlers when
3513 * put pointer is ahead of the get pointer for a ring. This function signal
3514 * an error attention condition to the worker thread and the worker
3515 * thread will transition the HBA to offline state.
3517 static void
3518 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3520 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3522 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3523 * rsp ring <portRspMax>
3525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3526 "0312 Ring %d handler: portRspPut %d "
3527 "is bigger than rsp ring %d\n",
3528 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3529 pring->sli.sli3.numRiocb);
3531 phba->link_state = LPFC_HBA_ERROR;
3534 * All error attention handlers are posted to
3535 * worker thread
3537 phba->work_ha |= HA_ERATT;
3538 phba->work_hs = HS_FFER3;
3540 lpfc_worker_wake_up(phba);
3542 return;
3546 * lpfc_poll_eratt - Error attention polling timer timeout handler
3547 * @t: Context to fetch pointer to address of HBA context object from.
3549 * This function is invoked by the Error Attention polling timer when the
3550 * timer times out. It will check the SLI Error Attention register for
3551 * possible attention events. If so, it will post an Error Attention event
3552 * and wake up worker thread to process it. Otherwise, it will set up the
3553 * Error Attention polling timer for the next poll.
3555 void lpfc_poll_eratt(struct timer_list *t)
3557 struct lpfc_hba *phba;
3558 uint32_t eratt = 0;
3559 uint64_t sli_intr, cnt;
3561 phba = from_timer(phba, t, eratt_poll);
3563 /* Here we will also keep track of interrupts per sec of the hba */
3564 sli_intr = phba->sli.slistat.sli_intr;
3566 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3567 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3568 sli_intr);
3569 else
3570 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3572 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3573 do_div(cnt, phba->eratt_poll_interval);
3574 phba->sli.slistat.sli_ips = cnt;
3576 phba->sli.slistat.sli_prev_intr = sli_intr;
3578 /* Check chip HA register for error event */
3579 eratt = lpfc_sli_check_eratt(phba);
3581 if (eratt)
3582 /* Tell the worker thread there is work to do */
3583 lpfc_worker_wake_up(phba);
3584 else
3585 /* Restart the timer for next eratt poll */
3586 mod_timer(&phba->eratt_poll,
3587 jiffies +
3588 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3589 return;
3594 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3595 * @phba: Pointer to HBA context object.
3596 * @pring: Pointer to driver SLI ring object.
3597 * @mask: Host attention register mask for this ring.
3599 * This function is called from the interrupt context when there is a ring
3600 * event for the fcp ring. The caller does not hold any lock.
3601 * The function processes each response iocb in the response ring until it
3602 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3603 * LE bit set. The function will call the completion handler of the command iocb
3604 * if the response iocb indicates a completion for a command iocb or it is
3605 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3606 * function if this is an unsolicited iocb.
3607 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3608 * to check it explicitly.
3611 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3612 struct lpfc_sli_ring *pring, uint32_t mask)
3614 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3615 IOCB_t *irsp = NULL;
3616 IOCB_t *entry = NULL;
3617 struct lpfc_iocbq *cmdiocbq = NULL;
3618 struct lpfc_iocbq rspiocbq;
3619 uint32_t status;
3620 uint32_t portRspPut, portRspMax;
3621 int rc = 1;
3622 lpfc_iocb_type type;
3623 unsigned long iflag;
3624 uint32_t rsp_cmpl = 0;
3626 spin_lock_irqsave(&phba->hbalock, iflag);
3627 pring->stats.iocb_event++;
3630 * The next available response entry should never exceed the maximum
3631 * entries. If it does, treat it as an adapter hardware error.
3633 portRspMax = pring->sli.sli3.numRiocb;
3634 portRspPut = le32_to_cpu(pgp->rspPutInx);
3635 if (unlikely(portRspPut >= portRspMax)) {
3636 lpfc_sli_rsp_pointers_error(phba, pring);
3637 spin_unlock_irqrestore(&phba->hbalock, iflag);
3638 return 1;
3640 if (phba->fcp_ring_in_use) {
3641 spin_unlock_irqrestore(&phba->hbalock, iflag);
3642 return 1;
3643 } else
3644 phba->fcp_ring_in_use = 1;
3646 rmb();
3647 while (pring->sli.sli3.rspidx != portRspPut) {
3649 * Fetch an entry off the ring and copy it into a local data
3650 * structure. The copy involves a byte-swap since the
3651 * network byte order and pci byte orders are different.
3653 entry = lpfc_resp_iocb(phba, pring);
3654 phba->last_completion_time = jiffies;
3656 if (++pring->sli.sli3.rspidx >= portRspMax)
3657 pring->sli.sli3.rspidx = 0;
3659 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3660 (uint32_t *) &rspiocbq.iocb,
3661 phba->iocb_rsp_size);
3662 INIT_LIST_HEAD(&(rspiocbq.list));
3663 irsp = &rspiocbq.iocb;
3665 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3666 pring->stats.iocb_rsp++;
3667 rsp_cmpl++;
3669 if (unlikely(irsp->ulpStatus)) {
3671 * If resource errors reported from HBA, reduce
3672 * queuedepths of the SCSI device.
3674 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3675 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3676 IOERR_NO_RESOURCES)) {
3677 spin_unlock_irqrestore(&phba->hbalock, iflag);
3678 phba->lpfc_rampdown_queue_depth(phba);
3679 spin_lock_irqsave(&phba->hbalock, iflag);
3682 /* Rsp ring <ringno> error: IOCB */
3683 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3684 "0336 Rsp Ring %d error: IOCB Data: "
3685 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3686 pring->ringno,
3687 irsp->un.ulpWord[0],
3688 irsp->un.ulpWord[1],
3689 irsp->un.ulpWord[2],
3690 irsp->un.ulpWord[3],
3691 irsp->un.ulpWord[4],
3692 irsp->un.ulpWord[5],
3693 *(uint32_t *)&irsp->un1,
3694 *((uint32_t *)&irsp->un1 + 1));
3697 switch (type) {
3698 case LPFC_ABORT_IOCB:
3699 case LPFC_SOL_IOCB:
3701 * Idle exchange closed via ABTS from port. No iocb
3702 * resources need to be recovered.
3704 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3705 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3706 "0333 IOCB cmd 0x%x"
3707 " processed. Skipping"
3708 " completion\n",
3709 irsp->ulpCommand);
3710 break;
3713 spin_unlock_irqrestore(&phba->hbalock, iflag);
3714 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3715 &rspiocbq);
3716 spin_lock_irqsave(&phba->hbalock, iflag);
3717 if (unlikely(!cmdiocbq))
3718 break;
3719 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3720 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3721 if (cmdiocbq->iocb_cmpl) {
3722 spin_unlock_irqrestore(&phba->hbalock, iflag);
3723 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3724 &rspiocbq);
3725 spin_lock_irqsave(&phba->hbalock, iflag);
3727 break;
3728 case LPFC_UNSOL_IOCB:
3729 spin_unlock_irqrestore(&phba->hbalock, iflag);
3730 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3731 spin_lock_irqsave(&phba->hbalock, iflag);
3732 break;
3733 default:
3734 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3735 char adaptermsg[LPFC_MAX_ADPTMSG];
3736 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3737 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3738 MAX_MSG_DATA);
3739 dev_warn(&((phba->pcidev)->dev),
3740 "lpfc%d: %s\n",
3741 phba->brd_no, adaptermsg);
3742 } else {
3743 /* Unknown IOCB command */
3744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3745 "0334 Unknown IOCB command "
3746 "Data: x%x, x%x x%x x%x x%x\n",
3747 type, irsp->ulpCommand,
3748 irsp->ulpStatus,
3749 irsp->ulpIoTag,
3750 irsp->ulpContext);
3752 break;
3756 * The response IOCB has been processed. Update the ring
3757 * pointer in SLIM. If the port response put pointer has not
3758 * been updated, sync the pgp->rspPutInx and fetch the new port
3759 * response put pointer.
3761 writel(pring->sli.sli3.rspidx,
3762 &phba->host_gp[pring->ringno].rspGetInx);
3764 if (pring->sli.sli3.rspidx == portRspPut)
3765 portRspPut = le32_to_cpu(pgp->rspPutInx);
3768 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3769 pring->stats.iocb_rsp_full++;
3770 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3771 writel(status, phba->CAregaddr);
3772 readl(phba->CAregaddr);
3774 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3775 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3776 pring->stats.iocb_cmd_empty++;
3778 /* Force update of the local copy of cmdGetInx */
3779 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3780 lpfc_sli_resume_iocb(phba, pring);
3782 if ((pring->lpfc_sli_cmd_available))
3783 (pring->lpfc_sli_cmd_available) (phba, pring);
3787 phba->fcp_ring_in_use = 0;
3788 spin_unlock_irqrestore(&phba->hbalock, iflag);
3789 return rc;
3793 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3794 * @phba: Pointer to HBA context object.
3795 * @pring: Pointer to driver SLI ring object.
3796 * @rspiocbp: Pointer to driver response IOCB object.
3798 * This function is called from the worker thread when there is a slow-path
3799 * response IOCB to process. This function chains all the response iocbs until
3800 * seeing the iocb with the LE bit set. The function will call
3801 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3802 * completion of a command iocb. The function will call the
3803 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3804 * The function frees the resources or calls the completion handler if this
3805 * iocb is an abort completion. The function returns NULL when the response
3806 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3807 * this function shall chain the iocb on to the iocb_continueq and return the
3808 * response iocb passed in.
3810 static struct lpfc_iocbq *
3811 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3812 struct lpfc_iocbq *rspiocbp)
3814 struct lpfc_iocbq *saveq;
3815 struct lpfc_iocbq *cmdiocbp;
3816 struct lpfc_iocbq *next_iocb;
3817 IOCB_t *irsp = NULL;
3818 uint32_t free_saveq;
3819 uint8_t iocb_cmd_type;
3820 lpfc_iocb_type type;
3821 unsigned long iflag;
3822 int rc;
3824 spin_lock_irqsave(&phba->hbalock, iflag);
3825 /* First add the response iocb to the countinueq list */
3826 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3827 pring->iocb_continueq_cnt++;
3829 /* Now, determine whether the list is completed for processing */
3830 irsp = &rspiocbp->iocb;
3831 if (irsp->ulpLe) {
3833 * By default, the driver expects to free all resources
3834 * associated with this iocb completion.
3836 free_saveq = 1;
3837 saveq = list_get_first(&pring->iocb_continueq,
3838 struct lpfc_iocbq, list);
3839 irsp = &(saveq->iocb);
3840 list_del_init(&pring->iocb_continueq);
3841 pring->iocb_continueq_cnt = 0;
3843 pring->stats.iocb_rsp++;
3846 * If resource errors reported from HBA, reduce
3847 * queuedepths of the SCSI device.
3849 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3850 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3851 IOERR_NO_RESOURCES)) {
3852 spin_unlock_irqrestore(&phba->hbalock, iflag);
3853 phba->lpfc_rampdown_queue_depth(phba);
3854 spin_lock_irqsave(&phba->hbalock, iflag);
3857 if (irsp->ulpStatus) {
3858 /* Rsp ring <ringno> error: IOCB */
3859 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3860 "0328 Rsp Ring %d error: "
3861 "IOCB Data: "
3862 "x%x x%x x%x x%x "
3863 "x%x x%x x%x x%x "
3864 "x%x x%x x%x x%x "
3865 "x%x x%x x%x x%x\n",
3866 pring->ringno,
3867 irsp->un.ulpWord[0],
3868 irsp->un.ulpWord[1],
3869 irsp->un.ulpWord[2],
3870 irsp->un.ulpWord[3],
3871 irsp->un.ulpWord[4],
3872 irsp->un.ulpWord[5],
3873 *(((uint32_t *) irsp) + 6),
3874 *(((uint32_t *) irsp) + 7),
3875 *(((uint32_t *) irsp) + 8),
3876 *(((uint32_t *) irsp) + 9),
3877 *(((uint32_t *) irsp) + 10),
3878 *(((uint32_t *) irsp) + 11),
3879 *(((uint32_t *) irsp) + 12),
3880 *(((uint32_t *) irsp) + 13),
3881 *(((uint32_t *) irsp) + 14),
3882 *(((uint32_t *) irsp) + 15));
3886 * Fetch the IOCB command type and call the correct completion
3887 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3888 * get freed back to the lpfc_iocb_list by the discovery
3889 * kernel thread.
3891 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3892 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3893 switch (type) {
3894 case LPFC_SOL_IOCB:
3895 spin_unlock_irqrestore(&phba->hbalock, iflag);
3896 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3897 spin_lock_irqsave(&phba->hbalock, iflag);
3898 break;
3900 case LPFC_UNSOL_IOCB:
3901 spin_unlock_irqrestore(&phba->hbalock, iflag);
3902 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3903 spin_lock_irqsave(&phba->hbalock, iflag);
3904 if (!rc)
3905 free_saveq = 0;
3906 break;
3908 case LPFC_ABORT_IOCB:
3909 cmdiocbp = NULL;
3910 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3911 spin_unlock_irqrestore(&phba->hbalock, iflag);
3912 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3913 saveq);
3914 spin_lock_irqsave(&phba->hbalock, iflag);
3916 if (cmdiocbp) {
3917 /* Call the specified completion routine */
3918 if (cmdiocbp->iocb_cmpl) {
3919 spin_unlock_irqrestore(&phba->hbalock,
3920 iflag);
3921 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3922 saveq);
3923 spin_lock_irqsave(&phba->hbalock,
3924 iflag);
3925 } else
3926 __lpfc_sli_release_iocbq(phba,
3927 cmdiocbp);
3929 break;
3931 case LPFC_UNKNOWN_IOCB:
3932 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3933 char adaptermsg[LPFC_MAX_ADPTMSG];
3934 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3935 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3936 MAX_MSG_DATA);
3937 dev_warn(&((phba->pcidev)->dev),
3938 "lpfc%d: %s\n",
3939 phba->brd_no, adaptermsg);
3940 } else {
3941 /* Unknown IOCB command */
3942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3943 "0335 Unknown IOCB "
3944 "command Data: x%x "
3945 "x%x x%x x%x\n",
3946 irsp->ulpCommand,
3947 irsp->ulpStatus,
3948 irsp->ulpIoTag,
3949 irsp->ulpContext);
3951 break;
3954 if (free_saveq) {
3955 list_for_each_entry_safe(rspiocbp, next_iocb,
3956 &saveq->list, list) {
3957 list_del_init(&rspiocbp->list);
3958 __lpfc_sli_release_iocbq(phba, rspiocbp);
3960 __lpfc_sli_release_iocbq(phba, saveq);
3962 rspiocbp = NULL;
3964 spin_unlock_irqrestore(&phba->hbalock, iflag);
3965 return rspiocbp;
3969 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3970 * @phba: Pointer to HBA context object.
3971 * @pring: Pointer to driver SLI ring object.
3972 * @mask: Host attention register mask for this ring.
3974 * This routine wraps the actual slow_ring event process routine from the
3975 * API jump table function pointer from the lpfc_hba struct.
3977 void
3978 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3979 struct lpfc_sli_ring *pring, uint32_t mask)
3981 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3985 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3986 * @phba: Pointer to HBA context object.
3987 * @pring: Pointer to driver SLI ring object.
3988 * @mask: Host attention register mask for this ring.
3990 * This function is called from the worker thread when there is a ring event
3991 * for non-fcp rings. The caller does not hold any lock. The function will
3992 * remove each response iocb in the response ring and calls the handle
3993 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3995 static void
3996 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3997 struct lpfc_sli_ring *pring, uint32_t mask)
3999 struct lpfc_pgp *pgp;
4000 IOCB_t *entry;
4001 IOCB_t *irsp = NULL;
4002 struct lpfc_iocbq *rspiocbp = NULL;
4003 uint32_t portRspPut, portRspMax;
4004 unsigned long iflag;
4005 uint32_t status;
4007 pgp = &phba->port_gp[pring->ringno];
4008 spin_lock_irqsave(&phba->hbalock, iflag);
4009 pring->stats.iocb_event++;
4012 * The next available response entry should never exceed the maximum
4013 * entries. If it does, treat it as an adapter hardware error.
4015 portRspMax = pring->sli.sli3.numRiocb;
4016 portRspPut = le32_to_cpu(pgp->rspPutInx);
4017 if (portRspPut >= portRspMax) {
4019 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4020 * rsp ring <portRspMax>
4022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4023 "0303 Ring %d handler: portRspPut %d "
4024 "is bigger than rsp ring %d\n",
4025 pring->ringno, portRspPut, portRspMax);
4027 phba->link_state = LPFC_HBA_ERROR;
4028 spin_unlock_irqrestore(&phba->hbalock, iflag);
4030 phba->work_hs = HS_FFER3;
4031 lpfc_handle_eratt(phba);
4033 return;
4036 rmb();
4037 while (pring->sli.sli3.rspidx != portRspPut) {
4039 * Build a completion list and call the appropriate handler.
4040 * The process is to get the next available response iocb, get
4041 * a free iocb from the list, copy the response data into the
4042 * free iocb, insert to the continuation list, and update the
4043 * next response index to slim. This process makes response
4044 * iocb's in the ring available to DMA as fast as possible but
4045 * pays a penalty for a copy operation. Since the iocb is
4046 * only 32 bytes, this penalty is considered small relative to
4047 * the PCI reads for register values and a slim write. When
4048 * the ulpLe field is set, the entire Command has been
4049 * received.
4051 entry = lpfc_resp_iocb(phba, pring);
4053 phba->last_completion_time = jiffies;
4054 rspiocbp = __lpfc_sli_get_iocbq(phba);
4055 if (rspiocbp == NULL) {
4056 printk(KERN_ERR "%s: out of buffers! Failing "
4057 "completion.\n", __func__);
4058 break;
4061 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4062 phba->iocb_rsp_size);
4063 irsp = &rspiocbp->iocb;
4065 if (++pring->sli.sli3.rspidx >= portRspMax)
4066 pring->sli.sli3.rspidx = 0;
4068 if (pring->ringno == LPFC_ELS_RING) {
4069 lpfc_debugfs_slow_ring_trc(phba,
4070 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
4071 *(((uint32_t *) irsp) + 4),
4072 *(((uint32_t *) irsp) + 6),
4073 *(((uint32_t *) irsp) + 7));
4076 writel(pring->sli.sli3.rspidx,
4077 &phba->host_gp[pring->ringno].rspGetInx);
4079 spin_unlock_irqrestore(&phba->hbalock, iflag);
4080 /* Handle the response IOCB */
4081 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4082 spin_lock_irqsave(&phba->hbalock, iflag);
4085 * If the port response put pointer has not been updated, sync
4086 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4087 * response put pointer.
4089 if (pring->sli.sli3.rspidx == portRspPut) {
4090 portRspPut = le32_to_cpu(pgp->rspPutInx);
4092 } /* while (pring->sli.sli3.rspidx != portRspPut) */
4094 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4095 /* At least one response entry has been freed */
4096 pring->stats.iocb_rsp_full++;
4097 /* SET RxRE_RSP in Chip Att register */
4098 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4099 writel(status, phba->CAregaddr);
4100 readl(phba->CAregaddr); /* flush */
4102 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4103 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4104 pring->stats.iocb_cmd_empty++;
4106 /* Force update of the local copy of cmdGetInx */
4107 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4108 lpfc_sli_resume_iocb(phba, pring);
4110 if ((pring->lpfc_sli_cmd_available))
4111 (pring->lpfc_sli_cmd_available) (phba, pring);
4115 spin_unlock_irqrestore(&phba->hbalock, iflag);
4116 return;
4120 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4121 * @phba: Pointer to HBA context object.
4122 * @pring: Pointer to driver SLI ring object.
4123 * @mask: Host attention register mask for this ring.
4125 * This function is called from the worker thread when there is a pending
4126 * ELS response iocb on the driver internal slow-path response iocb worker
4127 * queue. The caller does not hold any lock. The function will remove each
4128 * response iocb from the response worker queue and calls the handle
4129 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4131 static void
4132 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4133 struct lpfc_sli_ring *pring, uint32_t mask)
4135 struct lpfc_iocbq *irspiocbq;
4136 struct hbq_dmabuf *dmabuf;
4137 struct lpfc_cq_event *cq_event;
4138 unsigned long iflag;
4139 int count = 0;
4141 spin_lock_irqsave(&phba->hbalock, iflag);
4142 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4143 spin_unlock_irqrestore(&phba->hbalock, iflag);
4144 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4145 /* Get the response iocb from the head of work queue */
4146 spin_lock_irqsave(&phba->hbalock, iflag);
4147 list_remove_head(&phba->sli4_hba.sp_queue_event,
4148 cq_event, struct lpfc_cq_event, list);
4149 spin_unlock_irqrestore(&phba->hbalock, iflag);
4151 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4152 case CQE_CODE_COMPL_WQE:
4153 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4154 cq_event);
4155 /* Translate ELS WCQE to response IOCBQ */
4156 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4157 irspiocbq);
4158 if (irspiocbq)
4159 lpfc_sli_sp_handle_rspiocb(phba, pring,
4160 irspiocbq);
4161 count++;
4162 break;
4163 case CQE_CODE_RECEIVE:
4164 case CQE_CODE_RECEIVE_V1:
4165 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4166 cq_event);
4167 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4168 count++;
4169 break;
4170 default:
4171 break;
4174 /* Limit the number of events to 64 to avoid soft lockups */
4175 if (count == 64)
4176 break;
4181 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4182 * @phba: Pointer to HBA context object.
4183 * @pring: Pointer to driver SLI ring object.
4185 * This function aborts all iocbs in the given ring and frees all the iocb
4186 * objects in txq. This function issues an abort iocb for all the iocb commands
4187 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4188 * the return of this function. The caller is not required to hold any locks.
4190 void
4191 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4193 LIST_HEAD(completions);
4194 struct lpfc_iocbq *iocb, *next_iocb;
4196 if (pring->ringno == LPFC_ELS_RING) {
4197 lpfc_fabric_abort_hba(phba);
4200 /* Error everything on txq and txcmplq
4201 * First do the txq.
4203 if (phba->sli_rev >= LPFC_SLI_REV4) {
4204 spin_lock_irq(&pring->ring_lock);
4205 list_splice_init(&pring->txq, &completions);
4206 pring->txq_cnt = 0;
4207 spin_unlock_irq(&pring->ring_lock);
4209 spin_lock_irq(&phba->hbalock);
4210 /* Next issue ABTS for everything on the txcmplq */
4211 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4212 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4213 spin_unlock_irq(&phba->hbalock);
4214 } else {
4215 spin_lock_irq(&phba->hbalock);
4216 list_splice_init(&pring->txq, &completions);
4217 pring->txq_cnt = 0;
4219 /* Next issue ABTS for everything on the txcmplq */
4220 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4221 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4222 spin_unlock_irq(&phba->hbalock);
4225 /* Cancel all the IOCBs from the completions list */
4226 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4227 IOERR_SLI_ABORTED);
4231 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4232 * @phba: Pointer to HBA context object.
4234 * This function aborts all iocbs in FCP rings and frees all the iocb
4235 * objects in txq. This function issues an abort iocb for all the iocb commands
4236 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4237 * the return of this function. The caller is not required to hold any locks.
4239 void
4240 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4242 struct lpfc_sli *psli = &phba->sli;
4243 struct lpfc_sli_ring *pring;
4244 uint32_t i;
4246 /* Look on all the FCP Rings for the iotag */
4247 if (phba->sli_rev >= LPFC_SLI_REV4) {
4248 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4249 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4250 lpfc_sli_abort_iocb_ring(phba, pring);
4252 } else {
4253 pring = &psli->sli3_ring[LPFC_FCP_RING];
4254 lpfc_sli_abort_iocb_ring(phba, pring);
4259 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4260 * @phba: Pointer to HBA context object.
4262 * This function flushes all iocbs in the IO ring and frees all the iocb
4263 * objects in txq and txcmplq. This function will not issue abort iocbs
4264 * for all the iocb commands in txcmplq, they will just be returned with
4265 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4266 * slot has been permanently disabled.
4268 void
4269 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4271 LIST_HEAD(txq);
4272 LIST_HEAD(txcmplq);
4273 struct lpfc_sli *psli = &phba->sli;
4274 struct lpfc_sli_ring *pring;
4275 uint32_t i;
4276 struct lpfc_iocbq *piocb, *next_iocb;
4278 spin_lock_irq(&phba->hbalock);
4279 if (phba->hba_flag & HBA_IOQ_FLUSH ||
4280 !phba->sli4_hba.hdwq) {
4281 spin_unlock_irq(&phba->hbalock);
4282 return;
4284 /* Indicate the I/O queues are flushed */
4285 phba->hba_flag |= HBA_IOQ_FLUSH;
4286 spin_unlock_irq(&phba->hbalock);
4288 /* Look on all the FCP Rings for the iotag */
4289 if (phba->sli_rev >= LPFC_SLI_REV4) {
4290 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4291 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4293 spin_lock_irq(&pring->ring_lock);
4294 /* Retrieve everything on txq */
4295 list_splice_init(&pring->txq, &txq);
4296 list_for_each_entry_safe(piocb, next_iocb,
4297 &pring->txcmplq, list)
4298 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4299 /* Retrieve everything on the txcmplq */
4300 list_splice_init(&pring->txcmplq, &txcmplq);
4301 pring->txq_cnt = 0;
4302 pring->txcmplq_cnt = 0;
4303 spin_unlock_irq(&pring->ring_lock);
4305 /* Flush the txq */
4306 lpfc_sli_cancel_iocbs(phba, &txq,
4307 IOSTAT_LOCAL_REJECT,
4308 IOERR_SLI_DOWN);
4309 /* Flush the txcmpq */
4310 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4311 IOSTAT_LOCAL_REJECT,
4312 IOERR_SLI_DOWN);
4314 } else {
4315 pring = &psli->sli3_ring[LPFC_FCP_RING];
4317 spin_lock_irq(&phba->hbalock);
4318 /* Retrieve everything on txq */
4319 list_splice_init(&pring->txq, &txq);
4320 list_for_each_entry_safe(piocb, next_iocb,
4321 &pring->txcmplq, list)
4322 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4323 /* Retrieve everything on the txcmplq */
4324 list_splice_init(&pring->txcmplq, &txcmplq);
4325 pring->txq_cnt = 0;
4326 pring->txcmplq_cnt = 0;
4327 spin_unlock_irq(&phba->hbalock);
4329 /* Flush the txq */
4330 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4331 IOERR_SLI_DOWN);
4332 /* Flush the txcmpq */
4333 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4334 IOERR_SLI_DOWN);
4339 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4340 * @phba: Pointer to HBA context object.
4341 * @mask: Bit mask to be checked.
4343 * This function reads the host status register and compares
4344 * with the provided bit mask to check if HBA completed
4345 * the restart. This function will wait in a loop for the
4346 * HBA to complete restart. If the HBA does not restart within
4347 * 15 iterations, the function will reset the HBA again. The
4348 * function returns 1 when HBA fail to restart otherwise returns
4349 * zero.
4351 static int
4352 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4354 uint32_t status;
4355 int i = 0;
4356 int retval = 0;
4358 /* Read the HBA Host Status Register */
4359 if (lpfc_readl(phba->HSregaddr, &status))
4360 return 1;
4363 * Check status register every 100ms for 5 retries, then every
4364 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4365 * every 2.5 sec for 4.
4366 * Break our of the loop if errors occurred during init.
4368 while (((status & mask) != mask) &&
4369 !(status & HS_FFERM) &&
4370 i++ < 20) {
4372 if (i <= 5)
4373 msleep(10);
4374 else if (i <= 10)
4375 msleep(500);
4376 else
4377 msleep(2500);
4379 if (i == 15) {
4380 /* Do post */
4381 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4382 lpfc_sli_brdrestart(phba);
4384 /* Read the HBA Host Status Register */
4385 if (lpfc_readl(phba->HSregaddr, &status)) {
4386 retval = 1;
4387 break;
4391 /* Check to see if any errors occurred during init */
4392 if ((status & HS_FFERM) || (i >= 20)) {
4393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4394 "2751 Adapter failed to restart, "
4395 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4396 status,
4397 readl(phba->MBslimaddr + 0xa8),
4398 readl(phba->MBslimaddr + 0xac));
4399 phba->link_state = LPFC_HBA_ERROR;
4400 retval = 1;
4403 return retval;
4407 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4408 * @phba: Pointer to HBA context object.
4409 * @mask: Bit mask to be checked.
4411 * This function checks the host status register to check if HBA is
4412 * ready. This function will wait in a loop for the HBA to be ready
4413 * If the HBA is not ready , the function will will reset the HBA PCI
4414 * function again. The function returns 1 when HBA fail to be ready
4415 * otherwise returns zero.
4417 static int
4418 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4420 uint32_t status;
4421 int retval = 0;
4423 /* Read the HBA Host Status Register */
4424 status = lpfc_sli4_post_status_check(phba);
4426 if (status) {
4427 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4428 lpfc_sli_brdrestart(phba);
4429 status = lpfc_sli4_post_status_check(phba);
4432 /* Check to see if any errors occurred during init */
4433 if (status) {
4434 phba->link_state = LPFC_HBA_ERROR;
4435 retval = 1;
4436 } else
4437 phba->sli4_hba.intr_enable = 0;
4439 return retval;
4443 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4444 * @phba: Pointer to HBA context object.
4445 * @mask: Bit mask to be checked.
4447 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4448 * from the API jump table function pointer from the lpfc_hba struct.
4451 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4453 return phba->lpfc_sli_brdready(phba, mask);
4456 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4459 * lpfc_reset_barrier - Make HBA ready for HBA reset
4460 * @phba: Pointer to HBA context object.
4462 * This function is called before resetting an HBA. This function is called
4463 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4465 void lpfc_reset_barrier(struct lpfc_hba *phba)
4467 uint32_t __iomem *resp_buf;
4468 uint32_t __iomem *mbox_buf;
4469 volatile uint32_t mbox;
4470 uint32_t hc_copy, ha_copy, resp_data;
4471 int i;
4472 uint8_t hdrtype;
4474 lockdep_assert_held(&phba->hbalock);
4476 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4477 if (hdrtype != 0x80 ||
4478 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4479 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4480 return;
4483 * Tell the other part of the chip to suspend temporarily all
4484 * its DMA activity.
4486 resp_buf = phba->MBslimaddr;
4488 /* Disable the error attention */
4489 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4490 return;
4491 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4492 readl(phba->HCregaddr); /* flush */
4493 phba->link_flag |= LS_IGNORE_ERATT;
4495 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4496 return;
4497 if (ha_copy & HA_ERATT) {
4498 /* Clear Chip error bit */
4499 writel(HA_ERATT, phba->HAregaddr);
4500 phba->pport->stopped = 1;
4503 mbox = 0;
4504 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4505 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4507 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4508 mbox_buf = phba->MBslimaddr;
4509 writel(mbox, mbox_buf);
4511 for (i = 0; i < 50; i++) {
4512 if (lpfc_readl((resp_buf + 1), &resp_data))
4513 return;
4514 if (resp_data != ~(BARRIER_TEST_PATTERN))
4515 mdelay(1);
4516 else
4517 break;
4519 resp_data = 0;
4520 if (lpfc_readl((resp_buf + 1), &resp_data))
4521 return;
4522 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4523 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4524 phba->pport->stopped)
4525 goto restore_hc;
4526 else
4527 goto clear_errat;
4530 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4531 resp_data = 0;
4532 for (i = 0; i < 500; i++) {
4533 if (lpfc_readl(resp_buf, &resp_data))
4534 return;
4535 if (resp_data != mbox)
4536 mdelay(1);
4537 else
4538 break;
4541 clear_errat:
4543 while (++i < 500) {
4544 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4545 return;
4546 if (!(ha_copy & HA_ERATT))
4547 mdelay(1);
4548 else
4549 break;
4552 if (readl(phba->HAregaddr) & HA_ERATT) {
4553 writel(HA_ERATT, phba->HAregaddr);
4554 phba->pport->stopped = 1;
4557 restore_hc:
4558 phba->link_flag &= ~LS_IGNORE_ERATT;
4559 writel(hc_copy, phba->HCregaddr);
4560 readl(phba->HCregaddr); /* flush */
4564 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4565 * @phba: Pointer to HBA context object.
4567 * This function issues a kill_board mailbox command and waits for
4568 * the error attention interrupt. This function is called for stopping
4569 * the firmware processing. The caller is not required to hold any
4570 * locks. This function calls lpfc_hba_down_post function to free
4571 * any pending commands after the kill. The function will return 1 when it
4572 * fails to kill the board else will return 0.
4575 lpfc_sli_brdkill(struct lpfc_hba *phba)
4577 struct lpfc_sli *psli;
4578 LPFC_MBOXQ_t *pmb;
4579 uint32_t status;
4580 uint32_t ha_copy;
4581 int retval;
4582 int i = 0;
4584 psli = &phba->sli;
4586 /* Kill HBA */
4587 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4588 "0329 Kill HBA Data: x%x x%x\n",
4589 phba->pport->port_state, psli->sli_flag);
4591 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4592 if (!pmb)
4593 return 1;
4595 /* Disable the error attention */
4596 spin_lock_irq(&phba->hbalock);
4597 if (lpfc_readl(phba->HCregaddr, &status)) {
4598 spin_unlock_irq(&phba->hbalock);
4599 mempool_free(pmb, phba->mbox_mem_pool);
4600 return 1;
4602 status &= ~HC_ERINT_ENA;
4603 writel(status, phba->HCregaddr);
4604 readl(phba->HCregaddr); /* flush */
4605 phba->link_flag |= LS_IGNORE_ERATT;
4606 spin_unlock_irq(&phba->hbalock);
4608 lpfc_kill_board(phba, pmb);
4609 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4610 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4612 if (retval != MBX_SUCCESS) {
4613 if (retval != MBX_BUSY)
4614 mempool_free(pmb, phba->mbox_mem_pool);
4615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4616 "2752 KILL_BOARD command failed retval %d\n",
4617 retval);
4618 spin_lock_irq(&phba->hbalock);
4619 phba->link_flag &= ~LS_IGNORE_ERATT;
4620 spin_unlock_irq(&phba->hbalock);
4621 return 1;
4624 spin_lock_irq(&phba->hbalock);
4625 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4626 spin_unlock_irq(&phba->hbalock);
4628 mempool_free(pmb, phba->mbox_mem_pool);
4630 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4631 * attention every 100ms for 3 seconds. If we don't get ERATT after
4632 * 3 seconds we still set HBA_ERROR state because the status of the
4633 * board is now undefined.
4635 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4636 return 1;
4637 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4638 mdelay(100);
4639 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4640 return 1;
4643 del_timer_sync(&psli->mbox_tmo);
4644 if (ha_copy & HA_ERATT) {
4645 writel(HA_ERATT, phba->HAregaddr);
4646 phba->pport->stopped = 1;
4648 spin_lock_irq(&phba->hbalock);
4649 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4650 psli->mbox_active = NULL;
4651 phba->link_flag &= ~LS_IGNORE_ERATT;
4652 spin_unlock_irq(&phba->hbalock);
4654 lpfc_hba_down_post(phba);
4655 phba->link_state = LPFC_HBA_ERROR;
4657 return ha_copy & HA_ERATT ? 0 : 1;
4661 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4662 * @phba: Pointer to HBA context object.
4664 * This function resets the HBA by writing HC_INITFF to the control
4665 * register. After the HBA resets, this function resets all the iocb ring
4666 * indices. This function disables PCI layer parity checking during
4667 * the reset.
4668 * This function returns 0 always.
4669 * The caller is not required to hold any locks.
4672 lpfc_sli_brdreset(struct lpfc_hba *phba)
4674 struct lpfc_sli *psli;
4675 struct lpfc_sli_ring *pring;
4676 uint16_t cfg_value;
4677 int i;
4679 psli = &phba->sli;
4681 /* Reset HBA */
4682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4683 "0325 Reset HBA Data: x%x x%x\n",
4684 (phba->pport) ? phba->pport->port_state : 0,
4685 psli->sli_flag);
4687 /* perform board reset */
4688 phba->fc_eventTag = 0;
4689 phba->link_events = 0;
4690 if (phba->pport) {
4691 phba->pport->fc_myDID = 0;
4692 phba->pport->fc_prevDID = 0;
4695 /* Turn off parity checking and serr during the physical reset */
4696 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4697 return -EIO;
4699 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4700 (cfg_value &
4701 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4703 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4705 /* Now toggle INITFF bit in the Host Control Register */
4706 writel(HC_INITFF, phba->HCregaddr);
4707 mdelay(1);
4708 readl(phba->HCregaddr); /* flush */
4709 writel(0, phba->HCregaddr);
4710 readl(phba->HCregaddr); /* flush */
4712 /* Restore PCI cmd register */
4713 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4715 /* Initialize relevant SLI info */
4716 for (i = 0; i < psli->num_rings; i++) {
4717 pring = &psli->sli3_ring[i];
4718 pring->flag = 0;
4719 pring->sli.sli3.rspidx = 0;
4720 pring->sli.sli3.next_cmdidx = 0;
4721 pring->sli.sli3.local_getidx = 0;
4722 pring->sli.sli3.cmdidx = 0;
4723 pring->missbufcnt = 0;
4726 phba->link_state = LPFC_WARM_START;
4727 return 0;
4731 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4732 * @phba: Pointer to HBA context object.
4734 * This function resets a SLI4 HBA. This function disables PCI layer parity
4735 * checking during resets the device. The caller is not required to hold
4736 * any locks.
4738 * This function returns 0 on success else returns negative error code.
4741 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4743 struct lpfc_sli *psli = &phba->sli;
4744 uint16_t cfg_value;
4745 int rc = 0;
4747 /* Reset HBA */
4748 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4749 "0295 Reset HBA Data: x%x x%x x%x\n",
4750 phba->pport->port_state, psli->sli_flag,
4751 phba->hba_flag);
4753 /* perform board reset */
4754 phba->fc_eventTag = 0;
4755 phba->link_events = 0;
4756 phba->pport->fc_myDID = 0;
4757 phba->pport->fc_prevDID = 0;
4759 spin_lock_irq(&phba->hbalock);
4760 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4761 phba->fcf.fcf_flag = 0;
4762 spin_unlock_irq(&phba->hbalock);
4764 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4765 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4766 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4767 return rc;
4770 /* Now physically reset the device */
4771 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4772 "0389 Performing PCI function reset!\n");
4774 /* Turn off parity checking and serr during the physical reset */
4775 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4777 "3205 PCI read Config failed\n");
4778 return -EIO;
4781 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4782 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4784 /* Perform FCoE PCI function reset before freeing queue memory */
4785 rc = lpfc_pci_function_reset(phba);
4787 /* Restore PCI cmd register */
4788 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4790 return rc;
4794 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4795 * @phba: Pointer to HBA context object.
4797 * This function is called in the SLI initialization code path to
4798 * restart the HBA. The caller is not required to hold any lock.
4799 * This function writes MBX_RESTART mailbox command to the SLIM and
4800 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4801 * function to free any pending commands. The function enables
4802 * POST only during the first initialization. The function returns zero.
4803 * The function does not guarantee completion of MBX_RESTART mailbox
4804 * command before the return of this function.
4806 static int
4807 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4809 MAILBOX_t *mb;
4810 struct lpfc_sli *psli;
4811 volatile uint32_t word0;
4812 void __iomem *to_slim;
4813 uint32_t hba_aer_enabled;
4815 spin_lock_irq(&phba->hbalock);
4817 /* Take PCIe device Advanced Error Reporting (AER) state */
4818 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4820 psli = &phba->sli;
4822 /* Restart HBA */
4823 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4824 "0337 Restart HBA Data: x%x x%x\n",
4825 (phba->pport) ? phba->pport->port_state : 0,
4826 psli->sli_flag);
4828 word0 = 0;
4829 mb = (MAILBOX_t *) &word0;
4830 mb->mbxCommand = MBX_RESTART;
4831 mb->mbxHc = 1;
4833 lpfc_reset_barrier(phba);
4835 to_slim = phba->MBslimaddr;
4836 writel(*(uint32_t *) mb, to_slim);
4837 readl(to_slim); /* flush */
4839 /* Only skip post after fc_ffinit is completed */
4840 if (phba->pport && phba->pport->port_state)
4841 word0 = 1; /* This is really setting up word1 */
4842 else
4843 word0 = 0; /* This is really setting up word1 */
4844 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4845 writel(*(uint32_t *) mb, to_slim);
4846 readl(to_slim); /* flush */
4848 lpfc_sli_brdreset(phba);
4849 if (phba->pport)
4850 phba->pport->stopped = 0;
4851 phba->link_state = LPFC_INIT_START;
4852 phba->hba_flag = 0;
4853 spin_unlock_irq(&phba->hbalock);
4855 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4856 psli->stats_start = ktime_get_seconds();
4858 /* Give the INITFF and Post time to settle. */
4859 mdelay(100);
4861 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4862 if (hba_aer_enabled)
4863 pci_disable_pcie_error_reporting(phba->pcidev);
4865 lpfc_hba_down_post(phba);
4867 return 0;
4871 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4872 * @phba: Pointer to HBA context object.
4874 * This function is called in the SLI initialization code path to restart
4875 * a SLI4 HBA. The caller is not required to hold any lock.
4876 * At the end of the function, it calls lpfc_hba_down_post function to
4877 * free any pending commands.
4879 static int
4880 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4882 struct lpfc_sli *psli = &phba->sli;
4883 uint32_t hba_aer_enabled;
4884 int rc;
4886 /* Restart HBA */
4887 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4888 "0296 Restart HBA Data: x%x x%x\n",
4889 phba->pport->port_state, psli->sli_flag);
4891 /* Take PCIe device Advanced Error Reporting (AER) state */
4892 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4894 rc = lpfc_sli4_brdreset(phba);
4895 if (rc) {
4896 phba->link_state = LPFC_HBA_ERROR;
4897 goto hba_down_queue;
4900 spin_lock_irq(&phba->hbalock);
4901 phba->pport->stopped = 0;
4902 phba->link_state = LPFC_INIT_START;
4903 phba->hba_flag = 0;
4904 spin_unlock_irq(&phba->hbalock);
4906 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4907 psli->stats_start = ktime_get_seconds();
4909 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4910 if (hba_aer_enabled)
4911 pci_disable_pcie_error_reporting(phba->pcidev);
4913 hba_down_queue:
4914 lpfc_hba_down_post(phba);
4915 lpfc_sli4_queue_destroy(phba);
4917 return rc;
4921 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4922 * @phba: Pointer to HBA context object.
4924 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4925 * API jump table function pointer from the lpfc_hba struct.
4928 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4930 return phba->lpfc_sli_brdrestart(phba);
4934 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4935 * @phba: Pointer to HBA context object.
4937 * This function is called after a HBA restart to wait for successful
4938 * restart of the HBA. Successful restart of the HBA is indicated by
4939 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4940 * iteration, the function will restart the HBA again. The function returns
4941 * zero if HBA successfully restarted else returns negative error code.
4944 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4946 uint32_t status, i = 0;
4948 /* Read the HBA Host Status Register */
4949 if (lpfc_readl(phba->HSregaddr, &status))
4950 return -EIO;
4952 /* Check status register to see what current state is */
4953 i = 0;
4954 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4956 /* Check every 10ms for 10 retries, then every 100ms for 90
4957 * retries, then every 1 sec for 50 retires for a total of
4958 * ~60 seconds before reset the board again and check every
4959 * 1 sec for 50 retries. The up to 60 seconds before the
4960 * board ready is required by the Falcon FIPS zeroization
4961 * complete, and any reset the board in between shall cause
4962 * restart of zeroization, further delay the board ready.
4964 if (i++ >= 200) {
4965 /* Adapter failed to init, timeout, status reg
4966 <status> */
4967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4968 "0436 Adapter failed to init, "
4969 "timeout, status reg x%x, "
4970 "FW Data: A8 x%x AC x%x\n", status,
4971 readl(phba->MBslimaddr + 0xa8),
4972 readl(phba->MBslimaddr + 0xac));
4973 phba->link_state = LPFC_HBA_ERROR;
4974 return -ETIMEDOUT;
4977 /* Check to see if any errors occurred during init */
4978 if (status & HS_FFERM) {
4979 /* ERROR: During chipset initialization */
4980 /* Adapter failed to init, chipset, status reg
4981 <status> */
4982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4983 "0437 Adapter failed to init, "
4984 "chipset, status reg x%x, "
4985 "FW Data: A8 x%x AC x%x\n", status,
4986 readl(phba->MBslimaddr + 0xa8),
4987 readl(phba->MBslimaddr + 0xac));
4988 phba->link_state = LPFC_HBA_ERROR;
4989 return -EIO;
4992 if (i <= 10)
4993 msleep(10);
4994 else if (i <= 100)
4995 msleep(100);
4996 else
4997 msleep(1000);
4999 if (i == 150) {
5000 /* Do post */
5001 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5002 lpfc_sli_brdrestart(phba);
5004 /* Read the HBA Host Status Register */
5005 if (lpfc_readl(phba->HSregaddr, &status))
5006 return -EIO;
5009 /* Check to see if any errors occurred during init */
5010 if (status & HS_FFERM) {
5011 /* ERROR: During chipset initialization */
5012 /* Adapter failed to init, chipset, status reg <status> */
5013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5014 "0438 Adapter failed to init, chipset, "
5015 "status reg x%x, "
5016 "FW Data: A8 x%x AC x%x\n", status,
5017 readl(phba->MBslimaddr + 0xa8),
5018 readl(phba->MBslimaddr + 0xac));
5019 phba->link_state = LPFC_HBA_ERROR;
5020 return -EIO;
5023 /* Clear all interrupt enable conditions */
5024 writel(0, phba->HCregaddr);
5025 readl(phba->HCregaddr); /* flush */
5027 /* setup host attn register */
5028 writel(0xffffffff, phba->HAregaddr);
5029 readl(phba->HAregaddr); /* flush */
5030 return 0;
5034 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5036 * This function calculates and returns the number of HBQs required to be
5037 * configured.
5040 lpfc_sli_hbq_count(void)
5042 return ARRAY_SIZE(lpfc_hbq_defs);
5046 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5048 * This function adds the number of hbq entries in every HBQ to get
5049 * the total number of hbq entries required for the HBA and returns
5050 * the total count.
5052 static int
5053 lpfc_sli_hbq_entry_count(void)
5055 int hbq_count = lpfc_sli_hbq_count();
5056 int count = 0;
5057 int i;
5059 for (i = 0; i < hbq_count; ++i)
5060 count += lpfc_hbq_defs[i]->entry_count;
5061 return count;
5065 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5067 * This function calculates amount of memory required for all hbq entries
5068 * to be configured and returns the total memory required.
5071 lpfc_sli_hbq_size(void)
5073 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5077 * lpfc_sli_hbq_setup - configure and initialize HBQs
5078 * @phba: Pointer to HBA context object.
5080 * This function is called during the SLI initialization to configure
5081 * all the HBQs and post buffers to the HBQ. The caller is not
5082 * required to hold any locks. This function will return zero if successful
5083 * else it will return negative error code.
5085 static int
5086 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5088 int hbq_count = lpfc_sli_hbq_count();
5089 LPFC_MBOXQ_t *pmb;
5090 MAILBOX_t *pmbox;
5091 uint32_t hbqno;
5092 uint32_t hbq_entry_index;
5094 /* Get a Mailbox buffer to setup mailbox
5095 * commands for HBA initialization
5097 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5099 if (!pmb)
5100 return -ENOMEM;
5102 pmbox = &pmb->u.mb;
5104 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
5105 phba->link_state = LPFC_INIT_MBX_CMDS;
5106 phba->hbq_in_use = 1;
5108 hbq_entry_index = 0;
5109 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5110 phba->hbqs[hbqno].next_hbqPutIdx = 0;
5111 phba->hbqs[hbqno].hbqPutIdx = 0;
5112 phba->hbqs[hbqno].local_hbqGetIdx = 0;
5113 phba->hbqs[hbqno].entry_count =
5114 lpfc_hbq_defs[hbqno]->entry_count;
5115 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5116 hbq_entry_index, pmb);
5117 hbq_entry_index += phba->hbqs[hbqno].entry_count;
5119 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5120 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5121 mbxStatus <status>, ring <num> */
5123 lpfc_printf_log(phba, KERN_ERR,
5124 LOG_SLI | LOG_VPORT,
5125 "1805 Adapter failed to init. "
5126 "Data: x%x x%x x%x\n",
5127 pmbox->mbxCommand,
5128 pmbox->mbxStatus, hbqno);
5130 phba->link_state = LPFC_HBA_ERROR;
5131 mempool_free(pmb, phba->mbox_mem_pool);
5132 return -ENXIO;
5135 phba->hbq_count = hbq_count;
5137 mempool_free(pmb, phba->mbox_mem_pool);
5139 /* Initially populate or replenish the HBQs */
5140 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5141 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5142 return 0;
5146 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5147 * @phba: Pointer to HBA context object.
5149 * This function is called during the SLI initialization to configure
5150 * all the HBQs and post buffers to the HBQ. The caller is not
5151 * required to hold any locks. This function will return zero if successful
5152 * else it will return negative error code.
5154 static int
5155 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5157 phba->hbq_in_use = 1;
5159 * Specific case when the MDS diagnostics is enabled and supported.
5160 * The receive buffer count is truncated to manage the incoming
5161 * traffic.
5163 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5164 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5165 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5166 else
5167 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5168 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5169 phba->hbq_count = 1;
5170 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5171 /* Initially populate or replenish the HBQs */
5172 return 0;
5176 * lpfc_sli_config_port - Issue config port mailbox command
5177 * @phba: Pointer to HBA context object.
5178 * @sli_mode: sli mode - 2/3
5180 * This function is called by the sli initialization code path
5181 * to issue config_port mailbox command. This function restarts the
5182 * HBA firmware and issues a config_port mailbox command to configure
5183 * the SLI interface in the sli mode specified by sli_mode
5184 * variable. The caller is not required to hold any locks.
5185 * The function returns 0 if successful, else returns negative error
5186 * code.
5189 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5191 LPFC_MBOXQ_t *pmb;
5192 uint32_t resetcount = 0, rc = 0, done = 0;
5194 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5195 if (!pmb) {
5196 phba->link_state = LPFC_HBA_ERROR;
5197 return -ENOMEM;
5200 phba->sli_rev = sli_mode;
5201 while (resetcount < 2 && !done) {
5202 spin_lock_irq(&phba->hbalock);
5203 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5204 spin_unlock_irq(&phba->hbalock);
5205 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5206 lpfc_sli_brdrestart(phba);
5207 rc = lpfc_sli_chipset_init(phba);
5208 if (rc)
5209 break;
5211 spin_lock_irq(&phba->hbalock);
5212 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5213 spin_unlock_irq(&phba->hbalock);
5214 resetcount++;
5216 /* Call pre CONFIG_PORT mailbox command initialization. A
5217 * value of 0 means the call was successful. Any other
5218 * nonzero value is a failure, but if ERESTART is returned,
5219 * the driver may reset the HBA and try again.
5221 rc = lpfc_config_port_prep(phba);
5222 if (rc == -ERESTART) {
5223 phba->link_state = LPFC_LINK_UNKNOWN;
5224 continue;
5225 } else if (rc)
5226 break;
5228 phba->link_state = LPFC_INIT_MBX_CMDS;
5229 lpfc_config_port(phba, pmb);
5230 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5231 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5232 LPFC_SLI3_HBQ_ENABLED |
5233 LPFC_SLI3_CRP_ENABLED |
5234 LPFC_SLI3_DSS_ENABLED);
5235 if (rc != MBX_SUCCESS) {
5236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5237 "0442 Adapter failed to init, mbxCmd x%x "
5238 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5239 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5240 spin_lock_irq(&phba->hbalock);
5241 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5242 spin_unlock_irq(&phba->hbalock);
5243 rc = -ENXIO;
5244 } else {
5245 /* Allow asynchronous mailbox command to go through */
5246 spin_lock_irq(&phba->hbalock);
5247 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5248 spin_unlock_irq(&phba->hbalock);
5249 done = 1;
5251 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5252 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5253 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5254 "3110 Port did not grant ASABT\n");
5257 if (!done) {
5258 rc = -EINVAL;
5259 goto do_prep_failed;
5261 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5262 if (!pmb->u.mb.un.varCfgPort.cMA) {
5263 rc = -ENXIO;
5264 goto do_prep_failed;
5266 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5267 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5268 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5269 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5270 phba->max_vpi : phba->max_vports;
5272 } else
5273 phba->max_vpi = 0;
5274 if (pmb->u.mb.un.varCfgPort.gerbm)
5275 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5276 if (pmb->u.mb.un.varCfgPort.gcrp)
5277 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5279 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5280 phba->port_gp = phba->mbox->us.s3_pgp.port;
5282 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5283 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5284 phba->cfg_enable_bg = 0;
5285 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5287 "0443 Adapter did not grant "
5288 "BlockGuard\n");
5291 } else {
5292 phba->hbq_get = NULL;
5293 phba->port_gp = phba->mbox->us.s2.port;
5294 phba->max_vpi = 0;
5296 do_prep_failed:
5297 mempool_free(pmb, phba->mbox_mem_pool);
5298 return rc;
5303 * lpfc_sli_hba_setup - SLI initialization function
5304 * @phba: Pointer to HBA context object.
5306 * This function is the main SLI initialization function. This function
5307 * is called by the HBA initialization code, HBA reset code and HBA
5308 * error attention handler code. Caller is not required to hold any
5309 * locks. This function issues config_port mailbox command to configure
5310 * the SLI, setup iocb rings and HBQ rings. In the end the function
5311 * calls the config_port_post function to issue init_link mailbox
5312 * command and to start the discovery. The function will return zero
5313 * if successful, else it will return negative error code.
5316 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5318 uint32_t rc;
5319 int mode = 3, i;
5320 int longs;
5322 switch (phba->cfg_sli_mode) {
5323 case 2:
5324 if (phba->cfg_enable_npiv) {
5325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5326 "1824 NPIV enabled: Override sli_mode "
5327 "parameter (%d) to auto (0).\n",
5328 phba->cfg_sli_mode);
5329 break;
5331 mode = 2;
5332 break;
5333 case 0:
5334 case 3:
5335 break;
5336 default:
5337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5338 "1819 Unrecognized sli_mode parameter: %d.\n",
5339 phba->cfg_sli_mode);
5341 break;
5343 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5345 rc = lpfc_sli_config_port(phba, mode);
5347 if (rc && phba->cfg_sli_mode == 3)
5348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5349 "1820 Unable to select SLI-3. "
5350 "Not supported by adapter.\n");
5351 if (rc && mode != 2)
5352 rc = lpfc_sli_config_port(phba, 2);
5353 else if (rc && mode == 2)
5354 rc = lpfc_sli_config_port(phba, 3);
5355 if (rc)
5356 goto lpfc_sli_hba_setup_error;
5358 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
5359 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5360 rc = pci_enable_pcie_error_reporting(phba->pcidev);
5361 if (!rc) {
5362 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5363 "2709 This device supports "
5364 "Advanced Error Reporting (AER)\n");
5365 spin_lock_irq(&phba->hbalock);
5366 phba->hba_flag |= HBA_AER_ENABLED;
5367 spin_unlock_irq(&phba->hbalock);
5368 } else {
5369 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5370 "2708 This device does not support "
5371 "Advanced Error Reporting (AER): %d\n",
5372 rc);
5373 phba->cfg_aer_support = 0;
5377 if (phba->sli_rev == 3) {
5378 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5379 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5380 } else {
5381 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5382 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5383 phba->sli3_options = 0;
5386 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5387 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5388 phba->sli_rev, phba->max_vpi);
5389 rc = lpfc_sli_ring_map(phba);
5391 if (rc)
5392 goto lpfc_sli_hba_setup_error;
5394 /* Initialize VPIs. */
5395 if (phba->sli_rev == LPFC_SLI_REV3) {
5397 * The VPI bitmask and physical ID array are allocated
5398 * and initialized once only - at driver load. A port
5399 * reset doesn't need to reinitialize this memory.
5401 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5402 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5403 phba->vpi_bmask = kcalloc(longs,
5404 sizeof(unsigned long),
5405 GFP_KERNEL);
5406 if (!phba->vpi_bmask) {
5407 rc = -ENOMEM;
5408 goto lpfc_sli_hba_setup_error;
5411 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5412 sizeof(uint16_t),
5413 GFP_KERNEL);
5414 if (!phba->vpi_ids) {
5415 kfree(phba->vpi_bmask);
5416 rc = -ENOMEM;
5417 goto lpfc_sli_hba_setup_error;
5419 for (i = 0; i < phba->max_vpi; i++)
5420 phba->vpi_ids[i] = i;
5424 /* Init HBQs */
5425 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5426 rc = lpfc_sli_hbq_setup(phba);
5427 if (rc)
5428 goto lpfc_sli_hba_setup_error;
5430 spin_lock_irq(&phba->hbalock);
5431 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5432 spin_unlock_irq(&phba->hbalock);
5434 rc = lpfc_config_port_post(phba);
5435 if (rc)
5436 goto lpfc_sli_hba_setup_error;
5438 return rc;
5440 lpfc_sli_hba_setup_error:
5441 phba->link_state = LPFC_HBA_ERROR;
5442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5443 "0445 Firmware initialization failed\n");
5444 return rc;
5448 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5449 * @phba: Pointer to HBA context object.
5451 * This function issue a dump mailbox command to read config region
5452 * 23 and parse the records in the region and populate driver
5453 * data structure.
5455 static int
5456 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5458 LPFC_MBOXQ_t *mboxq;
5459 struct lpfc_dmabuf *mp;
5460 struct lpfc_mqe *mqe;
5461 uint32_t data_length;
5462 int rc;
5464 /* Program the default value of vlan_id and fc_map */
5465 phba->valid_vlan = 0;
5466 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5467 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5468 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5470 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5471 if (!mboxq)
5472 return -ENOMEM;
5474 mqe = &mboxq->u.mqe;
5475 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5476 rc = -ENOMEM;
5477 goto out_free_mboxq;
5480 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5481 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5483 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5484 "(%d):2571 Mailbox cmd x%x Status x%x "
5485 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5486 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5487 "CQ: x%x x%x x%x x%x\n",
5488 mboxq->vport ? mboxq->vport->vpi : 0,
5489 bf_get(lpfc_mqe_command, mqe),
5490 bf_get(lpfc_mqe_status, mqe),
5491 mqe->un.mb_words[0], mqe->un.mb_words[1],
5492 mqe->un.mb_words[2], mqe->un.mb_words[3],
5493 mqe->un.mb_words[4], mqe->un.mb_words[5],
5494 mqe->un.mb_words[6], mqe->un.mb_words[7],
5495 mqe->un.mb_words[8], mqe->un.mb_words[9],
5496 mqe->un.mb_words[10], mqe->un.mb_words[11],
5497 mqe->un.mb_words[12], mqe->un.mb_words[13],
5498 mqe->un.mb_words[14], mqe->un.mb_words[15],
5499 mqe->un.mb_words[16], mqe->un.mb_words[50],
5500 mboxq->mcqe.word0,
5501 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5502 mboxq->mcqe.trailer);
5504 if (rc) {
5505 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5506 kfree(mp);
5507 rc = -EIO;
5508 goto out_free_mboxq;
5510 data_length = mqe->un.mb_words[5];
5511 if (data_length > DMP_RGN23_SIZE) {
5512 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5513 kfree(mp);
5514 rc = -EIO;
5515 goto out_free_mboxq;
5518 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5519 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5520 kfree(mp);
5521 rc = 0;
5523 out_free_mboxq:
5524 mempool_free(mboxq, phba->mbox_mem_pool);
5525 return rc;
5529 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5530 * @phba: pointer to lpfc hba data structure.
5531 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5532 * @vpd: pointer to the memory to hold resulting port vpd data.
5533 * @vpd_size: On input, the number of bytes allocated to @vpd.
5534 * On output, the number of data bytes in @vpd.
5536 * This routine executes a READ_REV SLI4 mailbox command. In
5537 * addition, this routine gets the port vpd data.
5539 * Return codes
5540 * 0 - successful
5541 * -ENOMEM - could not allocated memory.
5543 static int
5544 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5545 uint8_t *vpd, uint32_t *vpd_size)
5547 int rc = 0;
5548 uint32_t dma_size;
5549 struct lpfc_dmabuf *dmabuf;
5550 struct lpfc_mqe *mqe;
5552 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5553 if (!dmabuf)
5554 return -ENOMEM;
5557 * Get a DMA buffer for the vpd data resulting from the READ_REV
5558 * mailbox command.
5560 dma_size = *vpd_size;
5561 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5562 &dmabuf->phys, GFP_KERNEL);
5563 if (!dmabuf->virt) {
5564 kfree(dmabuf);
5565 return -ENOMEM;
5569 * The SLI4 implementation of READ_REV conflicts at word1,
5570 * bits 31:16 and SLI4 adds vpd functionality not present
5571 * in SLI3. This code corrects the conflicts.
5573 lpfc_read_rev(phba, mboxq);
5574 mqe = &mboxq->u.mqe;
5575 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5576 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5577 mqe->un.read_rev.word1 &= 0x0000FFFF;
5578 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5579 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5581 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5582 if (rc) {
5583 dma_free_coherent(&phba->pcidev->dev, dma_size,
5584 dmabuf->virt, dmabuf->phys);
5585 kfree(dmabuf);
5586 return -EIO;
5590 * The available vpd length cannot be bigger than the
5591 * DMA buffer passed to the port. Catch the less than
5592 * case and update the caller's size.
5594 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5595 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5597 memcpy(vpd, dmabuf->virt, *vpd_size);
5599 dma_free_coherent(&phba->pcidev->dev, dma_size,
5600 dmabuf->virt, dmabuf->phys);
5601 kfree(dmabuf);
5602 return 0;
5606 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5607 * @phba: pointer to lpfc hba data structure.
5609 * This routine retrieves SLI4 device physical port name this PCI function
5610 * is attached to.
5612 * Return codes
5613 * 0 - successful
5614 * otherwise - failed to retrieve controller attributes
5616 static int
5617 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5619 LPFC_MBOXQ_t *mboxq;
5620 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5621 struct lpfc_controller_attribute *cntl_attr;
5622 void *virtaddr = NULL;
5623 uint32_t alloclen, reqlen;
5624 uint32_t shdr_status, shdr_add_status;
5625 union lpfc_sli4_cfg_shdr *shdr;
5626 int rc;
5628 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5629 if (!mboxq)
5630 return -ENOMEM;
5632 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5633 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5634 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5635 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5636 LPFC_SLI4_MBX_NEMBED);
5638 if (alloclen < reqlen) {
5639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5640 "3084 Allocated DMA memory size (%d) is "
5641 "less than the requested DMA memory size "
5642 "(%d)\n", alloclen, reqlen);
5643 rc = -ENOMEM;
5644 goto out_free_mboxq;
5646 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5647 virtaddr = mboxq->sge_array->addr[0];
5648 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5649 shdr = &mbx_cntl_attr->cfg_shdr;
5650 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5651 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5652 if (shdr_status || shdr_add_status || rc) {
5653 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5654 "3085 Mailbox x%x (x%x/x%x) failed, "
5655 "rc:x%x, status:x%x, add_status:x%x\n",
5656 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5657 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5658 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5659 rc, shdr_status, shdr_add_status);
5660 rc = -ENXIO;
5661 goto out_free_mboxq;
5664 cntl_attr = &mbx_cntl_attr->cntl_attr;
5665 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5666 phba->sli4_hba.lnk_info.lnk_tp =
5667 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5668 phba->sli4_hba.lnk_info.lnk_no =
5669 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5671 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5672 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5673 sizeof(phba->BIOSVersion));
5675 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5676 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5677 phba->sli4_hba.lnk_info.lnk_tp,
5678 phba->sli4_hba.lnk_info.lnk_no,
5679 phba->BIOSVersion);
5680 out_free_mboxq:
5681 if (rc != MBX_TIMEOUT) {
5682 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5683 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5684 else
5685 mempool_free(mboxq, phba->mbox_mem_pool);
5687 return rc;
5691 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5692 * @phba: pointer to lpfc hba data structure.
5694 * This routine retrieves SLI4 device physical port name this PCI function
5695 * is attached to.
5697 * Return codes
5698 * 0 - successful
5699 * otherwise - failed to retrieve physical port name
5701 static int
5702 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5704 LPFC_MBOXQ_t *mboxq;
5705 struct lpfc_mbx_get_port_name *get_port_name;
5706 uint32_t shdr_status, shdr_add_status;
5707 union lpfc_sli4_cfg_shdr *shdr;
5708 char cport_name = 0;
5709 int rc;
5711 /* We assume nothing at this point */
5712 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5713 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5715 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5716 if (!mboxq)
5717 return -ENOMEM;
5718 /* obtain link type and link number via READ_CONFIG */
5719 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5720 lpfc_sli4_read_config(phba);
5721 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5722 goto retrieve_ppname;
5724 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5725 rc = lpfc_sli4_get_ctl_attr(phba);
5726 if (rc)
5727 goto out_free_mboxq;
5729 retrieve_ppname:
5730 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5731 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5732 sizeof(struct lpfc_mbx_get_port_name) -
5733 sizeof(struct lpfc_sli4_cfg_mhdr),
5734 LPFC_SLI4_MBX_EMBED);
5735 get_port_name = &mboxq->u.mqe.un.get_port_name;
5736 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5737 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5738 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5739 phba->sli4_hba.lnk_info.lnk_tp);
5740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5741 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5742 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5743 if (shdr_status || shdr_add_status || rc) {
5744 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5745 "3087 Mailbox x%x (x%x/x%x) failed: "
5746 "rc:x%x, status:x%x, add_status:x%x\n",
5747 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5748 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5749 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5750 rc, shdr_status, shdr_add_status);
5751 rc = -ENXIO;
5752 goto out_free_mboxq;
5754 switch (phba->sli4_hba.lnk_info.lnk_no) {
5755 case LPFC_LINK_NUMBER_0:
5756 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5757 &get_port_name->u.response);
5758 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5759 break;
5760 case LPFC_LINK_NUMBER_1:
5761 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5762 &get_port_name->u.response);
5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5764 break;
5765 case LPFC_LINK_NUMBER_2:
5766 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5767 &get_port_name->u.response);
5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5769 break;
5770 case LPFC_LINK_NUMBER_3:
5771 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5772 &get_port_name->u.response);
5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5774 break;
5775 default:
5776 break;
5779 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5780 phba->Port[0] = cport_name;
5781 phba->Port[1] = '\0';
5782 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5783 "3091 SLI get port name: %s\n", phba->Port);
5786 out_free_mboxq:
5787 if (rc != MBX_TIMEOUT) {
5788 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5789 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5790 else
5791 mempool_free(mboxq, phba->mbox_mem_pool);
5793 return rc;
5797 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5798 * @phba: pointer to lpfc hba data structure.
5800 * This routine is called to explicitly arm the SLI4 device's completion and
5801 * event queues
5803 static void
5804 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5806 int qidx;
5807 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5808 struct lpfc_sli4_hdw_queue *qp;
5809 struct lpfc_queue *eq;
5811 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5812 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5813 if (sli4_hba->nvmels_cq)
5814 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5815 LPFC_QUEUE_REARM);
5817 if (sli4_hba->hdwq) {
5818 /* Loop thru all Hardware Queues */
5819 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5820 qp = &sli4_hba->hdwq[qidx];
5821 /* ARM the corresponding CQ */
5822 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5823 LPFC_QUEUE_REARM);
5826 /* Loop thru all IRQ vectors */
5827 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5828 eq = sli4_hba->hba_eq_hdl[qidx].eq;
5829 /* ARM the corresponding EQ */
5830 sli4_hba->sli4_write_eq_db(phba, eq,
5831 0, LPFC_QUEUE_REARM);
5835 if (phba->nvmet_support) {
5836 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5837 sli4_hba->sli4_write_cq_db(phba,
5838 sli4_hba->nvmet_cqset[qidx], 0,
5839 LPFC_QUEUE_REARM);
5845 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5846 * @phba: Pointer to HBA context object.
5847 * @type: The resource extent type.
5848 * @extnt_count: buffer to hold port available extent count.
5849 * @extnt_size: buffer to hold element count per extent.
5851 * This function calls the port and retrievs the number of available
5852 * extents and their size for a particular extent type.
5854 * Returns: 0 if successful. Nonzero otherwise.
5857 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5858 uint16_t *extnt_count, uint16_t *extnt_size)
5860 int rc = 0;
5861 uint32_t length;
5862 uint32_t mbox_tmo;
5863 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5864 LPFC_MBOXQ_t *mbox;
5866 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5867 if (!mbox)
5868 return -ENOMEM;
5870 /* Find out how many extents are available for this resource type */
5871 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5872 sizeof(struct lpfc_sli4_cfg_mhdr));
5873 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5874 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5875 length, LPFC_SLI4_MBX_EMBED);
5877 /* Send an extents count of 0 - the GET doesn't use it. */
5878 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5879 LPFC_SLI4_MBX_EMBED);
5880 if (unlikely(rc)) {
5881 rc = -EIO;
5882 goto err_exit;
5885 if (!phba->sli4_hba.intr_enable)
5886 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5887 else {
5888 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5889 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5891 if (unlikely(rc)) {
5892 rc = -EIO;
5893 goto err_exit;
5896 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5897 if (bf_get(lpfc_mbox_hdr_status,
5898 &rsrc_info->header.cfg_shdr.response)) {
5899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5900 "2930 Failed to get resource extents "
5901 "Status 0x%x Add'l Status 0x%x\n",
5902 bf_get(lpfc_mbox_hdr_status,
5903 &rsrc_info->header.cfg_shdr.response),
5904 bf_get(lpfc_mbox_hdr_add_status,
5905 &rsrc_info->header.cfg_shdr.response));
5906 rc = -EIO;
5907 goto err_exit;
5910 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5911 &rsrc_info->u.rsp);
5912 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5913 &rsrc_info->u.rsp);
5915 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5916 "3162 Retrieved extents type-%d from port: count:%d, "
5917 "size:%d\n", type, *extnt_count, *extnt_size);
5919 err_exit:
5920 mempool_free(mbox, phba->mbox_mem_pool);
5921 return rc;
5925 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5926 * @phba: Pointer to HBA context object.
5927 * @type: The extent type to check.
5929 * This function reads the current available extents from the port and checks
5930 * if the extent count or extent size has changed since the last access.
5931 * Callers use this routine post port reset to understand if there is a
5932 * extent reprovisioning requirement.
5934 * Returns:
5935 * -Error: error indicates problem.
5936 * 1: Extent count or size has changed.
5937 * 0: No changes.
5939 static int
5940 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5942 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5943 uint16_t size_diff, rsrc_ext_size;
5944 int rc = 0;
5945 struct lpfc_rsrc_blks *rsrc_entry;
5946 struct list_head *rsrc_blk_list = NULL;
5948 size_diff = 0;
5949 curr_ext_cnt = 0;
5950 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5951 &rsrc_ext_cnt,
5952 &rsrc_ext_size);
5953 if (unlikely(rc))
5954 return -EIO;
5956 switch (type) {
5957 case LPFC_RSC_TYPE_FCOE_RPI:
5958 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5959 break;
5960 case LPFC_RSC_TYPE_FCOE_VPI:
5961 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5962 break;
5963 case LPFC_RSC_TYPE_FCOE_XRI:
5964 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5965 break;
5966 case LPFC_RSC_TYPE_FCOE_VFI:
5967 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5968 break;
5969 default:
5970 break;
5973 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5974 curr_ext_cnt++;
5975 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5976 size_diff++;
5979 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5980 rc = 1;
5982 return rc;
5986 * lpfc_sli4_cfg_post_extnts -
5987 * @phba: Pointer to HBA context object.
5988 * @extnt_cnt: number of available extents.
5989 * @type: the extent type (rpi, xri, vfi, vpi).
5990 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5991 * @mbox: pointer to the caller's allocated mailbox structure.
5993 * This function executes the extents allocation request. It also
5994 * takes care of the amount of memory needed to allocate or get the
5995 * allocated extents. It is the caller's responsibility to evaluate
5996 * the response.
5998 * Returns:
5999 * -Error: Error value describes the condition found.
6000 * 0: if successful
6002 static int
6003 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6004 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6006 int rc = 0;
6007 uint32_t req_len;
6008 uint32_t emb_len;
6009 uint32_t alloc_len, mbox_tmo;
6011 /* Calculate the total requested length of the dma memory */
6012 req_len = extnt_cnt * sizeof(uint16_t);
6015 * Calculate the size of an embedded mailbox. The uint32_t
6016 * accounts for extents-specific word.
6018 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6019 sizeof(uint32_t);
6022 * Presume the allocation and response will fit into an embedded
6023 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6025 *emb = LPFC_SLI4_MBX_EMBED;
6026 if (req_len > emb_len) {
6027 req_len = extnt_cnt * sizeof(uint16_t) +
6028 sizeof(union lpfc_sli4_cfg_shdr) +
6029 sizeof(uint32_t);
6030 *emb = LPFC_SLI4_MBX_NEMBED;
6033 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6034 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6035 req_len, *emb);
6036 if (alloc_len < req_len) {
6037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6038 "2982 Allocated DMA memory size (x%x) is "
6039 "less than the requested DMA memory "
6040 "size (x%x)\n", alloc_len, req_len);
6041 return -ENOMEM;
6043 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6044 if (unlikely(rc))
6045 return -EIO;
6047 if (!phba->sli4_hba.intr_enable)
6048 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6049 else {
6050 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6051 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6054 if (unlikely(rc))
6055 rc = -EIO;
6056 return rc;
6060 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6061 * @phba: Pointer to HBA context object.
6062 * @type: The resource extent type to allocate.
6064 * This function allocates the number of elements for the specified
6065 * resource type.
6067 static int
6068 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6070 bool emb = false;
6071 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6072 uint16_t rsrc_id, rsrc_start, j, k;
6073 uint16_t *ids;
6074 int i, rc;
6075 unsigned long longs;
6076 unsigned long *bmask;
6077 struct lpfc_rsrc_blks *rsrc_blks;
6078 LPFC_MBOXQ_t *mbox;
6079 uint32_t length;
6080 struct lpfc_id_range *id_array = NULL;
6081 void *virtaddr = NULL;
6082 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6083 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6084 struct list_head *ext_blk_list;
6086 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6087 &rsrc_cnt,
6088 &rsrc_size);
6089 if (unlikely(rc))
6090 return -EIO;
6092 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6094 "3009 No available Resource Extents "
6095 "for resource type 0x%x: Count: 0x%x, "
6096 "Size 0x%x\n", type, rsrc_cnt,
6097 rsrc_size);
6098 return -ENOMEM;
6101 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6102 "2903 Post resource extents type-0x%x: "
6103 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6105 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6106 if (!mbox)
6107 return -ENOMEM;
6109 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6110 if (unlikely(rc)) {
6111 rc = -EIO;
6112 goto err_exit;
6116 * Figure out where the response is located. Then get local pointers
6117 * to the response data. The port does not guarantee to respond to
6118 * all extents counts request so update the local variable with the
6119 * allocated count from the port.
6121 if (emb == LPFC_SLI4_MBX_EMBED) {
6122 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6123 id_array = &rsrc_ext->u.rsp.id[0];
6124 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6125 } else {
6126 virtaddr = mbox->sge_array->addr[0];
6127 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6128 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6129 id_array = &n_rsrc->id;
6132 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6133 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6136 * Based on the resource size and count, correct the base and max
6137 * resource values.
6139 length = sizeof(struct lpfc_rsrc_blks);
6140 switch (type) {
6141 case LPFC_RSC_TYPE_FCOE_RPI:
6142 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6143 sizeof(unsigned long),
6144 GFP_KERNEL);
6145 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6146 rc = -ENOMEM;
6147 goto err_exit;
6149 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6150 sizeof(uint16_t),
6151 GFP_KERNEL);
6152 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6153 kfree(phba->sli4_hba.rpi_bmask);
6154 rc = -ENOMEM;
6155 goto err_exit;
6159 * The next_rpi was initialized with the maximum available
6160 * count but the port may allocate a smaller number. Catch
6161 * that case and update the next_rpi.
6163 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6165 /* Initialize local ptrs for common extent processing later. */
6166 bmask = phba->sli4_hba.rpi_bmask;
6167 ids = phba->sli4_hba.rpi_ids;
6168 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6169 break;
6170 case LPFC_RSC_TYPE_FCOE_VPI:
6171 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6172 GFP_KERNEL);
6173 if (unlikely(!phba->vpi_bmask)) {
6174 rc = -ENOMEM;
6175 goto err_exit;
6177 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6178 GFP_KERNEL);
6179 if (unlikely(!phba->vpi_ids)) {
6180 kfree(phba->vpi_bmask);
6181 rc = -ENOMEM;
6182 goto err_exit;
6185 /* Initialize local ptrs for common extent processing later. */
6186 bmask = phba->vpi_bmask;
6187 ids = phba->vpi_ids;
6188 ext_blk_list = &phba->lpfc_vpi_blk_list;
6189 break;
6190 case LPFC_RSC_TYPE_FCOE_XRI:
6191 phba->sli4_hba.xri_bmask = kcalloc(longs,
6192 sizeof(unsigned long),
6193 GFP_KERNEL);
6194 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6195 rc = -ENOMEM;
6196 goto err_exit;
6198 phba->sli4_hba.max_cfg_param.xri_used = 0;
6199 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6200 sizeof(uint16_t),
6201 GFP_KERNEL);
6202 if (unlikely(!phba->sli4_hba.xri_ids)) {
6203 kfree(phba->sli4_hba.xri_bmask);
6204 rc = -ENOMEM;
6205 goto err_exit;
6208 /* Initialize local ptrs for common extent processing later. */
6209 bmask = phba->sli4_hba.xri_bmask;
6210 ids = phba->sli4_hba.xri_ids;
6211 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6212 break;
6213 case LPFC_RSC_TYPE_FCOE_VFI:
6214 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6215 sizeof(unsigned long),
6216 GFP_KERNEL);
6217 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6218 rc = -ENOMEM;
6219 goto err_exit;
6221 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6222 sizeof(uint16_t),
6223 GFP_KERNEL);
6224 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6225 kfree(phba->sli4_hba.vfi_bmask);
6226 rc = -ENOMEM;
6227 goto err_exit;
6230 /* Initialize local ptrs for common extent processing later. */
6231 bmask = phba->sli4_hba.vfi_bmask;
6232 ids = phba->sli4_hba.vfi_ids;
6233 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6234 break;
6235 default:
6236 /* Unsupported Opcode. Fail call. */
6237 id_array = NULL;
6238 bmask = NULL;
6239 ids = NULL;
6240 ext_blk_list = NULL;
6241 goto err_exit;
6245 * Complete initializing the extent configuration with the
6246 * allocated ids assigned to this function. The bitmask serves
6247 * as an index into the array and manages the available ids. The
6248 * array just stores the ids communicated to the port via the wqes.
6250 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6251 if ((i % 2) == 0)
6252 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6253 &id_array[k]);
6254 else
6255 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6256 &id_array[k]);
6258 rsrc_blks = kzalloc(length, GFP_KERNEL);
6259 if (unlikely(!rsrc_blks)) {
6260 rc = -ENOMEM;
6261 kfree(bmask);
6262 kfree(ids);
6263 goto err_exit;
6265 rsrc_blks->rsrc_start = rsrc_id;
6266 rsrc_blks->rsrc_size = rsrc_size;
6267 list_add_tail(&rsrc_blks->list, ext_blk_list);
6268 rsrc_start = rsrc_id;
6269 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6270 phba->sli4_hba.io_xri_start = rsrc_start +
6271 lpfc_sli4_get_iocb_cnt(phba);
6274 while (rsrc_id < (rsrc_start + rsrc_size)) {
6275 ids[j] = rsrc_id;
6276 rsrc_id++;
6277 j++;
6279 /* Entire word processed. Get next word.*/
6280 if ((i % 2) == 1)
6281 k++;
6283 err_exit:
6284 lpfc_sli4_mbox_cmd_free(phba, mbox);
6285 return rc;
6291 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6292 * @phba: Pointer to HBA context object.
6293 * @type: the extent's type.
6295 * This function deallocates all extents of a particular resource type.
6296 * SLI4 does not allow for deallocating a particular extent range. It
6297 * is the caller's responsibility to release all kernel memory resources.
6299 static int
6300 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6302 int rc;
6303 uint32_t length, mbox_tmo = 0;
6304 LPFC_MBOXQ_t *mbox;
6305 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6306 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6308 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6309 if (!mbox)
6310 return -ENOMEM;
6313 * This function sends an embedded mailbox because it only sends the
6314 * the resource type. All extents of this type are released by the
6315 * port.
6317 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6318 sizeof(struct lpfc_sli4_cfg_mhdr));
6319 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6320 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6321 length, LPFC_SLI4_MBX_EMBED);
6323 /* Send an extents count of 0 - the dealloc doesn't use it. */
6324 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6325 LPFC_SLI4_MBX_EMBED);
6326 if (unlikely(rc)) {
6327 rc = -EIO;
6328 goto out_free_mbox;
6330 if (!phba->sli4_hba.intr_enable)
6331 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6332 else {
6333 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6334 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6336 if (unlikely(rc)) {
6337 rc = -EIO;
6338 goto out_free_mbox;
6341 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6342 if (bf_get(lpfc_mbox_hdr_status,
6343 &dealloc_rsrc->header.cfg_shdr.response)) {
6344 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6345 "2919 Failed to release resource extents "
6346 "for type %d - Status 0x%x Add'l Status 0x%x. "
6347 "Resource memory not released.\n",
6348 type,
6349 bf_get(lpfc_mbox_hdr_status,
6350 &dealloc_rsrc->header.cfg_shdr.response),
6351 bf_get(lpfc_mbox_hdr_add_status,
6352 &dealloc_rsrc->header.cfg_shdr.response));
6353 rc = -EIO;
6354 goto out_free_mbox;
6357 /* Release kernel memory resources for the specific type. */
6358 switch (type) {
6359 case LPFC_RSC_TYPE_FCOE_VPI:
6360 kfree(phba->vpi_bmask);
6361 kfree(phba->vpi_ids);
6362 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6363 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6364 &phba->lpfc_vpi_blk_list, list) {
6365 list_del_init(&rsrc_blk->list);
6366 kfree(rsrc_blk);
6368 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6369 break;
6370 case LPFC_RSC_TYPE_FCOE_XRI:
6371 kfree(phba->sli4_hba.xri_bmask);
6372 kfree(phba->sli4_hba.xri_ids);
6373 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6374 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6375 list_del_init(&rsrc_blk->list);
6376 kfree(rsrc_blk);
6378 break;
6379 case LPFC_RSC_TYPE_FCOE_VFI:
6380 kfree(phba->sli4_hba.vfi_bmask);
6381 kfree(phba->sli4_hba.vfi_ids);
6382 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6383 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6384 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6385 list_del_init(&rsrc_blk->list);
6386 kfree(rsrc_blk);
6388 break;
6389 case LPFC_RSC_TYPE_FCOE_RPI:
6390 /* RPI bitmask and physical id array are cleaned up earlier. */
6391 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6392 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6393 list_del_init(&rsrc_blk->list);
6394 kfree(rsrc_blk);
6396 break;
6397 default:
6398 break;
6401 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6403 out_free_mbox:
6404 mempool_free(mbox, phba->mbox_mem_pool);
6405 return rc;
6408 static void
6409 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6410 uint32_t feature)
6412 uint32_t len;
6414 len = sizeof(struct lpfc_mbx_set_feature) -
6415 sizeof(struct lpfc_sli4_cfg_mhdr);
6416 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6417 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6418 LPFC_SLI4_MBX_EMBED);
6420 switch (feature) {
6421 case LPFC_SET_UE_RECOVERY:
6422 bf_set(lpfc_mbx_set_feature_UER,
6423 &mbox->u.mqe.un.set_feature, 1);
6424 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6425 mbox->u.mqe.un.set_feature.param_len = 8;
6426 break;
6427 case LPFC_SET_MDS_DIAGS:
6428 bf_set(lpfc_mbx_set_feature_mds,
6429 &mbox->u.mqe.un.set_feature, 1);
6430 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6431 &mbox->u.mqe.un.set_feature, 1);
6432 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6433 mbox->u.mqe.un.set_feature.param_len = 8;
6434 break;
6435 case LPFC_SET_DUAL_DUMP:
6436 bf_set(lpfc_mbx_set_feature_dd,
6437 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6438 bf_set(lpfc_mbx_set_feature_ddquery,
6439 &mbox->u.mqe.un.set_feature, 0);
6440 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6441 mbox->u.mqe.un.set_feature.param_len = 4;
6442 break;
6445 return;
6449 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6450 * @phba: Pointer to HBA context object.
6452 * Disable FW logging into host memory on the adapter. To
6453 * be done before reading logs from the host memory.
6455 void
6456 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6458 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6460 spin_lock_irq(&phba->hbalock);
6461 ras_fwlog->state = INACTIVE;
6462 spin_unlock_irq(&phba->hbalock);
6464 /* Disable FW logging to host memory */
6465 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6466 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6468 /* Wait 10ms for firmware to stop using DMA buffer */
6469 usleep_range(10 * 1000, 20 * 1000);
6473 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6474 * @phba: Pointer to HBA context object.
6476 * This function is called to free memory allocated for RAS FW logging
6477 * support in the driver.
6479 void
6480 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6482 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6483 struct lpfc_dmabuf *dmabuf, *next;
6485 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6486 list_for_each_entry_safe(dmabuf, next,
6487 &ras_fwlog->fwlog_buff_list,
6488 list) {
6489 list_del(&dmabuf->list);
6490 dma_free_coherent(&phba->pcidev->dev,
6491 LPFC_RAS_MAX_ENTRY_SIZE,
6492 dmabuf->virt, dmabuf->phys);
6493 kfree(dmabuf);
6497 if (ras_fwlog->lwpd.virt) {
6498 dma_free_coherent(&phba->pcidev->dev,
6499 sizeof(uint32_t) * 2,
6500 ras_fwlog->lwpd.virt,
6501 ras_fwlog->lwpd.phys);
6502 ras_fwlog->lwpd.virt = NULL;
6505 spin_lock_irq(&phba->hbalock);
6506 ras_fwlog->state = INACTIVE;
6507 spin_unlock_irq(&phba->hbalock);
6511 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6512 * @phba: Pointer to HBA context object.
6513 * @fwlog_buff_count: Count of buffers to be created.
6515 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6516 * to update FW log is posted to the adapter.
6517 * Buffer count is calculated based on module param ras_fwlog_buffsize
6518 * Size of each buffer posted to FW is 64K.
6521 static int
6522 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6523 uint32_t fwlog_buff_count)
6525 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6526 struct lpfc_dmabuf *dmabuf;
6527 int rc = 0, i = 0;
6529 /* Initialize List */
6530 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6532 /* Allocate memory for the LWPD */
6533 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6534 sizeof(uint32_t) * 2,
6535 &ras_fwlog->lwpd.phys,
6536 GFP_KERNEL);
6537 if (!ras_fwlog->lwpd.virt) {
6538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6539 "6185 LWPD Memory Alloc Failed\n");
6541 return -ENOMEM;
6544 ras_fwlog->fw_buffcount = fwlog_buff_count;
6545 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6546 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6547 GFP_KERNEL);
6548 if (!dmabuf) {
6549 rc = -ENOMEM;
6550 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6551 "6186 Memory Alloc failed FW logging");
6552 goto free_mem;
6555 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6556 LPFC_RAS_MAX_ENTRY_SIZE,
6557 &dmabuf->phys, GFP_KERNEL);
6558 if (!dmabuf->virt) {
6559 kfree(dmabuf);
6560 rc = -ENOMEM;
6561 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6562 "6187 DMA Alloc Failed FW logging");
6563 goto free_mem;
6565 dmabuf->buffer_tag = i;
6566 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6569 free_mem:
6570 if (rc)
6571 lpfc_sli4_ras_dma_free(phba);
6573 return rc;
6577 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6578 * @phba: pointer to lpfc hba data structure.
6579 * @pmb: pointer to the driver internal queue element for mailbox command.
6581 * Completion handler for driver's RAS MBX command to the device.
6583 static void
6584 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6586 MAILBOX_t *mb;
6587 union lpfc_sli4_cfg_shdr *shdr;
6588 uint32_t shdr_status, shdr_add_status;
6589 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6591 mb = &pmb->u.mb;
6593 shdr = (union lpfc_sli4_cfg_shdr *)
6594 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6595 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6596 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6598 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6600 "6188 FW LOG mailbox "
6601 "completed with status x%x add_status x%x,"
6602 " mbx status x%x\n",
6603 shdr_status, shdr_add_status, mb->mbxStatus);
6605 ras_fwlog->ras_hwsupport = false;
6606 goto disable_ras;
6609 spin_lock_irq(&phba->hbalock);
6610 ras_fwlog->state = ACTIVE;
6611 spin_unlock_irq(&phba->hbalock);
6612 mempool_free(pmb, phba->mbox_mem_pool);
6614 return;
6616 disable_ras:
6617 /* Free RAS DMA memory */
6618 lpfc_sli4_ras_dma_free(phba);
6619 mempool_free(pmb, phba->mbox_mem_pool);
6623 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6624 * @phba: pointer to lpfc hba data structure.
6625 * @fwlog_level: Logging verbosity level.
6626 * @fwlog_enable: Enable/Disable logging.
6628 * Initialize memory and post mailbox command to enable FW logging in host
6629 * memory.
6632 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6633 uint32_t fwlog_level,
6634 uint32_t fwlog_enable)
6636 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6637 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6638 struct lpfc_dmabuf *dmabuf;
6639 LPFC_MBOXQ_t *mbox;
6640 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6641 int rc = 0;
6643 spin_lock_irq(&phba->hbalock);
6644 ras_fwlog->state = INACTIVE;
6645 spin_unlock_irq(&phba->hbalock);
6647 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6648 phba->cfg_ras_fwlog_buffsize);
6649 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6652 * If re-enabling FW logging support use earlier allocated
6653 * DMA buffers while posting MBX command.
6655 if (!ras_fwlog->lwpd.virt) {
6656 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6657 if (rc) {
6658 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6659 "6189 FW Log Memory Allocation Failed");
6660 return rc;
6664 /* Setup Mailbox command */
6665 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6666 if (!mbox) {
6667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6668 "6190 RAS MBX Alloc Failed");
6669 rc = -ENOMEM;
6670 goto mem_free;
6673 ras_fwlog->fw_loglevel = fwlog_level;
6674 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6675 sizeof(struct lpfc_sli4_cfg_mhdr));
6677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6678 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6679 len, LPFC_SLI4_MBX_EMBED);
6681 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6682 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6683 fwlog_enable);
6684 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6685 ras_fwlog->fw_loglevel);
6686 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6687 ras_fwlog->fw_buffcount);
6688 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6689 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6691 /* Update DMA buffer address */
6692 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6693 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6695 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6696 putPaddrLow(dmabuf->phys);
6698 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6699 putPaddrHigh(dmabuf->phys);
6702 /* Update LPWD address */
6703 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6704 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6706 spin_lock_irq(&phba->hbalock);
6707 ras_fwlog->state = REG_INPROGRESS;
6708 spin_unlock_irq(&phba->hbalock);
6709 mbox->vport = phba->pport;
6710 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6712 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6714 if (rc == MBX_NOT_FINISHED) {
6715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6716 "6191 FW-Log Mailbox failed. "
6717 "status %d mbxStatus : x%x", rc,
6718 bf_get(lpfc_mqe_status, &mbox->u.mqe));
6719 mempool_free(mbox, phba->mbox_mem_pool);
6720 rc = -EIO;
6721 goto mem_free;
6722 } else
6723 rc = 0;
6724 mem_free:
6725 if (rc)
6726 lpfc_sli4_ras_dma_free(phba);
6728 return rc;
6732 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6733 * @phba: Pointer to HBA context object.
6735 * Check if RAS is supported on the adapter and initialize it.
6737 void
6738 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6740 /* Check RAS FW Log needs to be enabled or not */
6741 if (lpfc_check_fwlog_support(phba))
6742 return;
6744 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6745 LPFC_RAS_ENABLE_LOGGING);
6749 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6750 * @phba: Pointer to HBA context object.
6752 * This function allocates all SLI4 resource identifiers.
6755 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6757 int i, rc, error = 0;
6758 uint16_t count, base;
6759 unsigned long longs;
6761 if (!phba->sli4_hba.rpi_hdrs_in_use)
6762 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6763 if (phba->sli4_hba.extents_in_use) {
6765 * The port supports resource extents. The XRI, VPI, VFI, RPI
6766 * resource extent count must be read and allocated before
6767 * provisioning the resource id arrays.
6769 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6770 LPFC_IDX_RSRC_RDY) {
6772 * Extent-based resources are set - the driver could
6773 * be in a port reset. Figure out if any corrective
6774 * actions need to be taken.
6776 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6777 LPFC_RSC_TYPE_FCOE_VFI);
6778 if (rc != 0)
6779 error++;
6780 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6781 LPFC_RSC_TYPE_FCOE_VPI);
6782 if (rc != 0)
6783 error++;
6784 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6785 LPFC_RSC_TYPE_FCOE_XRI);
6786 if (rc != 0)
6787 error++;
6788 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6789 LPFC_RSC_TYPE_FCOE_RPI);
6790 if (rc != 0)
6791 error++;
6794 * It's possible that the number of resources
6795 * provided to this port instance changed between
6796 * resets. Detect this condition and reallocate
6797 * resources. Otherwise, there is no action.
6799 if (error) {
6800 lpfc_printf_log(phba, KERN_INFO,
6801 LOG_MBOX | LOG_INIT,
6802 "2931 Detected extent resource "
6803 "change. Reallocating all "
6804 "extents.\n");
6805 rc = lpfc_sli4_dealloc_extent(phba,
6806 LPFC_RSC_TYPE_FCOE_VFI);
6807 rc = lpfc_sli4_dealloc_extent(phba,
6808 LPFC_RSC_TYPE_FCOE_VPI);
6809 rc = lpfc_sli4_dealloc_extent(phba,
6810 LPFC_RSC_TYPE_FCOE_XRI);
6811 rc = lpfc_sli4_dealloc_extent(phba,
6812 LPFC_RSC_TYPE_FCOE_RPI);
6813 } else
6814 return 0;
6817 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6818 if (unlikely(rc))
6819 goto err_exit;
6821 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6822 if (unlikely(rc))
6823 goto err_exit;
6825 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6826 if (unlikely(rc))
6827 goto err_exit;
6829 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6830 if (unlikely(rc))
6831 goto err_exit;
6832 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6833 LPFC_IDX_RSRC_RDY);
6834 return rc;
6835 } else {
6837 * The port does not support resource extents. The XRI, VPI,
6838 * VFI, RPI resource ids were determined from READ_CONFIG.
6839 * Just allocate the bitmasks and provision the resource id
6840 * arrays. If a port reset is active, the resources don't
6841 * need any action - just exit.
6843 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6844 LPFC_IDX_RSRC_RDY) {
6845 lpfc_sli4_dealloc_resource_identifiers(phba);
6846 lpfc_sli4_remove_rpis(phba);
6848 /* RPIs. */
6849 count = phba->sli4_hba.max_cfg_param.max_rpi;
6850 if (count <= 0) {
6851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6852 "3279 Invalid provisioning of "
6853 "rpi:%d\n", count);
6854 rc = -EINVAL;
6855 goto err_exit;
6857 base = phba->sli4_hba.max_cfg_param.rpi_base;
6858 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6859 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6860 sizeof(unsigned long),
6861 GFP_KERNEL);
6862 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6863 rc = -ENOMEM;
6864 goto err_exit;
6866 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6867 GFP_KERNEL);
6868 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6869 rc = -ENOMEM;
6870 goto free_rpi_bmask;
6873 for (i = 0; i < count; i++)
6874 phba->sli4_hba.rpi_ids[i] = base + i;
6876 /* VPIs. */
6877 count = phba->sli4_hba.max_cfg_param.max_vpi;
6878 if (count <= 0) {
6879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6880 "3280 Invalid provisioning of "
6881 "vpi:%d\n", count);
6882 rc = -EINVAL;
6883 goto free_rpi_ids;
6885 base = phba->sli4_hba.max_cfg_param.vpi_base;
6886 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6887 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6888 GFP_KERNEL);
6889 if (unlikely(!phba->vpi_bmask)) {
6890 rc = -ENOMEM;
6891 goto free_rpi_ids;
6893 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6894 GFP_KERNEL);
6895 if (unlikely(!phba->vpi_ids)) {
6896 rc = -ENOMEM;
6897 goto free_vpi_bmask;
6900 for (i = 0; i < count; i++)
6901 phba->vpi_ids[i] = base + i;
6903 /* XRIs. */
6904 count = phba->sli4_hba.max_cfg_param.max_xri;
6905 if (count <= 0) {
6906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6907 "3281 Invalid provisioning of "
6908 "xri:%d\n", count);
6909 rc = -EINVAL;
6910 goto free_vpi_ids;
6912 base = phba->sli4_hba.max_cfg_param.xri_base;
6913 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6914 phba->sli4_hba.xri_bmask = kcalloc(longs,
6915 sizeof(unsigned long),
6916 GFP_KERNEL);
6917 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6918 rc = -ENOMEM;
6919 goto free_vpi_ids;
6921 phba->sli4_hba.max_cfg_param.xri_used = 0;
6922 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6923 GFP_KERNEL);
6924 if (unlikely(!phba->sli4_hba.xri_ids)) {
6925 rc = -ENOMEM;
6926 goto free_xri_bmask;
6929 for (i = 0; i < count; i++)
6930 phba->sli4_hba.xri_ids[i] = base + i;
6932 /* VFIs. */
6933 count = phba->sli4_hba.max_cfg_param.max_vfi;
6934 if (count <= 0) {
6935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6936 "3282 Invalid provisioning of "
6937 "vfi:%d\n", count);
6938 rc = -EINVAL;
6939 goto free_xri_ids;
6941 base = phba->sli4_hba.max_cfg_param.vfi_base;
6942 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6943 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6944 sizeof(unsigned long),
6945 GFP_KERNEL);
6946 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6947 rc = -ENOMEM;
6948 goto free_xri_ids;
6950 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6951 GFP_KERNEL);
6952 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6953 rc = -ENOMEM;
6954 goto free_vfi_bmask;
6957 for (i = 0; i < count; i++)
6958 phba->sli4_hba.vfi_ids[i] = base + i;
6961 * Mark all resources ready. An HBA reset doesn't need
6962 * to reset the initialization.
6964 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6965 LPFC_IDX_RSRC_RDY);
6966 return 0;
6969 free_vfi_bmask:
6970 kfree(phba->sli4_hba.vfi_bmask);
6971 phba->sli4_hba.vfi_bmask = NULL;
6972 free_xri_ids:
6973 kfree(phba->sli4_hba.xri_ids);
6974 phba->sli4_hba.xri_ids = NULL;
6975 free_xri_bmask:
6976 kfree(phba->sli4_hba.xri_bmask);
6977 phba->sli4_hba.xri_bmask = NULL;
6978 free_vpi_ids:
6979 kfree(phba->vpi_ids);
6980 phba->vpi_ids = NULL;
6981 free_vpi_bmask:
6982 kfree(phba->vpi_bmask);
6983 phba->vpi_bmask = NULL;
6984 free_rpi_ids:
6985 kfree(phba->sli4_hba.rpi_ids);
6986 phba->sli4_hba.rpi_ids = NULL;
6987 free_rpi_bmask:
6988 kfree(phba->sli4_hba.rpi_bmask);
6989 phba->sli4_hba.rpi_bmask = NULL;
6990 err_exit:
6991 return rc;
6995 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6996 * @phba: Pointer to HBA context object.
6998 * This function allocates the number of elements for the specified
6999 * resource type.
7002 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7004 if (phba->sli4_hba.extents_in_use) {
7005 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7006 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7007 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7008 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7009 } else {
7010 kfree(phba->vpi_bmask);
7011 phba->sli4_hba.max_cfg_param.vpi_used = 0;
7012 kfree(phba->vpi_ids);
7013 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7014 kfree(phba->sli4_hba.xri_bmask);
7015 kfree(phba->sli4_hba.xri_ids);
7016 kfree(phba->sli4_hba.vfi_bmask);
7017 kfree(phba->sli4_hba.vfi_ids);
7018 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7019 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7022 return 0;
7026 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7027 * @phba: Pointer to HBA context object.
7028 * @type: The resource extent type.
7029 * @extnt_cnt: buffer to hold port extent count response
7030 * @extnt_size: buffer to hold port extent size response.
7032 * This function calls the port to read the host allocated extents
7033 * for a particular type.
7036 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7037 uint16_t *extnt_cnt, uint16_t *extnt_size)
7039 bool emb;
7040 int rc = 0;
7041 uint16_t curr_blks = 0;
7042 uint32_t req_len, emb_len;
7043 uint32_t alloc_len, mbox_tmo;
7044 struct list_head *blk_list_head;
7045 struct lpfc_rsrc_blks *rsrc_blk;
7046 LPFC_MBOXQ_t *mbox;
7047 void *virtaddr = NULL;
7048 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7049 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7050 union lpfc_sli4_cfg_shdr *shdr;
7052 switch (type) {
7053 case LPFC_RSC_TYPE_FCOE_VPI:
7054 blk_list_head = &phba->lpfc_vpi_blk_list;
7055 break;
7056 case LPFC_RSC_TYPE_FCOE_XRI:
7057 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7058 break;
7059 case LPFC_RSC_TYPE_FCOE_VFI:
7060 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7061 break;
7062 case LPFC_RSC_TYPE_FCOE_RPI:
7063 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7064 break;
7065 default:
7066 return -EIO;
7069 /* Count the number of extents currently allocatd for this type. */
7070 list_for_each_entry(rsrc_blk, blk_list_head, list) {
7071 if (curr_blks == 0) {
7073 * The GET_ALLOCATED mailbox does not return the size,
7074 * just the count. The size should be just the size
7075 * stored in the current allocated block and all sizes
7076 * for an extent type are the same so set the return
7077 * value now.
7079 *extnt_size = rsrc_blk->rsrc_size;
7081 curr_blks++;
7085 * Calculate the size of an embedded mailbox. The uint32_t
7086 * accounts for extents-specific word.
7088 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7089 sizeof(uint32_t);
7092 * Presume the allocation and response will fit into an embedded
7093 * mailbox. If not true, reconfigure to a non-embedded mailbox.
7095 emb = LPFC_SLI4_MBX_EMBED;
7096 req_len = emb_len;
7097 if (req_len > emb_len) {
7098 req_len = curr_blks * sizeof(uint16_t) +
7099 sizeof(union lpfc_sli4_cfg_shdr) +
7100 sizeof(uint32_t);
7101 emb = LPFC_SLI4_MBX_NEMBED;
7104 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7105 if (!mbox)
7106 return -ENOMEM;
7107 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7109 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7110 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7111 req_len, emb);
7112 if (alloc_len < req_len) {
7113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7114 "2983 Allocated DMA memory size (x%x) is "
7115 "less than the requested DMA memory "
7116 "size (x%x)\n", alloc_len, req_len);
7117 rc = -ENOMEM;
7118 goto err_exit;
7120 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7121 if (unlikely(rc)) {
7122 rc = -EIO;
7123 goto err_exit;
7126 if (!phba->sli4_hba.intr_enable)
7127 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7128 else {
7129 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7130 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7133 if (unlikely(rc)) {
7134 rc = -EIO;
7135 goto err_exit;
7139 * Figure out where the response is located. Then get local pointers
7140 * to the response data. The port does not guarantee to respond to
7141 * all extents counts request so update the local variable with the
7142 * allocated count from the port.
7144 if (emb == LPFC_SLI4_MBX_EMBED) {
7145 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7146 shdr = &rsrc_ext->header.cfg_shdr;
7147 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7148 } else {
7149 virtaddr = mbox->sge_array->addr[0];
7150 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7151 shdr = &n_rsrc->cfg_shdr;
7152 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7155 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7157 "2984 Failed to read allocated resources "
7158 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7159 type,
7160 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7161 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7162 rc = -EIO;
7163 goto err_exit;
7165 err_exit:
7166 lpfc_sli4_mbox_cmd_free(phba, mbox);
7167 return rc;
7171 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7172 * @phba: pointer to lpfc hba data structure.
7173 * @sgl_list: linked link of sgl buffers to post
7174 * @cnt: number of linked list buffers
7176 * This routine walks the list of buffers that have been allocated and
7177 * repost them to the port by using SGL block post. This is needed after a
7178 * pci_function_reset/warm_start or start. It attempts to construct blocks
7179 * of buffer sgls which contains contiguous xris and uses the non-embedded
7180 * SGL block post mailbox commands to post them to the port. For single
7181 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7182 * mailbox command for posting.
7184 * Returns: 0 = success, non-zero failure.
7186 static int
7187 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7188 struct list_head *sgl_list, int cnt)
7190 struct lpfc_sglq *sglq_entry = NULL;
7191 struct lpfc_sglq *sglq_entry_next = NULL;
7192 struct lpfc_sglq *sglq_entry_first = NULL;
7193 int status, total_cnt;
7194 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7195 int last_xritag = NO_XRI;
7196 LIST_HEAD(prep_sgl_list);
7197 LIST_HEAD(blck_sgl_list);
7198 LIST_HEAD(allc_sgl_list);
7199 LIST_HEAD(post_sgl_list);
7200 LIST_HEAD(free_sgl_list);
7202 spin_lock_irq(&phba->hbalock);
7203 spin_lock(&phba->sli4_hba.sgl_list_lock);
7204 list_splice_init(sgl_list, &allc_sgl_list);
7205 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7206 spin_unlock_irq(&phba->hbalock);
7208 total_cnt = cnt;
7209 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7210 &allc_sgl_list, list) {
7211 list_del_init(&sglq_entry->list);
7212 block_cnt++;
7213 if ((last_xritag != NO_XRI) &&
7214 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7215 /* a hole in xri block, form a sgl posting block */
7216 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7217 post_cnt = block_cnt - 1;
7218 /* prepare list for next posting block */
7219 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7220 block_cnt = 1;
7221 } else {
7222 /* prepare list for next posting block */
7223 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7224 /* enough sgls for non-embed sgl mbox command */
7225 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7226 list_splice_init(&prep_sgl_list,
7227 &blck_sgl_list);
7228 post_cnt = block_cnt;
7229 block_cnt = 0;
7232 num_posted++;
7234 /* keep track of last sgl's xritag */
7235 last_xritag = sglq_entry->sli4_xritag;
7237 /* end of repost sgl list condition for buffers */
7238 if (num_posted == total_cnt) {
7239 if (post_cnt == 0) {
7240 list_splice_init(&prep_sgl_list,
7241 &blck_sgl_list);
7242 post_cnt = block_cnt;
7243 } else if (block_cnt == 1) {
7244 status = lpfc_sli4_post_sgl(phba,
7245 sglq_entry->phys, 0,
7246 sglq_entry->sli4_xritag);
7247 if (!status) {
7248 /* successful, put sgl to posted list */
7249 list_add_tail(&sglq_entry->list,
7250 &post_sgl_list);
7251 } else {
7252 /* Failure, put sgl to free list */
7253 lpfc_printf_log(phba, KERN_WARNING,
7254 LOG_SLI,
7255 "3159 Failed to post "
7256 "sgl, xritag:x%x\n",
7257 sglq_entry->sli4_xritag);
7258 list_add_tail(&sglq_entry->list,
7259 &free_sgl_list);
7260 total_cnt--;
7265 /* continue until a nembed page worth of sgls */
7266 if (post_cnt == 0)
7267 continue;
7269 /* post the buffer list sgls as a block */
7270 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7271 post_cnt);
7273 if (!status) {
7274 /* success, put sgl list to posted sgl list */
7275 list_splice_init(&blck_sgl_list, &post_sgl_list);
7276 } else {
7277 /* Failure, put sgl list to free sgl list */
7278 sglq_entry_first = list_first_entry(&blck_sgl_list,
7279 struct lpfc_sglq,
7280 list);
7281 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7282 "3160 Failed to post sgl-list, "
7283 "xritag:x%x-x%x\n",
7284 sglq_entry_first->sli4_xritag,
7285 (sglq_entry_first->sli4_xritag +
7286 post_cnt - 1));
7287 list_splice_init(&blck_sgl_list, &free_sgl_list);
7288 total_cnt -= post_cnt;
7291 /* don't reset xirtag due to hole in xri block */
7292 if (block_cnt == 0)
7293 last_xritag = NO_XRI;
7295 /* reset sgl post count for next round of posting */
7296 post_cnt = 0;
7299 /* free the sgls failed to post */
7300 lpfc_free_sgl_list(phba, &free_sgl_list);
7302 /* push sgls posted to the available list */
7303 if (!list_empty(&post_sgl_list)) {
7304 spin_lock_irq(&phba->hbalock);
7305 spin_lock(&phba->sli4_hba.sgl_list_lock);
7306 list_splice_init(&post_sgl_list, sgl_list);
7307 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7308 spin_unlock_irq(&phba->hbalock);
7309 } else {
7310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7311 "3161 Failure to post sgl to port.\n");
7312 return -EIO;
7315 /* return the number of XRIs actually posted */
7316 return total_cnt;
7320 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7321 * @phba: pointer to lpfc hba data structure.
7323 * This routine walks the list of nvme buffers that have been allocated and
7324 * repost them to the port by using SGL block post. This is needed after a
7325 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7326 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7327 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7329 * Returns: 0 = success, non-zero failure.
7331 static int
7332 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7334 LIST_HEAD(post_nblist);
7335 int num_posted, rc = 0;
7337 /* get all NVME buffers need to repost to a local list */
7338 lpfc_io_buf_flush(phba, &post_nblist);
7340 /* post the list of nvme buffer sgls to port if available */
7341 if (!list_empty(&post_nblist)) {
7342 num_posted = lpfc_sli4_post_io_sgl_list(
7343 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7344 /* failed to post any nvme buffer, return error */
7345 if (num_posted == 0)
7346 rc = -EIO;
7348 return rc;
7351 static void
7352 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7354 uint32_t len;
7356 len = sizeof(struct lpfc_mbx_set_host_data) -
7357 sizeof(struct lpfc_sli4_cfg_mhdr);
7358 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7359 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7360 LPFC_SLI4_MBX_EMBED);
7362 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7363 mbox->u.mqe.un.set_host_data.param_len =
7364 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7365 snprintf(mbox->u.mqe.un.set_host_data.data,
7366 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7367 "Linux %s v"LPFC_DRIVER_VERSION,
7368 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7372 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7373 struct lpfc_queue *drq, int count, int idx)
7375 int rc, i;
7376 struct lpfc_rqe hrqe;
7377 struct lpfc_rqe drqe;
7378 struct lpfc_rqb *rqbp;
7379 unsigned long flags;
7380 struct rqb_dmabuf *rqb_buffer;
7381 LIST_HEAD(rqb_buf_list);
7383 rqbp = hrq->rqbp;
7384 for (i = 0; i < count; i++) {
7385 spin_lock_irqsave(&phba->hbalock, flags);
7386 /* IF RQ is already full, don't bother */
7387 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7388 spin_unlock_irqrestore(&phba->hbalock, flags);
7389 break;
7391 spin_unlock_irqrestore(&phba->hbalock, flags);
7393 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7394 if (!rqb_buffer)
7395 break;
7396 rqb_buffer->hrq = hrq;
7397 rqb_buffer->drq = drq;
7398 rqb_buffer->idx = idx;
7399 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7402 spin_lock_irqsave(&phba->hbalock, flags);
7403 while (!list_empty(&rqb_buf_list)) {
7404 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7405 hbuf.list);
7407 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7408 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7409 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7410 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7411 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7412 if (rc < 0) {
7413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7414 "6421 Cannot post to HRQ %d: %x %x %x "
7415 "DRQ %x %x\n",
7416 hrq->queue_id,
7417 hrq->host_index,
7418 hrq->hba_index,
7419 hrq->entry_count,
7420 drq->host_index,
7421 drq->hba_index);
7422 rqbp->rqb_free_buffer(phba, rqb_buffer);
7423 } else {
7424 list_add_tail(&rqb_buffer->hbuf.list,
7425 &rqbp->rqb_buffer_list);
7426 rqbp->buffer_count++;
7429 spin_unlock_irqrestore(&phba->hbalock, flags);
7430 return 1;
7434 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7435 * @phba: pointer to lpfc hba data structure.
7437 * This routine initializes the per-cq idle_stat to dynamically dictate
7438 * polling decisions.
7440 * Return codes:
7441 * None
7443 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7445 int i;
7446 struct lpfc_sli4_hdw_queue *hdwq;
7447 struct lpfc_queue *cq;
7448 struct lpfc_idle_stat *idle_stat;
7449 u64 wall;
7451 for_each_present_cpu(i) {
7452 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7453 cq = hdwq->io_cq;
7455 /* Skip if we've already handled this cq's primary CPU */
7456 if (cq->chann != i)
7457 continue;
7459 idle_stat = &phba->sli4_hba.idle_stat[i];
7461 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7462 idle_stat->prev_wall = wall;
7464 if (phba->nvmet_support)
7465 cq->poll_mode = LPFC_QUEUE_WORK;
7466 else
7467 cq->poll_mode = LPFC_IRQ_POLL;
7470 if (!phba->nvmet_support)
7471 schedule_delayed_work(&phba->idle_stat_delay_work,
7472 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7475 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7477 uint32_t if_type;
7479 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7480 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7481 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7482 struct lpfc_register reg_data;
7484 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7485 &reg_data.word0))
7486 return;
7488 if (bf_get(lpfc_sliport_status_dip, &reg_data))
7489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7490 "2904 Firmware Dump Image Present"
7491 " on Adapter");
7496 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7497 * @phba: Pointer to HBA context object.
7499 * This function is the main SLI4 device initialization PCI function. This
7500 * function is called by the HBA initialization code, HBA reset code and
7501 * HBA error attention handler code. Caller is not required to hold any
7502 * locks.
7505 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7507 int rc, i, cnt, len, dd;
7508 LPFC_MBOXQ_t *mboxq;
7509 struct lpfc_mqe *mqe;
7510 uint8_t *vpd;
7511 uint32_t vpd_size;
7512 uint32_t ftr_rsp = 0;
7513 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7514 struct lpfc_vport *vport = phba->pport;
7515 struct lpfc_dmabuf *mp;
7516 struct lpfc_rqb *rqbp;
7518 /* Perform a PCI function reset to start from clean */
7519 rc = lpfc_pci_function_reset(phba);
7520 if (unlikely(rc))
7521 return -ENODEV;
7523 /* Check the HBA Host Status Register for readyness */
7524 rc = lpfc_sli4_post_status_check(phba);
7525 if (unlikely(rc))
7526 return -ENODEV;
7527 else {
7528 spin_lock_irq(&phba->hbalock);
7529 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7530 spin_unlock_irq(&phba->hbalock);
7533 lpfc_sli4_dip(phba);
7536 * Allocate a single mailbox container for initializing the
7537 * port.
7539 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7540 if (!mboxq)
7541 return -ENOMEM;
7543 /* Issue READ_REV to collect vpd and FW information. */
7544 vpd_size = SLI4_PAGE_SIZE;
7545 vpd = kzalloc(vpd_size, GFP_KERNEL);
7546 if (!vpd) {
7547 rc = -ENOMEM;
7548 goto out_free_mbox;
7551 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7552 if (unlikely(rc)) {
7553 kfree(vpd);
7554 goto out_free_mbox;
7557 mqe = &mboxq->u.mqe;
7558 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7559 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7560 phba->hba_flag |= HBA_FCOE_MODE;
7561 phba->fcp_embed_io = 0; /* SLI4 FC support only */
7562 } else {
7563 phba->hba_flag &= ~HBA_FCOE_MODE;
7566 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7567 LPFC_DCBX_CEE_MODE)
7568 phba->hba_flag |= HBA_FIP_SUPPORT;
7569 else
7570 phba->hba_flag &= ~HBA_FIP_SUPPORT;
7572 phba->hba_flag &= ~HBA_IOQ_FLUSH;
7574 if (phba->sli_rev != LPFC_SLI_REV4) {
7575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7576 "0376 READ_REV Error. SLI Level %d "
7577 "FCoE enabled %d\n",
7578 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7579 rc = -EIO;
7580 kfree(vpd);
7581 goto out_free_mbox;
7585 * Continue initialization with default values even if driver failed
7586 * to read FCoE param config regions, only read parameters if the
7587 * board is FCoE
7589 if (phba->hba_flag & HBA_FCOE_MODE &&
7590 lpfc_sli4_read_fcoe_params(phba))
7591 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7592 "2570 Failed to read FCoE parameters\n");
7595 * Retrieve sli4 device physical port name, failure of doing it
7596 * is considered as non-fatal.
7598 rc = lpfc_sli4_retrieve_pport_name(phba);
7599 if (!rc)
7600 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7601 "3080 Successful retrieving SLI4 device "
7602 "physical port name: %s.\n", phba->Port);
7604 rc = lpfc_sli4_get_ctl_attr(phba);
7605 if (!rc)
7606 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7607 "8351 Successful retrieving SLI4 device "
7608 "CTL ATTR\n");
7611 * Evaluate the read rev and vpd data. Populate the driver
7612 * state with the results. If this routine fails, the failure
7613 * is not fatal as the driver will use generic values.
7615 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7616 if (unlikely(!rc)) {
7617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7618 "0377 Error %d parsing vpd. "
7619 "Using defaults.\n", rc);
7620 rc = 0;
7622 kfree(vpd);
7624 /* Save information as VPD data */
7625 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7626 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7629 * This is because first G7 ASIC doesn't support the standard
7630 * 0x5a NVME cmd descriptor type/subtype
7632 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7633 LPFC_SLI_INTF_IF_TYPE_6) &&
7634 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7635 (phba->vpd.rev.smRev == 0) &&
7636 (phba->cfg_nvme_embed_cmd == 1))
7637 phba->cfg_nvme_embed_cmd = 0;
7639 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7640 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7641 &mqe->un.read_rev);
7642 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7643 &mqe->un.read_rev);
7644 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7645 &mqe->un.read_rev);
7646 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7647 &mqe->un.read_rev);
7648 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7649 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7650 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7651 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7652 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7653 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7654 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7655 "(%d):0380 READ_REV Status x%x "
7656 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7657 mboxq->vport ? mboxq->vport->vpi : 0,
7658 bf_get(lpfc_mqe_status, mqe),
7659 phba->vpd.rev.opFwName,
7660 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7661 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7663 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7664 LPFC_SLI_INTF_IF_TYPE_0) {
7665 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7666 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7667 if (rc == MBX_SUCCESS) {
7668 phba->hba_flag |= HBA_RECOVERABLE_UE;
7669 /* Set 1Sec interval to detect UE */
7670 phba->eratt_poll_interval = 1;
7671 phba->sli4_hba.ue_to_sr = bf_get(
7672 lpfc_mbx_set_feature_UESR,
7673 &mboxq->u.mqe.un.set_feature);
7674 phba->sli4_hba.ue_to_rp = bf_get(
7675 lpfc_mbx_set_feature_UERP,
7676 &mboxq->u.mqe.un.set_feature);
7680 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7681 /* Enable MDS Diagnostics only if the SLI Port supports it */
7682 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7683 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7684 if (rc != MBX_SUCCESS)
7685 phba->mds_diags_support = 0;
7689 * Discover the port's supported feature set and match it against the
7690 * hosts requests.
7692 lpfc_request_features(phba, mboxq);
7693 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7694 if (unlikely(rc)) {
7695 rc = -EIO;
7696 goto out_free_mbox;
7700 * The port must support FCP initiator mode as this is the
7701 * only mode running in the host.
7703 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7704 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7705 "0378 No support for fcpi mode.\n");
7706 ftr_rsp++;
7709 /* Performance Hints are ONLY for FCoE */
7710 if (phba->hba_flag & HBA_FCOE_MODE) {
7711 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7712 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7713 else
7714 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7718 * If the port cannot support the host's requested features
7719 * then turn off the global config parameters to disable the
7720 * feature in the driver. This is not a fatal error.
7722 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7723 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7724 phba->cfg_enable_bg = 0;
7725 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7726 ftr_rsp++;
7730 if (phba->max_vpi && phba->cfg_enable_npiv &&
7731 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7732 ftr_rsp++;
7734 if (ftr_rsp) {
7735 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7736 "0379 Feature Mismatch Data: x%08x %08x "
7737 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7738 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7739 phba->cfg_enable_npiv, phba->max_vpi);
7740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7741 phba->cfg_enable_bg = 0;
7742 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7743 phba->cfg_enable_npiv = 0;
7746 /* These SLI3 features are assumed in SLI4 */
7747 spin_lock_irq(&phba->hbalock);
7748 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7749 spin_unlock_irq(&phba->hbalock);
7751 /* Always try to enable dual dump feature if we can */
7752 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7754 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7755 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7757 "6448 Dual Dump is enabled\n");
7758 else
7759 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7760 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7761 "rc:x%x dd:x%x\n",
7762 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7763 lpfc_sli_config_mbox_subsys_get(
7764 phba, mboxq),
7765 lpfc_sli_config_mbox_opcode_get(
7766 phba, mboxq),
7767 rc, dd);
7769 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
7770 * calls depends on these resources to complete port setup.
7772 rc = lpfc_sli4_alloc_resource_identifiers(phba);
7773 if (rc) {
7774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7775 "2920 Failed to alloc Resource IDs "
7776 "rc = x%x\n", rc);
7777 goto out_free_mbox;
7780 lpfc_set_host_data(phba, mboxq);
7782 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7783 if (rc) {
7784 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7785 "2134 Failed to set host os driver version %x",
7786 rc);
7789 /* Read the port's service parameters. */
7790 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7791 if (rc) {
7792 phba->link_state = LPFC_HBA_ERROR;
7793 rc = -ENOMEM;
7794 goto out_free_mbox;
7797 mboxq->vport = vport;
7798 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7799 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7800 if (rc == MBX_SUCCESS) {
7801 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7802 rc = 0;
7806 * This memory was allocated by the lpfc_read_sparam routine. Release
7807 * it to the mbuf pool.
7809 lpfc_mbuf_free(phba, mp->virt, mp->phys);
7810 kfree(mp);
7811 mboxq->ctx_buf = NULL;
7812 if (unlikely(rc)) {
7813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7814 "0382 READ_SPARAM command failed "
7815 "status %d, mbxStatus x%x\n",
7816 rc, bf_get(lpfc_mqe_status, mqe));
7817 phba->link_state = LPFC_HBA_ERROR;
7818 rc = -EIO;
7819 goto out_free_mbox;
7822 lpfc_update_vport_wwn(vport);
7824 /* Update the fc_host data structures with new wwn. */
7825 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7826 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7828 /* Create all the SLI4 queues */
7829 rc = lpfc_sli4_queue_create(phba);
7830 if (rc) {
7831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7832 "3089 Failed to allocate queues\n");
7833 rc = -ENODEV;
7834 goto out_free_mbox;
7836 /* Set up all the queues to the device */
7837 rc = lpfc_sli4_queue_setup(phba);
7838 if (unlikely(rc)) {
7839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7840 "0381 Error %d during queue setup.\n ", rc);
7841 goto out_stop_timers;
7843 /* Initialize the driver internal SLI layer lists. */
7844 lpfc_sli4_setup(phba);
7845 lpfc_sli4_queue_init(phba);
7847 /* update host els xri-sgl sizes and mappings */
7848 rc = lpfc_sli4_els_sgl_update(phba);
7849 if (unlikely(rc)) {
7850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7851 "1400 Failed to update xri-sgl size and "
7852 "mapping: %d\n", rc);
7853 goto out_destroy_queue;
7856 /* register the els sgl pool to the port */
7857 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7858 phba->sli4_hba.els_xri_cnt);
7859 if (unlikely(rc < 0)) {
7860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7861 "0582 Error %d during els sgl post "
7862 "operation\n", rc);
7863 rc = -ENODEV;
7864 goto out_destroy_queue;
7866 phba->sli4_hba.els_xri_cnt = rc;
7868 if (phba->nvmet_support) {
7869 /* update host nvmet xri-sgl sizes and mappings */
7870 rc = lpfc_sli4_nvmet_sgl_update(phba);
7871 if (unlikely(rc)) {
7872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7873 "6308 Failed to update nvmet-sgl size "
7874 "and mapping: %d\n", rc);
7875 goto out_destroy_queue;
7878 /* register the nvmet sgl pool to the port */
7879 rc = lpfc_sli4_repost_sgl_list(
7880 phba,
7881 &phba->sli4_hba.lpfc_nvmet_sgl_list,
7882 phba->sli4_hba.nvmet_xri_cnt);
7883 if (unlikely(rc < 0)) {
7884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7885 "3117 Error %d during nvmet "
7886 "sgl post\n", rc);
7887 rc = -ENODEV;
7888 goto out_destroy_queue;
7890 phba->sli4_hba.nvmet_xri_cnt = rc;
7892 /* We allocate an iocbq for every receive context SGL.
7893 * The additional allocation is for abort and ls handling.
7895 cnt = phba->sli4_hba.nvmet_xri_cnt +
7896 phba->sli4_hba.max_cfg_param.max_xri;
7897 } else {
7898 /* update host common xri-sgl sizes and mappings */
7899 rc = lpfc_sli4_io_sgl_update(phba);
7900 if (unlikely(rc)) {
7901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7902 "6082 Failed to update nvme-sgl size "
7903 "and mapping: %d\n", rc);
7904 goto out_destroy_queue;
7907 /* register the allocated common sgl pool to the port */
7908 rc = lpfc_sli4_repost_io_sgl_list(phba);
7909 if (unlikely(rc)) {
7910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7911 "6116 Error %d during nvme sgl post "
7912 "operation\n", rc);
7913 /* Some NVME buffers were moved to abort nvme list */
7914 /* A pci function reset will repost them */
7915 rc = -ENODEV;
7916 goto out_destroy_queue;
7918 /* Each lpfc_io_buf job structure has an iocbq element.
7919 * This cnt provides for abort, els, ct and ls requests.
7921 cnt = phba->sli4_hba.max_cfg_param.max_xri;
7924 if (!phba->sli.iocbq_lookup) {
7925 /* Initialize and populate the iocb list per host */
7926 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7927 "2821 initialize iocb list with %d entries\n",
7928 cnt);
7929 rc = lpfc_init_iocb_list(phba, cnt);
7930 if (rc) {
7931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7932 "1413 Failed to init iocb list.\n");
7933 goto out_destroy_queue;
7937 if (phba->nvmet_support)
7938 lpfc_nvmet_create_targetport(phba);
7940 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7941 /* Post initial buffers to all RQs created */
7942 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7943 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7944 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7945 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7946 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7947 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7948 rqbp->buffer_count = 0;
7950 lpfc_post_rq_buffer(
7951 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7952 phba->sli4_hba.nvmet_mrq_data[i],
7953 phba->cfg_nvmet_mrq_post, i);
7957 /* Post the rpi header region to the device. */
7958 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7959 if (unlikely(rc)) {
7960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7961 "0393 Error %d during rpi post operation\n",
7962 rc);
7963 rc = -ENODEV;
7964 goto out_destroy_queue;
7966 lpfc_sli4_node_prep(phba);
7968 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7969 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7971 * The FC Port needs to register FCFI (index 0)
7973 lpfc_reg_fcfi(phba, mboxq);
7974 mboxq->vport = phba->pport;
7975 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7976 if (rc != MBX_SUCCESS)
7977 goto out_unset_queue;
7978 rc = 0;
7979 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7980 &mboxq->u.mqe.un.reg_fcfi);
7981 } else {
7982 /* We are a NVME Target mode with MRQ > 1 */
7984 /* First register the FCFI */
7985 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7986 mboxq->vport = phba->pport;
7987 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7988 if (rc != MBX_SUCCESS)
7989 goto out_unset_queue;
7990 rc = 0;
7991 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7992 &mboxq->u.mqe.un.reg_fcfi_mrq);
7994 /* Next register the MRQs */
7995 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7996 mboxq->vport = phba->pport;
7997 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7998 if (rc != MBX_SUCCESS)
7999 goto out_unset_queue;
8000 rc = 0;
8002 /* Check if the port is configured to be disabled */
8003 lpfc_sli_read_link_ste(phba);
8006 /* Don't post more new bufs if repost already recovered
8007 * the nvme sgls.
8009 if (phba->nvmet_support == 0) {
8010 if (phba->sli4_hba.io_xri_cnt == 0) {
8011 len = lpfc_new_io_buf(
8012 phba, phba->sli4_hba.io_xri_max);
8013 if (len == 0) {
8014 rc = -ENOMEM;
8015 goto out_unset_queue;
8018 if (phba->cfg_xri_rebalancing)
8019 lpfc_create_multixri_pools(phba);
8021 } else {
8022 phba->cfg_xri_rebalancing = 0;
8025 /* Allow asynchronous mailbox command to go through */
8026 spin_lock_irq(&phba->hbalock);
8027 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8028 spin_unlock_irq(&phba->hbalock);
8030 /* Post receive buffers to the device */
8031 lpfc_sli4_rb_setup(phba);
8033 /* Reset HBA FCF states after HBA reset */
8034 phba->fcf.fcf_flag = 0;
8035 phba->fcf.current_rec.flag = 0;
8037 /* Start the ELS watchdog timer */
8038 mod_timer(&vport->els_tmofunc,
8039 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
8041 /* Start heart beat timer */
8042 mod_timer(&phba->hb_tmofunc,
8043 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
8044 phba->hb_outstanding = 0;
8045 phba->last_completion_time = jiffies;
8047 /* start eq_delay heartbeat */
8048 if (phba->cfg_auto_imax)
8049 queue_delayed_work(phba->wq, &phba->eq_delay_work,
8050 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
8052 /* start per phba idle_stat_delay heartbeat */
8053 lpfc_init_idle_stat_hb(phba);
8055 /* Start error attention (ERATT) polling timer */
8056 mod_timer(&phba->eratt_poll,
8057 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
8059 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
8060 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
8061 rc = pci_enable_pcie_error_reporting(phba->pcidev);
8062 if (!rc) {
8063 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8064 "2829 This device supports "
8065 "Advanced Error Reporting (AER)\n");
8066 spin_lock_irq(&phba->hbalock);
8067 phba->hba_flag |= HBA_AER_ENABLED;
8068 spin_unlock_irq(&phba->hbalock);
8069 } else {
8070 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8071 "2830 This device does not support "
8072 "Advanced Error Reporting (AER)\n");
8073 phba->cfg_aer_support = 0;
8075 rc = 0;
8079 * The port is ready, set the host's link state to LINK_DOWN
8080 * in preparation for link interrupts.
8082 spin_lock_irq(&phba->hbalock);
8083 phba->link_state = LPFC_LINK_DOWN;
8085 /* Check if physical ports are trunked */
8086 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
8087 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
8088 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
8089 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
8090 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
8091 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
8092 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
8093 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
8094 spin_unlock_irq(&phba->hbalock);
8096 /* Arm the CQs and then EQs on device */
8097 lpfc_sli4_arm_cqeq_intr(phba);
8099 /* Indicate device interrupt mode */
8100 phba->sli4_hba.intr_enable = 1;
8102 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
8103 (phba->hba_flag & LINK_DISABLED)) {
8104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8105 "3103 Adapter Link is disabled.\n");
8106 lpfc_down_link(phba, mboxq);
8107 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8108 if (rc != MBX_SUCCESS) {
8109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8110 "3104 Adapter failed to issue "
8111 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
8112 goto out_io_buff_free;
8114 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
8115 /* don't perform init_link on SLI4 FC port loopback test */
8116 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
8117 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
8118 if (rc)
8119 goto out_io_buff_free;
8122 mempool_free(mboxq, phba->mbox_mem_pool);
8123 return rc;
8124 out_io_buff_free:
8125 /* Free allocated IO Buffers */
8126 lpfc_io_free(phba);
8127 out_unset_queue:
8128 /* Unset all the queues set up in this routine when error out */
8129 lpfc_sli4_queue_unset(phba);
8130 out_destroy_queue:
8131 lpfc_free_iocb_list(phba);
8132 lpfc_sli4_queue_destroy(phba);
8133 out_stop_timers:
8134 lpfc_stop_hba_timers(phba);
8135 out_free_mbox:
8136 mempool_free(mboxq, phba->mbox_mem_pool);
8137 return rc;
8141 * lpfc_mbox_timeout - Timeout call back function for mbox timer
8142 * @t: Context to fetch pointer to hba structure from.
8144 * This is the callback function for mailbox timer. The mailbox
8145 * timer is armed when a new mailbox command is issued and the timer
8146 * is deleted when the mailbox complete. The function is called by
8147 * the kernel timer code when a mailbox does not complete within
8148 * expected time. This function wakes up the worker thread to
8149 * process the mailbox timeout and returns. All the processing is
8150 * done by the worker thread function lpfc_mbox_timeout_handler.
8152 void
8153 lpfc_mbox_timeout(struct timer_list *t)
8155 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
8156 unsigned long iflag;
8157 uint32_t tmo_posted;
8159 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8160 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8161 if (!tmo_posted)
8162 phba->pport->work_port_events |= WORKER_MBOX_TMO;
8163 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8165 if (!tmo_posted)
8166 lpfc_worker_wake_up(phba);
8167 return;
8171 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8172 * are pending
8173 * @phba: Pointer to HBA context object.
8175 * This function checks if any mailbox completions are present on the mailbox
8176 * completion queue.
8178 static bool
8179 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8182 uint32_t idx;
8183 struct lpfc_queue *mcq;
8184 struct lpfc_mcqe *mcqe;
8185 bool pending_completions = false;
8186 uint8_t qe_valid;
8188 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8189 return false;
8191 /* Check for completions on mailbox completion queue */
8193 mcq = phba->sli4_hba.mbx_cq;
8194 idx = mcq->hba_index;
8195 qe_valid = mcq->qe_valid;
8196 while (bf_get_le32(lpfc_cqe_valid,
8197 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8198 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8199 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8200 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8201 pending_completions = true;
8202 break;
8204 idx = (idx + 1) % mcq->entry_count;
8205 if (mcq->hba_index == idx)
8206 break;
8208 /* if the index wrapped around, toggle the valid bit */
8209 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8210 qe_valid = (qe_valid) ? 0 : 1;
8212 return pending_completions;
8217 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8218 * that were missed.
8219 * @phba: Pointer to HBA context object.
8221 * For sli4, it is possible to miss an interrupt. As such mbox completions
8222 * maybe missed causing erroneous mailbox timeouts to occur. This function
8223 * checks to see if mbox completions are on the mailbox completion queue
8224 * and will process all the completions associated with the eq for the
8225 * mailbox completion queue.
8227 static bool
8228 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8230 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8231 uint32_t eqidx;
8232 struct lpfc_queue *fpeq = NULL;
8233 struct lpfc_queue *eq;
8234 bool mbox_pending;
8236 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8237 return false;
8239 /* Find the EQ associated with the mbox CQ */
8240 if (sli4_hba->hdwq) {
8241 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8242 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8243 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8244 fpeq = eq;
8245 break;
8249 if (!fpeq)
8250 return false;
8252 /* Turn off interrupts from this EQ */
8254 sli4_hba->sli4_eq_clr_intr(fpeq);
8256 /* Check to see if a mbox completion is pending */
8258 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8261 * If a mbox completion is pending, process all the events on EQ
8262 * associated with the mbox completion queue (this could include
8263 * mailbox commands, async events, els commands, receive queue data
8264 * and fcp commands)
8267 if (mbox_pending)
8268 /* process and rearm the EQ */
8269 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8270 else
8271 /* Always clear and re-arm the EQ */
8272 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8274 return mbox_pending;
8279 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8280 * @phba: Pointer to HBA context object.
8282 * This function is called from worker thread when a mailbox command times out.
8283 * The caller is not required to hold any locks. This function will reset the
8284 * HBA and recover all the pending commands.
8286 void
8287 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8289 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8290 MAILBOX_t *mb = NULL;
8292 struct lpfc_sli *psli = &phba->sli;
8294 /* If the mailbox completed, process the completion and return */
8295 if (lpfc_sli4_process_missed_mbox_completions(phba))
8296 return;
8298 if (pmbox != NULL)
8299 mb = &pmbox->u.mb;
8300 /* Check the pmbox pointer first. There is a race condition
8301 * between the mbox timeout handler getting executed in the
8302 * worklist and the mailbox actually completing. When this
8303 * race condition occurs, the mbox_active will be NULL.
8305 spin_lock_irq(&phba->hbalock);
8306 if (pmbox == NULL) {
8307 lpfc_printf_log(phba, KERN_WARNING,
8308 LOG_MBOX | LOG_SLI,
8309 "0353 Active Mailbox cleared - mailbox timeout "
8310 "exiting\n");
8311 spin_unlock_irq(&phba->hbalock);
8312 return;
8315 /* Mbox cmd <mbxCommand> timeout */
8316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8317 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8318 mb->mbxCommand,
8319 phba->pport->port_state,
8320 phba->sli.sli_flag,
8321 phba->sli.mbox_active);
8322 spin_unlock_irq(&phba->hbalock);
8324 /* Setting state unknown so lpfc_sli_abort_iocb_ring
8325 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8326 * it to fail all outstanding SCSI IO.
8328 spin_lock_irq(&phba->pport->work_port_lock);
8329 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8330 spin_unlock_irq(&phba->pport->work_port_lock);
8331 spin_lock_irq(&phba->hbalock);
8332 phba->link_state = LPFC_LINK_UNKNOWN;
8333 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8334 spin_unlock_irq(&phba->hbalock);
8336 lpfc_sli_abort_fcp_rings(phba);
8338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8339 "0345 Resetting board due to mailbox timeout\n");
8341 /* Reset the HBA device */
8342 lpfc_reset_hba(phba);
8346 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8347 * @phba: Pointer to HBA context object.
8348 * @pmbox: Pointer to mailbox object.
8349 * @flag: Flag indicating how the mailbox need to be processed.
8351 * This function is called by discovery code and HBA management code
8352 * to submit a mailbox command to firmware with SLI-3 interface spec. This
8353 * function gets the hbalock to protect the data structures.
8354 * The mailbox command can be submitted in polling mode, in which case
8355 * this function will wait in a polling loop for the completion of the
8356 * mailbox.
8357 * If the mailbox is submitted in no_wait mode (not polling) the
8358 * function will submit the command and returns immediately without waiting
8359 * for the mailbox completion. The no_wait is supported only when HBA
8360 * is in SLI2/SLI3 mode - interrupts are enabled.
8361 * The SLI interface allows only one mailbox pending at a time. If the
8362 * mailbox is issued in polling mode and there is already a mailbox
8363 * pending, then the function will return an error. If the mailbox is issued
8364 * in NO_WAIT mode and there is a mailbox pending already, the function
8365 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8366 * The sli layer owns the mailbox object until the completion of mailbox
8367 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8368 * return codes the caller owns the mailbox command after the return of
8369 * the function.
8371 static int
8372 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8373 uint32_t flag)
8375 MAILBOX_t *mbx;
8376 struct lpfc_sli *psli = &phba->sli;
8377 uint32_t status, evtctr;
8378 uint32_t ha_copy, hc_copy;
8379 int i;
8380 unsigned long timeout;
8381 unsigned long drvr_flag = 0;
8382 uint32_t word0, ldata;
8383 void __iomem *to_slim;
8384 int processing_queue = 0;
8386 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8387 if (!pmbox) {
8388 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8389 /* processing mbox queue from intr_handler */
8390 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8392 return MBX_SUCCESS;
8394 processing_queue = 1;
8395 pmbox = lpfc_mbox_get(phba);
8396 if (!pmbox) {
8397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8398 return MBX_SUCCESS;
8402 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8403 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8404 if(!pmbox->vport) {
8405 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8406 lpfc_printf_log(phba, KERN_ERR,
8407 LOG_MBOX | LOG_VPORT,
8408 "1806 Mbox x%x failed. No vport\n",
8409 pmbox->u.mb.mbxCommand);
8410 dump_stack();
8411 goto out_not_finished;
8415 /* If the PCI channel is in offline state, do not post mbox. */
8416 if (unlikely(pci_channel_offline(phba->pcidev))) {
8417 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8418 goto out_not_finished;
8421 /* If HBA has a deferred error attention, fail the iocb. */
8422 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8423 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8424 goto out_not_finished;
8427 psli = &phba->sli;
8429 mbx = &pmbox->u.mb;
8430 status = MBX_SUCCESS;
8432 if (phba->link_state == LPFC_HBA_ERROR) {
8433 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8435 /* Mbox command <mbxCommand> cannot issue */
8436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8437 "(%d):0311 Mailbox command x%x cannot "
8438 "issue Data: x%x x%x\n",
8439 pmbox->vport ? pmbox->vport->vpi : 0,
8440 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8441 goto out_not_finished;
8444 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8445 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8446 !(hc_copy & HC_MBINT_ENA)) {
8447 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8449 "(%d):2528 Mailbox command x%x cannot "
8450 "issue Data: x%x x%x\n",
8451 pmbox->vport ? pmbox->vport->vpi : 0,
8452 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8453 goto out_not_finished;
8457 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8458 /* Polling for a mbox command when another one is already active
8459 * is not allowed in SLI. Also, the driver must have established
8460 * SLI2 mode to queue and process multiple mbox commands.
8463 if (flag & MBX_POLL) {
8464 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8466 /* Mbox command <mbxCommand> cannot issue */
8467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8468 "(%d):2529 Mailbox command x%x "
8469 "cannot issue Data: x%x x%x\n",
8470 pmbox->vport ? pmbox->vport->vpi : 0,
8471 pmbox->u.mb.mbxCommand,
8472 psli->sli_flag, flag);
8473 goto out_not_finished;
8476 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8478 /* Mbox command <mbxCommand> cannot issue */
8479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8480 "(%d):2530 Mailbox command x%x "
8481 "cannot issue Data: x%x x%x\n",
8482 pmbox->vport ? pmbox->vport->vpi : 0,
8483 pmbox->u.mb.mbxCommand,
8484 psli->sli_flag, flag);
8485 goto out_not_finished;
8488 /* Another mailbox command is still being processed, queue this
8489 * command to be processed later.
8491 lpfc_mbox_put(phba, pmbox);
8493 /* Mbox cmd issue - BUSY */
8494 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8495 "(%d):0308 Mbox cmd issue - BUSY Data: "
8496 "x%x x%x x%x x%x\n",
8497 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8498 mbx->mbxCommand,
8499 phba->pport ? phba->pport->port_state : 0xff,
8500 psli->sli_flag, flag);
8502 psli->slistat.mbox_busy++;
8503 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8505 if (pmbox->vport) {
8506 lpfc_debugfs_disc_trc(pmbox->vport,
8507 LPFC_DISC_TRC_MBOX_VPORT,
8508 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
8509 (uint32_t)mbx->mbxCommand,
8510 mbx->un.varWords[0], mbx->un.varWords[1]);
8512 else {
8513 lpfc_debugfs_disc_trc(phba->pport,
8514 LPFC_DISC_TRC_MBOX,
8515 "MBOX Bsy: cmd:x%x mb:x%x x%x",
8516 (uint32_t)mbx->mbxCommand,
8517 mbx->un.varWords[0], mbx->un.varWords[1]);
8520 return MBX_BUSY;
8523 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8525 /* If we are not polling, we MUST be in SLI2 mode */
8526 if (flag != MBX_POLL) {
8527 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8528 (mbx->mbxCommand != MBX_KILL_BOARD)) {
8529 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8530 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8531 /* Mbox command <mbxCommand> cannot issue */
8532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8533 "(%d):2531 Mailbox command x%x "
8534 "cannot issue Data: x%x x%x\n",
8535 pmbox->vport ? pmbox->vport->vpi : 0,
8536 pmbox->u.mb.mbxCommand,
8537 psli->sli_flag, flag);
8538 goto out_not_finished;
8540 /* timeout active mbox command */
8541 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8542 1000);
8543 mod_timer(&psli->mbox_tmo, jiffies + timeout);
8546 /* Mailbox cmd <cmd> issue */
8547 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8548 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8549 "x%x\n",
8550 pmbox->vport ? pmbox->vport->vpi : 0,
8551 mbx->mbxCommand,
8552 phba->pport ? phba->pport->port_state : 0xff,
8553 psli->sli_flag, flag);
8555 if (mbx->mbxCommand != MBX_HEARTBEAT) {
8556 if (pmbox->vport) {
8557 lpfc_debugfs_disc_trc(pmbox->vport,
8558 LPFC_DISC_TRC_MBOX_VPORT,
8559 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8560 (uint32_t)mbx->mbxCommand,
8561 mbx->un.varWords[0], mbx->un.varWords[1]);
8563 else {
8564 lpfc_debugfs_disc_trc(phba->pport,
8565 LPFC_DISC_TRC_MBOX,
8566 "MBOX Send: cmd:x%x mb:x%x x%x",
8567 (uint32_t)mbx->mbxCommand,
8568 mbx->un.varWords[0], mbx->un.varWords[1]);
8572 psli->slistat.mbox_cmd++;
8573 evtctr = psli->slistat.mbox_event;
8575 /* next set own bit for the adapter and copy over command word */
8576 mbx->mbxOwner = OWN_CHIP;
8578 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8579 /* Populate mbox extension offset word. */
8580 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8581 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8582 = (uint8_t *)phba->mbox_ext
8583 - (uint8_t *)phba->mbox;
8586 /* Copy the mailbox extension data */
8587 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8588 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8589 (uint8_t *)phba->mbox_ext,
8590 pmbox->in_ext_byte_len);
8592 /* Copy command data to host SLIM area */
8593 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8594 } else {
8595 /* Populate mbox extension offset word. */
8596 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8597 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8598 = MAILBOX_HBA_EXT_OFFSET;
8600 /* Copy the mailbox extension data */
8601 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8602 lpfc_memcpy_to_slim(phba->MBslimaddr +
8603 MAILBOX_HBA_EXT_OFFSET,
8604 pmbox->ctx_buf, pmbox->in_ext_byte_len);
8606 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8607 /* copy command data into host mbox for cmpl */
8608 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8609 MAILBOX_CMD_SIZE);
8611 /* First copy mbox command data to HBA SLIM, skip past first
8612 word */
8613 to_slim = phba->MBslimaddr + sizeof (uint32_t);
8614 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8615 MAILBOX_CMD_SIZE - sizeof (uint32_t));
8617 /* Next copy over first word, with mbxOwner set */
8618 ldata = *((uint32_t *)mbx);
8619 to_slim = phba->MBslimaddr;
8620 writel(ldata, to_slim);
8621 readl(to_slim); /* flush */
8623 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8624 /* switch over to host mailbox */
8625 psli->sli_flag |= LPFC_SLI_ACTIVE;
8628 wmb();
8630 switch (flag) {
8631 case MBX_NOWAIT:
8632 /* Set up reference to mailbox command */
8633 psli->mbox_active = pmbox;
8634 /* Interrupt board to do it */
8635 writel(CA_MBATT, phba->CAregaddr);
8636 readl(phba->CAregaddr); /* flush */
8637 /* Don't wait for it to finish, just return */
8638 break;
8640 case MBX_POLL:
8641 /* Set up null reference to mailbox command */
8642 psli->mbox_active = NULL;
8643 /* Interrupt board to do it */
8644 writel(CA_MBATT, phba->CAregaddr);
8645 readl(phba->CAregaddr); /* flush */
8647 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8648 /* First read mbox status word */
8649 word0 = *((uint32_t *)phba->mbox);
8650 word0 = le32_to_cpu(word0);
8651 } else {
8652 /* First read mbox status word */
8653 if (lpfc_readl(phba->MBslimaddr, &word0)) {
8654 spin_unlock_irqrestore(&phba->hbalock,
8655 drvr_flag);
8656 goto out_not_finished;
8660 /* Read the HBA Host Attention Register */
8661 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8662 spin_unlock_irqrestore(&phba->hbalock,
8663 drvr_flag);
8664 goto out_not_finished;
8666 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8667 1000) + jiffies;
8668 i = 0;
8669 /* Wait for command to complete */
8670 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8671 (!(ha_copy & HA_MBATT) &&
8672 (phba->link_state > LPFC_WARM_START))) {
8673 if (time_after(jiffies, timeout)) {
8674 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8675 spin_unlock_irqrestore(&phba->hbalock,
8676 drvr_flag);
8677 goto out_not_finished;
8680 /* Check if we took a mbox interrupt while we were
8681 polling */
8682 if (((word0 & OWN_CHIP) != OWN_CHIP)
8683 && (evtctr != psli->slistat.mbox_event))
8684 break;
8686 if (i++ > 10) {
8687 spin_unlock_irqrestore(&phba->hbalock,
8688 drvr_flag);
8689 msleep(1);
8690 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8693 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8694 /* First copy command data */
8695 word0 = *((uint32_t *)phba->mbox);
8696 word0 = le32_to_cpu(word0);
8697 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8698 MAILBOX_t *slimmb;
8699 uint32_t slimword0;
8700 /* Check real SLIM for any errors */
8701 slimword0 = readl(phba->MBslimaddr);
8702 slimmb = (MAILBOX_t *) & slimword0;
8703 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8704 && slimmb->mbxStatus) {
8705 psli->sli_flag &=
8706 ~LPFC_SLI_ACTIVE;
8707 word0 = slimword0;
8710 } else {
8711 /* First copy command data */
8712 word0 = readl(phba->MBslimaddr);
8714 /* Read the HBA Host Attention Register */
8715 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8716 spin_unlock_irqrestore(&phba->hbalock,
8717 drvr_flag);
8718 goto out_not_finished;
8722 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8723 /* copy results back to user */
8724 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8725 MAILBOX_CMD_SIZE);
8726 /* Copy the mailbox extension data */
8727 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8728 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8729 pmbox->ctx_buf,
8730 pmbox->out_ext_byte_len);
8732 } else {
8733 /* First copy command data */
8734 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8735 MAILBOX_CMD_SIZE);
8736 /* Copy the mailbox extension data */
8737 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8738 lpfc_memcpy_from_slim(
8739 pmbox->ctx_buf,
8740 phba->MBslimaddr +
8741 MAILBOX_HBA_EXT_OFFSET,
8742 pmbox->out_ext_byte_len);
8746 writel(HA_MBATT, phba->HAregaddr);
8747 readl(phba->HAregaddr); /* flush */
8749 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8750 status = mbx->mbxStatus;
8753 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8754 return status;
8756 out_not_finished:
8757 if (processing_queue) {
8758 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8759 lpfc_mbox_cmpl_put(phba, pmbox);
8761 return MBX_NOT_FINISHED;
8765 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8766 * @phba: Pointer to HBA context object.
8768 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8769 * the driver internal pending mailbox queue. It will then try to wait out the
8770 * possible outstanding mailbox command before return.
8772 * Returns:
8773 * 0 - the outstanding mailbox command completed; otherwise, the wait for
8774 * the outstanding mailbox command timed out.
8776 static int
8777 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8779 struct lpfc_sli *psli = &phba->sli;
8780 int rc = 0;
8781 unsigned long timeout = 0;
8783 /* Mark the asynchronous mailbox command posting as blocked */
8784 spin_lock_irq(&phba->hbalock);
8785 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8786 /* Determine how long we might wait for the active mailbox
8787 * command to be gracefully completed by firmware.
8789 if (phba->sli.mbox_active)
8790 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8791 phba->sli.mbox_active) *
8792 1000) + jiffies;
8793 spin_unlock_irq(&phba->hbalock);
8795 /* Make sure the mailbox is really active */
8796 if (timeout)
8797 lpfc_sli4_process_missed_mbox_completions(phba);
8799 /* Wait for the outstnading mailbox command to complete */
8800 while (phba->sli.mbox_active) {
8801 /* Check active mailbox complete status every 2ms */
8802 msleep(2);
8803 if (time_after(jiffies, timeout)) {
8804 /* Timeout, marked the outstanding cmd not complete */
8805 rc = 1;
8806 break;
8810 /* Can not cleanly block async mailbox command, fails it */
8811 if (rc) {
8812 spin_lock_irq(&phba->hbalock);
8813 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8814 spin_unlock_irq(&phba->hbalock);
8816 return rc;
8820 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8821 * @phba: Pointer to HBA context object.
8823 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8824 * commands from the driver internal pending mailbox queue. It makes sure
8825 * that there is no outstanding mailbox command before resuming posting
8826 * asynchronous mailbox commands. If, for any reason, there is outstanding
8827 * mailbox command, it will try to wait it out before resuming asynchronous
8828 * mailbox command posting.
8830 static void
8831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8833 struct lpfc_sli *psli = &phba->sli;
8835 spin_lock_irq(&phba->hbalock);
8836 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8837 /* Asynchronous mailbox posting is not blocked, do nothing */
8838 spin_unlock_irq(&phba->hbalock);
8839 return;
8842 /* Outstanding synchronous mailbox command is guaranteed to be done,
8843 * successful or timeout, after timing-out the outstanding mailbox
8844 * command shall always be removed, so just unblock posting async
8845 * mailbox command and resume
8847 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8848 spin_unlock_irq(&phba->hbalock);
8850 /* wake up worker thread to post asynchronous mailbox command */
8851 lpfc_worker_wake_up(phba);
8855 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8856 * @phba: Pointer to HBA context object.
8857 * @mboxq: Pointer to mailbox object.
8859 * The function waits for the bootstrap mailbox register ready bit from
8860 * port for twice the regular mailbox command timeout value.
8862 * 0 - no timeout on waiting for bootstrap mailbox register ready.
8863 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8865 static int
8866 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8868 uint32_t db_ready;
8869 unsigned long timeout;
8870 struct lpfc_register bmbx_reg;
8872 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8873 * 1000) + jiffies;
8875 do {
8876 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8877 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8878 if (!db_ready)
8879 mdelay(2);
8881 if (time_after(jiffies, timeout))
8882 return MBXERR_ERROR;
8883 } while (!db_ready);
8885 return 0;
8889 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8890 * @phba: Pointer to HBA context object.
8891 * @mboxq: Pointer to mailbox object.
8893 * The function posts a mailbox to the port. The mailbox is expected
8894 * to be comletely filled in and ready for the port to operate on it.
8895 * This routine executes a synchronous completion operation on the
8896 * mailbox by polling for its completion.
8898 * The caller must not be holding any locks when calling this routine.
8900 * Returns:
8901 * MBX_SUCCESS - mailbox posted successfully
8902 * Any of the MBX error values.
8904 static int
8905 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8907 int rc = MBX_SUCCESS;
8908 unsigned long iflag;
8909 uint32_t mcqe_status;
8910 uint32_t mbx_cmnd;
8911 struct lpfc_sli *psli = &phba->sli;
8912 struct lpfc_mqe *mb = &mboxq->u.mqe;
8913 struct lpfc_bmbx_create *mbox_rgn;
8914 struct dma_address *dma_address;
8917 * Only one mailbox can be active to the bootstrap mailbox region
8918 * at a time and there is no queueing provided.
8920 spin_lock_irqsave(&phba->hbalock, iflag);
8921 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8922 spin_unlock_irqrestore(&phba->hbalock, iflag);
8923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8924 "(%d):2532 Mailbox command x%x (x%x/x%x) "
8925 "cannot issue Data: x%x x%x\n",
8926 mboxq->vport ? mboxq->vport->vpi : 0,
8927 mboxq->u.mb.mbxCommand,
8928 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8929 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8930 psli->sli_flag, MBX_POLL);
8931 return MBXERR_ERROR;
8933 /* The server grabs the token and owns it until release */
8934 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8935 phba->sli.mbox_active = mboxq;
8936 spin_unlock_irqrestore(&phba->hbalock, iflag);
8938 /* wait for bootstrap mbox register for readyness */
8939 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8940 if (rc)
8941 goto exit;
8943 * Initialize the bootstrap memory region to avoid stale data areas
8944 * in the mailbox post. Then copy the caller's mailbox contents to
8945 * the bmbx mailbox region.
8947 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8948 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8949 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8950 sizeof(struct lpfc_mqe));
8952 /* Post the high mailbox dma address to the port and wait for ready. */
8953 dma_address = &phba->sli4_hba.bmbx.dma_address;
8954 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8956 /* wait for bootstrap mbox register for hi-address write done */
8957 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8958 if (rc)
8959 goto exit;
8961 /* Post the low mailbox dma address to the port. */
8962 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8964 /* wait for bootstrap mbox register for low address write done */
8965 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8966 if (rc)
8967 goto exit;
8970 * Read the CQ to ensure the mailbox has completed.
8971 * If so, update the mailbox status so that the upper layers
8972 * can complete the request normally.
8974 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8975 sizeof(struct lpfc_mqe));
8976 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8977 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8978 sizeof(struct lpfc_mcqe));
8979 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8981 * When the CQE status indicates a failure and the mailbox status
8982 * indicates success then copy the CQE status into the mailbox status
8983 * (and prefix it with x4000).
8985 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8986 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8987 bf_set(lpfc_mqe_status, mb,
8988 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8989 rc = MBXERR_ERROR;
8990 } else
8991 lpfc_sli4_swap_str(phba, mboxq);
8993 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8994 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8995 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8996 " x%x x%x CQ: x%x x%x x%x x%x\n",
8997 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8998 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8999 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9000 bf_get(lpfc_mqe_status, mb),
9001 mb->un.mb_words[0], mb->un.mb_words[1],
9002 mb->un.mb_words[2], mb->un.mb_words[3],
9003 mb->un.mb_words[4], mb->un.mb_words[5],
9004 mb->un.mb_words[6], mb->un.mb_words[7],
9005 mb->un.mb_words[8], mb->un.mb_words[9],
9006 mb->un.mb_words[10], mb->un.mb_words[11],
9007 mb->un.mb_words[12], mboxq->mcqe.word0,
9008 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
9009 mboxq->mcqe.trailer);
9010 exit:
9011 /* We are holding the token, no needed for lock when release */
9012 spin_lock_irqsave(&phba->hbalock, iflag);
9013 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9014 phba->sli.mbox_active = NULL;
9015 spin_unlock_irqrestore(&phba->hbalock, iflag);
9016 return rc;
9020 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
9021 * @phba: Pointer to HBA context object.
9022 * @mboxq: Pointer to mailbox object.
9023 * @flag: Flag indicating how the mailbox need to be processed.
9025 * This function is called by discovery code and HBA management code to submit
9026 * a mailbox command to firmware with SLI-4 interface spec.
9028 * Return codes the caller owns the mailbox command after the return of the
9029 * function.
9031 static int
9032 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
9033 uint32_t flag)
9035 struct lpfc_sli *psli = &phba->sli;
9036 unsigned long iflags;
9037 int rc;
9039 /* dump from issue mailbox command if setup */
9040 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
9042 rc = lpfc_mbox_dev_check(phba);
9043 if (unlikely(rc)) {
9044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9045 "(%d):2544 Mailbox command x%x (x%x/x%x) "
9046 "cannot issue Data: x%x x%x\n",
9047 mboxq->vport ? mboxq->vport->vpi : 0,
9048 mboxq->u.mb.mbxCommand,
9049 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9050 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9051 psli->sli_flag, flag);
9052 goto out_not_finished;
9055 /* Detect polling mode and jump to a handler */
9056 if (!phba->sli4_hba.intr_enable) {
9057 if (flag == MBX_POLL)
9058 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9059 else
9060 rc = -EIO;
9061 if (rc != MBX_SUCCESS)
9062 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9063 "(%d):2541 Mailbox command x%x "
9064 "(x%x/x%x) failure: "
9065 "mqe_sta: x%x mcqe_sta: x%x/x%x "
9066 "Data: x%x x%x\n,",
9067 mboxq->vport ? mboxq->vport->vpi : 0,
9068 mboxq->u.mb.mbxCommand,
9069 lpfc_sli_config_mbox_subsys_get(phba,
9070 mboxq),
9071 lpfc_sli_config_mbox_opcode_get(phba,
9072 mboxq),
9073 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9074 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9075 bf_get(lpfc_mcqe_ext_status,
9076 &mboxq->mcqe),
9077 psli->sli_flag, flag);
9078 return rc;
9079 } else if (flag == MBX_POLL) {
9080 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9081 "(%d):2542 Try to issue mailbox command "
9082 "x%x (x%x/x%x) synchronously ahead of async "
9083 "mailbox command queue: x%x x%x\n",
9084 mboxq->vport ? mboxq->vport->vpi : 0,
9085 mboxq->u.mb.mbxCommand,
9086 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9087 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9088 psli->sli_flag, flag);
9089 /* Try to block the asynchronous mailbox posting */
9090 rc = lpfc_sli4_async_mbox_block(phba);
9091 if (!rc) {
9092 /* Successfully blocked, now issue sync mbox cmd */
9093 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9094 if (rc != MBX_SUCCESS)
9095 lpfc_printf_log(phba, KERN_WARNING,
9096 LOG_MBOX | LOG_SLI,
9097 "(%d):2597 Sync Mailbox command "
9098 "x%x (x%x/x%x) failure: "
9099 "mqe_sta: x%x mcqe_sta: x%x/x%x "
9100 "Data: x%x x%x\n,",
9101 mboxq->vport ? mboxq->vport->vpi : 0,
9102 mboxq->u.mb.mbxCommand,
9103 lpfc_sli_config_mbox_subsys_get(phba,
9104 mboxq),
9105 lpfc_sli_config_mbox_opcode_get(phba,
9106 mboxq),
9107 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9108 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9109 bf_get(lpfc_mcqe_ext_status,
9110 &mboxq->mcqe),
9111 psli->sli_flag, flag);
9112 /* Unblock the async mailbox posting afterward */
9113 lpfc_sli4_async_mbox_unblock(phba);
9115 return rc;
9118 /* Now, interrupt mode asynchronous mailbox command */
9119 rc = lpfc_mbox_cmd_check(phba, mboxq);
9120 if (rc) {
9121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9122 "(%d):2543 Mailbox command x%x (x%x/x%x) "
9123 "cannot issue Data: x%x x%x\n",
9124 mboxq->vport ? mboxq->vport->vpi : 0,
9125 mboxq->u.mb.mbxCommand,
9126 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9127 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9128 psli->sli_flag, flag);
9129 goto out_not_finished;
9132 /* Put the mailbox command to the driver internal FIFO */
9133 psli->slistat.mbox_busy++;
9134 spin_lock_irqsave(&phba->hbalock, iflags);
9135 lpfc_mbox_put(phba, mboxq);
9136 spin_unlock_irqrestore(&phba->hbalock, iflags);
9137 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9138 "(%d):0354 Mbox cmd issue - Enqueue Data: "
9139 "x%x (x%x/x%x) x%x x%x x%x\n",
9140 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9141 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9142 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9143 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9144 phba->pport->port_state,
9145 psli->sli_flag, MBX_NOWAIT);
9146 /* Wake up worker thread to transport mailbox command from head */
9147 lpfc_worker_wake_up(phba);
9149 return MBX_BUSY;
9151 out_not_finished:
9152 return MBX_NOT_FINISHED;
9156 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9157 * @phba: Pointer to HBA context object.
9159 * This function is called by worker thread to send a mailbox command to
9160 * SLI4 HBA firmware.
9164 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9166 struct lpfc_sli *psli = &phba->sli;
9167 LPFC_MBOXQ_t *mboxq;
9168 int rc = MBX_SUCCESS;
9169 unsigned long iflags;
9170 struct lpfc_mqe *mqe;
9171 uint32_t mbx_cmnd;
9173 /* Check interrupt mode before post async mailbox command */
9174 if (unlikely(!phba->sli4_hba.intr_enable))
9175 return MBX_NOT_FINISHED;
9177 /* Check for mailbox command service token */
9178 spin_lock_irqsave(&phba->hbalock, iflags);
9179 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9180 spin_unlock_irqrestore(&phba->hbalock, iflags);
9181 return MBX_NOT_FINISHED;
9183 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9184 spin_unlock_irqrestore(&phba->hbalock, iflags);
9185 return MBX_NOT_FINISHED;
9187 if (unlikely(phba->sli.mbox_active)) {
9188 spin_unlock_irqrestore(&phba->hbalock, iflags);
9189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9190 "0384 There is pending active mailbox cmd\n");
9191 return MBX_NOT_FINISHED;
9193 /* Take the mailbox command service token */
9194 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9196 /* Get the next mailbox command from head of queue */
9197 mboxq = lpfc_mbox_get(phba);
9199 /* If no more mailbox command waiting for post, we're done */
9200 if (!mboxq) {
9201 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9202 spin_unlock_irqrestore(&phba->hbalock, iflags);
9203 return MBX_SUCCESS;
9205 phba->sli.mbox_active = mboxq;
9206 spin_unlock_irqrestore(&phba->hbalock, iflags);
9208 /* Check device readiness for posting mailbox command */
9209 rc = lpfc_mbox_dev_check(phba);
9210 if (unlikely(rc))
9211 /* Driver clean routine will clean up pending mailbox */
9212 goto out_not_finished;
9214 /* Prepare the mbox command to be posted */
9215 mqe = &mboxq->u.mqe;
9216 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9218 /* Start timer for the mbox_tmo and log some mailbox post messages */
9219 mod_timer(&psli->mbox_tmo, (jiffies +
9220 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9222 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9223 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9224 "x%x x%x\n",
9225 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9226 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9227 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9228 phba->pport->port_state, psli->sli_flag);
9230 if (mbx_cmnd != MBX_HEARTBEAT) {
9231 if (mboxq->vport) {
9232 lpfc_debugfs_disc_trc(mboxq->vport,
9233 LPFC_DISC_TRC_MBOX_VPORT,
9234 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9235 mbx_cmnd, mqe->un.mb_words[0],
9236 mqe->un.mb_words[1]);
9237 } else {
9238 lpfc_debugfs_disc_trc(phba->pport,
9239 LPFC_DISC_TRC_MBOX,
9240 "MBOX Send: cmd:x%x mb:x%x x%x",
9241 mbx_cmnd, mqe->un.mb_words[0],
9242 mqe->un.mb_words[1]);
9245 psli->slistat.mbox_cmd++;
9247 /* Post the mailbox command to the port */
9248 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9249 if (rc != MBX_SUCCESS) {
9250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9251 "(%d):2533 Mailbox command x%x (x%x/x%x) "
9252 "cannot issue Data: x%x x%x\n",
9253 mboxq->vport ? mboxq->vport->vpi : 0,
9254 mboxq->u.mb.mbxCommand,
9255 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9256 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9257 psli->sli_flag, MBX_NOWAIT);
9258 goto out_not_finished;
9261 return rc;
9263 out_not_finished:
9264 spin_lock_irqsave(&phba->hbalock, iflags);
9265 if (phba->sli.mbox_active) {
9266 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9267 __lpfc_mbox_cmpl_put(phba, mboxq);
9268 /* Release the token */
9269 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9270 phba->sli.mbox_active = NULL;
9272 spin_unlock_irqrestore(&phba->hbalock, iflags);
9274 return MBX_NOT_FINISHED;
9278 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9279 * @phba: Pointer to HBA context object.
9280 * @pmbox: Pointer to mailbox object.
9281 * @flag: Flag indicating how the mailbox need to be processed.
9283 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9284 * the API jump table function pointer from the lpfc_hba struct.
9286 * Return codes the caller owns the mailbox command after the return of the
9287 * function.
9290 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9292 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9296 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9297 * @phba: The hba struct for which this call is being executed.
9298 * @dev_grp: The HBA PCI-Device group number.
9300 * This routine sets up the mbox interface API function jump table in @phba
9301 * struct.
9302 * Returns: 0 - success, -ENODEV - failure.
9305 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9308 switch (dev_grp) {
9309 case LPFC_PCI_DEV_LP:
9310 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9311 phba->lpfc_sli_handle_slow_ring_event =
9312 lpfc_sli_handle_slow_ring_event_s3;
9313 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9314 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9315 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9316 break;
9317 case LPFC_PCI_DEV_OC:
9318 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9319 phba->lpfc_sli_handle_slow_ring_event =
9320 lpfc_sli_handle_slow_ring_event_s4;
9321 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9322 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9323 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9324 break;
9325 default:
9326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9327 "1420 Invalid HBA PCI-device group: 0x%x\n",
9328 dev_grp);
9329 return -ENODEV;
9331 return 0;
9335 * __lpfc_sli_ringtx_put - Add an iocb to the txq
9336 * @phba: Pointer to HBA context object.
9337 * @pring: Pointer to driver SLI ring object.
9338 * @piocb: Pointer to address of newly added command iocb.
9340 * This function is called with hbalock held for SLI3 ports or
9341 * the ring lock held for SLI4 ports to add a command
9342 * iocb to the txq when SLI layer cannot submit the command iocb
9343 * to the ring.
9345 void
9346 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9347 struct lpfc_iocbq *piocb)
9349 if (phba->sli_rev == LPFC_SLI_REV4)
9350 lockdep_assert_held(&pring->ring_lock);
9351 else
9352 lockdep_assert_held(&phba->hbalock);
9353 /* Insert the caller's iocb in the txq tail for later processing. */
9354 list_add_tail(&piocb->list, &pring->txq);
9358 * lpfc_sli_next_iocb - Get the next iocb in the txq
9359 * @phba: Pointer to HBA context object.
9360 * @pring: Pointer to driver SLI ring object.
9361 * @piocb: Pointer to address of newly added command iocb.
9363 * This function is called with hbalock held before a new
9364 * iocb is submitted to the firmware. This function checks
9365 * txq to flush the iocbs in txq to Firmware before
9366 * submitting new iocbs to the Firmware.
9367 * If there are iocbs in the txq which need to be submitted
9368 * to firmware, lpfc_sli_next_iocb returns the first element
9369 * of the txq after dequeuing it from txq.
9370 * If there is no iocb in the txq then the function will return
9371 * *piocb and *piocb is set to NULL. Caller needs to check
9372 * *piocb to find if there are more commands in the txq.
9374 static struct lpfc_iocbq *
9375 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9376 struct lpfc_iocbq **piocb)
9378 struct lpfc_iocbq * nextiocb;
9380 lockdep_assert_held(&phba->hbalock);
9382 nextiocb = lpfc_sli_ringtx_get(phba, pring);
9383 if (!nextiocb) {
9384 nextiocb = *piocb;
9385 *piocb = NULL;
9388 return nextiocb;
9392 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9393 * @phba: Pointer to HBA context object.
9394 * @ring_number: SLI ring number to issue iocb on.
9395 * @piocb: Pointer to command iocb.
9396 * @flag: Flag indicating if this command can be put into txq.
9398 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9399 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9400 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9401 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9402 * this function allows only iocbs for posting buffers. This function finds
9403 * next available slot in the command ring and posts the command to the
9404 * available slot and writes the port attention register to request HBA start
9405 * processing new iocb. If there is no slot available in the ring and
9406 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9407 * the function returns IOCB_BUSY.
9409 * This function is called with hbalock held. The function will return success
9410 * after it successfully submit the iocb to firmware or after adding to the
9411 * txq.
9413 static int
9414 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9415 struct lpfc_iocbq *piocb, uint32_t flag)
9417 struct lpfc_iocbq *nextiocb;
9418 IOCB_t *iocb;
9419 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9421 lockdep_assert_held(&phba->hbalock);
9423 if (piocb->iocb_cmpl && (!piocb->vport) &&
9424 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9425 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9427 "1807 IOCB x%x failed. No vport\n",
9428 piocb->iocb.ulpCommand);
9429 dump_stack();
9430 return IOCB_ERROR;
9434 /* If the PCI channel is in offline state, do not post iocbs. */
9435 if (unlikely(pci_channel_offline(phba->pcidev)))
9436 return IOCB_ERROR;
9438 /* If HBA has a deferred error attention, fail the iocb. */
9439 if (unlikely(phba->hba_flag & DEFER_ERATT))
9440 return IOCB_ERROR;
9443 * We should never get an IOCB if we are in a < LINK_DOWN state
9445 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9446 return IOCB_ERROR;
9449 * Check to see if we are blocking IOCB processing because of a
9450 * outstanding event.
9452 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9453 goto iocb_busy;
9455 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9457 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9458 * can be issued if the link is not up.
9460 switch (piocb->iocb.ulpCommand) {
9461 case CMD_GEN_REQUEST64_CR:
9462 case CMD_GEN_REQUEST64_CX:
9463 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9464 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9465 FC_RCTL_DD_UNSOL_CMD) ||
9466 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
9467 MENLO_TRANSPORT_TYPE))
9469 goto iocb_busy;
9470 break;
9471 case CMD_QUE_RING_BUF_CN:
9472 case CMD_QUE_RING_BUF64_CN:
9474 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9475 * completion, iocb_cmpl MUST be 0.
9477 if (piocb->iocb_cmpl)
9478 piocb->iocb_cmpl = NULL;
9479 fallthrough;
9480 case CMD_CREATE_XRI_CR:
9481 case CMD_CLOSE_XRI_CN:
9482 case CMD_CLOSE_XRI_CX:
9483 break;
9484 default:
9485 goto iocb_busy;
9489 * For FCP commands, we must be in a state where we can process link
9490 * attention events.
9492 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9493 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9494 goto iocb_busy;
9497 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9498 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9499 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9501 if (iocb)
9502 lpfc_sli_update_ring(phba, pring);
9503 else
9504 lpfc_sli_update_full_ring(phba, pring);
9506 if (!piocb)
9507 return IOCB_SUCCESS;
9509 goto out_busy;
9511 iocb_busy:
9512 pring->stats.iocb_cmd_delay++;
9514 out_busy:
9516 if (!(flag & SLI_IOCB_RET_IOCB)) {
9517 __lpfc_sli_ringtx_put(phba, pring, piocb);
9518 return IOCB_SUCCESS;
9521 return IOCB_BUSY;
9525 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9526 * @phba: Pointer to HBA context object.
9527 * @piocbq: Pointer to command iocb.
9528 * @sglq: Pointer to the scatter gather queue object.
9530 * This routine converts the bpl or bde that is in the IOCB
9531 * to a sgl list for the sli4 hardware. The physical address
9532 * of the bpl/bde is converted back to a virtual address.
9533 * If the IOCB contains a BPL then the list of BDE's is
9534 * converted to sli4_sge's. If the IOCB contains a single
9535 * BDE then it is converted to a single sli_sge.
9536 * The IOCB is still in cpu endianess so the contents of
9537 * the bpl can be used without byte swapping.
9539 * Returns valid XRI = Success, NO_XRI = Failure.
9541 static uint16_t
9542 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9543 struct lpfc_sglq *sglq)
9545 uint16_t xritag = NO_XRI;
9546 struct ulp_bde64 *bpl = NULL;
9547 struct ulp_bde64 bde;
9548 struct sli4_sge *sgl = NULL;
9549 struct lpfc_dmabuf *dmabuf;
9550 IOCB_t *icmd;
9551 int numBdes = 0;
9552 int i = 0;
9553 uint32_t offset = 0; /* accumulated offset in the sg request list */
9554 int inbound = 0; /* number of sg reply entries inbound from firmware */
9556 if (!piocbq || !sglq)
9557 return xritag;
9559 sgl = (struct sli4_sge *)sglq->sgl;
9560 icmd = &piocbq->iocb;
9561 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9562 return sglq->sli4_xritag;
9563 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9564 numBdes = icmd->un.genreq64.bdl.bdeSize /
9565 sizeof(struct ulp_bde64);
9566 /* The addrHigh and addrLow fields within the IOCB
9567 * have not been byteswapped yet so there is no
9568 * need to swap them back.
9570 if (piocbq->context3)
9571 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9572 else
9573 return xritag;
9575 bpl = (struct ulp_bde64 *)dmabuf->virt;
9576 if (!bpl)
9577 return xritag;
9579 for (i = 0; i < numBdes; i++) {
9580 /* Should already be byte swapped. */
9581 sgl->addr_hi = bpl->addrHigh;
9582 sgl->addr_lo = bpl->addrLow;
9584 sgl->word2 = le32_to_cpu(sgl->word2);
9585 if ((i+1) == numBdes)
9586 bf_set(lpfc_sli4_sge_last, sgl, 1);
9587 else
9588 bf_set(lpfc_sli4_sge_last, sgl, 0);
9589 /* swap the size field back to the cpu so we
9590 * can assign it to the sgl.
9592 bde.tus.w = le32_to_cpu(bpl->tus.w);
9593 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9594 /* The offsets in the sgl need to be accumulated
9595 * separately for the request and reply lists.
9596 * The request is always first, the reply follows.
9598 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9599 /* add up the reply sg entries */
9600 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9601 inbound++;
9602 /* first inbound? reset the offset */
9603 if (inbound == 1)
9604 offset = 0;
9605 bf_set(lpfc_sli4_sge_offset, sgl, offset);
9606 bf_set(lpfc_sli4_sge_type, sgl,
9607 LPFC_SGE_TYPE_DATA);
9608 offset += bde.tus.f.bdeSize;
9610 sgl->word2 = cpu_to_le32(sgl->word2);
9611 bpl++;
9612 sgl++;
9614 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9615 /* The addrHigh and addrLow fields of the BDE have not
9616 * been byteswapped yet so they need to be swapped
9617 * before putting them in the sgl.
9619 sgl->addr_hi =
9620 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9621 sgl->addr_lo =
9622 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9623 sgl->word2 = le32_to_cpu(sgl->word2);
9624 bf_set(lpfc_sli4_sge_last, sgl, 1);
9625 sgl->word2 = cpu_to_le32(sgl->word2);
9626 sgl->sge_len =
9627 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9629 return sglq->sli4_xritag;
9633 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9634 * @phba: Pointer to HBA context object.
9635 * @iocbq: Pointer to command iocb.
9636 * @wqe: Pointer to the work queue entry.
9638 * This routine converts the iocb command to its Work Queue Entry
9639 * equivalent. The wqe pointer should not have any fields set when
9640 * this routine is called because it will memcpy over them.
9641 * This routine does not set the CQ_ID or the WQEC bits in the
9642 * wqe.
9644 * Returns: 0 = Success, IOCB_ERROR = Failure.
9646 static int
9647 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9648 union lpfc_wqe128 *wqe)
9650 uint32_t xmit_len = 0, total_len = 0;
9651 uint8_t ct = 0;
9652 uint32_t fip;
9653 uint32_t abort_tag;
9654 uint8_t command_type = ELS_COMMAND_NON_FIP;
9655 uint8_t cmnd;
9656 uint16_t xritag;
9657 uint16_t abrt_iotag;
9658 struct lpfc_iocbq *abrtiocbq;
9659 struct ulp_bde64 *bpl = NULL;
9660 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9661 int numBdes, i;
9662 struct ulp_bde64 bde;
9663 struct lpfc_nodelist *ndlp;
9664 uint32_t *pcmd;
9665 uint32_t if_type;
9667 fip = phba->hba_flag & HBA_FIP_SUPPORT;
9668 /* The fcp commands will set command type */
9669 if (iocbq->iocb_flag & LPFC_IO_FCP)
9670 command_type = FCP_COMMAND;
9671 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9672 command_type = ELS_COMMAND_FIP;
9673 else
9674 command_type = ELS_COMMAND_NON_FIP;
9676 if (phba->fcp_embed_io)
9677 memset(wqe, 0, sizeof(union lpfc_wqe128));
9678 /* Some of the fields are in the right position already */
9679 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9680 /* The ct field has moved so reset */
9681 wqe->generic.wqe_com.word7 = 0;
9682 wqe->generic.wqe_com.word10 = 0;
9684 abort_tag = (uint32_t) iocbq->iotag;
9685 xritag = iocbq->sli4_xritag;
9686 /* words0-2 bpl convert bde */
9687 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9688 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9689 sizeof(struct ulp_bde64);
9690 bpl = (struct ulp_bde64 *)
9691 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
9692 if (!bpl)
9693 return IOCB_ERROR;
9695 /* Should already be byte swapped. */
9696 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
9697 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
9698 /* swap the size field back to the cpu so we
9699 * can assign it to the sgl.
9701 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
9702 xmit_len = wqe->generic.bde.tus.f.bdeSize;
9703 total_len = 0;
9704 for (i = 0; i < numBdes; i++) {
9705 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9706 total_len += bde.tus.f.bdeSize;
9708 } else
9709 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9711 iocbq->iocb.ulpIoTag = iocbq->iotag;
9712 cmnd = iocbq->iocb.ulpCommand;
9714 switch (iocbq->iocb.ulpCommand) {
9715 case CMD_ELS_REQUEST64_CR:
9716 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9717 ndlp = iocbq->context_un.ndlp;
9718 else
9719 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9720 if (!iocbq->iocb.ulpLe) {
9721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9722 "2007 Only Limited Edition cmd Format"
9723 " supported 0x%x\n",
9724 iocbq->iocb.ulpCommand);
9725 return IOCB_ERROR;
9728 wqe->els_req.payload_len = xmit_len;
9729 /* Els_reguest64 has a TMO */
9730 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9731 iocbq->iocb.ulpTimeout);
9732 /* Need a VF for word 4 set the vf bit*/
9733 bf_set(els_req64_vf, &wqe->els_req, 0);
9734 /* And a VFID for word 12 */
9735 bf_set(els_req64_vfid, &wqe->els_req, 0);
9736 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9737 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9738 iocbq->iocb.ulpContext);
9739 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9740 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9741 /* CCP CCPE PV PRI in word10 were set in the memcpy */
9742 if (command_type == ELS_COMMAND_FIP)
9743 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9744 >> LPFC_FIP_ELS_ID_SHIFT);
9745 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9746 iocbq->context2)->virt);
9747 if_type = bf_get(lpfc_sli_intf_if_type,
9748 &phba->sli4_hba.sli_intf);
9749 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9750 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9751 *pcmd == ELS_CMD_SCR ||
9752 *pcmd == ELS_CMD_RDF ||
9753 *pcmd == ELS_CMD_RSCN_XMT ||
9754 *pcmd == ELS_CMD_FDISC ||
9755 *pcmd == ELS_CMD_LOGO ||
9756 *pcmd == ELS_CMD_PLOGI)) {
9757 bf_set(els_req64_sp, &wqe->els_req, 1);
9758 bf_set(els_req64_sid, &wqe->els_req,
9759 iocbq->vport->fc_myDID);
9760 if ((*pcmd == ELS_CMD_FLOGI) &&
9761 !(phba->fc_topology ==
9762 LPFC_TOPOLOGY_LOOP))
9763 bf_set(els_req64_sid, &wqe->els_req, 0);
9764 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9765 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9766 phba->vpi_ids[iocbq->vport->vpi]);
9767 } else if (pcmd && iocbq->context1) {
9768 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9769 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9770 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9773 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9774 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9775 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9776 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9777 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9778 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9779 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9780 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9781 wqe->els_req.max_response_payload_len = total_len - xmit_len;
9782 break;
9783 case CMD_XMIT_SEQUENCE64_CX:
9784 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9785 iocbq->iocb.un.ulpWord[3]);
9786 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9787 iocbq->iocb.unsli3.rcvsli3.ox_id);
9788 /* The entire sequence is transmitted for this IOCB */
9789 xmit_len = total_len;
9790 cmnd = CMD_XMIT_SEQUENCE64_CR;
9791 if (phba->link_flag & LS_LOOPBACK_MODE)
9792 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9793 fallthrough;
9794 case CMD_XMIT_SEQUENCE64_CR:
9795 /* word3 iocb=io_tag32 wqe=reserved */
9796 wqe->xmit_sequence.rsvd3 = 0;
9797 /* word4 relative_offset memcpy */
9798 /* word5 r_ctl/df_ctl memcpy */
9799 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9800 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9801 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9802 LPFC_WQE_IOD_WRITE);
9803 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9804 LPFC_WQE_LENLOC_WORD12);
9805 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9806 wqe->xmit_sequence.xmit_len = xmit_len;
9807 command_type = OTHER_COMMAND;
9808 break;
9809 case CMD_XMIT_BCAST64_CN:
9810 /* word3 iocb=iotag32 wqe=seq_payload_len */
9811 wqe->xmit_bcast64.seq_payload_len = xmit_len;
9812 /* word4 iocb=rsvd wqe=rsvd */
9813 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9814 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9815 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9816 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9817 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9818 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9819 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9820 LPFC_WQE_LENLOC_WORD3);
9821 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9822 break;
9823 case CMD_FCP_IWRITE64_CR:
9824 command_type = FCP_COMMAND_DATA_OUT;
9825 /* word3 iocb=iotag wqe=payload_offset_len */
9826 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9827 bf_set(payload_offset_len, &wqe->fcp_iwrite,
9828 xmit_len + sizeof(struct fcp_rsp));
9829 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9831 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9832 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9833 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9834 iocbq->iocb.ulpFCP2Rcvy);
9835 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9836 /* Always open the exchange */
9837 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9838 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9839 LPFC_WQE_LENLOC_WORD4);
9840 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9841 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9842 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9843 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9844 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9845 if (iocbq->priority) {
9846 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9847 (iocbq->priority << 1));
9848 } else {
9849 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9850 (phba->cfg_XLanePriority << 1));
9853 /* Note, word 10 is already initialized to 0 */
9855 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9856 if (phba->cfg_enable_pbde)
9857 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9858 else
9859 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9861 if (phba->fcp_embed_io) {
9862 struct lpfc_io_buf *lpfc_cmd;
9863 struct sli4_sge *sgl;
9864 struct fcp_cmnd *fcp_cmnd;
9865 uint32_t *ptr;
9867 /* 128 byte wqe support here */
9869 lpfc_cmd = iocbq->context1;
9870 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9871 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9873 /* Word 0-2 - FCP_CMND */
9874 wqe->generic.bde.tus.f.bdeFlags =
9875 BUFF_TYPE_BDE_IMMED;
9876 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9877 wqe->generic.bde.addrHigh = 0;
9878 wqe->generic.bde.addrLow = 88; /* Word 22 */
9880 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9881 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9883 /* Word 22-29 FCP CMND Payload */
9884 ptr = &wqe->words[22];
9885 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9887 break;
9888 case CMD_FCP_IREAD64_CR:
9889 /* word3 iocb=iotag wqe=payload_offset_len */
9890 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9891 bf_set(payload_offset_len, &wqe->fcp_iread,
9892 xmit_len + sizeof(struct fcp_rsp));
9893 bf_set(cmd_buff_len, &wqe->fcp_iread,
9895 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9896 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9897 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9898 iocbq->iocb.ulpFCP2Rcvy);
9899 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9900 /* Always open the exchange */
9901 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9902 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9903 LPFC_WQE_LENLOC_WORD4);
9904 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9905 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9906 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9907 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9908 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9909 if (iocbq->priority) {
9910 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9911 (iocbq->priority << 1));
9912 } else {
9913 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9914 (phba->cfg_XLanePriority << 1));
9917 /* Note, word 10 is already initialized to 0 */
9919 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9920 if (phba->cfg_enable_pbde)
9921 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9922 else
9923 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9925 if (phba->fcp_embed_io) {
9926 struct lpfc_io_buf *lpfc_cmd;
9927 struct sli4_sge *sgl;
9928 struct fcp_cmnd *fcp_cmnd;
9929 uint32_t *ptr;
9931 /* 128 byte wqe support here */
9933 lpfc_cmd = iocbq->context1;
9934 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9935 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9937 /* Word 0-2 - FCP_CMND */
9938 wqe->generic.bde.tus.f.bdeFlags =
9939 BUFF_TYPE_BDE_IMMED;
9940 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9941 wqe->generic.bde.addrHigh = 0;
9942 wqe->generic.bde.addrLow = 88; /* Word 22 */
9944 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9945 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9947 /* Word 22-29 FCP CMND Payload */
9948 ptr = &wqe->words[22];
9949 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9951 break;
9952 case CMD_FCP_ICMND64_CR:
9953 /* word3 iocb=iotag wqe=payload_offset_len */
9954 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9955 bf_set(payload_offset_len, &wqe->fcp_icmd,
9956 xmit_len + sizeof(struct fcp_rsp));
9957 bf_set(cmd_buff_len, &wqe->fcp_icmd,
9959 /* word3 iocb=IO_TAG wqe=reserved */
9960 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9961 /* Always open the exchange */
9962 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9963 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9964 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9965 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9966 LPFC_WQE_LENLOC_NONE);
9967 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9968 iocbq->iocb.ulpFCP2Rcvy);
9969 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9970 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9971 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9972 if (iocbq->priority) {
9973 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9974 (iocbq->priority << 1));
9975 } else {
9976 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9977 (phba->cfg_XLanePriority << 1));
9980 /* Note, word 10 is already initialized to 0 */
9982 if (phba->fcp_embed_io) {
9983 struct lpfc_io_buf *lpfc_cmd;
9984 struct sli4_sge *sgl;
9985 struct fcp_cmnd *fcp_cmnd;
9986 uint32_t *ptr;
9988 /* 128 byte wqe support here */
9990 lpfc_cmd = iocbq->context1;
9991 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9992 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9994 /* Word 0-2 - FCP_CMND */
9995 wqe->generic.bde.tus.f.bdeFlags =
9996 BUFF_TYPE_BDE_IMMED;
9997 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9998 wqe->generic.bde.addrHigh = 0;
9999 wqe->generic.bde.addrLow = 88; /* Word 22 */
10001 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
10002 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
10004 /* Word 22-29 FCP CMND Payload */
10005 ptr = &wqe->words[22];
10006 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10008 break;
10009 case CMD_GEN_REQUEST64_CR:
10010 /* For this command calculate the xmit length of the
10011 * request bde.
10013 xmit_len = 0;
10014 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
10015 sizeof(struct ulp_bde64);
10016 for (i = 0; i < numBdes; i++) {
10017 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
10018 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
10019 break;
10020 xmit_len += bde.tus.f.bdeSize;
10022 /* word3 iocb=IO_TAG wqe=request_payload_len */
10023 wqe->gen_req.request_payload_len = xmit_len;
10024 /* word4 iocb=parameter wqe=relative_offset memcpy */
10025 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
10026 /* word6 context tag copied in memcpy */
10027 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
10028 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
10029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10030 "2015 Invalid CT %x command 0x%x\n",
10031 ct, iocbq->iocb.ulpCommand);
10032 return IOCB_ERROR;
10034 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
10035 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
10036 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
10037 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
10038 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
10039 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
10040 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
10041 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
10042 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
10043 command_type = OTHER_COMMAND;
10044 break;
10045 case CMD_XMIT_ELS_RSP64_CX:
10046 ndlp = (struct lpfc_nodelist *)iocbq->context1;
10047 /* words0-2 BDE memcpy */
10048 /* word3 iocb=iotag32 wqe=response_payload_len */
10049 wqe->xmit_els_rsp.response_payload_len = xmit_len;
10050 /* word4 */
10051 wqe->xmit_els_rsp.word4 = 0;
10052 /* word5 iocb=rsvd wge=did */
10053 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
10054 iocbq->iocb.un.xseq64.xmit_els_remoteID);
10056 if_type = bf_get(lpfc_sli_intf_if_type,
10057 &phba->sli4_hba.sli_intf);
10058 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10059 if (iocbq->vport->fc_flag & FC_PT2PT) {
10060 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10061 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10062 iocbq->vport->fc_myDID);
10063 if (iocbq->vport->fc_myDID == Fabric_DID) {
10064 bf_set(wqe_els_did,
10065 &wqe->xmit_els_rsp.wqe_dest, 0);
10069 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
10070 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10071 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
10072 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
10073 iocbq->iocb.unsli3.rcvsli3.ox_id);
10074 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
10075 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10076 phba->vpi_ids[iocbq->vport->vpi]);
10077 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
10078 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
10079 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
10080 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
10081 LPFC_WQE_LENLOC_WORD3);
10082 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
10083 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
10084 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10085 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
10086 iocbq->context2)->virt);
10087 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
10088 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10089 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10090 iocbq->vport->fc_myDID);
10091 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
10092 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10093 phba->vpi_ids[phba->pport->vpi]);
10095 command_type = OTHER_COMMAND;
10096 break;
10097 case CMD_CLOSE_XRI_CN:
10098 case CMD_ABORT_XRI_CN:
10099 case CMD_ABORT_XRI_CX:
10100 /* words 0-2 memcpy should be 0 rserved */
10101 /* port will send abts */
10102 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
10103 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
10104 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
10105 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
10106 } else
10107 fip = 0;
10109 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
10111 * The link is down, or the command was ELS_FIP
10112 * so the fw does not need to send abts
10113 * on the wire.
10115 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
10116 else
10117 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
10118 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
10119 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
10120 wqe->abort_cmd.rsrvd5 = 0;
10121 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
10122 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10123 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
10125 * The abort handler will send us CMD_ABORT_XRI_CN or
10126 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
10128 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10129 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10130 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
10131 LPFC_WQE_LENLOC_NONE);
10132 cmnd = CMD_ABORT_XRI_CX;
10133 command_type = OTHER_COMMAND;
10134 xritag = 0;
10135 break;
10136 case CMD_XMIT_BLS_RSP64_CX:
10137 ndlp = (struct lpfc_nodelist *)iocbq->context1;
10138 /* As BLS ABTS RSP WQE is very different from other WQEs,
10139 * we re-construct this WQE here based on information in
10140 * iocbq from scratch.
10142 memset(wqe, 0, sizeof(*wqe));
10143 /* OX_ID is invariable to who sent ABTS to CT exchange */
10144 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10145 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10146 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10147 LPFC_ABTS_UNSOL_INT) {
10148 /* ABTS sent by initiator to CT exchange, the
10149 * RX_ID field will be filled with the newly
10150 * allocated responder XRI.
10152 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10153 iocbq->sli4_xritag);
10154 } else {
10155 /* ABTS sent by responder to CT exchange, the
10156 * RX_ID field will be filled with the responder
10157 * RX_ID from ABTS.
10159 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10160 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10162 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10163 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10165 /* Use CT=VPI */
10166 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10167 ndlp->nlp_DID);
10168 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10169 iocbq->iocb.ulpContext);
10170 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10171 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10172 phba->vpi_ids[phba->pport->vpi]);
10173 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10174 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10175 LPFC_WQE_LENLOC_NONE);
10176 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
10177 command_type = OTHER_COMMAND;
10178 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10179 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10180 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10181 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10182 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10183 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10184 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10187 break;
10188 case CMD_SEND_FRAME:
10189 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10190 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10191 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10192 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10193 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10194 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10195 bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10196 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10197 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10198 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10199 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10200 return 0;
10201 case CMD_XRI_ABORTED_CX:
10202 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10203 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10204 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10205 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10206 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10207 default:
10208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10209 "2014 Invalid command 0x%x\n",
10210 iocbq->iocb.ulpCommand);
10211 return IOCB_ERROR;
10214 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10215 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10216 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10217 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10218 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10219 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10220 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10221 LPFC_IO_DIF_INSERT);
10222 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10223 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10224 wqe->generic.wqe_com.abort_tag = abort_tag;
10225 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10226 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10227 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10228 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10229 return 0;
10233 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10234 * @phba: Pointer to HBA context object.
10235 * @ring_number: SLI ring number to issue wqe on.
10236 * @piocb: Pointer to command iocb.
10237 * @flag: Flag indicating if this command can be put into txq.
10239 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10240 * send an iocb command to an HBA with SLI-4 interface spec.
10242 * This function takes the hbalock before invoking the lockless version.
10243 * The function will return success after it successfully submit the wqe to
10244 * firmware or after adding to the txq.
10246 static int
10247 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10248 struct lpfc_iocbq *piocb, uint32_t flag)
10250 unsigned long iflags;
10251 int rc;
10253 spin_lock_irqsave(&phba->hbalock, iflags);
10254 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10255 spin_unlock_irqrestore(&phba->hbalock, iflags);
10257 return rc;
10261 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10262 * @phba: Pointer to HBA context object.
10263 * @ring_number: SLI ring number to issue wqe on.
10264 * @piocb: Pointer to command iocb.
10265 * @flag: Flag indicating if this command can be put into txq.
10267 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10268 * an wqe command to an HBA with SLI-4 interface spec.
10270 * This function is a lockless version. The function will return success
10271 * after it successfully submit the wqe to firmware or after adding to the
10272 * txq.
10274 static int
10275 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10276 struct lpfc_iocbq *piocb, uint32_t flag)
10278 int rc;
10279 struct lpfc_io_buf *lpfc_cmd =
10280 (struct lpfc_io_buf *)piocb->context1;
10281 union lpfc_wqe128 *wqe = &piocb->wqe;
10282 struct sli4_sge *sgl;
10284 /* 128 byte wqe support here */
10285 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10287 if (phba->fcp_embed_io) {
10288 struct fcp_cmnd *fcp_cmnd;
10289 u32 *ptr;
10291 fcp_cmnd = lpfc_cmd->fcp_cmnd;
10293 /* Word 0-2 - FCP_CMND */
10294 wqe->generic.bde.tus.f.bdeFlags =
10295 BUFF_TYPE_BDE_IMMED;
10296 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10297 wqe->generic.bde.addrHigh = 0;
10298 wqe->generic.bde.addrLow = 88; /* Word 22 */
10300 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10301 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10303 /* Word 22-29 FCP CMND Payload */
10304 ptr = &wqe->words[22];
10305 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10306 } else {
10307 /* Word 0-2 - Inline BDE */
10308 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
10309 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10310 wqe->generic.bde.addrHigh = sgl->addr_hi;
10311 wqe->generic.bde.addrLow = sgl->addr_lo;
10313 /* Word 10 */
10314 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10315 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10318 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10319 return rc;
10323 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10324 * @phba: Pointer to HBA context object.
10325 * @ring_number: SLI ring number to issue iocb on.
10326 * @piocb: Pointer to command iocb.
10327 * @flag: Flag indicating if this command can be put into txq.
10329 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10330 * an iocb command to an HBA with SLI-4 interface spec.
10332 * This function is called with ringlock held. The function will return success
10333 * after it successfully submit the iocb to firmware or after adding to the
10334 * txq.
10336 static int
10337 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10338 struct lpfc_iocbq *piocb, uint32_t flag)
10340 struct lpfc_sglq *sglq;
10341 union lpfc_wqe128 wqe;
10342 struct lpfc_queue *wq;
10343 struct lpfc_sli_ring *pring;
10345 /* Get the WQ */
10346 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10347 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10348 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10349 } else {
10350 wq = phba->sli4_hba.els_wq;
10353 /* Get corresponding ring */
10354 pring = wq->pring;
10357 * The WQE can be either 64 or 128 bytes,
10360 lockdep_assert_held(&pring->ring_lock);
10362 if (piocb->sli4_xritag == NO_XRI) {
10363 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10364 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10365 sglq = NULL;
10366 else {
10367 if (!list_empty(&pring->txq)) {
10368 if (!(flag & SLI_IOCB_RET_IOCB)) {
10369 __lpfc_sli_ringtx_put(phba,
10370 pring, piocb);
10371 return IOCB_SUCCESS;
10372 } else {
10373 return IOCB_BUSY;
10375 } else {
10376 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10377 if (!sglq) {
10378 if (!(flag & SLI_IOCB_RET_IOCB)) {
10379 __lpfc_sli_ringtx_put(phba,
10380 pring,
10381 piocb);
10382 return IOCB_SUCCESS;
10383 } else
10384 return IOCB_BUSY;
10388 } else if (piocb->iocb_flag & LPFC_IO_FCP) {
10389 /* These IO's already have an XRI and a mapped sgl. */
10390 sglq = NULL;
10392 else {
10394 * This is a continuation of a commandi,(CX) so this
10395 * sglq is on the active list
10397 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10398 if (!sglq)
10399 return IOCB_ERROR;
10402 if (sglq) {
10403 piocb->sli4_lxritag = sglq->sli4_lxritag;
10404 piocb->sli4_xritag = sglq->sli4_xritag;
10405 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10406 return IOCB_ERROR;
10409 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10410 return IOCB_ERROR;
10412 if (lpfc_sli4_wq_put(wq, &wqe))
10413 return IOCB_ERROR;
10414 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10416 return 0;
10420 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10422 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10423 * or IOCB for sli-3 function.
10424 * pointer from the lpfc_hba struct.
10426 * Return codes:
10427 * IOCB_ERROR - Error
10428 * IOCB_SUCCESS - Success
10429 * IOCB_BUSY - Busy
10432 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10433 struct lpfc_iocbq *piocb, uint32_t flag)
10435 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10439 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10441 * This routine wraps the actual lockless version for issusing IOCB function
10442 * pointer from the lpfc_hba struct.
10444 * Return codes:
10445 * IOCB_ERROR - Error
10446 * IOCB_SUCCESS - Success
10447 * IOCB_BUSY - Busy
10450 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10451 struct lpfc_iocbq *piocb, uint32_t flag)
10453 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10457 * lpfc_sli_api_table_setup - Set up sli api function jump table
10458 * @phba: The hba struct for which this call is being executed.
10459 * @dev_grp: The HBA PCI-Device group number.
10461 * This routine sets up the SLI interface API function jump table in @phba
10462 * struct.
10463 * Returns: 0 - success, -ENODEV - failure.
10466 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10469 switch (dev_grp) {
10470 case LPFC_PCI_DEV_LP:
10471 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10472 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10473 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
10474 break;
10475 case LPFC_PCI_DEV_OC:
10476 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10477 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10478 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
10479 break;
10480 default:
10481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10482 "1419 Invalid HBA PCI-device group: 0x%x\n",
10483 dev_grp);
10484 return -ENODEV;
10486 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10487 return 0;
10491 * lpfc_sli4_calc_ring - Calculates which ring to use
10492 * @phba: Pointer to HBA context object.
10493 * @piocb: Pointer to command iocb.
10495 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10496 * hba_wqidx, thus we need to calculate the corresponding ring.
10497 * Since ABORTS must go on the same WQ of the command they are
10498 * aborting, we use command's hba_wqidx.
10500 struct lpfc_sli_ring *
10501 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10503 struct lpfc_io_buf *lpfc_cmd;
10505 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10506 if (unlikely(!phba->sli4_hba.hdwq))
10507 return NULL;
10509 * for abort iocb hba_wqidx should already
10510 * be setup based on what work queue we used.
10512 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10513 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10514 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10516 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10517 } else {
10518 if (unlikely(!phba->sli4_hba.els_wq))
10519 return NULL;
10520 piocb->hba_wqidx = 0;
10521 return phba->sli4_hba.els_wq->pring;
10526 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10527 * @phba: Pointer to HBA context object.
10528 * @ring_number: Ring number
10529 * @piocb: Pointer to command iocb.
10530 * @flag: Flag indicating if this command can be put into txq.
10532 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10533 * function. This function gets the hbalock and calls
10534 * __lpfc_sli_issue_iocb function and will return the error returned
10535 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10536 * functions which do not hold hbalock.
10539 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10540 struct lpfc_iocbq *piocb, uint32_t flag)
10542 struct lpfc_sli_ring *pring;
10543 struct lpfc_queue *eq;
10544 unsigned long iflags;
10545 int rc;
10547 if (phba->sli_rev == LPFC_SLI_REV4) {
10548 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10550 pring = lpfc_sli4_calc_ring(phba, piocb);
10551 if (unlikely(pring == NULL))
10552 return IOCB_ERROR;
10554 spin_lock_irqsave(&pring->ring_lock, iflags);
10555 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10556 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10558 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10559 } else {
10560 /* For now, SLI2/3 will still use hbalock */
10561 spin_lock_irqsave(&phba->hbalock, iflags);
10562 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10563 spin_unlock_irqrestore(&phba->hbalock, iflags);
10565 return rc;
10569 * lpfc_extra_ring_setup - Extra ring setup function
10570 * @phba: Pointer to HBA context object.
10572 * This function is called while driver attaches with the
10573 * HBA to setup the extra ring. The extra ring is used
10574 * only when driver needs to support target mode functionality
10575 * or IP over FC functionalities.
10577 * This function is called with no lock held. SLI3 only.
10579 static int
10580 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10582 struct lpfc_sli *psli;
10583 struct lpfc_sli_ring *pring;
10585 psli = &phba->sli;
10587 /* Adjust cmd/rsp ring iocb entries more evenly */
10589 /* Take some away from the FCP ring */
10590 pring = &psli->sli3_ring[LPFC_FCP_RING];
10591 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10592 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10593 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10594 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10596 /* and give them to the extra ring */
10597 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10599 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10600 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10601 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10602 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10604 /* Setup default profile for this ring */
10605 pring->iotag_max = 4096;
10606 pring->num_mask = 1;
10607 pring->prt[0].profile = 0; /* Mask 0 */
10608 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10609 pring->prt[0].type = phba->cfg_multi_ring_type;
10610 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10611 return 0;
10614 static void
10615 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
10616 struct lpfc_nodelist *ndlp)
10618 unsigned long iflags;
10619 struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
10621 spin_lock_irqsave(&phba->hbalock, iflags);
10622 if (!list_empty(&evtp->evt_listp)) {
10623 spin_unlock_irqrestore(&phba->hbalock, iflags);
10624 return;
10627 /* Incrementing the reference count until the queued work is done. */
10628 evtp->evt_arg1 = lpfc_nlp_get(ndlp);
10629 if (!evtp->evt_arg1) {
10630 spin_unlock_irqrestore(&phba->hbalock, iflags);
10631 return;
10633 evtp->evt = LPFC_EVT_RECOVER_PORT;
10634 list_add_tail(&evtp->evt_listp, &phba->work_list);
10635 spin_unlock_irqrestore(&phba->hbalock, iflags);
10637 lpfc_worker_wake_up(phba);
10640 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10641 * @phba: Pointer to HBA context object.
10642 * @iocbq: Pointer to iocb object.
10644 * The async_event handler calls this routine when it receives
10645 * an ASYNC_STATUS_CN event from the port. The port generates
10646 * this event when an Abort Sequence request to an rport fails
10647 * twice in succession. The abort could be originated by the
10648 * driver or by the port. The ABTS could have been for an ELS
10649 * or FCP IO. The port only generates this event when an ABTS
10650 * fails to complete after one retry.
10652 static void
10653 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10654 struct lpfc_iocbq *iocbq)
10656 struct lpfc_nodelist *ndlp = NULL;
10657 uint16_t rpi = 0, vpi = 0;
10658 struct lpfc_vport *vport = NULL;
10660 /* The rpi in the ulpContext is vport-sensitive. */
10661 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10662 rpi = iocbq->iocb.ulpContext;
10664 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10665 "3092 Port generated ABTS async event "
10666 "on vpi %d rpi %d status 0x%x\n",
10667 vpi, rpi, iocbq->iocb.ulpStatus);
10669 vport = lpfc_find_vport_by_vpid(phba, vpi);
10670 if (!vport)
10671 goto err_exit;
10672 ndlp = lpfc_findnode_rpi(vport, rpi);
10673 if (!ndlp)
10674 goto err_exit;
10676 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10677 lpfc_sli_abts_recover_port(vport, ndlp);
10678 return;
10680 err_exit:
10681 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10682 "3095 Event Context not found, no "
10683 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10684 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10685 vpi, rpi);
10688 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10689 * @phba: pointer to HBA context object.
10690 * @ndlp: nodelist pointer for the impacted rport.
10691 * @axri: pointer to the wcqe containing the failed exchange.
10693 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10694 * port. The port generates this event when an abort exchange request to an
10695 * rport fails twice in succession with no reply. The abort could be originated
10696 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
10698 void
10699 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10700 struct lpfc_nodelist *ndlp,
10701 struct sli4_wcqe_xri_aborted *axri)
10703 uint32_t ext_status = 0;
10705 if (!ndlp) {
10706 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10707 "3115 Node Context not found, driver "
10708 "ignoring abts err event\n");
10709 return;
10712 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10713 "3116 Port generated FCP XRI ABORT event on "
10714 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10715 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10716 bf_get(lpfc_wcqe_xa_xri, axri),
10717 bf_get(lpfc_wcqe_xa_status, axri),
10718 axri->parameter);
10721 * Catch the ABTS protocol failure case. Older OCe FW releases returned
10722 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10723 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10725 ext_status = axri->parameter & IOERR_PARAM_MASK;
10726 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10727 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10728 lpfc_sli_post_recovery_event(phba, ndlp);
10732 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10733 * @phba: Pointer to HBA context object.
10734 * @pring: Pointer to driver SLI ring object.
10735 * @iocbq: Pointer to iocb object.
10737 * This function is called by the slow ring event handler
10738 * function when there is an ASYNC event iocb in the ring.
10739 * This function is called with no lock held.
10740 * Currently this function handles only temperature related
10741 * ASYNC events. The function decodes the temperature sensor
10742 * event message and posts events for the management applications.
10744 static void
10745 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10746 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10748 IOCB_t *icmd;
10749 uint16_t evt_code;
10750 struct temp_event temp_event_data;
10751 struct Scsi_Host *shost;
10752 uint32_t *iocb_w;
10754 icmd = &iocbq->iocb;
10755 evt_code = icmd->un.asyncstat.evt_code;
10757 switch (evt_code) {
10758 case ASYNC_TEMP_WARN:
10759 case ASYNC_TEMP_SAFE:
10760 temp_event_data.data = (uint32_t) icmd->ulpContext;
10761 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10762 if (evt_code == ASYNC_TEMP_WARN) {
10763 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10765 "0347 Adapter is very hot, please take "
10766 "corrective action. temperature : %d Celsius\n",
10767 (uint32_t) icmd->ulpContext);
10768 } else {
10769 temp_event_data.event_code = LPFC_NORMAL_TEMP;
10770 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10771 "0340 Adapter temperature is OK now. "
10772 "temperature : %d Celsius\n",
10773 (uint32_t) icmd->ulpContext);
10776 /* Send temperature change event to applications */
10777 shost = lpfc_shost_from_vport(phba->pport);
10778 fc_host_post_vendor_event(shost, fc_get_event_number(),
10779 sizeof(temp_event_data), (char *) &temp_event_data,
10780 LPFC_NL_VENDOR_ID);
10781 break;
10782 case ASYNC_STATUS_CN:
10783 lpfc_sli_abts_err_handler(phba, iocbq);
10784 break;
10785 default:
10786 iocb_w = (uint32_t *) icmd;
10787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10788 "0346 Ring %d handler: unexpected ASYNC_STATUS"
10789 " evt_code 0x%x\n"
10790 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
10791 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
10792 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
10793 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10794 pring->ringno, icmd->un.asyncstat.evt_code,
10795 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10796 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10797 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10798 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10800 break;
10806 * lpfc_sli4_setup - SLI ring setup function
10807 * @phba: Pointer to HBA context object.
10809 * lpfc_sli_setup sets up rings of the SLI interface with
10810 * number of iocbs per ring and iotags. This function is
10811 * called while driver attach to the HBA and before the
10812 * interrupts are enabled. So there is no need for locking.
10814 * This function always returns 0.
10817 lpfc_sli4_setup(struct lpfc_hba *phba)
10819 struct lpfc_sli_ring *pring;
10821 pring = phba->sli4_hba.els_wq->pring;
10822 pring->num_mask = LPFC_MAX_RING_MASK;
10823 pring->prt[0].profile = 0; /* Mask 0 */
10824 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10825 pring->prt[0].type = FC_TYPE_ELS;
10826 pring->prt[0].lpfc_sli_rcv_unsol_event =
10827 lpfc_els_unsol_event;
10828 pring->prt[1].profile = 0; /* Mask 1 */
10829 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10830 pring->prt[1].type = FC_TYPE_ELS;
10831 pring->prt[1].lpfc_sli_rcv_unsol_event =
10832 lpfc_els_unsol_event;
10833 pring->prt[2].profile = 0; /* Mask 2 */
10834 /* NameServer Inquiry */
10835 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10836 /* NameServer */
10837 pring->prt[2].type = FC_TYPE_CT;
10838 pring->prt[2].lpfc_sli_rcv_unsol_event =
10839 lpfc_ct_unsol_event;
10840 pring->prt[3].profile = 0; /* Mask 3 */
10841 /* NameServer response */
10842 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10843 /* NameServer */
10844 pring->prt[3].type = FC_TYPE_CT;
10845 pring->prt[3].lpfc_sli_rcv_unsol_event =
10846 lpfc_ct_unsol_event;
10847 return 0;
10851 * lpfc_sli_setup - SLI ring setup function
10852 * @phba: Pointer to HBA context object.
10854 * lpfc_sli_setup sets up rings of the SLI interface with
10855 * number of iocbs per ring and iotags. This function is
10856 * called while driver attach to the HBA and before the
10857 * interrupts are enabled. So there is no need for locking.
10859 * This function always returns 0. SLI3 only.
10862 lpfc_sli_setup(struct lpfc_hba *phba)
10864 int i, totiocbsize = 0;
10865 struct lpfc_sli *psli = &phba->sli;
10866 struct lpfc_sli_ring *pring;
10868 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10869 psli->sli_flag = 0;
10871 psli->iocbq_lookup = NULL;
10872 psli->iocbq_lookup_len = 0;
10873 psli->last_iotag = 0;
10875 for (i = 0; i < psli->num_rings; i++) {
10876 pring = &psli->sli3_ring[i];
10877 switch (i) {
10878 case LPFC_FCP_RING: /* ring 0 - FCP */
10879 /* numCiocb and numRiocb are used in config_port */
10880 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10881 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10882 pring->sli.sli3.numCiocb +=
10883 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10884 pring->sli.sli3.numRiocb +=
10885 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10886 pring->sli.sli3.numCiocb +=
10887 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10888 pring->sli.sli3.numRiocb +=
10889 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10890 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10891 SLI3_IOCB_CMD_SIZE :
10892 SLI2_IOCB_CMD_SIZE;
10893 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10894 SLI3_IOCB_RSP_SIZE :
10895 SLI2_IOCB_RSP_SIZE;
10896 pring->iotag_ctr = 0;
10897 pring->iotag_max =
10898 (phba->cfg_hba_queue_depth * 2);
10899 pring->fast_iotag = pring->iotag_max;
10900 pring->num_mask = 0;
10901 break;
10902 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
10903 /* numCiocb and numRiocb are used in config_port */
10904 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10905 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10906 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10907 SLI3_IOCB_CMD_SIZE :
10908 SLI2_IOCB_CMD_SIZE;
10909 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10910 SLI3_IOCB_RSP_SIZE :
10911 SLI2_IOCB_RSP_SIZE;
10912 pring->iotag_max = phba->cfg_hba_queue_depth;
10913 pring->num_mask = 0;
10914 break;
10915 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
10916 /* numCiocb and numRiocb are used in config_port */
10917 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10918 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10919 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10920 SLI3_IOCB_CMD_SIZE :
10921 SLI2_IOCB_CMD_SIZE;
10922 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10923 SLI3_IOCB_RSP_SIZE :
10924 SLI2_IOCB_RSP_SIZE;
10925 pring->fast_iotag = 0;
10926 pring->iotag_ctr = 0;
10927 pring->iotag_max = 4096;
10928 pring->lpfc_sli_rcv_async_status =
10929 lpfc_sli_async_event_handler;
10930 pring->num_mask = LPFC_MAX_RING_MASK;
10931 pring->prt[0].profile = 0; /* Mask 0 */
10932 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10933 pring->prt[0].type = FC_TYPE_ELS;
10934 pring->prt[0].lpfc_sli_rcv_unsol_event =
10935 lpfc_els_unsol_event;
10936 pring->prt[1].profile = 0; /* Mask 1 */
10937 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10938 pring->prt[1].type = FC_TYPE_ELS;
10939 pring->prt[1].lpfc_sli_rcv_unsol_event =
10940 lpfc_els_unsol_event;
10941 pring->prt[2].profile = 0; /* Mask 2 */
10942 /* NameServer Inquiry */
10943 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10944 /* NameServer */
10945 pring->prt[2].type = FC_TYPE_CT;
10946 pring->prt[2].lpfc_sli_rcv_unsol_event =
10947 lpfc_ct_unsol_event;
10948 pring->prt[3].profile = 0; /* Mask 3 */
10949 /* NameServer response */
10950 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10951 /* NameServer */
10952 pring->prt[3].type = FC_TYPE_CT;
10953 pring->prt[3].lpfc_sli_rcv_unsol_event =
10954 lpfc_ct_unsol_event;
10955 break;
10957 totiocbsize += (pring->sli.sli3.numCiocb *
10958 pring->sli.sli3.sizeCiocb) +
10959 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10961 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10962 /* Too many cmd / rsp ring entries in SLI2 SLIM */
10963 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10964 "SLI2 SLIM Data: x%x x%lx\n",
10965 phba->brd_no, totiocbsize,
10966 (unsigned long) MAX_SLIM_IOCB_SIZE);
10968 if (phba->cfg_multi_ring_support == 2)
10969 lpfc_extra_ring_setup(phba);
10971 return 0;
10975 * lpfc_sli4_queue_init - Queue initialization function
10976 * @phba: Pointer to HBA context object.
10978 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10979 * ring. This function also initializes ring indices of each ring.
10980 * This function is called during the initialization of the SLI
10981 * interface of an HBA.
10982 * This function is called with no lock held and always returns
10983 * 1.
10985 void
10986 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10988 struct lpfc_sli *psli;
10989 struct lpfc_sli_ring *pring;
10990 int i;
10992 psli = &phba->sli;
10993 spin_lock_irq(&phba->hbalock);
10994 INIT_LIST_HEAD(&psli->mboxq);
10995 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10996 /* Initialize list headers for txq and txcmplq as double linked lists */
10997 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10998 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10999 pring->flag = 0;
11000 pring->ringno = LPFC_FCP_RING;
11001 pring->txcmplq_cnt = 0;
11002 INIT_LIST_HEAD(&pring->txq);
11003 INIT_LIST_HEAD(&pring->txcmplq);
11004 INIT_LIST_HEAD(&pring->iocb_continueq);
11005 spin_lock_init(&pring->ring_lock);
11007 pring = phba->sli4_hba.els_wq->pring;
11008 pring->flag = 0;
11009 pring->ringno = LPFC_ELS_RING;
11010 pring->txcmplq_cnt = 0;
11011 INIT_LIST_HEAD(&pring->txq);
11012 INIT_LIST_HEAD(&pring->txcmplq);
11013 INIT_LIST_HEAD(&pring->iocb_continueq);
11014 spin_lock_init(&pring->ring_lock);
11016 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11017 pring = phba->sli4_hba.nvmels_wq->pring;
11018 pring->flag = 0;
11019 pring->ringno = LPFC_ELS_RING;
11020 pring->txcmplq_cnt = 0;
11021 INIT_LIST_HEAD(&pring->txq);
11022 INIT_LIST_HEAD(&pring->txcmplq);
11023 INIT_LIST_HEAD(&pring->iocb_continueq);
11024 spin_lock_init(&pring->ring_lock);
11027 spin_unlock_irq(&phba->hbalock);
11031 * lpfc_sli_queue_init - Queue initialization function
11032 * @phba: Pointer to HBA context object.
11034 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11035 * ring. This function also initializes ring indices of each ring.
11036 * This function is called during the initialization of the SLI
11037 * interface of an HBA.
11038 * This function is called with no lock held and always returns
11039 * 1.
11041 void
11042 lpfc_sli_queue_init(struct lpfc_hba *phba)
11044 struct lpfc_sli *psli;
11045 struct lpfc_sli_ring *pring;
11046 int i;
11048 psli = &phba->sli;
11049 spin_lock_irq(&phba->hbalock);
11050 INIT_LIST_HEAD(&psli->mboxq);
11051 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11052 /* Initialize list headers for txq and txcmplq as double linked lists */
11053 for (i = 0; i < psli->num_rings; i++) {
11054 pring = &psli->sli3_ring[i];
11055 pring->ringno = i;
11056 pring->sli.sli3.next_cmdidx = 0;
11057 pring->sli.sli3.local_getidx = 0;
11058 pring->sli.sli3.cmdidx = 0;
11059 INIT_LIST_HEAD(&pring->iocb_continueq);
11060 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11061 INIT_LIST_HEAD(&pring->postbufq);
11062 pring->flag = 0;
11063 INIT_LIST_HEAD(&pring->txq);
11064 INIT_LIST_HEAD(&pring->txcmplq);
11065 spin_lock_init(&pring->ring_lock);
11067 spin_unlock_irq(&phba->hbalock);
11071 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11072 * @phba: Pointer to HBA context object.
11074 * This routine flushes the mailbox command subsystem. It will unconditionally
11075 * flush all the mailbox commands in the three possible stages in the mailbox
11076 * command sub-system: pending mailbox command queue; the outstanding mailbox
11077 * command; and completed mailbox command queue. It is caller's responsibility
11078 * to make sure that the driver is in the proper state to flush the mailbox
11079 * command sub-system. Namely, the posting of mailbox commands into the
11080 * pending mailbox command queue from the various clients must be stopped;
11081 * either the HBA is in a state that it will never works on the outstanding
11082 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11083 * mailbox command has been completed.
11085 static void
11086 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11088 LIST_HEAD(completions);
11089 struct lpfc_sli *psli = &phba->sli;
11090 LPFC_MBOXQ_t *pmb;
11091 unsigned long iflag;
11093 /* Disable softirqs, including timers from obtaining phba->hbalock */
11094 local_bh_disable();
11096 /* Flush all the mailbox commands in the mbox system */
11097 spin_lock_irqsave(&phba->hbalock, iflag);
11099 /* The pending mailbox command queue */
11100 list_splice_init(&phba->sli.mboxq, &completions);
11101 /* The outstanding active mailbox command */
11102 if (psli->mbox_active) {
11103 list_add_tail(&psli->mbox_active->list, &completions);
11104 psli->mbox_active = NULL;
11105 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11107 /* The completed mailbox command queue */
11108 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11109 spin_unlock_irqrestore(&phba->hbalock, iflag);
11111 /* Enable softirqs again, done with phba->hbalock */
11112 local_bh_enable();
11114 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11115 while (!list_empty(&completions)) {
11116 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11117 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11118 if (pmb->mbox_cmpl)
11119 pmb->mbox_cmpl(phba, pmb);
11124 * lpfc_sli_host_down - Vport cleanup function
11125 * @vport: Pointer to virtual port object.
11127 * lpfc_sli_host_down is called to clean up the resources
11128 * associated with a vport before destroying virtual
11129 * port data structures.
11130 * This function does following operations:
11131 * - Free discovery resources associated with this virtual
11132 * port.
11133 * - Free iocbs associated with this virtual port in
11134 * the txq.
11135 * - Send abort for all iocb commands associated with this
11136 * vport in txcmplq.
11138 * This function is called with no lock held and always returns 1.
11141 lpfc_sli_host_down(struct lpfc_vport *vport)
11143 LIST_HEAD(completions);
11144 struct lpfc_hba *phba = vport->phba;
11145 struct lpfc_sli *psli = &phba->sli;
11146 struct lpfc_queue *qp = NULL;
11147 struct lpfc_sli_ring *pring;
11148 struct lpfc_iocbq *iocb, *next_iocb;
11149 int i;
11150 unsigned long flags = 0;
11151 uint16_t prev_pring_flag;
11153 lpfc_cleanup_discovery_resources(vport);
11155 spin_lock_irqsave(&phba->hbalock, flags);
11158 * Error everything on the txq since these iocbs
11159 * have not been given to the FW yet.
11160 * Also issue ABTS for everything on the txcmplq
11162 if (phba->sli_rev != LPFC_SLI_REV4) {
11163 for (i = 0; i < psli->num_rings; i++) {
11164 pring = &psli->sli3_ring[i];
11165 prev_pring_flag = pring->flag;
11166 /* Only slow rings */
11167 if (pring->ringno == LPFC_ELS_RING) {
11168 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11169 /* Set the lpfc data pending flag */
11170 set_bit(LPFC_DATA_READY, &phba->data_flags);
11172 list_for_each_entry_safe(iocb, next_iocb,
11173 &pring->txq, list) {
11174 if (iocb->vport != vport)
11175 continue;
11176 list_move_tail(&iocb->list, &completions);
11178 list_for_each_entry_safe(iocb, next_iocb,
11179 &pring->txcmplq, list) {
11180 if (iocb->vport != vport)
11181 continue;
11182 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11183 NULL);
11185 pring->flag = prev_pring_flag;
11187 } else {
11188 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11189 pring = qp->pring;
11190 if (!pring)
11191 continue;
11192 if (pring == phba->sli4_hba.els_wq->pring) {
11193 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11194 /* Set the lpfc data pending flag */
11195 set_bit(LPFC_DATA_READY, &phba->data_flags);
11197 prev_pring_flag = pring->flag;
11198 spin_lock(&pring->ring_lock);
11199 list_for_each_entry_safe(iocb, next_iocb,
11200 &pring->txq, list) {
11201 if (iocb->vport != vport)
11202 continue;
11203 list_move_tail(&iocb->list, &completions);
11205 spin_unlock(&pring->ring_lock);
11206 list_for_each_entry_safe(iocb, next_iocb,
11207 &pring->txcmplq, list) {
11208 if (iocb->vport != vport)
11209 continue;
11210 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11211 NULL);
11213 pring->flag = prev_pring_flag;
11216 spin_unlock_irqrestore(&phba->hbalock, flags);
11218 /* Cancel all the IOCBs from the completions list */
11219 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11220 IOERR_SLI_DOWN);
11221 return 1;
11225 * lpfc_sli_hba_down - Resource cleanup function for the HBA
11226 * @phba: Pointer to HBA context object.
11228 * This function cleans up all iocb, buffers, mailbox commands
11229 * while shutting down the HBA. This function is called with no
11230 * lock held and always returns 1.
11231 * This function does the following to cleanup driver resources:
11232 * - Free discovery resources for each virtual port
11233 * - Cleanup any pending fabric iocbs
11234 * - Iterate through the iocb txq and free each entry
11235 * in the list.
11236 * - Free up any buffer posted to the HBA
11237 * - Free mailbox commands in the mailbox queue.
11240 lpfc_sli_hba_down(struct lpfc_hba *phba)
11242 LIST_HEAD(completions);
11243 struct lpfc_sli *psli = &phba->sli;
11244 struct lpfc_queue *qp = NULL;
11245 struct lpfc_sli_ring *pring;
11246 struct lpfc_dmabuf *buf_ptr;
11247 unsigned long flags = 0;
11248 int i;
11250 /* Shutdown the mailbox command sub-system */
11251 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11253 lpfc_hba_down_prep(phba);
11255 /* Disable softirqs, including timers from obtaining phba->hbalock */
11256 local_bh_disable();
11258 lpfc_fabric_abort_hba(phba);
11260 spin_lock_irqsave(&phba->hbalock, flags);
11263 * Error everything on the txq since these iocbs
11264 * have not been given to the FW yet.
11266 if (phba->sli_rev != LPFC_SLI_REV4) {
11267 for (i = 0; i < psli->num_rings; i++) {
11268 pring = &psli->sli3_ring[i];
11269 /* Only slow rings */
11270 if (pring->ringno == LPFC_ELS_RING) {
11271 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11272 /* Set the lpfc data pending flag */
11273 set_bit(LPFC_DATA_READY, &phba->data_flags);
11275 list_splice_init(&pring->txq, &completions);
11277 } else {
11278 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11279 pring = qp->pring;
11280 if (!pring)
11281 continue;
11282 spin_lock(&pring->ring_lock);
11283 list_splice_init(&pring->txq, &completions);
11284 spin_unlock(&pring->ring_lock);
11285 if (pring == phba->sli4_hba.els_wq->pring) {
11286 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11287 /* Set the lpfc data pending flag */
11288 set_bit(LPFC_DATA_READY, &phba->data_flags);
11292 spin_unlock_irqrestore(&phba->hbalock, flags);
11294 /* Cancel all the IOCBs from the completions list */
11295 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11296 IOERR_SLI_DOWN);
11298 spin_lock_irqsave(&phba->hbalock, flags);
11299 list_splice_init(&phba->elsbuf, &completions);
11300 phba->elsbuf_cnt = 0;
11301 phba->elsbuf_prev_cnt = 0;
11302 spin_unlock_irqrestore(&phba->hbalock, flags);
11304 while (!list_empty(&completions)) {
11305 list_remove_head(&completions, buf_ptr,
11306 struct lpfc_dmabuf, list);
11307 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11308 kfree(buf_ptr);
11311 /* Enable softirqs again, done with phba->hbalock */
11312 local_bh_enable();
11314 /* Return any active mbox cmds */
11315 del_timer_sync(&psli->mbox_tmo);
11317 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11318 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11319 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11321 return 1;
11325 * lpfc_sli_pcimem_bcopy - SLI memory copy function
11326 * @srcp: Source memory pointer.
11327 * @destp: Destination memory pointer.
11328 * @cnt: Number of words required to be copied.
11330 * This function is used for copying data between driver memory
11331 * and the SLI memory. This function also changes the endianness
11332 * of each word if native endianness is different from SLI
11333 * endianness. This function can be called with or without
11334 * lock.
11336 void
11337 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11339 uint32_t *src = srcp;
11340 uint32_t *dest = destp;
11341 uint32_t ldata;
11342 int i;
11344 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11345 ldata = *src;
11346 ldata = le32_to_cpu(ldata);
11347 *dest = ldata;
11348 src++;
11349 dest++;
11355 * lpfc_sli_bemem_bcopy - SLI memory copy function
11356 * @srcp: Source memory pointer.
11357 * @destp: Destination memory pointer.
11358 * @cnt: Number of words required to be copied.
11360 * This function is used for copying data between a data structure
11361 * with big endian representation to local endianness.
11362 * This function can be called with or without lock.
11364 void
11365 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11367 uint32_t *src = srcp;
11368 uint32_t *dest = destp;
11369 uint32_t ldata;
11370 int i;
11372 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11373 ldata = *src;
11374 ldata = be32_to_cpu(ldata);
11375 *dest = ldata;
11376 src++;
11377 dest++;
11382 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11383 * @phba: Pointer to HBA context object.
11384 * @pring: Pointer to driver SLI ring object.
11385 * @mp: Pointer to driver buffer object.
11387 * This function is called with no lock held.
11388 * It always return zero after adding the buffer to the postbufq
11389 * buffer list.
11392 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11393 struct lpfc_dmabuf *mp)
11395 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11396 later */
11397 spin_lock_irq(&phba->hbalock);
11398 list_add_tail(&mp->list, &pring->postbufq);
11399 pring->postbufq_cnt++;
11400 spin_unlock_irq(&phba->hbalock);
11401 return 0;
11405 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11406 * @phba: Pointer to HBA context object.
11408 * When HBQ is enabled, buffers are searched based on tags. This function
11409 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11410 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11411 * does not conflict with tags of buffer posted for unsolicited events.
11412 * The function returns the allocated tag. The function is called with
11413 * no locks held.
11415 uint32_t
11416 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11418 spin_lock_irq(&phba->hbalock);
11419 phba->buffer_tag_count++;
11421 * Always set the QUE_BUFTAG_BIT to distiguish between
11422 * a tag assigned by HBQ.
11424 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11425 spin_unlock_irq(&phba->hbalock);
11426 return phba->buffer_tag_count;
11430 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11431 * @phba: Pointer to HBA context object.
11432 * @pring: Pointer to driver SLI ring object.
11433 * @tag: Buffer tag.
11435 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11436 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11437 * iocb is posted to the response ring with the tag of the buffer.
11438 * This function searches the pring->postbufq list using the tag
11439 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11440 * iocb. If the buffer is found then lpfc_dmabuf object of the
11441 * buffer is returned to the caller else NULL is returned.
11442 * This function is called with no lock held.
11444 struct lpfc_dmabuf *
11445 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11446 uint32_t tag)
11448 struct lpfc_dmabuf *mp, *next_mp;
11449 struct list_head *slp = &pring->postbufq;
11451 /* Search postbufq, from the beginning, looking for a match on tag */
11452 spin_lock_irq(&phba->hbalock);
11453 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11454 if (mp->buffer_tag == tag) {
11455 list_del_init(&mp->list);
11456 pring->postbufq_cnt--;
11457 spin_unlock_irq(&phba->hbalock);
11458 return mp;
11462 spin_unlock_irq(&phba->hbalock);
11463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11464 "0402 Cannot find virtual addr for buffer tag on "
11465 "ring %d Data x%lx x%px x%px x%x\n",
11466 pring->ringno, (unsigned long) tag,
11467 slp->next, slp->prev, pring->postbufq_cnt);
11469 return NULL;
11473 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11474 * @phba: Pointer to HBA context object.
11475 * @pring: Pointer to driver SLI ring object.
11476 * @phys: DMA address of the buffer.
11478 * This function searches the buffer list using the dma_address
11479 * of unsolicited event to find the driver's lpfc_dmabuf object
11480 * corresponding to the dma_address. The function returns the
11481 * lpfc_dmabuf object if a buffer is found else it returns NULL.
11482 * This function is called by the ct and els unsolicited event
11483 * handlers to get the buffer associated with the unsolicited
11484 * event.
11486 * This function is called with no lock held.
11488 struct lpfc_dmabuf *
11489 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11490 dma_addr_t phys)
11492 struct lpfc_dmabuf *mp, *next_mp;
11493 struct list_head *slp = &pring->postbufq;
11495 /* Search postbufq, from the beginning, looking for a match on phys */
11496 spin_lock_irq(&phba->hbalock);
11497 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11498 if (mp->phys == phys) {
11499 list_del_init(&mp->list);
11500 pring->postbufq_cnt--;
11501 spin_unlock_irq(&phba->hbalock);
11502 return mp;
11506 spin_unlock_irq(&phba->hbalock);
11507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11508 "0410 Cannot find virtual addr for mapped buf on "
11509 "ring %d Data x%llx x%px x%px x%x\n",
11510 pring->ringno, (unsigned long long)phys,
11511 slp->next, slp->prev, pring->postbufq_cnt);
11512 return NULL;
11516 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11517 * @phba: Pointer to HBA context object.
11518 * @cmdiocb: Pointer to driver command iocb object.
11519 * @rspiocb: Pointer to driver response iocb object.
11521 * This function is the completion handler for the abort iocbs for
11522 * ELS commands. This function is called from the ELS ring event
11523 * handler with no lock held. This function frees memory resources
11524 * associated with the abort iocb.
11526 static void
11527 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11528 struct lpfc_iocbq *rspiocb)
11530 IOCB_t *irsp = &rspiocb->iocb;
11531 uint16_t abort_iotag, abort_context;
11532 struct lpfc_iocbq *abort_iocb = NULL;
11534 if (irsp->ulpStatus) {
11537 * Assume that the port already completed and returned, or
11538 * will return the iocb. Just Log the message.
11540 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11541 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11543 spin_lock_irq(&phba->hbalock);
11544 if (phba->sli_rev < LPFC_SLI_REV4) {
11545 if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11546 irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11547 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11548 spin_unlock_irq(&phba->hbalock);
11549 goto release_iocb;
11551 if (abort_iotag != 0 &&
11552 abort_iotag <= phba->sli.last_iotag)
11553 abort_iocb =
11554 phba->sli.iocbq_lookup[abort_iotag];
11555 } else
11556 /* For sli4 the abort_tag is the XRI,
11557 * so the abort routine puts the iotag of the iocb
11558 * being aborted in the context field of the abort
11559 * IOCB.
11561 abort_iocb = phba->sli.iocbq_lookup[abort_context];
11563 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11564 "0327 Cannot abort els iocb x%px "
11565 "with tag %x context %x, abort status %x, "
11566 "abort code %x\n",
11567 abort_iocb, abort_iotag, abort_context,
11568 irsp->ulpStatus, irsp->un.ulpWord[4]);
11570 spin_unlock_irq(&phba->hbalock);
11572 release_iocb:
11573 lpfc_sli_release_iocbq(phba, cmdiocb);
11574 return;
11578 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11579 * @phba: Pointer to HBA context object.
11580 * @cmdiocb: Pointer to driver command iocb object.
11581 * @rspiocb: Pointer to driver response iocb object.
11583 * The function is called from SLI ring event handler with no
11584 * lock held. This function is the completion handler for ELS commands
11585 * which are aborted. The function frees memory resources used for
11586 * the aborted ELS commands.
11588 static void
11589 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11590 struct lpfc_iocbq *rspiocb)
11592 IOCB_t *irsp = &rspiocb->iocb;
11594 /* ELS cmd tag <ulpIoTag> completes */
11595 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11596 "0139 Ignoring ELS cmd tag x%x completion Data: "
11597 "x%x x%x x%x\n",
11598 irsp->ulpIoTag, irsp->ulpStatus,
11599 irsp->un.ulpWord[4], irsp->ulpTimeout);
11600 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1);
11601 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11602 lpfc_ct_free_iocb(phba, cmdiocb);
11603 else
11604 lpfc_els_free_iocb(phba, cmdiocb);
11608 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11609 * @phba: Pointer to HBA context object.
11610 * @pring: Pointer to driver SLI ring object.
11611 * @cmdiocb: Pointer to driver command iocb object.
11612 * @cmpl: completion function.
11614 * This function issues an abort iocb for the provided command iocb. In case
11615 * of unloading, the abort iocb will not be issued to commands on the ELS
11616 * ring. Instead, the callback function shall be changed to those commands
11617 * so that nothing happens when them finishes. This function is called with
11618 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
11619 * when the command iocb is an abort request.
11623 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11624 struct lpfc_iocbq *cmdiocb, void *cmpl)
11626 struct lpfc_vport *vport = cmdiocb->vport;
11627 struct lpfc_iocbq *abtsiocbp;
11628 IOCB_t *icmd = NULL;
11629 IOCB_t *iabt = NULL;
11630 int retval = IOCB_ERROR;
11631 unsigned long iflags;
11632 struct lpfc_nodelist *ndlp;
11635 * There are certain command types we don't want to abort. And we
11636 * don't want to abort commands that are already in the process of
11637 * being aborted.
11639 icmd = &cmdiocb->iocb;
11640 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11641 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11642 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11643 return IOCB_ABORTING;
11645 if (!pring) {
11646 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11647 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11648 else
11649 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11650 return retval;
11654 * If we're unloading, don't abort iocb on the ELS ring, but change
11655 * the callback so that nothing happens when it finishes.
11657 if ((vport->load_flag & FC_UNLOADING) &&
11658 pring->ringno == LPFC_ELS_RING) {
11659 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11660 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11661 else
11662 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11663 return retval;
11666 /* issue ABTS for this IOCB based on iotag */
11667 abtsiocbp = __lpfc_sli_get_iocbq(phba);
11668 if (abtsiocbp == NULL)
11669 return IOCB_NORESOURCE;
11671 /* This signals the response to set the correct status
11672 * before calling the completion handler
11674 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11676 iabt = &abtsiocbp->iocb;
11677 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11678 iabt->un.acxri.abortContextTag = icmd->ulpContext;
11679 if (phba->sli_rev == LPFC_SLI_REV4) {
11680 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11681 if (pring->ringno == LPFC_ELS_RING)
11682 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11683 } else {
11684 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11685 if (pring->ringno == LPFC_ELS_RING) {
11686 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11687 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11690 iabt->ulpLe = 1;
11691 iabt->ulpClass = icmd->ulpClass;
11693 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11694 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11695 if (cmdiocb->iocb_flag & LPFC_IO_FCP) {
11696 abtsiocbp->iocb_flag |= LPFC_IO_FCP;
11697 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11699 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11700 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11702 if (phba->link_state >= LPFC_LINK_UP)
11703 iabt->ulpCommand = CMD_ABORT_XRI_CN;
11704 else
11705 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11707 if (cmpl)
11708 abtsiocbp->iocb_cmpl = cmpl;
11709 else
11710 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11711 abtsiocbp->vport = vport;
11713 if (phba->sli_rev == LPFC_SLI_REV4) {
11714 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11715 if (unlikely(pring == NULL))
11716 goto abort_iotag_exit;
11717 /* Note: both hbalock and ring_lock need to be set here */
11718 spin_lock_irqsave(&pring->ring_lock, iflags);
11719 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11720 abtsiocbp, 0);
11721 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11722 } else {
11723 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11724 abtsiocbp, 0);
11727 abort_iotag_exit:
11729 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11730 "0339 Abort xri x%x, original iotag x%x, "
11731 "abort cmd iotag x%x retval x%x\n",
11732 iabt->un.acxri.abortIoTag,
11733 iabt->un.acxri.abortContextTag,
11734 abtsiocbp->iotag, retval);
11736 if (retval) {
11737 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
11738 __lpfc_sli_release_iocbq(phba, abtsiocbp);
11742 * Caller to this routine should check for IOCB_ERROR
11743 * and handle it properly. This routine no longer removes
11744 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11746 return retval;
11750 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11751 * @phba: pointer to lpfc HBA data structure.
11753 * This routine will abort all pending and outstanding iocbs to an HBA.
11755 void
11756 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11758 struct lpfc_sli *psli = &phba->sli;
11759 struct lpfc_sli_ring *pring;
11760 struct lpfc_queue *qp = NULL;
11761 int i;
11763 if (phba->sli_rev != LPFC_SLI_REV4) {
11764 for (i = 0; i < psli->num_rings; i++) {
11765 pring = &psli->sli3_ring[i];
11766 lpfc_sli_abort_iocb_ring(phba, pring);
11768 return;
11770 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11771 pring = qp->pring;
11772 if (!pring)
11773 continue;
11774 lpfc_sli_abort_iocb_ring(phba, pring);
11779 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11780 * @iocbq: Pointer to driver iocb object.
11781 * @vport: Pointer to driver virtual port object.
11782 * @tgt_id: SCSI ID of the target.
11783 * @lun_id: LUN ID of the scsi device.
11784 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11786 * This function acts as an iocb filter for functions which abort or count
11787 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11788 * 0 if the filtering criteria is met for the given iocb and will return
11789 * 1 if the filtering criteria is not met.
11790 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11791 * given iocb is for the SCSI device specified by vport, tgt_id and
11792 * lun_id parameter.
11793 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
11794 * given iocb is for the SCSI target specified by vport and tgt_id
11795 * parameters.
11796 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11797 * given iocb is for the SCSI host associated with the given vport.
11798 * This function is called with no locks held.
11800 static int
11801 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11802 uint16_t tgt_id, uint64_t lun_id,
11803 lpfc_ctx_cmd ctx_cmd)
11805 struct lpfc_io_buf *lpfc_cmd;
11806 int rc = 1;
11808 if (iocbq->vport != vport)
11809 return rc;
11811 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11812 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11813 return rc;
11815 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11817 if (lpfc_cmd->pCmd == NULL)
11818 return rc;
11820 switch (ctx_cmd) {
11821 case LPFC_CTX_LUN:
11822 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11823 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11824 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11825 rc = 0;
11826 break;
11827 case LPFC_CTX_TGT:
11828 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11829 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11830 rc = 0;
11831 break;
11832 case LPFC_CTX_HOST:
11833 rc = 0;
11834 break;
11835 default:
11836 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11837 __func__, ctx_cmd);
11838 break;
11841 return rc;
11845 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11846 * @vport: Pointer to virtual port.
11847 * @tgt_id: SCSI ID of the target.
11848 * @lun_id: LUN ID of the scsi device.
11849 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11851 * This function returns number of FCP commands pending for the vport.
11852 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11853 * commands pending on the vport associated with SCSI device specified
11854 * by tgt_id and lun_id parameters.
11855 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11856 * commands pending on the vport associated with SCSI target specified
11857 * by tgt_id parameter.
11858 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11859 * commands pending on the vport.
11860 * This function returns the number of iocbs which satisfy the filter.
11861 * This function is called without any lock held.
11864 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11865 lpfc_ctx_cmd ctx_cmd)
11867 struct lpfc_hba *phba = vport->phba;
11868 struct lpfc_iocbq *iocbq;
11869 int sum, i;
11871 spin_lock_irq(&phba->hbalock);
11872 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11873 iocbq = phba->sli.iocbq_lookup[i];
11875 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11876 ctx_cmd) == 0)
11877 sum++;
11879 spin_unlock_irq(&phba->hbalock);
11881 return sum;
11885 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11886 * @phba: Pointer to HBA context object
11887 * @cmdiocb: Pointer to command iocb object.
11888 * @wcqe: pointer to the complete wcqe
11890 * This function is called when an aborted FCP iocb completes. This
11891 * function is called by the ring event handler with no lock held.
11892 * This function frees the iocb. It is called for sli-4 adapters.
11894 void
11895 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11896 struct lpfc_wcqe_complete *wcqe)
11898 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11899 "3017 ABORT_XRI_CN completing on rpi x%x "
11900 "original iotag x%x, abort cmd iotag x%x "
11901 "status 0x%x, reason 0x%x\n",
11902 cmdiocb->iocb.un.acxri.abortContextTag,
11903 cmdiocb->iocb.un.acxri.abortIoTag,
11904 cmdiocb->iotag,
11905 (bf_get(lpfc_wcqe_c_status, wcqe)
11906 & LPFC_IOCB_STATUS_MASK),
11907 wcqe->parameter);
11908 lpfc_sli_release_iocbq(phba, cmdiocb);
11912 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11913 * @phba: Pointer to HBA context object
11914 * @cmdiocb: Pointer to command iocb object.
11915 * @rspiocb: Pointer to response iocb object.
11917 * This function is called when an aborted FCP iocb completes. This
11918 * function is called by the ring event handler with no lock held.
11919 * This function frees the iocb.
11921 void
11922 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11923 struct lpfc_iocbq *rspiocb)
11925 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11926 "3096 ABORT_XRI_CN completing on rpi x%x "
11927 "original iotag x%x, abort cmd iotag x%x "
11928 "status 0x%x, reason 0x%x\n",
11929 cmdiocb->iocb.un.acxri.abortContextTag,
11930 cmdiocb->iocb.un.acxri.abortIoTag,
11931 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11932 rspiocb->iocb.un.ulpWord[4]);
11933 lpfc_sli_release_iocbq(phba, cmdiocb);
11934 return;
11938 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11939 * @vport: Pointer to virtual port.
11940 * @pring: Pointer to driver SLI ring object.
11941 * @tgt_id: SCSI ID of the target.
11942 * @lun_id: LUN ID of the scsi device.
11943 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11945 * This function sends an abort command for every SCSI command
11946 * associated with the given virtual port pending on the ring
11947 * filtered by lpfc_sli_validate_fcp_iocb function.
11948 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11949 * FCP iocbs associated with lun specified by tgt_id and lun_id
11950 * parameters
11951 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11952 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11953 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11954 * FCP iocbs associated with virtual port.
11955 * This function returns number of iocbs it failed to abort.
11956 * This function is called with no locks held.
11959 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11960 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11962 struct lpfc_hba *phba = vport->phba;
11963 struct lpfc_iocbq *iocbq;
11964 int errcnt = 0, ret_val = 0;
11965 unsigned long iflags;
11966 int i;
11968 /* all I/Os are in process of being flushed */
11969 if (phba->hba_flag & HBA_IOQ_FLUSH)
11970 return errcnt;
11972 for (i = 1; i <= phba->sli.last_iotag; i++) {
11973 iocbq = phba->sli.iocbq_lookup[i];
11975 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11976 abort_cmd) != 0)
11977 continue;
11979 spin_lock_irqsave(&phba->hbalock, iflags);
11980 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
11981 lpfc_sli_abort_fcp_cmpl);
11982 spin_unlock_irqrestore(&phba->hbalock, iflags);
11983 if (ret_val != IOCB_SUCCESS)
11984 errcnt++;
11987 return errcnt;
11991 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11992 * @vport: Pointer to virtual port.
11993 * @pring: Pointer to driver SLI ring object.
11994 * @tgt_id: SCSI ID of the target.
11995 * @lun_id: LUN ID of the scsi device.
11996 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11998 * This function sends an abort command for every SCSI command
11999 * associated with the given virtual port pending on the ring
12000 * filtered by lpfc_sli_validate_fcp_iocb function.
12001 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12002 * FCP iocbs associated with lun specified by tgt_id and lun_id
12003 * parameters
12004 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12005 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12006 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12007 * FCP iocbs associated with virtual port.
12008 * This function returns number of iocbs it aborted .
12009 * This function is called with no locks held right after a taskmgmt
12010 * command is sent.
12013 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12014 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12016 struct lpfc_hba *phba = vport->phba;
12017 struct lpfc_io_buf *lpfc_cmd;
12018 struct lpfc_iocbq *abtsiocbq;
12019 struct lpfc_nodelist *ndlp;
12020 struct lpfc_iocbq *iocbq;
12021 IOCB_t *icmd;
12022 int sum, i, ret_val;
12023 unsigned long iflags;
12024 struct lpfc_sli_ring *pring_s4 = NULL;
12026 spin_lock_irqsave(&phba->hbalock, iflags);
12028 /* all I/Os are in process of being flushed */
12029 if (phba->hba_flag & HBA_IOQ_FLUSH) {
12030 spin_unlock_irqrestore(&phba->hbalock, iflags);
12031 return 0;
12033 sum = 0;
12035 for (i = 1; i <= phba->sli.last_iotag; i++) {
12036 iocbq = phba->sli.iocbq_lookup[i];
12038 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12039 cmd) != 0)
12040 continue;
12042 /* Guard against IO completion being called at same time */
12043 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12044 spin_lock(&lpfc_cmd->buf_lock);
12046 if (!lpfc_cmd->pCmd) {
12047 spin_unlock(&lpfc_cmd->buf_lock);
12048 continue;
12051 if (phba->sli_rev == LPFC_SLI_REV4) {
12052 pring_s4 =
12053 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12054 if (!pring_s4) {
12055 spin_unlock(&lpfc_cmd->buf_lock);
12056 continue;
12058 /* Note: both hbalock and ring_lock must be set here */
12059 spin_lock(&pring_s4->ring_lock);
12063 * If the iocbq is already being aborted, don't take a second
12064 * action, but do count it.
12066 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
12067 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
12068 if (phba->sli_rev == LPFC_SLI_REV4)
12069 spin_unlock(&pring_s4->ring_lock);
12070 spin_unlock(&lpfc_cmd->buf_lock);
12071 continue;
12074 /* issue ABTS for this IOCB based on iotag */
12075 abtsiocbq = __lpfc_sli_get_iocbq(phba);
12076 if (!abtsiocbq) {
12077 if (phba->sli_rev == LPFC_SLI_REV4)
12078 spin_unlock(&pring_s4->ring_lock);
12079 spin_unlock(&lpfc_cmd->buf_lock);
12080 continue;
12083 icmd = &iocbq->iocb;
12084 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
12085 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
12086 if (phba->sli_rev == LPFC_SLI_REV4)
12087 abtsiocbq->iocb.un.acxri.abortIoTag =
12088 iocbq->sli4_xritag;
12089 else
12090 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
12091 abtsiocbq->iocb.ulpLe = 1;
12092 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
12093 abtsiocbq->vport = vport;
12095 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12096 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12097 if (iocbq->iocb_flag & LPFC_IO_FCP)
12098 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
12099 if (iocbq->iocb_flag & LPFC_IO_FOF)
12100 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
12102 ndlp = lpfc_cmd->rdata->pnode;
12104 if (lpfc_is_link_up(phba) &&
12105 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
12106 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
12107 else
12108 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
12110 /* Setup callback routine and issue the command. */
12111 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
12114 * Indicate the IO is being aborted by the driver and set
12115 * the caller's flag into the aborted IO.
12117 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
12119 if (phba->sli_rev == LPFC_SLI_REV4) {
12120 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12121 abtsiocbq, 0);
12122 spin_unlock(&pring_s4->ring_lock);
12123 } else {
12124 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12125 abtsiocbq, 0);
12128 spin_unlock(&lpfc_cmd->buf_lock);
12130 if (ret_val == IOCB_ERROR)
12131 __lpfc_sli_release_iocbq(phba, abtsiocbq);
12132 else
12133 sum++;
12135 spin_unlock_irqrestore(&phba->hbalock, iflags);
12136 return sum;
12140 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12141 * @phba: Pointer to HBA context object.
12142 * @cmdiocbq: Pointer to command iocb.
12143 * @rspiocbq: Pointer to response iocb.
12145 * This function is the completion handler for iocbs issued using
12146 * lpfc_sli_issue_iocb_wait function. This function is called by the
12147 * ring event handler function without any lock held. This function
12148 * can be called from both worker thread context and interrupt
12149 * context. This function also can be called from other thread which
12150 * cleans up the SLI layer objects.
12151 * This function copy the contents of the response iocb to the
12152 * response iocb memory object provided by the caller of
12153 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12154 * sleeps for the iocb completion.
12156 static void
12157 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12158 struct lpfc_iocbq *cmdiocbq,
12159 struct lpfc_iocbq *rspiocbq)
12161 wait_queue_head_t *pdone_q;
12162 unsigned long iflags;
12163 struct lpfc_io_buf *lpfc_cmd;
12165 spin_lock_irqsave(&phba->hbalock, iflags);
12166 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
12169 * A time out has occurred for the iocb. If a time out
12170 * completion handler has been supplied, call it. Otherwise,
12171 * just free the iocbq.
12174 spin_unlock_irqrestore(&phba->hbalock, iflags);
12175 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
12176 cmdiocbq->wait_iocb_cmpl = NULL;
12177 if (cmdiocbq->iocb_cmpl)
12178 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
12179 else
12180 lpfc_sli_release_iocbq(phba, cmdiocbq);
12181 return;
12184 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
12185 if (cmdiocbq->context2 && rspiocbq)
12186 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
12187 &rspiocbq->iocb, sizeof(IOCB_t));
12189 /* Set the exchange busy flag for task management commands */
12190 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
12191 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
12192 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12193 cur_iocbq);
12194 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
12195 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12196 else
12197 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12200 pdone_q = cmdiocbq->context_un.wait_queue;
12201 if (pdone_q)
12202 wake_up(pdone_q);
12203 spin_unlock_irqrestore(&phba->hbalock, iflags);
12204 return;
12208 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12209 * @phba: Pointer to HBA context object..
12210 * @piocbq: Pointer to command iocb.
12211 * @flag: Flag to test.
12213 * This routine grabs the hbalock and then test the iocb_flag to
12214 * see if the passed in flag is set.
12215 * Returns:
12216 * 1 if flag is set.
12217 * 0 if flag is not set.
12219 static int
12220 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12221 struct lpfc_iocbq *piocbq, uint32_t flag)
12223 unsigned long iflags;
12224 int ret;
12226 spin_lock_irqsave(&phba->hbalock, iflags);
12227 ret = piocbq->iocb_flag & flag;
12228 spin_unlock_irqrestore(&phba->hbalock, iflags);
12229 return ret;
12234 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12235 * @phba: Pointer to HBA context object..
12236 * @ring_number: Ring number
12237 * @piocb: Pointer to command iocb.
12238 * @prspiocbq: Pointer to response iocb.
12239 * @timeout: Timeout in number of seconds.
12241 * This function issues the iocb to firmware and waits for the
12242 * iocb to complete. The iocb_cmpl field of the shall be used
12243 * to handle iocbs which time out. If the field is NULL, the
12244 * function shall free the iocbq structure. If more clean up is
12245 * needed, the caller is expected to provide a completion function
12246 * that will provide the needed clean up. If the iocb command is
12247 * not completed within timeout seconds, the function will either
12248 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
12249 * completion function set in the iocb_cmpl field and then return
12250 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
12251 * resources if this function returns IOCB_TIMEDOUT.
12252 * The function waits for the iocb completion using an
12253 * non-interruptible wait.
12254 * This function will sleep while waiting for iocb completion.
12255 * So, this function should not be called from any context which
12256 * does not allow sleeping. Due to the same reason, this function
12257 * cannot be called with interrupt disabled.
12258 * This function assumes that the iocb completions occur while
12259 * this function sleep. So, this function cannot be called from
12260 * the thread which process iocb completion for this ring.
12261 * This function clears the iocb_flag of the iocb object before
12262 * issuing the iocb and the iocb completion handler sets this
12263 * flag and wakes this thread when the iocb completes.
12264 * The contents of the response iocb will be copied to prspiocbq
12265 * by the completion handler when the command completes.
12266 * This function returns IOCB_SUCCESS when success.
12267 * This function is called with no lock held.
12270 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12271 uint32_t ring_number,
12272 struct lpfc_iocbq *piocb,
12273 struct lpfc_iocbq *prspiocbq,
12274 uint32_t timeout)
12276 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12277 long timeleft, timeout_req = 0;
12278 int retval = IOCB_SUCCESS;
12279 uint32_t creg_val;
12280 struct lpfc_iocbq *iocb;
12281 int txq_cnt = 0;
12282 int txcmplq_cnt = 0;
12283 struct lpfc_sli_ring *pring;
12284 unsigned long iflags;
12285 bool iocb_completed = true;
12287 if (phba->sli_rev >= LPFC_SLI_REV4)
12288 pring = lpfc_sli4_calc_ring(phba, piocb);
12289 else
12290 pring = &phba->sli.sli3_ring[ring_number];
12292 * If the caller has provided a response iocbq buffer, then context2
12293 * is NULL or its an error.
12295 if (prspiocbq) {
12296 if (piocb->context2)
12297 return IOCB_ERROR;
12298 piocb->context2 = prspiocbq;
12301 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12302 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12303 piocb->context_un.wait_queue = &done_q;
12304 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12306 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12307 if (lpfc_readl(phba->HCregaddr, &creg_val))
12308 return IOCB_ERROR;
12309 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12310 writel(creg_val, phba->HCregaddr);
12311 readl(phba->HCregaddr); /* flush */
12314 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12315 SLI_IOCB_RET_IOCB);
12316 if (retval == IOCB_SUCCESS) {
12317 timeout_req = msecs_to_jiffies(timeout * 1000);
12318 timeleft = wait_event_timeout(done_q,
12319 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12320 timeout_req);
12321 spin_lock_irqsave(&phba->hbalock, iflags);
12322 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12325 * IOCB timed out. Inform the wake iocb wait
12326 * completion function and set local status
12329 iocb_completed = false;
12330 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12332 spin_unlock_irqrestore(&phba->hbalock, iflags);
12333 if (iocb_completed) {
12334 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12335 "0331 IOCB wake signaled\n");
12336 /* Note: we are not indicating if the IOCB has a success
12337 * status or not - that's for the caller to check.
12338 * IOCB_SUCCESS means just that the command was sent and
12339 * completed. Not that it completed successfully.
12340 * */
12341 } else if (timeleft == 0) {
12342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12343 "0338 IOCB wait timeout error - no "
12344 "wake response Data x%x\n", timeout);
12345 retval = IOCB_TIMEDOUT;
12346 } else {
12347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12348 "0330 IOCB wake NOT set, "
12349 "Data x%x x%lx\n",
12350 timeout, (timeleft / jiffies));
12351 retval = IOCB_TIMEDOUT;
12353 } else if (retval == IOCB_BUSY) {
12354 if (phba->cfg_log_verbose & LOG_SLI) {
12355 list_for_each_entry(iocb, &pring->txq, list) {
12356 txq_cnt++;
12358 list_for_each_entry(iocb, &pring->txcmplq, list) {
12359 txcmplq_cnt++;
12361 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12362 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12363 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12365 return retval;
12366 } else {
12367 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12368 "0332 IOCB wait issue failed, Data x%x\n",
12369 retval);
12370 retval = IOCB_ERROR;
12373 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12374 if (lpfc_readl(phba->HCregaddr, &creg_val))
12375 return IOCB_ERROR;
12376 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12377 writel(creg_val, phba->HCregaddr);
12378 readl(phba->HCregaddr); /* flush */
12381 if (prspiocbq)
12382 piocb->context2 = NULL;
12384 piocb->context_un.wait_queue = NULL;
12385 piocb->iocb_cmpl = NULL;
12386 return retval;
12390 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12391 * @phba: Pointer to HBA context object.
12392 * @pmboxq: Pointer to driver mailbox object.
12393 * @timeout: Timeout in number of seconds.
12395 * This function issues the mailbox to firmware and waits for the
12396 * mailbox command to complete. If the mailbox command is not
12397 * completed within timeout seconds, it returns MBX_TIMEOUT.
12398 * The function waits for the mailbox completion using an
12399 * interruptible wait. If the thread is woken up due to a
12400 * signal, MBX_TIMEOUT error is returned to the caller. Caller
12401 * should not free the mailbox resources, if this function returns
12402 * MBX_TIMEOUT.
12403 * This function will sleep while waiting for mailbox completion.
12404 * So, this function should not be called from any context which
12405 * does not allow sleeping. Due to the same reason, this function
12406 * cannot be called with interrupt disabled.
12407 * This function assumes that the mailbox completion occurs while
12408 * this function sleep. So, this function cannot be called from
12409 * the worker thread which processes mailbox completion.
12410 * This function is called in the context of HBA management
12411 * applications.
12412 * This function returns MBX_SUCCESS when successful.
12413 * This function is called with no lock held.
12416 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12417 uint32_t timeout)
12419 struct completion mbox_done;
12420 int retval;
12421 unsigned long flag;
12423 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12424 /* setup wake call as IOCB callback */
12425 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12427 /* setup context3 field to pass wait_queue pointer to wake function */
12428 init_completion(&mbox_done);
12429 pmboxq->context3 = &mbox_done;
12430 /* now issue the command */
12431 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12432 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12433 wait_for_completion_timeout(&mbox_done,
12434 msecs_to_jiffies(timeout * 1000));
12436 spin_lock_irqsave(&phba->hbalock, flag);
12437 pmboxq->context3 = NULL;
12439 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12440 * else do not free the resources.
12442 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12443 retval = MBX_SUCCESS;
12444 } else {
12445 retval = MBX_TIMEOUT;
12446 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12448 spin_unlock_irqrestore(&phba->hbalock, flag);
12450 return retval;
12454 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12455 * @phba: Pointer to HBA context.
12456 * @mbx_action: Mailbox shutdown options.
12458 * This function is called to shutdown the driver's mailbox sub-system.
12459 * It first marks the mailbox sub-system is in a block state to prevent
12460 * the asynchronous mailbox command from issued off the pending mailbox
12461 * command queue. If the mailbox command sub-system shutdown is due to
12462 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12463 * the mailbox sub-system flush routine to forcefully bring down the
12464 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12465 * as with offline or HBA function reset), this routine will wait for the
12466 * outstanding mailbox command to complete before invoking the mailbox
12467 * sub-system flush routine to gracefully bring down mailbox sub-system.
12469 void
12470 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12472 struct lpfc_sli *psli = &phba->sli;
12473 unsigned long timeout;
12475 if (mbx_action == LPFC_MBX_NO_WAIT) {
12476 /* delay 100ms for port state */
12477 msleep(100);
12478 lpfc_sli_mbox_sys_flush(phba);
12479 return;
12481 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12483 /* Disable softirqs, including timers from obtaining phba->hbalock */
12484 local_bh_disable();
12486 spin_lock_irq(&phba->hbalock);
12487 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12489 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12490 /* Determine how long we might wait for the active mailbox
12491 * command to be gracefully completed by firmware.
12493 if (phba->sli.mbox_active)
12494 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12495 phba->sli.mbox_active) *
12496 1000) + jiffies;
12497 spin_unlock_irq(&phba->hbalock);
12499 /* Enable softirqs again, done with phba->hbalock */
12500 local_bh_enable();
12502 while (phba->sli.mbox_active) {
12503 /* Check active mailbox complete status every 2ms */
12504 msleep(2);
12505 if (time_after(jiffies, timeout))
12506 /* Timeout, let the mailbox flush routine to
12507 * forcefully release active mailbox command
12509 break;
12511 } else {
12512 spin_unlock_irq(&phba->hbalock);
12514 /* Enable softirqs again, done with phba->hbalock */
12515 local_bh_enable();
12518 lpfc_sli_mbox_sys_flush(phba);
12522 * lpfc_sli_eratt_read - read sli-3 error attention events
12523 * @phba: Pointer to HBA context.
12525 * This function is called to read the SLI3 device error attention registers
12526 * for possible error attention events. The caller must hold the hostlock
12527 * with spin_lock_irq().
12529 * This function returns 1 when there is Error Attention in the Host Attention
12530 * Register and returns 0 otherwise.
12532 static int
12533 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12535 uint32_t ha_copy;
12537 /* Read chip Host Attention (HA) register */
12538 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12539 goto unplug_err;
12541 if (ha_copy & HA_ERATT) {
12542 /* Read host status register to retrieve error event */
12543 if (lpfc_sli_read_hs(phba))
12544 goto unplug_err;
12546 /* Check if there is a deferred error condition is active */
12547 if ((HS_FFER1 & phba->work_hs) &&
12548 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12549 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12550 phba->hba_flag |= DEFER_ERATT;
12551 /* Clear all interrupt enable conditions */
12552 writel(0, phba->HCregaddr);
12553 readl(phba->HCregaddr);
12556 /* Set the driver HA work bitmap */
12557 phba->work_ha |= HA_ERATT;
12558 /* Indicate polling handles this ERATT */
12559 phba->hba_flag |= HBA_ERATT_HANDLED;
12560 return 1;
12562 return 0;
12564 unplug_err:
12565 /* Set the driver HS work bitmap */
12566 phba->work_hs |= UNPLUG_ERR;
12567 /* Set the driver HA work bitmap */
12568 phba->work_ha |= HA_ERATT;
12569 /* Indicate polling handles this ERATT */
12570 phba->hba_flag |= HBA_ERATT_HANDLED;
12571 return 1;
12575 * lpfc_sli4_eratt_read - read sli-4 error attention events
12576 * @phba: Pointer to HBA context.
12578 * This function is called to read the SLI4 device error attention registers
12579 * for possible error attention events. The caller must hold the hostlock
12580 * with spin_lock_irq().
12582 * This function returns 1 when there is Error Attention in the Host Attention
12583 * Register and returns 0 otherwise.
12585 static int
12586 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12588 uint32_t uerr_sta_hi, uerr_sta_lo;
12589 uint32_t if_type, portsmphr;
12590 struct lpfc_register portstat_reg;
12593 * For now, use the SLI4 device internal unrecoverable error
12594 * registers for error attention. This can be changed later.
12596 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12597 switch (if_type) {
12598 case LPFC_SLI_INTF_IF_TYPE_0:
12599 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12600 &uerr_sta_lo) ||
12601 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12602 &uerr_sta_hi)) {
12603 phba->work_hs |= UNPLUG_ERR;
12604 phba->work_ha |= HA_ERATT;
12605 phba->hba_flag |= HBA_ERATT_HANDLED;
12606 return 1;
12608 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12609 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12611 "1423 HBA Unrecoverable error: "
12612 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12613 "ue_mask_lo_reg=0x%x, "
12614 "ue_mask_hi_reg=0x%x\n",
12615 uerr_sta_lo, uerr_sta_hi,
12616 phba->sli4_hba.ue_mask_lo,
12617 phba->sli4_hba.ue_mask_hi);
12618 phba->work_status[0] = uerr_sta_lo;
12619 phba->work_status[1] = uerr_sta_hi;
12620 phba->work_ha |= HA_ERATT;
12621 phba->hba_flag |= HBA_ERATT_HANDLED;
12622 return 1;
12624 break;
12625 case LPFC_SLI_INTF_IF_TYPE_2:
12626 case LPFC_SLI_INTF_IF_TYPE_6:
12627 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12628 &portstat_reg.word0) ||
12629 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12630 &portsmphr)){
12631 phba->work_hs |= UNPLUG_ERR;
12632 phba->work_ha |= HA_ERATT;
12633 phba->hba_flag |= HBA_ERATT_HANDLED;
12634 return 1;
12636 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12637 phba->work_status[0] =
12638 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12639 phba->work_status[1] =
12640 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12642 "2885 Port Status Event: "
12643 "port status reg 0x%x, "
12644 "port smphr reg 0x%x, "
12645 "error 1=0x%x, error 2=0x%x\n",
12646 portstat_reg.word0,
12647 portsmphr,
12648 phba->work_status[0],
12649 phba->work_status[1]);
12650 phba->work_ha |= HA_ERATT;
12651 phba->hba_flag |= HBA_ERATT_HANDLED;
12652 return 1;
12654 break;
12655 case LPFC_SLI_INTF_IF_TYPE_1:
12656 default:
12657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12658 "2886 HBA Error Attention on unsupported "
12659 "if type %d.", if_type);
12660 return 1;
12663 return 0;
12667 * lpfc_sli_check_eratt - check error attention events
12668 * @phba: Pointer to HBA context.
12670 * This function is called from timer soft interrupt context to check HBA's
12671 * error attention register bit for error attention events.
12673 * This function returns 1 when there is Error Attention in the Host Attention
12674 * Register and returns 0 otherwise.
12677 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12679 uint32_t ha_copy;
12681 /* If somebody is waiting to handle an eratt, don't process it
12682 * here. The brdkill function will do this.
12684 if (phba->link_flag & LS_IGNORE_ERATT)
12685 return 0;
12687 /* Check if interrupt handler handles this ERATT */
12688 spin_lock_irq(&phba->hbalock);
12689 if (phba->hba_flag & HBA_ERATT_HANDLED) {
12690 /* Interrupt handler has handled ERATT */
12691 spin_unlock_irq(&phba->hbalock);
12692 return 0;
12696 * If there is deferred error attention, do not check for error
12697 * attention
12699 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12700 spin_unlock_irq(&phba->hbalock);
12701 return 0;
12704 /* If PCI channel is offline, don't process it */
12705 if (unlikely(pci_channel_offline(phba->pcidev))) {
12706 spin_unlock_irq(&phba->hbalock);
12707 return 0;
12710 switch (phba->sli_rev) {
12711 case LPFC_SLI_REV2:
12712 case LPFC_SLI_REV3:
12713 /* Read chip Host Attention (HA) register */
12714 ha_copy = lpfc_sli_eratt_read(phba);
12715 break;
12716 case LPFC_SLI_REV4:
12717 /* Read device Uncoverable Error (UERR) registers */
12718 ha_copy = lpfc_sli4_eratt_read(phba);
12719 break;
12720 default:
12721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12722 "0299 Invalid SLI revision (%d)\n",
12723 phba->sli_rev);
12724 ha_copy = 0;
12725 break;
12727 spin_unlock_irq(&phba->hbalock);
12729 return ha_copy;
12733 * lpfc_intr_state_check - Check device state for interrupt handling
12734 * @phba: Pointer to HBA context.
12736 * This inline routine checks whether a device or its PCI slot is in a state
12737 * that the interrupt should be handled.
12739 * This function returns 0 if the device or the PCI slot is in a state that
12740 * interrupt should be handled, otherwise -EIO.
12742 static inline int
12743 lpfc_intr_state_check(struct lpfc_hba *phba)
12745 /* If the pci channel is offline, ignore all the interrupts */
12746 if (unlikely(pci_channel_offline(phba->pcidev)))
12747 return -EIO;
12749 /* Update device level interrupt statistics */
12750 phba->sli.slistat.sli_intr++;
12752 /* Ignore all interrupts during initialization. */
12753 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12754 return -EIO;
12756 return 0;
12760 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12761 * @irq: Interrupt number.
12762 * @dev_id: The device context pointer.
12764 * This function is directly called from the PCI layer as an interrupt
12765 * service routine when device with SLI-3 interface spec is enabled with
12766 * MSI-X multi-message interrupt mode and there are slow-path events in
12767 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12768 * interrupt mode, this function is called as part of the device-level
12769 * interrupt handler. When the PCI slot is in error recovery or the HBA
12770 * is undergoing initialization, the interrupt handler will not process
12771 * the interrupt. The link attention and ELS ring attention events are
12772 * handled by the worker thread. The interrupt handler signals the worker
12773 * thread and returns for these events. This function is called without
12774 * any lock held. It gets the hbalock to access and update SLI data
12775 * structures.
12777 * This function returns IRQ_HANDLED when interrupt is handled else it
12778 * returns IRQ_NONE.
12780 irqreturn_t
12781 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12783 struct lpfc_hba *phba;
12784 uint32_t ha_copy, hc_copy;
12785 uint32_t work_ha_copy;
12786 unsigned long status;
12787 unsigned long iflag;
12788 uint32_t control;
12790 MAILBOX_t *mbox, *pmbox;
12791 struct lpfc_vport *vport;
12792 struct lpfc_nodelist *ndlp;
12793 struct lpfc_dmabuf *mp;
12794 LPFC_MBOXQ_t *pmb;
12795 int rc;
12798 * Get the driver's phba structure from the dev_id and
12799 * assume the HBA is not interrupting.
12801 phba = (struct lpfc_hba *)dev_id;
12803 if (unlikely(!phba))
12804 return IRQ_NONE;
12807 * Stuff needs to be attented to when this function is invoked as an
12808 * individual interrupt handler in MSI-X multi-message interrupt mode
12810 if (phba->intr_type == MSIX) {
12811 /* Check device state for handling interrupt */
12812 if (lpfc_intr_state_check(phba))
12813 return IRQ_NONE;
12814 /* Need to read HA REG for slow-path events */
12815 spin_lock_irqsave(&phba->hbalock, iflag);
12816 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12817 goto unplug_error;
12818 /* If somebody is waiting to handle an eratt don't process it
12819 * here. The brdkill function will do this.
12821 if (phba->link_flag & LS_IGNORE_ERATT)
12822 ha_copy &= ~HA_ERATT;
12823 /* Check the need for handling ERATT in interrupt handler */
12824 if (ha_copy & HA_ERATT) {
12825 if (phba->hba_flag & HBA_ERATT_HANDLED)
12826 /* ERATT polling has handled ERATT */
12827 ha_copy &= ~HA_ERATT;
12828 else
12829 /* Indicate interrupt handler handles ERATT */
12830 phba->hba_flag |= HBA_ERATT_HANDLED;
12834 * If there is deferred error attention, do not check for any
12835 * interrupt.
12837 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12838 spin_unlock_irqrestore(&phba->hbalock, iflag);
12839 return IRQ_NONE;
12842 /* Clear up only attention source related to slow-path */
12843 if (lpfc_readl(phba->HCregaddr, &hc_copy))
12844 goto unplug_error;
12846 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12847 HC_LAINT_ENA | HC_ERINT_ENA),
12848 phba->HCregaddr);
12849 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12850 phba->HAregaddr);
12851 writel(hc_copy, phba->HCregaddr);
12852 readl(phba->HAregaddr); /* flush */
12853 spin_unlock_irqrestore(&phba->hbalock, iflag);
12854 } else
12855 ha_copy = phba->ha_copy;
12857 work_ha_copy = ha_copy & phba->work_ha_mask;
12859 if (work_ha_copy) {
12860 if (work_ha_copy & HA_LATT) {
12861 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12863 * Turn off Link Attention interrupts
12864 * until CLEAR_LA done
12866 spin_lock_irqsave(&phba->hbalock, iflag);
12867 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12868 if (lpfc_readl(phba->HCregaddr, &control))
12869 goto unplug_error;
12870 control &= ~HC_LAINT_ENA;
12871 writel(control, phba->HCregaddr);
12872 readl(phba->HCregaddr); /* flush */
12873 spin_unlock_irqrestore(&phba->hbalock, iflag);
12875 else
12876 work_ha_copy &= ~HA_LATT;
12879 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12881 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12882 * the only slow ring.
12884 status = (work_ha_copy &
12885 (HA_RXMASK << (4*LPFC_ELS_RING)));
12886 status >>= (4*LPFC_ELS_RING);
12887 if (status & HA_RXMASK) {
12888 spin_lock_irqsave(&phba->hbalock, iflag);
12889 if (lpfc_readl(phba->HCregaddr, &control))
12890 goto unplug_error;
12892 lpfc_debugfs_slow_ring_trc(phba,
12893 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
12894 control, status,
12895 (uint32_t)phba->sli.slistat.sli_intr);
12897 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12898 lpfc_debugfs_slow_ring_trc(phba,
12899 "ISR Disable ring:"
12900 "pwork:x%x hawork:x%x wait:x%x",
12901 phba->work_ha, work_ha_copy,
12902 (uint32_t)((unsigned long)
12903 &phba->work_waitq));
12905 control &=
12906 ~(HC_R0INT_ENA << LPFC_ELS_RING);
12907 writel(control, phba->HCregaddr);
12908 readl(phba->HCregaddr); /* flush */
12910 else {
12911 lpfc_debugfs_slow_ring_trc(phba,
12912 "ISR slow ring: pwork:"
12913 "x%x hawork:x%x wait:x%x",
12914 phba->work_ha, work_ha_copy,
12915 (uint32_t)((unsigned long)
12916 &phba->work_waitq));
12918 spin_unlock_irqrestore(&phba->hbalock, iflag);
12921 spin_lock_irqsave(&phba->hbalock, iflag);
12922 if (work_ha_copy & HA_ERATT) {
12923 if (lpfc_sli_read_hs(phba))
12924 goto unplug_error;
12926 * Check if there is a deferred error condition
12927 * is active
12929 if ((HS_FFER1 & phba->work_hs) &&
12930 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12931 HS_FFER6 | HS_FFER7 | HS_FFER8) &
12932 phba->work_hs)) {
12933 phba->hba_flag |= DEFER_ERATT;
12934 /* Clear all interrupt enable conditions */
12935 writel(0, phba->HCregaddr);
12936 readl(phba->HCregaddr);
12940 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12941 pmb = phba->sli.mbox_active;
12942 pmbox = &pmb->u.mb;
12943 mbox = phba->mbox;
12944 vport = pmb->vport;
12946 /* First check out the status word */
12947 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12948 if (pmbox->mbxOwner != OWN_HOST) {
12949 spin_unlock_irqrestore(&phba->hbalock, iflag);
12951 * Stray Mailbox Interrupt, mbxCommand <cmd>
12952 * mbxStatus <status>
12954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12955 "(%d):0304 Stray Mailbox "
12956 "Interrupt mbxCommand x%x "
12957 "mbxStatus x%x\n",
12958 (vport ? vport->vpi : 0),
12959 pmbox->mbxCommand,
12960 pmbox->mbxStatus);
12961 /* clear mailbox attention bit */
12962 work_ha_copy &= ~HA_MBATT;
12963 } else {
12964 phba->sli.mbox_active = NULL;
12965 spin_unlock_irqrestore(&phba->hbalock, iflag);
12966 phba->last_completion_time = jiffies;
12967 del_timer(&phba->sli.mbox_tmo);
12968 if (pmb->mbox_cmpl) {
12969 lpfc_sli_pcimem_bcopy(mbox, pmbox,
12970 MAILBOX_CMD_SIZE);
12971 if (pmb->out_ext_byte_len &&
12972 pmb->ctx_buf)
12973 lpfc_sli_pcimem_bcopy(
12974 phba->mbox_ext,
12975 pmb->ctx_buf,
12976 pmb->out_ext_byte_len);
12978 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12979 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12981 lpfc_debugfs_disc_trc(vport,
12982 LPFC_DISC_TRC_MBOX_VPORT,
12983 "MBOX dflt rpi: : "
12984 "status:x%x rpi:x%x",
12985 (uint32_t)pmbox->mbxStatus,
12986 pmbox->un.varWords[0], 0);
12988 if (!pmbox->mbxStatus) {
12989 mp = (struct lpfc_dmabuf *)
12990 (pmb->ctx_buf);
12991 ndlp = (struct lpfc_nodelist *)
12992 pmb->ctx_ndlp;
12994 /* Reg_LOGIN of dflt RPI was
12995 * successful. new lets get
12996 * rid of the RPI using the
12997 * same mbox buffer.
12999 lpfc_unreg_login(phba,
13000 vport->vpi,
13001 pmbox->un.varWords[0],
13002 pmb);
13003 pmb->mbox_cmpl =
13004 lpfc_mbx_cmpl_dflt_rpi;
13005 pmb->ctx_buf = mp;
13006 pmb->ctx_ndlp = ndlp;
13007 pmb->vport = vport;
13008 rc = lpfc_sli_issue_mbox(phba,
13009 pmb,
13010 MBX_NOWAIT);
13011 if (rc != MBX_BUSY)
13012 lpfc_printf_log(phba,
13013 KERN_ERR,
13014 LOG_TRACE_EVENT,
13015 "0350 rc should have"
13016 "been MBX_BUSY\n");
13017 if (rc != MBX_NOT_FINISHED)
13018 goto send_current_mbox;
13021 spin_lock_irqsave(
13022 &phba->pport->work_port_lock,
13023 iflag);
13024 phba->pport->work_port_events &=
13025 ~WORKER_MBOX_TMO;
13026 spin_unlock_irqrestore(
13027 &phba->pport->work_port_lock,
13028 iflag);
13029 lpfc_mbox_cmpl_put(phba, pmb);
13031 } else
13032 spin_unlock_irqrestore(&phba->hbalock, iflag);
13034 if ((work_ha_copy & HA_MBATT) &&
13035 (phba->sli.mbox_active == NULL)) {
13036 send_current_mbox:
13037 /* Process next mailbox command if there is one */
13038 do {
13039 rc = lpfc_sli_issue_mbox(phba, NULL,
13040 MBX_NOWAIT);
13041 } while (rc == MBX_NOT_FINISHED);
13042 if (rc != MBX_SUCCESS)
13043 lpfc_printf_log(phba, KERN_ERR,
13044 LOG_TRACE_EVENT,
13045 "0349 rc should be "
13046 "MBX_SUCCESS\n");
13049 spin_lock_irqsave(&phba->hbalock, iflag);
13050 phba->work_ha |= work_ha_copy;
13051 spin_unlock_irqrestore(&phba->hbalock, iflag);
13052 lpfc_worker_wake_up(phba);
13054 return IRQ_HANDLED;
13055 unplug_error:
13056 spin_unlock_irqrestore(&phba->hbalock, iflag);
13057 return IRQ_HANDLED;
13059 } /* lpfc_sli_sp_intr_handler */
13062 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13063 * @irq: Interrupt number.
13064 * @dev_id: The device context pointer.
13066 * This function is directly called from the PCI layer as an interrupt
13067 * service routine when device with SLI-3 interface spec is enabled with
13068 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13069 * ring event in the HBA. However, when the device is enabled with either
13070 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13071 * device-level interrupt handler. When the PCI slot is in error recovery
13072 * or the HBA is undergoing initialization, the interrupt handler will not
13073 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13074 * the intrrupt context. This function is called without any lock held.
13075 * It gets the hbalock to access and update SLI data structures.
13077 * This function returns IRQ_HANDLED when interrupt is handled else it
13078 * returns IRQ_NONE.
13080 irqreturn_t
13081 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13083 struct lpfc_hba *phba;
13084 uint32_t ha_copy;
13085 unsigned long status;
13086 unsigned long iflag;
13087 struct lpfc_sli_ring *pring;
13089 /* Get the driver's phba structure from the dev_id and
13090 * assume the HBA is not interrupting.
13092 phba = (struct lpfc_hba *) dev_id;
13094 if (unlikely(!phba))
13095 return IRQ_NONE;
13098 * Stuff needs to be attented to when this function is invoked as an
13099 * individual interrupt handler in MSI-X multi-message interrupt mode
13101 if (phba->intr_type == MSIX) {
13102 /* Check device state for handling interrupt */
13103 if (lpfc_intr_state_check(phba))
13104 return IRQ_NONE;
13105 /* Need to read HA REG for FCP ring and other ring events */
13106 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13107 return IRQ_HANDLED;
13108 /* Clear up only attention source related to fast-path */
13109 spin_lock_irqsave(&phba->hbalock, iflag);
13111 * If there is deferred error attention, do not check for
13112 * any interrupt.
13114 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13115 spin_unlock_irqrestore(&phba->hbalock, iflag);
13116 return IRQ_NONE;
13118 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13119 phba->HAregaddr);
13120 readl(phba->HAregaddr); /* flush */
13121 spin_unlock_irqrestore(&phba->hbalock, iflag);
13122 } else
13123 ha_copy = phba->ha_copy;
13126 * Process all events on FCP ring. Take the optimized path for FCP IO.
13128 ha_copy &= ~(phba->work_ha_mask);
13130 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13131 status >>= (4*LPFC_FCP_RING);
13132 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13133 if (status & HA_RXMASK)
13134 lpfc_sli_handle_fast_ring_event(phba, pring, status);
13136 if (phba->cfg_multi_ring_support == 2) {
13138 * Process all events on extra ring. Take the optimized path
13139 * for extra ring IO.
13141 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13142 status >>= (4*LPFC_EXTRA_RING);
13143 if (status & HA_RXMASK) {
13144 lpfc_sli_handle_fast_ring_event(phba,
13145 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
13146 status);
13149 return IRQ_HANDLED;
13150 } /* lpfc_sli_fp_intr_handler */
13153 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13154 * @irq: Interrupt number.
13155 * @dev_id: The device context pointer.
13157 * This function is the HBA device-level interrupt handler to device with
13158 * SLI-3 interface spec, called from the PCI layer when either MSI or
13159 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
13160 * requires driver attention. This function invokes the slow-path interrupt
13161 * attention handling function and fast-path interrupt attention handling
13162 * function in turn to process the relevant HBA attention events. This
13163 * function is called without any lock held. It gets the hbalock to access
13164 * and update SLI data structures.
13166 * This function returns IRQ_HANDLED when interrupt is handled, else it
13167 * returns IRQ_NONE.
13169 irqreturn_t
13170 lpfc_sli_intr_handler(int irq, void *dev_id)
13172 struct lpfc_hba *phba;
13173 irqreturn_t sp_irq_rc, fp_irq_rc;
13174 unsigned long status1, status2;
13175 uint32_t hc_copy;
13178 * Get the driver's phba structure from the dev_id and
13179 * assume the HBA is not interrupting.
13181 phba = (struct lpfc_hba *) dev_id;
13183 if (unlikely(!phba))
13184 return IRQ_NONE;
13186 /* Check device state for handling interrupt */
13187 if (lpfc_intr_state_check(phba))
13188 return IRQ_NONE;
13190 spin_lock(&phba->hbalock);
13191 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13192 spin_unlock(&phba->hbalock);
13193 return IRQ_HANDLED;
13196 if (unlikely(!phba->ha_copy)) {
13197 spin_unlock(&phba->hbalock);
13198 return IRQ_NONE;
13199 } else if (phba->ha_copy & HA_ERATT) {
13200 if (phba->hba_flag & HBA_ERATT_HANDLED)
13201 /* ERATT polling has handled ERATT */
13202 phba->ha_copy &= ~HA_ERATT;
13203 else
13204 /* Indicate interrupt handler handles ERATT */
13205 phba->hba_flag |= HBA_ERATT_HANDLED;
13209 * If there is deferred error attention, do not check for any interrupt.
13211 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13212 spin_unlock(&phba->hbalock);
13213 return IRQ_NONE;
13216 /* Clear attention sources except link and error attentions */
13217 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13218 spin_unlock(&phba->hbalock);
13219 return IRQ_HANDLED;
13221 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13222 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13223 phba->HCregaddr);
13224 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13225 writel(hc_copy, phba->HCregaddr);
13226 readl(phba->HAregaddr); /* flush */
13227 spin_unlock(&phba->hbalock);
13230 * Invokes slow-path host attention interrupt handling as appropriate.
13233 /* status of events with mailbox and link attention */
13234 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13236 /* status of events with ELS ring */
13237 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
13238 status2 >>= (4*LPFC_ELS_RING);
13240 if (status1 || (status2 & HA_RXMASK))
13241 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13242 else
13243 sp_irq_rc = IRQ_NONE;
13246 * Invoke fast-path host attention interrupt handling as appropriate.
13249 /* status of events with FCP ring */
13250 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13251 status1 >>= (4*LPFC_FCP_RING);
13253 /* status of events with extra ring */
13254 if (phba->cfg_multi_ring_support == 2) {
13255 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13256 status2 >>= (4*LPFC_EXTRA_RING);
13257 } else
13258 status2 = 0;
13260 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13261 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13262 else
13263 fp_irq_rc = IRQ_NONE;
13265 /* Return device-level interrupt handling status */
13266 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13267 } /* lpfc_sli_intr_handler */
13270 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13271 * @phba: pointer to lpfc hba data structure.
13273 * This routine is invoked by the worker thread to process all the pending
13274 * SLI4 els abort xri events.
13276 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13278 struct lpfc_cq_event *cq_event;
13279 unsigned long iflags;
13281 /* First, declare the els xri abort event has been handled */
13282 spin_lock_irqsave(&phba->hbalock, iflags);
13283 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13284 spin_unlock_irqrestore(&phba->hbalock, iflags);
13286 /* Now, handle all the els xri abort events */
13287 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13288 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13289 /* Get the first event from the head of the event queue */
13290 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13291 cq_event, struct lpfc_cq_event, list);
13292 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13293 iflags);
13294 /* Notify aborted XRI for ELS work queue */
13295 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13297 /* Free the event processed back to the free pool */
13298 lpfc_sli4_cq_event_release(phba, cq_event);
13299 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13300 iflags);
13302 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13306 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13307 * @phba: pointer to lpfc hba data structure
13308 * @pIocbIn: pointer to the rspiocbq
13309 * @pIocbOut: pointer to the cmdiocbq
13310 * @wcqe: pointer to the complete wcqe
13312 * This routine transfers the fields of a command iocbq to a response iocbq
13313 * by copying all the IOCB fields from command iocbq and transferring the
13314 * completion status information from the complete wcqe.
13316 static void
13317 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13318 struct lpfc_iocbq *pIocbIn,
13319 struct lpfc_iocbq *pIocbOut,
13320 struct lpfc_wcqe_complete *wcqe)
13322 int numBdes, i;
13323 unsigned long iflags;
13324 uint32_t status, max_response;
13325 struct lpfc_dmabuf *dmabuf;
13326 struct ulp_bde64 *bpl, bde;
13327 size_t offset = offsetof(struct lpfc_iocbq, iocb);
13329 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13330 sizeof(struct lpfc_iocbq) - offset);
13331 /* Map WCQE parameters into irspiocb parameters */
13332 status = bf_get(lpfc_wcqe_c_status, wcqe);
13333 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13334 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13335 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13336 pIocbIn->iocb.un.fcpi.fcpi_parm =
13337 pIocbOut->iocb.un.fcpi.fcpi_parm -
13338 wcqe->total_data_placed;
13339 else
13340 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13341 else {
13342 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13343 switch (pIocbOut->iocb.ulpCommand) {
13344 case CMD_ELS_REQUEST64_CR:
13345 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13346 bpl = (struct ulp_bde64 *)dmabuf->virt;
13347 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13348 max_response = bde.tus.f.bdeSize;
13349 break;
13350 case CMD_GEN_REQUEST64_CR:
13351 max_response = 0;
13352 if (!pIocbOut->context3)
13353 break;
13354 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13355 sizeof(struct ulp_bde64);
13356 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13357 bpl = (struct ulp_bde64 *)dmabuf->virt;
13358 for (i = 0; i < numBdes; i++) {
13359 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13360 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13361 max_response += bde.tus.f.bdeSize;
13363 break;
13364 default:
13365 max_response = wcqe->total_data_placed;
13366 break;
13368 if (max_response < wcqe->total_data_placed)
13369 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13370 else
13371 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13372 wcqe->total_data_placed;
13375 /* Convert BG errors for completion status */
13376 if (status == CQE_STATUS_DI_ERROR) {
13377 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13379 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13380 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13381 else
13382 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13384 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13385 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13386 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13387 BGS_GUARD_ERR_MASK;
13388 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13389 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13390 BGS_APPTAG_ERR_MASK;
13391 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13392 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13393 BGS_REFTAG_ERR_MASK;
13395 /* Check to see if there was any good data before the error */
13396 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13397 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13398 BGS_HI_WATER_MARK_PRESENT_MASK;
13399 pIocbIn->iocb.unsli3.sli3_bg.bghm =
13400 wcqe->total_data_placed;
13404 * Set ALL the error bits to indicate we don't know what
13405 * type of error it is.
13407 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13408 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13409 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13410 BGS_GUARD_ERR_MASK);
13413 /* Pick up HBA exchange busy condition */
13414 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13415 spin_lock_irqsave(&phba->hbalock, iflags);
13416 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13417 spin_unlock_irqrestore(&phba->hbalock, iflags);
13422 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13423 * @phba: Pointer to HBA context object.
13424 * @irspiocbq: Pointer to work-queue completion queue entry.
13426 * This routine handles an ELS work-queue completion event and construct
13427 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13428 * discovery engine to handle.
13430 * Return: Pointer to the receive IOCBQ, NULL otherwise.
13432 static struct lpfc_iocbq *
13433 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13434 struct lpfc_iocbq *irspiocbq)
13436 struct lpfc_sli_ring *pring;
13437 struct lpfc_iocbq *cmdiocbq;
13438 struct lpfc_wcqe_complete *wcqe;
13439 unsigned long iflags;
13441 pring = lpfc_phba_elsring(phba);
13442 if (unlikely(!pring))
13443 return NULL;
13445 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13446 pring->stats.iocb_event++;
13447 /* Look up the ELS command IOCB and create pseudo response IOCB */
13448 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13449 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13450 if (unlikely(!cmdiocbq)) {
13451 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13452 "0386 ELS complete with no corresponding "
13453 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13454 wcqe->word0, wcqe->total_data_placed,
13455 wcqe->parameter, wcqe->word3);
13456 lpfc_sli_release_iocbq(phba, irspiocbq);
13457 return NULL;
13460 spin_lock_irqsave(&pring->ring_lock, iflags);
13461 /* Put the iocb back on the txcmplq */
13462 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13463 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13465 /* Fake the irspiocbq and copy necessary response information */
13466 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13468 return irspiocbq;
13471 inline struct lpfc_cq_event *
13472 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13474 struct lpfc_cq_event *cq_event;
13476 /* Allocate a new internal CQ_EVENT entry */
13477 cq_event = lpfc_sli4_cq_event_alloc(phba);
13478 if (!cq_event) {
13479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13480 "0602 Failed to alloc CQ_EVENT entry\n");
13481 return NULL;
13484 /* Move the CQE into the event */
13485 memcpy(&cq_event->cqe, entry, size);
13486 return cq_event;
13490 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13491 * @phba: Pointer to HBA context object.
13492 * @mcqe: Pointer to mailbox completion queue entry.
13494 * This routine process a mailbox completion queue entry with asynchronous
13495 * event.
13497 * Return: true if work posted to worker thread, otherwise false.
13499 static bool
13500 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13502 struct lpfc_cq_event *cq_event;
13503 unsigned long iflags;
13505 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13506 "0392 Async Event: word0:x%x, word1:x%x, "
13507 "word2:x%x, word3:x%x\n", mcqe->word0,
13508 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13510 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13511 if (!cq_event)
13512 return false;
13514 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
13515 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13516 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
13518 /* Set the async event flag */
13519 spin_lock_irqsave(&phba->hbalock, iflags);
13520 phba->hba_flag |= ASYNC_EVENT;
13521 spin_unlock_irqrestore(&phba->hbalock, iflags);
13523 return true;
13527 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13528 * @phba: Pointer to HBA context object.
13529 * @mcqe: Pointer to mailbox completion queue entry.
13531 * This routine process a mailbox completion queue entry with mailbox
13532 * completion event.
13534 * Return: true if work posted to worker thread, otherwise false.
13536 static bool
13537 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13539 uint32_t mcqe_status;
13540 MAILBOX_t *mbox, *pmbox;
13541 struct lpfc_mqe *mqe;
13542 struct lpfc_vport *vport;
13543 struct lpfc_nodelist *ndlp;
13544 struct lpfc_dmabuf *mp;
13545 unsigned long iflags;
13546 LPFC_MBOXQ_t *pmb;
13547 bool workposted = false;
13548 int rc;
13550 /* If not a mailbox complete MCQE, out by checking mailbox consume */
13551 if (!bf_get(lpfc_trailer_completed, mcqe))
13552 goto out_no_mqe_complete;
13554 /* Get the reference to the active mbox command */
13555 spin_lock_irqsave(&phba->hbalock, iflags);
13556 pmb = phba->sli.mbox_active;
13557 if (unlikely(!pmb)) {
13558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13559 "1832 No pending MBOX command to handle\n");
13560 spin_unlock_irqrestore(&phba->hbalock, iflags);
13561 goto out_no_mqe_complete;
13563 spin_unlock_irqrestore(&phba->hbalock, iflags);
13564 mqe = &pmb->u.mqe;
13565 pmbox = (MAILBOX_t *)&pmb->u.mqe;
13566 mbox = phba->mbox;
13567 vport = pmb->vport;
13569 /* Reset heartbeat timer */
13570 phba->last_completion_time = jiffies;
13571 del_timer(&phba->sli.mbox_tmo);
13573 /* Move mbox data to caller's mailbox region, do endian swapping */
13574 if (pmb->mbox_cmpl && mbox)
13575 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13578 * For mcqe errors, conditionally move a modified error code to
13579 * the mbox so that the error will not be missed.
13581 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13582 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13583 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13584 bf_set(lpfc_mqe_status, mqe,
13585 (LPFC_MBX_ERROR_RANGE | mcqe_status));
13587 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13588 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13589 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13590 "MBOX dflt rpi: status:x%x rpi:x%x",
13591 mcqe_status,
13592 pmbox->un.varWords[0], 0);
13593 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13594 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13595 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13596 /* Reg_LOGIN of dflt RPI was successful. Now lets get
13597 * RID of the PPI using the same mbox buffer.
13599 lpfc_unreg_login(phba, vport->vpi,
13600 pmbox->un.varWords[0], pmb);
13601 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13602 pmb->ctx_buf = mp;
13604 /* No reference taken here. This is a default
13605 * RPI reg/immediate unreg cycle. The reference was
13606 * taken in the reg rpi path and is released when
13607 * this mailbox completes.
13609 pmb->ctx_ndlp = ndlp;
13610 pmb->vport = vport;
13611 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13612 if (rc != MBX_BUSY)
13613 lpfc_printf_log(phba, KERN_ERR,
13614 LOG_TRACE_EVENT,
13615 "0385 rc should "
13616 "have been MBX_BUSY\n");
13617 if (rc != MBX_NOT_FINISHED)
13618 goto send_current_mbox;
13621 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13622 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13623 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13625 /* There is mailbox completion work to do */
13626 spin_lock_irqsave(&phba->hbalock, iflags);
13627 __lpfc_mbox_cmpl_put(phba, pmb);
13628 phba->work_ha |= HA_MBATT;
13629 spin_unlock_irqrestore(&phba->hbalock, iflags);
13630 workposted = true;
13632 send_current_mbox:
13633 spin_lock_irqsave(&phba->hbalock, iflags);
13634 /* Release the mailbox command posting token */
13635 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13636 /* Setting active mailbox pointer need to be in sync to flag clear */
13637 phba->sli.mbox_active = NULL;
13638 if (bf_get(lpfc_trailer_consumed, mcqe))
13639 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13640 spin_unlock_irqrestore(&phba->hbalock, iflags);
13641 /* Wake up worker thread to post the next pending mailbox command */
13642 lpfc_worker_wake_up(phba);
13643 return workposted;
13645 out_no_mqe_complete:
13646 spin_lock_irqsave(&phba->hbalock, iflags);
13647 if (bf_get(lpfc_trailer_consumed, mcqe))
13648 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13649 spin_unlock_irqrestore(&phba->hbalock, iflags);
13650 return false;
13654 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13655 * @phba: Pointer to HBA context object.
13656 * @cq: Pointer to associated CQ
13657 * @cqe: Pointer to mailbox completion queue entry.
13659 * This routine process a mailbox completion queue entry, it invokes the
13660 * proper mailbox complete handling or asynchronous event handling routine
13661 * according to the MCQE's async bit.
13663 * Return: true if work posted to worker thread, otherwise false.
13665 static bool
13666 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13667 struct lpfc_cqe *cqe)
13669 struct lpfc_mcqe mcqe;
13670 bool workposted;
13672 cq->CQ_mbox++;
13674 /* Copy the mailbox MCQE and convert endian order as needed */
13675 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13677 /* Invoke the proper event handling routine */
13678 if (!bf_get(lpfc_trailer_async, &mcqe))
13679 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13680 else
13681 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13682 return workposted;
13686 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13687 * @phba: Pointer to HBA context object.
13688 * @cq: Pointer to associated CQ
13689 * @wcqe: Pointer to work-queue completion queue entry.
13691 * This routine handles an ELS work-queue completion event.
13693 * Return: true if work posted to worker thread, otherwise false.
13695 static bool
13696 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13697 struct lpfc_wcqe_complete *wcqe)
13699 struct lpfc_iocbq *irspiocbq;
13700 unsigned long iflags;
13701 struct lpfc_sli_ring *pring = cq->pring;
13702 int txq_cnt = 0;
13703 int txcmplq_cnt = 0;
13705 /* Check for response status */
13706 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13707 /* Log the error status */
13708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13709 "0357 ELS CQE error: status=x%x: "
13710 "CQE: %08x %08x %08x %08x\n",
13711 bf_get(lpfc_wcqe_c_status, wcqe),
13712 wcqe->word0, wcqe->total_data_placed,
13713 wcqe->parameter, wcqe->word3);
13716 /* Get an irspiocbq for later ELS response processing use */
13717 irspiocbq = lpfc_sli_get_iocbq(phba);
13718 if (!irspiocbq) {
13719 if (!list_empty(&pring->txq))
13720 txq_cnt++;
13721 if (!list_empty(&pring->txcmplq))
13722 txcmplq_cnt++;
13723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13724 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13725 "els_txcmplq_cnt=%d\n",
13726 txq_cnt, phba->iocb_cnt,
13727 txcmplq_cnt);
13728 return false;
13731 /* Save off the slow-path queue event for work thread to process */
13732 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13733 spin_lock_irqsave(&phba->hbalock, iflags);
13734 list_add_tail(&irspiocbq->cq_event.list,
13735 &phba->sli4_hba.sp_queue_event);
13736 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13737 spin_unlock_irqrestore(&phba->hbalock, iflags);
13739 return true;
13743 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13744 * @phba: Pointer to HBA context object.
13745 * @wcqe: Pointer to work-queue completion queue entry.
13747 * This routine handles slow-path WQ entry consumed event by invoking the
13748 * proper WQ release routine to the slow-path WQ.
13750 static void
13751 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13752 struct lpfc_wcqe_release *wcqe)
13754 /* sanity check on queue memory */
13755 if (unlikely(!phba->sli4_hba.els_wq))
13756 return;
13757 /* Check for the slow-path ELS work queue */
13758 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13759 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13760 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13761 else
13762 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13763 "2579 Slow-path wqe consume event carries "
13764 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13765 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13766 phba->sli4_hba.els_wq->queue_id);
13770 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13771 * @phba: Pointer to HBA context object.
13772 * @cq: Pointer to a WQ completion queue.
13773 * @wcqe: Pointer to work-queue completion queue entry.
13775 * This routine handles an XRI abort event.
13777 * Return: true if work posted to worker thread, otherwise false.
13779 static bool
13780 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13781 struct lpfc_queue *cq,
13782 struct sli4_wcqe_xri_aborted *wcqe)
13784 bool workposted = false;
13785 struct lpfc_cq_event *cq_event;
13786 unsigned long iflags;
13788 switch (cq->subtype) {
13789 case LPFC_IO:
13790 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13791 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13792 /* Notify aborted XRI for NVME work queue */
13793 if (phba->nvmet_support)
13794 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13796 workposted = false;
13797 break;
13798 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13799 case LPFC_ELS:
13800 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
13801 if (!cq_event) {
13802 workposted = false;
13803 break;
13805 cq_event->hdwq = cq->hdwq;
13806 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13807 iflags);
13808 list_add_tail(&cq_event->list,
13809 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13810 /* Set the els xri abort event flag */
13811 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13812 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13813 iflags);
13814 workposted = true;
13815 break;
13816 default:
13817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13818 "0603 Invalid CQ subtype %d: "
13819 "%08x %08x %08x %08x\n",
13820 cq->subtype, wcqe->word0, wcqe->parameter,
13821 wcqe->word2, wcqe->word3);
13822 workposted = false;
13823 break;
13825 return workposted;
13828 #define FC_RCTL_MDS_DIAGS 0xF4
13831 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13832 * @phba: Pointer to HBA context object.
13833 * @rcqe: Pointer to receive-queue completion queue entry.
13835 * This routine process a receive-queue completion queue entry.
13837 * Return: true if work posted to worker thread, otherwise false.
13839 static bool
13840 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13842 bool workposted = false;
13843 struct fc_frame_header *fc_hdr;
13844 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13845 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13846 struct lpfc_nvmet_tgtport *tgtp;
13847 struct hbq_dmabuf *dma_buf;
13848 uint32_t status, rq_id;
13849 unsigned long iflags;
13851 /* sanity check on queue memory */
13852 if (unlikely(!hrq) || unlikely(!drq))
13853 return workposted;
13855 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13856 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13857 else
13858 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13859 if (rq_id != hrq->queue_id)
13860 goto out;
13862 status = bf_get(lpfc_rcqe_status, rcqe);
13863 switch (status) {
13864 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13866 "2537 Receive Frame Truncated!!\n");
13867 fallthrough;
13868 case FC_STATUS_RQ_SUCCESS:
13869 spin_lock_irqsave(&phba->hbalock, iflags);
13870 lpfc_sli4_rq_release(hrq, drq);
13871 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13872 if (!dma_buf) {
13873 hrq->RQ_no_buf_found++;
13874 spin_unlock_irqrestore(&phba->hbalock, iflags);
13875 goto out;
13877 hrq->RQ_rcv_buf++;
13878 hrq->RQ_buf_posted--;
13879 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13881 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13883 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13884 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13885 spin_unlock_irqrestore(&phba->hbalock, iflags);
13886 /* Handle MDS Loopback frames */
13887 if (!(phba->pport->load_flag & FC_UNLOADING))
13888 lpfc_sli4_handle_mds_loopback(phba->pport,
13889 dma_buf);
13890 else
13891 lpfc_in_buf_free(phba, &dma_buf->dbuf);
13892 break;
13895 /* save off the frame for the work thread to process */
13896 list_add_tail(&dma_buf->cq_event.list,
13897 &phba->sli4_hba.sp_queue_event);
13898 /* Frame received */
13899 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13900 spin_unlock_irqrestore(&phba->hbalock, iflags);
13901 workposted = true;
13902 break;
13903 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13904 if (phba->nvmet_support) {
13905 tgtp = phba->targetport->private;
13906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13907 "6402 RQE Error x%x, posted %d err_cnt "
13908 "%d: %x %x %x\n",
13909 status, hrq->RQ_buf_posted,
13910 hrq->RQ_no_posted_buf,
13911 atomic_read(&tgtp->rcv_fcp_cmd_in),
13912 atomic_read(&tgtp->rcv_fcp_cmd_out),
13913 atomic_read(&tgtp->xmt_fcp_release));
13915 fallthrough;
13917 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13918 hrq->RQ_no_posted_buf++;
13919 /* Post more buffers if possible */
13920 spin_lock_irqsave(&phba->hbalock, iflags);
13921 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13922 spin_unlock_irqrestore(&phba->hbalock, iflags);
13923 workposted = true;
13924 break;
13926 out:
13927 return workposted;
13931 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13932 * @phba: Pointer to HBA context object.
13933 * @cq: Pointer to the completion queue.
13934 * @cqe: Pointer to a completion queue entry.
13936 * This routine process a slow-path work-queue or receive queue completion queue
13937 * entry.
13939 * Return: true if work posted to worker thread, otherwise false.
13941 static bool
13942 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13943 struct lpfc_cqe *cqe)
13945 struct lpfc_cqe cqevt;
13946 bool workposted = false;
13948 /* Copy the work queue CQE and convert endian order if needed */
13949 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13951 /* Check and process for different type of WCQE and dispatch */
13952 switch (bf_get(lpfc_cqe_code, &cqevt)) {
13953 case CQE_CODE_COMPL_WQE:
13954 /* Process the WQ/RQ complete event */
13955 phba->last_completion_time = jiffies;
13956 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13957 (struct lpfc_wcqe_complete *)&cqevt);
13958 break;
13959 case CQE_CODE_RELEASE_WQE:
13960 /* Process the WQ release event */
13961 lpfc_sli4_sp_handle_rel_wcqe(phba,
13962 (struct lpfc_wcqe_release *)&cqevt);
13963 break;
13964 case CQE_CODE_XRI_ABORTED:
13965 /* Process the WQ XRI abort event */
13966 phba->last_completion_time = jiffies;
13967 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13968 (struct sli4_wcqe_xri_aborted *)&cqevt);
13969 break;
13970 case CQE_CODE_RECEIVE:
13971 case CQE_CODE_RECEIVE_V1:
13972 /* Process the RQ event */
13973 phba->last_completion_time = jiffies;
13974 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13975 (struct lpfc_rcqe *)&cqevt);
13976 break;
13977 default:
13978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13979 "0388 Not a valid WCQE code: x%x\n",
13980 bf_get(lpfc_cqe_code, &cqevt));
13981 break;
13983 return workposted;
13987 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13988 * @phba: Pointer to HBA context object.
13989 * @eqe: Pointer to fast-path event queue entry.
13990 * @speq: Pointer to slow-path event queue.
13992 * This routine process a event queue entry from the slow-path event queue.
13993 * It will check the MajorCode and MinorCode to determine this is for a
13994 * completion event on a completion queue, if not, an error shall be logged
13995 * and just return. Otherwise, it will get to the corresponding completion
13996 * queue and process all the entries on that completion queue, rearm the
13997 * completion queue, and then return.
14000 static void
14001 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14002 struct lpfc_queue *speq)
14004 struct lpfc_queue *cq = NULL, *childq;
14005 uint16_t cqid;
14006 int ret = 0;
14008 /* Get the reference to the corresponding CQ */
14009 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14011 list_for_each_entry(childq, &speq->child_list, list) {
14012 if (childq->queue_id == cqid) {
14013 cq = childq;
14014 break;
14017 if (unlikely(!cq)) {
14018 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14020 "0365 Slow-path CQ identifier "
14021 "(%d) does not exist\n", cqid);
14022 return;
14025 /* Save EQ associated with this CQ */
14026 cq->assoc_qp = speq;
14028 if (is_kdump_kernel())
14029 ret = queue_work(phba->wq, &cq->spwork);
14030 else
14031 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14033 if (!ret)
14034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14035 "0390 Cannot schedule queue work "
14036 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14037 cqid, cq->queue_id, raw_smp_processor_id());
14041 * __lpfc_sli4_process_cq - Process elements of a CQ
14042 * @phba: Pointer to HBA context object.
14043 * @cq: Pointer to CQ to be processed
14044 * @handler: Routine to process each cqe
14045 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14046 * @poll_mode: Polling mode we were called from
14048 * This routine processes completion queue entries in a CQ. While a valid
14049 * queue element is found, the handler is called. During processing checks
14050 * are made for periodic doorbell writes to let the hardware know of
14051 * element consumption.
14053 * If the max limit on cqes to process is hit, or there are no more valid
14054 * entries, the loop stops. If we processed a sufficient number of elements,
14055 * meaning there is sufficient load, rather than rearming and generating
14056 * another interrupt, a cq rescheduling delay will be set. A delay of 0
14057 * indicates no rescheduling.
14059 * Returns True if work scheduled, False otherwise.
14061 static bool
14062 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14063 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14064 struct lpfc_cqe *), unsigned long *delay,
14065 enum lpfc_poll_mode poll_mode)
14067 struct lpfc_cqe *cqe;
14068 bool workposted = false;
14069 int count = 0, consumed = 0;
14070 bool arm = true;
14072 /* default - no reschedule */
14073 *delay = 0;
14075 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14076 goto rearm_and_exit;
14078 /* Process all the entries to the CQ */
14079 cq->q_flag = 0;
14080 cqe = lpfc_sli4_cq_get(cq);
14081 while (cqe) {
14082 workposted |= handler(phba, cq, cqe);
14083 __lpfc_sli4_consume_cqe(phba, cq, cqe);
14085 consumed++;
14086 if (!(++count % cq->max_proc_limit))
14087 break;
14089 if (!(count % cq->notify_interval)) {
14090 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14091 LPFC_QUEUE_NOARM);
14092 consumed = 0;
14093 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14096 if (count == LPFC_NVMET_CQ_NOTIFY)
14097 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14099 cqe = lpfc_sli4_cq_get(cq);
14101 if (count >= phba->cfg_cq_poll_threshold) {
14102 *delay = 1;
14103 arm = false;
14106 /* Note: complete the irq_poll softirq before rearming CQ */
14107 if (poll_mode == LPFC_IRQ_POLL)
14108 irq_poll_complete(&cq->iop);
14110 /* Track the max number of CQEs processed in 1 EQ */
14111 if (count > cq->CQ_max_cqe)
14112 cq->CQ_max_cqe = count;
14114 cq->assoc_qp->EQ_cqe_cnt += count;
14116 /* Catch the no cq entry condition */
14117 if (unlikely(count == 0))
14118 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14119 "0369 No entry from completion queue "
14120 "qid=%d\n", cq->queue_id);
14122 xchg(&cq->queue_claimed, 0);
14124 rearm_and_exit:
14125 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14126 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14128 return workposted;
14132 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14133 * @cq: pointer to CQ to process
14135 * This routine calls the cq processing routine with a handler specific
14136 * to the type of queue bound to it.
14138 * The CQ routine returns two values: the first is the calling status,
14139 * which indicates whether work was queued to the background discovery
14140 * thread. If true, the routine should wakeup the discovery thread;
14141 * the second is the delay parameter. If non-zero, rather than rearming
14142 * the CQ and yet another interrupt, the CQ handler should be queued so
14143 * that it is processed in a subsequent polling action. The value of
14144 * the delay indicates when to reschedule it.
14146 static void
14147 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14149 struct lpfc_hba *phba = cq->phba;
14150 unsigned long delay;
14151 bool workposted = false;
14152 int ret = 0;
14154 /* Process and rearm the CQ */
14155 switch (cq->type) {
14156 case LPFC_MCQ:
14157 workposted |= __lpfc_sli4_process_cq(phba, cq,
14158 lpfc_sli4_sp_handle_mcqe,
14159 &delay, LPFC_QUEUE_WORK);
14160 break;
14161 case LPFC_WCQ:
14162 if (cq->subtype == LPFC_IO)
14163 workposted |= __lpfc_sli4_process_cq(phba, cq,
14164 lpfc_sli4_fp_handle_cqe,
14165 &delay, LPFC_QUEUE_WORK);
14166 else
14167 workposted |= __lpfc_sli4_process_cq(phba, cq,
14168 lpfc_sli4_sp_handle_cqe,
14169 &delay, LPFC_QUEUE_WORK);
14170 break;
14171 default:
14172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14173 "0370 Invalid completion queue type (%d)\n",
14174 cq->type);
14175 return;
14178 if (delay) {
14179 if (is_kdump_kernel())
14180 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14181 delay);
14182 else
14183 ret = queue_delayed_work_on(cq->chann, phba->wq,
14184 &cq->sched_spwork, delay);
14185 if (!ret)
14186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14187 "0394 Cannot schedule queue work "
14188 "for cqid=%d on CPU %d\n",
14189 cq->queue_id, cq->chann);
14192 /* wake up worker thread if there are works to be done */
14193 if (workposted)
14194 lpfc_worker_wake_up(phba);
14198 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14199 * interrupt
14200 * @work: pointer to work element
14202 * translates from the work handler and calls the slow-path handler.
14204 static void
14205 lpfc_sli4_sp_process_cq(struct work_struct *work)
14207 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14209 __lpfc_sli4_sp_process_cq(cq);
14213 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14214 * @work: pointer to work element
14216 * translates from the work handler and calls the slow-path handler.
14218 static void
14219 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14221 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14222 struct lpfc_queue, sched_spwork);
14224 __lpfc_sli4_sp_process_cq(cq);
14228 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14229 * @phba: Pointer to HBA context object.
14230 * @cq: Pointer to associated CQ
14231 * @wcqe: Pointer to work-queue completion queue entry.
14233 * This routine process a fast-path work queue completion entry from fast-path
14234 * event queue for FCP command response completion.
14236 static void
14237 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14238 struct lpfc_wcqe_complete *wcqe)
14240 struct lpfc_sli_ring *pring = cq->pring;
14241 struct lpfc_iocbq *cmdiocbq;
14242 struct lpfc_iocbq irspiocbq;
14243 unsigned long iflags;
14245 /* Check for response status */
14246 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14247 /* If resource errors reported from HBA, reduce queue
14248 * depth of the SCSI device.
14250 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14251 IOSTAT_LOCAL_REJECT)) &&
14252 ((wcqe->parameter & IOERR_PARAM_MASK) ==
14253 IOERR_NO_RESOURCES))
14254 phba->lpfc_rampdown_queue_depth(phba);
14256 /* Log the cmpl status */
14257 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14258 "0373 FCP CQE cmpl: status=x%x: "
14259 "CQE: %08x %08x %08x %08x\n",
14260 bf_get(lpfc_wcqe_c_status, wcqe),
14261 wcqe->word0, wcqe->total_data_placed,
14262 wcqe->parameter, wcqe->word3);
14265 /* Look up the FCP command IOCB and create pseudo response IOCB */
14266 spin_lock_irqsave(&pring->ring_lock, iflags);
14267 pring->stats.iocb_event++;
14268 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14269 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14270 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14271 if (unlikely(!cmdiocbq)) {
14272 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14273 "0374 FCP complete with no corresponding "
14274 "cmdiocb: iotag (%d)\n",
14275 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14276 return;
14278 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14279 cmdiocbq->isr_timestamp = cq->isr_timestamp;
14280 #endif
14281 if (cmdiocbq->iocb_cmpl == NULL) {
14282 if (cmdiocbq->wqe_cmpl) {
14283 /* For FCP the flag is cleared in wqe_cmpl */
14284 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
14285 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14286 spin_lock_irqsave(&phba->hbalock, iflags);
14287 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14288 spin_unlock_irqrestore(&phba->hbalock, iflags);
14291 /* Pass the cmd_iocb and the wcqe to the upper layer */
14292 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
14293 return;
14295 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14296 "0375 FCP cmdiocb not callback function "
14297 "iotag: (%d)\n",
14298 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14299 return;
14302 /* Only SLI4 non-IO commands stil use IOCB */
14303 /* Fake the irspiocb and copy necessary response information */
14304 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
14306 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14307 spin_lock_irqsave(&phba->hbalock, iflags);
14308 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14309 spin_unlock_irqrestore(&phba->hbalock, iflags);
14312 /* Pass the cmd_iocb and the rsp state to the upper layer */
14313 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
14317 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14318 * @phba: Pointer to HBA context object.
14319 * @cq: Pointer to completion queue.
14320 * @wcqe: Pointer to work-queue completion queue entry.
14322 * This routine handles an fast-path WQ entry consumed event by invoking the
14323 * proper WQ release routine to the slow-path WQ.
14325 static void
14326 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14327 struct lpfc_wcqe_release *wcqe)
14329 struct lpfc_queue *childwq;
14330 bool wqid_matched = false;
14331 uint16_t hba_wqid;
14333 /* Check for fast-path FCP work queue release */
14334 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14335 list_for_each_entry(childwq, &cq->child_list, list) {
14336 if (childwq->queue_id == hba_wqid) {
14337 lpfc_sli4_wq_release(childwq,
14338 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14339 if (childwq->q_flag & HBA_NVMET_WQFULL)
14340 lpfc_nvmet_wqfull_process(phba, childwq);
14341 wqid_matched = true;
14342 break;
14345 /* Report warning log message if no match found */
14346 if (wqid_matched != true)
14347 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14348 "2580 Fast-path wqe consume event carries "
14349 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14353 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14354 * @phba: Pointer to HBA context object.
14355 * @cq: Pointer to completion queue.
14356 * @rcqe: Pointer to receive-queue completion queue entry.
14358 * This routine process a receive-queue completion queue entry.
14360 * Return: true if work posted to worker thread, otherwise false.
14362 static bool
14363 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14364 struct lpfc_rcqe *rcqe)
14366 bool workposted = false;
14367 struct lpfc_queue *hrq;
14368 struct lpfc_queue *drq;
14369 struct rqb_dmabuf *dma_buf;
14370 struct fc_frame_header *fc_hdr;
14371 struct lpfc_nvmet_tgtport *tgtp;
14372 uint32_t status, rq_id;
14373 unsigned long iflags;
14374 uint32_t fctl, idx;
14376 if ((phba->nvmet_support == 0) ||
14377 (phba->sli4_hba.nvmet_cqset == NULL))
14378 return workposted;
14380 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14381 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14382 drq = phba->sli4_hba.nvmet_mrq_data[idx];
14384 /* sanity check on queue memory */
14385 if (unlikely(!hrq) || unlikely(!drq))
14386 return workposted;
14388 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14389 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14390 else
14391 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14393 if ((phba->nvmet_support == 0) ||
14394 (rq_id != hrq->queue_id))
14395 return workposted;
14397 status = bf_get(lpfc_rcqe_status, rcqe);
14398 switch (status) {
14399 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14401 "6126 Receive Frame Truncated!!\n");
14402 fallthrough;
14403 case FC_STATUS_RQ_SUCCESS:
14404 spin_lock_irqsave(&phba->hbalock, iflags);
14405 lpfc_sli4_rq_release(hrq, drq);
14406 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14407 if (!dma_buf) {
14408 hrq->RQ_no_buf_found++;
14409 spin_unlock_irqrestore(&phba->hbalock, iflags);
14410 goto out;
14412 spin_unlock_irqrestore(&phba->hbalock, iflags);
14413 hrq->RQ_rcv_buf++;
14414 hrq->RQ_buf_posted--;
14415 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14417 /* Just some basic sanity checks on FCP Command frame */
14418 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14419 fc_hdr->fh_f_ctl[1] << 8 |
14420 fc_hdr->fh_f_ctl[2]);
14421 if (((fctl &
14422 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14423 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14424 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14425 goto drop;
14427 if (fc_hdr->fh_type == FC_TYPE_FCP) {
14428 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14429 lpfc_nvmet_unsol_fcp_event(
14430 phba, idx, dma_buf, cq->isr_timestamp,
14431 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14432 return false;
14434 drop:
14435 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14436 break;
14437 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14438 if (phba->nvmet_support) {
14439 tgtp = phba->targetport->private;
14440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14441 "6401 RQE Error x%x, posted %d err_cnt "
14442 "%d: %x %x %x\n",
14443 status, hrq->RQ_buf_posted,
14444 hrq->RQ_no_posted_buf,
14445 atomic_read(&tgtp->rcv_fcp_cmd_in),
14446 atomic_read(&tgtp->rcv_fcp_cmd_out),
14447 atomic_read(&tgtp->xmt_fcp_release));
14449 fallthrough;
14451 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14452 hrq->RQ_no_posted_buf++;
14453 /* Post more buffers if possible */
14454 break;
14456 out:
14457 return workposted;
14461 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14462 * @phba: adapter with cq
14463 * @cq: Pointer to the completion queue.
14464 * @cqe: Pointer to fast-path completion queue entry.
14466 * This routine process a fast-path work queue completion entry from fast-path
14467 * event queue for FCP command response completion.
14469 * Return: true if work posted to worker thread, otherwise false.
14471 static bool
14472 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14473 struct lpfc_cqe *cqe)
14475 struct lpfc_wcqe_release wcqe;
14476 bool workposted = false;
14478 /* Copy the work queue CQE and convert endian order if needed */
14479 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14481 /* Check and process for different type of WCQE and dispatch */
14482 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14483 case CQE_CODE_COMPL_WQE:
14484 case CQE_CODE_NVME_ERSP:
14485 cq->CQ_wq++;
14486 /* Process the WQ complete event */
14487 phba->last_completion_time = jiffies;
14488 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14489 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14490 (struct lpfc_wcqe_complete *)&wcqe);
14491 break;
14492 case CQE_CODE_RELEASE_WQE:
14493 cq->CQ_release_wqe++;
14494 /* Process the WQ release event */
14495 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14496 (struct lpfc_wcqe_release *)&wcqe);
14497 break;
14498 case CQE_CODE_XRI_ABORTED:
14499 cq->CQ_xri_aborted++;
14500 /* Process the WQ XRI abort event */
14501 phba->last_completion_time = jiffies;
14502 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14503 (struct sli4_wcqe_xri_aborted *)&wcqe);
14504 break;
14505 case CQE_CODE_RECEIVE_V1:
14506 case CQE_CODE_RECEIVE:
14507 phba->last_completion_time = jiffies;
14508 if (cq->subtype == LPFC_NVMET) {
14509 workposted = lpfc_sli4_nvmet_handle_rcqe(
14510 phba, cq, (struct lpfc_rcqe *)&wcqe);
14512 break;
14513 default:
14514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14515 "0144 Not a valid CQE code: x%x\n",
14516 bf_get(lpfc_wcqe_c_code, &wcqe));
14517 break;
14519 return workposted;
14523 * lpfc_sli4_sched_cq_work - Schedules cq work
14524 * @phba: Pointer to HBA context object.
14525 * @cq: Pointer to CQ
14526 * @cqid: CQ ID
14528 * This routine checks the poll mode of the CQ corresponding to
14529 * cq->chann, then either schedules a softirq or queue_work to complete
14530 * cq work.
14532 * queue_work path is taken if in NVMET mode, or if poll_mode is in
14533 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken.
14536 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14537 struct lpfc_queue *cq, uint16_t cqid)
14539 int ret = 0;
14541 switch (cq->poll_mode) {
14542 case LPFC_IRQ_POLL:
14543 irq_poll_sched(&cq->iop);
14544 break;
14545 case LPFC_QUEUE_WORK:
14546 default:
14547 if (is_kdump_kernel())
14548 ret = queue_work(phba->wq, &cq->irqwork);
14549 else
14550 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
14551 if (!ret)
14552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14553 "0383 Cannot schedule queue work "
14554 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14555 cqid, cq->queue_id,
14556 raw_smp_processor_id());
14561 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14562 * @phba: Pointer to HBA context object.
14563 * @eq: Pointer to the queue structure.
14564 * @eqe: Pointer to fast-path event queue entry.
14566 * This routine process a event queue entry from the fast-path event queue.
14567 * It will check the MajorCode and MinorCode to determine this is for a
14568 * completion event on a completion queue, if not, an error shall be logged
14569 * and just return. Otherwise, it will get to the corresponding completion
14570 * queue and process all the entries on the completion queue, rearm the
14571 * completion queue, and then return.
14573 static void
14574 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14575 struct lpfc_eqe *eqe)
14577 struct lpfc_queue *cq = NULL;
14578 uint32_t qidx = eq->hdwq;
14579 uint16_t cqid, id;
14581 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14583 "0366 Not a valid completion "
14584 "event: majorcode=x%x, minorcode=x%x\n",
14585 bf_get_le32(lpfc_eqe_major_code, eqe),
14586 bf_get_le32(lpfc_eqe_minor_code, eqe));
14587 return;
14590 /* Get the reference to the corresponding CQ */
14591 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14593 /* Use the fast lookup method first */
14594 if (cqid <= phba->sli4_hba.cq_max) {
14595 cq = phba->sli4_hba.cq_lookup[cqid];
14596 if (cq)
14597 goto work_cq;
14600 /* Next check for NVMET completion */
14601 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14602 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14603 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14604 /* Process NVMET unsol rcv */
14605 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14606 goto process_cq;
14610 if (phba->sli4_hba.nvmels_cq &&
14611 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14612 /* Process NVME unsol rcv */
14613 cq = phba->sli4_hba.nvmels_cq;
14616 /* Otherwise this is a Slow path event */
14617 if (cq == NULL) {
14618 lpfc_sli4_sp_handle_eqe(phba, eqe,
14619 phba->sli4_hba.hdwq[qidx].hba_eq);
14620 return;
14623 process_cq:
14624 if (unlikely(cqid != cq->queue_id)) {
14625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14626 "0368 Miss-matched fast-path completion "
14627 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
14628 cqid, cq->queue_id);
14629 return;
14632 work_cq:
14633 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14634 if (phba->ktime_on)
14635 cq->isr_timestamp = ktime_get_ns();
14636 else
14637 cq->isr_timestamp = 0;
14638 #endif
14639 lpfc_sli4_sched_cq_work(phba, cq, cqid);
14643 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14644 * @cq: Pointer to CQ to be processed
14645 * @poll_mode: Enum lpfc_poll_state to determine poll mode
14647 * This routine calls the cq processing routine with the handler for
14648 * fast path CQEs.
14650 * The CQ routine returns two values: the first is the calling status,
14651 * which indicates whether work was queued to the background discovery
14652 * thread. If true, the routine should wakeup the discovery thread;
14653 * the second is the delay parameter. If non-zero, rather than rearming
14654 * the CQ and yet another interrupt, the CQ handler should be queued so
14655 * that it is processed in a subsequent polling action. The value of
14656 * the delay indicates when to reschedule it.
14658 static void
14659 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
14660 enum lpfc_poll_mode poll_mode)
14662 struct lpfc_hba *phba = cq->phba;
14663 unsigned long delay;
14664 bool workposted = false;
14665 int ret = 0;
14667 /* process and rearm the CQ */
14668 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14669 &delay, poll_mode);
14671 if (delay) {
14672 if (is_kdump_kernel())
14673 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
14674 delay);
14675 else
14676 ret = queue_delayed_work_on(cq->chann, phba->wq,
14677 &cq->sched_irqwork, delay);
14678 if (!ret)
14679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14680 "0367 Cannot schedule queue work "
14681 "for cqid=%d on CPU %d\n",
14682 cq->queue_id, cq->chann);
14685 /* wake up worker thread if there are works to be done */
14686 if (workposted)
14687 lpfc_worker_wake_up(phba);
14691 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14692 * interrupt
14693 * @work: pointer to work element
14695 * translates from the work handler and calls the fast-path handler.
14697 static void
14698 lpfc_sli4_hba_process_cq(struct work_struct *work)
14700 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14702 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14706 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14707 * @work: pointer to work element
14709 * translates from the work handler and calls the fast-path handler.
14711 static void
14712 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14714 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14715 struct lpfc_queue, sched_irqwork);
14717 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14721 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14722 * @irq: Interrupt number.
14723 * @dev_id: The device context pointer.
14725 * This function is directly called from the PCI layer as an interrupt
14726 * service routine when device with SLI-4 interface spec is enabled with
14727 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14728 * ring event in the HBA. However, when the device is enabled with either
14729 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14730 * device-level interrupt handler. When the PCI slot is in error recovery
14731 * or the HBA is undergoing initialization, the interrupt handler will not
14732 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14733 * the intrrupt context. This function is called without any lock held.
14734 * It gets the hbalock to access and update SLI data structures. Note that,
14735 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14736 * equal to that of FCP CQ index.
14738 * The link attention and ELS ring attention events are handled
14739 * by the worker thread. The interrupt handler signals the worker thread
14740 * and returns for these events. This function is called without any lock
14741 * held. It gets the hbalock to access and update SLI data structures.
14743 * This function returns IRQ_HANDLED when interrupt is handled else it
14744 * returns IRQ_NONE.
14746 irqreturn_t
14747 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14749 struct lpfc_hba *phba;
14750 struct lpfc_hba_eq_hdl *hba_eq_hdl;
14751 struct lpfc_queue *fpeq;
14752 unsigned long iflag;
14753 int ecount = 0;
14754 int hba_eqidx;
14755 struct lpfc_eq_intr_info *eqi;
14757 /* Get the driver's phba structure from the dev_id */
14758 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14759 phba = hba_eq_hdl->phba;
14760 hba_eqidx = hba_eq_hdl->idx;
14762 if (unlikely(!phba))
14763 return IRQ_NONE;
14764 if (unlikely(!phba->sli4_hba.hdwq))
14765 return IRQ_NONE;
14767 /* Get to the EQ struct associated with this vector */
14768 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14769 if (unlikely(!fpeq))
14770 return IRQ_NONE;
14772 /* Check device state for handling interrupt */
14773 if (unlikely(lpfc_intr_state_check(phba))) {
14774 /* Check again for link_state with lock held */
14775 spin_lock_irqsave(&phba->hbalock, iflag);
14776 if (phba->link_state < LPFC_LINK_DOWN)
14777 /* Flush, clear interrupt, and rearm the EQ */
14778 lpfc_sli4_eqcq_flush(phba, fpeq);
14779 spin_unlock_irqrestore(&phba->hbalock, iflag);
14780 return IRQ_NONE;
14783 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14784 eqi->icnt++;
14786 fpeq->last_cpu = raw_smp_processor_id();
14788 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14789 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14790 phba->cfg_auto_imax &&
14791 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14792 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14793 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14795 /* process and rearm the EQ */
14796 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14798 if (unlikely(ecount == 0)) {
14799 fpeq->EQ_no_entry++;
14800 if (phba->intr_type == MSIX)
14801 /* MSI-X treated interrupt served as no EQ share INT */
14802 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14803 "0358 MSI-X interrupt with no EQE\n");
14804 else
14805 /* Non MSI-X treated on interrupt as EQ share INT */
14806 return IRQ_NONE;
14809 return IRQ_HANDLED;
14810 } /* lpfc_sli4_fp_intr_handler */
14813 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14814 * @irq: Interrupt number.
14815 * @dev_id: The device context pointer.
14817 * This function is the device-level interrupt handler to device with SLI-4
14818 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14819 * interrupt mode is enabled and there is an event in the HBA which requires
14820 * driver attention. This function invokes the slow-path interrupt attention
14821 * handling function and fast-path interrupt attention handling function in
14822 * turn to process the relevant HBA attention events. This function is called
14823 * without any lock held. It gets the hbalock to access and update SLI data
14824 * structures.
14826 * This function returns IRQ_HANDLED when interrupt is handled, else it
14827 * returns IRQ_NONE.
14829 irqreturn_t
14830 lpfc_sli4_intr_handler(int irq, void *dev_id)
14832 struct lpfc_hba *phba;
14833 irqreturn_t hba_irq_rc;
14834 bool hba_handled = false;
14835 int qidx;
14837 /* Get the driver's phba structure from the dev_id */
14838 phba = (struct lpfc_hba *)dev_id;
14840 if (unlikely(!phba))
14841 return IRQ_NONE;
14844 * Invoke fast-path host attention interrupt handling as appropriate.
14846 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14847 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14848 &phba->sli4_hba.hba_eq_hdl[qidx]);
14849 if (hba_irq_rc == IRQ_HANDLED)
14850 hba_handled |= true;
14853 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14854 } /* lpfc_sli4_intr_handler */
14856 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14858 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14859 struct lpfc_queue *eq;
14860 int i = 0;
14862 rcu_read_lock();
14864 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14865 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14866 if (!list_empty(&phba->poll_list))
14867 mod_timer(&phba->cpuhp_poll_timer,
14868 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14870 rcu_read_unlock();
14873 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14875 struct lpfc_hba *phba = eq->phba;
14876 int i = 0;
14879 * Unlocking an irq is one of the entry point to check
14880 * for re-schedule, but we are good for io submission
14881 * path as midlayer does a get_cpu to glue us in. Flush
14882 * out the invalidate queue so we can see the updated
14883 * value for flag.
14885 smp_rmb();
14887 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14888 /* We will not likely get the completion for the caller
14889 * during this iteration but i guess that's fine.
14890 * Future io's coming on this eq should be able to
14891 * pick it up. As for the case of single io's, they
14892 * will be handled through a sched from polling timer
14893 * function which is currently triggered every 1msec.
14895 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14897 return i;
14900 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14902 struct lpfc_hba *phba = eq->phba;
14904 /* kickstart slowpath processing if needed */
14905 if (list_empty(&phba->poll_list))
14906 mod_timer(&phba->cpuhp_poll_timer,
14907 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14909 list_add_rcu(&eq->_poll_list, &phba->poll_list);
14910 synchronize_rcu();
14913 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14915 struct lpfc_hba *phba = eq->phba;
14917 /* Disable slowpath processing for this eq. Kick start the eq
14918 * by RE-ARMING the eq's ASAP
14920 list_del_rcu(&eq->_poll_list);
14921 synchronize_rcu();
14923 if (list_empty(&phba->poll_list))
14924 del_timer_sync(&phba->cpuhp_poll_timer);
14927 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14929 struct lpfc_queue *eq, *next;
14931 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14932 list_del(&eq->_poll_list);
14934 INIT_LIST_HEAD(&phba->poll_list);
14935 synchronize_rcu();
14938 static inline void
14939 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14941 if (mode == eq->mode)
14942 return;
14944 * currently this function is only called during a hotplug
14945 * event and the cpu on which this function is executing
14946 * is going offline. By now the hotplug has instructed
14947 * the scheduler to remove this cpu from cpu active mask.
14948 * So we don't need to work about being put aside by the
14949 * scheduler for a high priority process. Yes, the inte-
14950 * rrupts could come but they are known to retire ASAP.
14953 /* Disable polling in the fastpath */
14954 WRITE_ONCE(eq->mode, mode);
14955 /* flush out the store buffer */
14956 smp_wmb();
14959 * Add this eq to the polling list and start polling. For
14960 * a grace period both interrupt handler and poller will
14961 * try to process the eq _but_ that's fine. We have a
14962 * synchronization mechanism in place (queue_claimed) to
14963 * deal with it. This is just a draining phase for int-
14964 * errupt handler (not eq's) as we have guranteed through
14965 * barrier that all the CPUs have seen the new CQ_POLLED
14966 * state. which will effectively disable the REARMING of
14967 * the EQ. The whole idea is eq's die off eventually as
14968 * we are not rearming EQ's anymore.
14970 mode ? lpfc_sli4_add_to_poll_list(eq) :
14971 lpfc_sli4_remove_from_poll_list(eq);
14974 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14976 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14979 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14981 struct lpfc_hba *phba = eq->phba;
14983 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14985 /* Kick start for the pending io's in h/w.
14986 * Once we switch back to interrupt processing on a eq
14987 * the io path completion will only arm eq's when it
14988 * receives a completion. But since eq's are in disa-
14989 * rmed state it doesn't receive a completion. This
14990 * creates a deadlock scenaro.
14992 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14996 * lpfc_sli4_queue_free - free a queue structure and associated memory
14997 * @queue: The queue structure to free.
14999 * This function frees a queue structure and the DMAable memory used for
15000 * the host resident queue. This function must be called after destroying the
15001 * queue on the HBA.
15003 void
15004 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15006 struct lpfc_dmabuf *dmabuf;
15008 if (!queue)
15009 return;
15011 if (!list_empty(&queue->wq_list))
15012 list_del(&queue->wq_list);
15014 while (!list_empty(&queue->page_list)) {
15015 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15016 list);
15017 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15018 dmabuf->virt, dmabuf->phys);
15019 kfree(dmabuf);
15021 if (queue->rqbp) {
15022 lpfc_free_rq_buffer(queue->phba, queue);
15023 kfree(queue->rqbp);
15026 if (!list_empty(&queue->cpu_list))
15027 list_del(&queue->cpu_list);
15029 kfree(queue);
15030 return;
15034 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15035 * @phba: The HBA that this queue is being created on.
15036 * @page_size: The size of a queue page
15037 * @entry_size: The size of each queue entry for this queue.
15038 * @entry_count: The number of entries that this queue will handle.
15039 * @cpu: The cpu that will primarily utilize this queue.
15041 * This function allocates a queue structure and the DMAable memory used for
15042 * the host resident queue. This function must be called before creating the
15043 * queue on the HBA.
15045 struct lpfc_queue *
15046 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15047 uint32_t entry_size, uint32_t entry_count, int cpu)
15049 struct lpfc_queue *queue;
15050 struct lpfc_dmabuf *dmabuf;
15051 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15052 uint16_t x, pgcnt;
15054 if (!phba->sli4_hba.pc_sli4_params.supported)
15055 hw_page_size = page_size;
15057 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15059 /* If needed, Adjust page count to match the max the adapter supports */
15060 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15061 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15063 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15064 GFP_KERNEL, cpu_to_node(cpu));
15065 if (!queue)
15066 return NULL;
15068 INIT_LIST_HEAD(&queue->list);
15069 INIT_LIST_HEAD(&queue->_poll_list);
15070 INIT_LIST_HEAD(&queue->wq_list);
15071 INIT_LIST_HEAD(&queue->wqfull_list);
15072 INIT_LIST_HEAD(&queue->page_list);
15073 INIT_LIST_HEAD(&queue->child_list);
15074 INIT_LIST_HEAD(&queue->cpu_list);
15076 /* Set queue parameters now. If the system cannot provide memory
15077 * resources, the free routine needs to know what was allocated.
15079 queue->page_count = pgcnt;
15080 queue->q_pgs = (void **)&queue[1];
15081 queue->entry_cnt_per_pg = hw_page_size / entry_size;
15082 queue->entry_size = entry_size;
15083 queue->entry_count = entry_count;
15084 queue->page_size = hw_page_size;
15085 queue->phba = phba;
15087 for (x = 0; x < queue->page_count; x++) {
15088 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15089 dev_to_node(&phba->pcidev->dev));
15090 if (!dmabuf)
15091 goto out_fail;
15092 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15093 hw_page_size, &dmabuf->phys,
15094 GFP_KERNEL);
15095 if (!dmabuf->virt) {
15096 kfree(dmabuf);
15097 goto out_fail;
15099 dmabuf->buffer_tag = x;
15100 list_add_tail(&dmabuf->list, &queue->page_list);
15101 /* use lpfc_sli4_qe to index a paritcular entry in this page */
15102 queue->q_pgs[x] = dmabuf->virt;
15104 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15105 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15106 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15107 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15109 /* notify_interval will be set during q creation */
15111 return queue;
15112 out_fail:
15113 lpfc_sli4_queue_free(queue);
15114 return NULL;
15118 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15119 * @phba: HBA structure that indicates port to create a queue on.
15120 * @pci_barset: PCI BAR set flag.
15122 * This function shall perform iomap of the specified PCI BAR address to host
15123 * memory address if not already done so and return it. The returned host
15124 * memory address can be NULL.
15126 static void __iomem *
15127 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15129 if (!phba->pcidev)
15130 return NULL;
15132 switch (pci_barset) {
15133 case WQ_PCI_BAR_0_AND_1:
15134 return phba->pci_bar0_memmap_p;
15135 case WQ_PCI_BAR_2_AND_3:
15136 return phba->pci_bar2_memmap_p;
15137 case WQ_PCI_BAR_4_AND_5:
15138 return phba->pci_bar4_memmap_p;
15139 default:
15140 break;
15142 return NULL;
15146 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15147 * @phba: HBA structure that EQs are on.
15148 * @startq: The starting EQ index to modify
15149 * @numq: The number of EQs (consecutive indexes) to modify
15150 * @usdelay: amount of delay
15152 * This function revises the EQ delay on 1 or more EQs. The EQ delay
15153 * is set either by writing to a register (if supported by the SLI Port)
15154 * or by mailbox command. The mailbox command allows several EQs to be
15155 * updated at once.
15157 * The @phba struct is used to send a mailbox command to HBA. The @startq
15158 * is used to get the starting EQ index to change. The @numq value is
15159 * used to specify how many consecutive EQ indexes, starting at EQ index,
15160 * are to be changed. This function is asynchronous and will wait for any
15161 * mailbox commands to finish before returning.
15163 * On success this function will return a zero. If unable to allocate
15164 * enough memory this function will return -ENOMEM. If a mailbox command
15165 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15166 * have had their delay multipler changed.
15168 void
15169 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15170 uint32_t numq, uint32_t usdelay)
15172 struct lpfc_mbx_modify_eq_delay *eq_delay;
15173 LPFC_MBOXQ_t *mbox;
15174 struct lpfc_queue *eq;
15175 int cnt = 0, rc, length;
15176 uint32_t shdr_status, shdr_add_status;
15177 uint32_t dmult;
15178 int qidx;
15179 union lpfc_sli4_cfg_shdr *shdr;
15181 if (startq >= phba->cfg_irq_chann)
15182 return;
15184 if (usdelay > 0xFFFF) {
15185 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15186 "6429 usdelay %d too large. Scaled down to "
15187 "0xFFFF.\n", usdelay);
15188 usdelay = 0xFFFF;
15191 /* set values by EQ_DELAY register if supported */
15192 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15193 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15194 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15195 if (!eq)
15196 continue;
15198 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15200 if (++cnt >= numq)
15201 break;
15203 return;
15206 /* Otherwise, set values by mailbox cmd */
15208 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15209 if (!mbox) {
15210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15211 "6428 Failed allocating mailbox cmd buffer."
15212 " EQ delay was not set.\n");
15213 return;
15215 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15216 sizeof(struct lpfc_sli4_cfg_mhdr));
15217 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15218 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15219 length, LPFC_SLI4_MBX_EMBED);
15220 eq_delay = &mbox->u.mqe.un.eq_delay;
15222 /* Calculate delay multiper from maximum interrupt per second */
15223 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15224 if (dmult)
15225 dmult--;
15226 if (dmult > LPFC_DMULT_MAX)
15227 dmult = LPFC_DMULT_MAX;
15229 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15230 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15231 if (!eq)
15232 continue;
15233 eq->q_mode = usdelay;
15234 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15235 eq_delay->u.request.eq[cnt].phase = 0;
15236 eq_delay->u.request.eq[cnt].delay_multi = dmult;
15238 if (++cnt >= numq)
15239 break;
15241 eq_delay->u.request.num_eq = cnt;
15243 mbox->vport = phba->pport;
15244 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15245 mbox->ctx_buf = NULL;
15246 mbox->ctx_ndlp = NULL;
15247 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15248 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15249 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15250 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15251 if (shdr_status || shdr_add_status || rc) {
15252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15253 "2512 MODIFY_EQ_DELAY mailbox failed with "
15254 "status x%x add_status x%x, mbx status x%x\n",
15255 shdr_status, shdr_add_status, rc);
15257 mempool_free(mbox, phba->mbox_mem_pool);
15258 return;
15262 * lpfc_eq_create - Create an Event Queue on the HBA
15263 * @phba: HBA structure that indicates port to create a queue on.
15264 * @eq: The queue structure to use to create the event queue.
15265 * @imax: The maximum interrupt per second limit.
15267 * This function creates an event queue, as detailed in @eq, on a port,
15268 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15270 * The @phba struct is used to send mailbox command to HBA. The @eq struct
15271 * is used to get the entry count and entry size that are necessary to
15272 * determine the number of pages to allocate and use for this queue. This
15273 * function will send the EQ_CREATE mailbox command to the HBA to setup the
15274 * event queue. This function is asynchronous and will wait for the mailbox
15275 * command to finish before continuing.
15277 * On success this function will return a zero. If unable to allocate enough
15278 * memory this function will return -ENOMEM. If the queue create mailbox command
15279 * fails this function will return -ENXIO.
15282 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15284 struct lpfc_mbx_eq_create *eq_create;
15285 LPFC_MBOXQ_t *mbox;
15286 int rc, length, status = 0;
15287 struct lpfc_dmabuf *dmabuf;
15288 uint32_t shdr_status, shdr_add_status;
15289 union lpfc_sli4_cfg_shdr *shdr;
15290 uint16_t dmult;
15291 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15293 /* sanity check on queue memory */
15294 if (!eq)
15295 return -ENODEV;
15296 if (!phba->sli4_hba.pc_sli4_params.supported)
15297 hw_page_size = SLI4_PAGE_SIZE;
15299 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15300 if (!mbox)
15301 return -ENOMEM;
15302 length = (sizeof(struct lpfc_mbx_eq_create) -
15303 sizeof(struct lpfc_sli4_cfg_mhdr));
15304 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15305 LPFC_MBOX_OPCODE_EQ_CREATE,
15306 length, LPFC_SLI4_MBX_EMBED);
15307 eq_create = &mbox->u.mqe.un.eq_create;
15308 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15309 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15310 eq->page_count);
15311 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15312 LPFC_EQE_SIZE);
15313 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15315 /* Use version 2 of CREATE_EQ if eqav is set */
15316 if (phba->sli4_hba.pc_sli4_params.eqav) {
15317 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15318 LPFC_Q_CREATE_VERSION_2);
15319 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15320 phba->sli4_hba.pc_sli4_params.eqav);
15323 /* don't setup delay multiplier using EQ_CREATE */
15324 dmult = 0;
15325 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15326 dmult);
15327 switch (eq->entry_count) {
15328 default:
15329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15330 "0360 Unsupported EQ count. (%d)\n",
15331 eq->entry_count);
15332 if (eq->entry_count < 256) {
15333 status = -EINVAL;
15334 goto out;
15336 fallthrough; /* otherwise default to smallest count */
15337 case 256:
15338 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15339 LPFC_EQ_CNT_256);
15340 break;
15341 case 512:
15342 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15343 LPFC_EQ_CNT_512);
15344 break;
15345 case 1024:
15346 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15347 LPFC_EQ_CNT_1024);
15348 break;
15349 case 2048:
15350 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15351 LPFC_EQ_CNT_2048);
15352 break;
15353 case 4096:
15354 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15355 LPFC_EQ_CNT_4096);
15356 break;
15358 list_for_each_entry(dmabuf, &eq->page_list, list) {
15359 memset(dmabuf->virt, 0, hw_page_size);
15360 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15361 putPaddrLow(dmabuf->phys);
15362 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15363 putPaddrHigh(dmabuf->phys);
15365 mbox->vport = phba->pport;
15366 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15367 mbox->ctx_buf = NULL;
15368 mbox->ctx_ndlp = NULL;
15369 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15370 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15371 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15372 if (shdr_status || shdr_add_status || rc) {
15373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15374 "2500 EQ_CREATE mailbox failed with "
15375 "status x%x add_status x%x, mbx status x%x\n",
15376 shdr_status, shdr_add_status, rc);
15377 status = -ENXIO;
15379 eq->type = LPFC_EQ;
15380 eq->subtype = LPFC_NONE;
15381 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15382 if (eq->queue_id == 0xFFFF)
15383 status = -ENXIO;
15384 eq->host_index = 0;
15385 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15386 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15387 out:
15388 mempool_free(mbox, phba->mbox_mem_pool);
15389 return status;
15392 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15394 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15396 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15398 return 1;
15402 * lpfc_cq_create - Create a Completion Queue on the HBA
15403 * @phba: HBA structure that indicates port to create a queue on.
15404 * @cq: The queue structure to use to create the completion queue.
15405 * @eq: The event queue to bind this completion queue to.
15406 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15407 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15409 * This function creates a completion queue, as detailed in @wq, on a port,
15410 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15412 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15413 * is used to get the entry count and entry size that are necessary to
15414 * determine the number of pages to allocate and use for this queue. The @eq
15415 * is used to indicate which event queue to bind this completion queue to. This
15416 * function will send the CQ_CREATE mailbox command to the HBA to setup the
15417 * completion queue. This function is asynchronous and will wait for the mailbox
15418 * command to finish before continuing.
15420 * On success this function will return a zero. If unable to allocate enough
15421 * memory this function will return -ENOMEM. If the queue create mailbox command
15422 * fails this function will return -ENXIO.
15425 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15426 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15428 struct lpfc_mbx_cq_create *cq_create;
15429 struct lpfc_dmabuf *dmabuf;
15430 LPFC_MBOXQ_t *mbox;
15431 int rc, length, status = 0;
15432 uint32_t shdr_status, shdr_add_status;
15433 union lpfc_sli4_cfg_shdr *shdr;
15435 /* sanity check on queue memory */
15436 if (!cq || !eq)
15437 return -ENODEV;
15439 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15440 if (!mbox)
15441 return -ENOMEM;
15442 length = (sizeof(struct lpfc_mbx_cq_create) -
15443 sizeof(struct lpfc_sli4_cfg_mhdr));
15444 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15445 LPFC_MBOX_OPCODE_CQ_CREATE,
15446 length, LPFC_SLI4_MBX_EMBED);
15447 cq_create = &mbox->u.mqe.un.cq_create;
15448 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15449 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15450 cq->page_count);
15451 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15452 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15453 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15454 phba->sli4_hba.pc_sli4_params.cqv);
15455 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15456 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15457 (cq->page_size / SLI4_PAGE_SIZE));
15458 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15459 eq->queue_id);
15460 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15461 phba->sli4_hba.pc_sli4_params.cqav);
15462 } else {
15463 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15464 eq->queue_id);
15466 switch (cq->entry_count) {
15467 case 2048:
15468 case 4096:
15469 if (phba->sli4_hba.pc_sli4_params.cqv ==
15470 LPFC_Q_CREATE_VERSION_2) {
15471 cq_create->u.request.context.lpfc_cq_context_count =
15472 cq->entry_count;
15473 bf_set(lpfc_cq_context_count,
15474 &cq_create->u.request.context,
15475 LPFC_CQ_CNT_WORD7);
15476 break;
15478 fallthrough;
15479 default:
15480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15481 "0361 Unsupported CQ count: "
15482 "entry cnt %d sz %d pg cnt %d\n",
15483 cq->entry_count, cq->entry_size,
15484 cq->page_count);
15485 if (cq->entry_count < 256) {
15486 status = -EINVAL;
15487 goto out;
15489 fallthrough; /* otherwise default to smallest count */
15490 case 256:
15491 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15492 LPFC_CQ_CNT_256);
15493 break;
15494 case 512:
15495 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15496 LPFC_CQ_CNT_512);
15497 break;
15498 case 1024:
15499 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15500 LPFC_CQ_CNT_1024);
15501 break;
15503 list_for_each_entry(dmabuf, &cq->page_list, list) {
15504 memset(dmabuf->virt, 0, cq->page_size);
15505 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15506 putPaddrLow(dmabuf->phys);
15507 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15508 putPaddrHigh(dmabuf->phys);
15510 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15512 /* The IOCTL status is embedded in the mailbox subheader. */
15513 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15514 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15515 if (shdr_status || shdr_add_status || rc) {
15516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15517 "2501 CQ_CREATE mailbox failed with "
15518 "status x%x add_status x%x, mbx status x%x\n",
15519 shdr_status, shdr_add_status, rc);
15520 status = -ENXIO;
15521 goto out;
15523 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15524 if (cq->queue_id == 0xFFFF) {
15525 status = -ENXIO;
15526 goto out;
15528 /* link the cq onto the parent eq child list */
15529 list_add_tail(&cq->list, &eq->child_list);
15530 /* Set up completion queue's type and subtype */
15531 cq->type = type;
15532 cq->subtype = subtype;
15533 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15534 cq->assoc_qid = eq->queue_id;
15535 cq->assoc_qp = eq;
15536 cq->host_index = 0;
15537 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15538 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15540 if (cq->queue_id > phba->sli4_hba.cq_max)
15541 phba->sli4_hba.cq_max = cq->queue_id;
15543 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
15544 out:
15545 mempool_free(mbox, phba->mbox_mem_pool);
15546 return status;
15550 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15551 * @phba: HBA structure that indicates port to create a queue on.
15552 * @cqp: The queue structure array to use to create the completion queues.
15553 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
15554 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15555 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15557 * This function creates a set of completion queue, s to support MRQ
15558 * as detailed in @cqp, on a port,
15559 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15561 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15562 * is used to get the entry count and entry size that are necessary to
15563 * determine the number of pages to allocate and use for this queue. The @eq
15564 * is used to indicate which event queue to bind this completion queue to. This
15565 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15566 * completion queue. This function is asynchronous and will wait for the mailbox
15567 * command to finish before continuing.
15569 * On success this function will return a zero. If unable to allocate enough
15570 * memory this function will return -ENOMEM. If the queue create mailbox command
15571 * fails this function will return -ENXIO.
15574 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15575 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15576 uint32_t subtype)
15578 struct lpfc_queue *cq;
15579 struct lpfc_queue *eq;
15580 struct lpfc_mbx_cq_create_set *cq_set;
15581 struct lpfc_dmabuf *dmabuf;
15582 LPFC_MBOXQ_t *mbox;
15583 int rc, length, alloclen, status = 0;
15584 int cnt, idx, numcq, page_idx = 0;
15585 uint32_t shdr_status, shdr_add_status;
15586 union lpfc_sli4_cfg_shdr *shdr;
15587 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15589 /* sanity check on queue memory */
15590 numcq = phba->cfg_nvmet_mrq;
15591 if (!cqp || !hdwq || !numcq)
15592 return -ENODEV;
15594 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15595 if (!mbox)
15596 return -ENOMEM;
15598 length = sizeof(struct lpfc_mbx_cq_create_set);
15599 length += ((numcq * cqp[0]->page_count) *
15600 sizeof(struct dma_address));
15601 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15602 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15603 LPFC_SLI4_MBX_NEMBED);
15604 if (alloclen < length) {
15605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15606 "3098 Allocated DMA memory size (%d) is "
15607 "less than the requested DMA memory size "
15608 "(%d)\n", alloclen, length);
15609 status = -ENOMEM;
15610 goto out;
15612 cq_set = mbox->sge_array->addr[0];
15613 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15614 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15616 for (idx = 0; idx < numcq; idx++) {
15617 cq = cqp[idx];
15618 eq = hdwq[idx].hba_eq;
15619 if (!cq || !eq) {
15620 status = -ENOMEM;
15621 goto out;
15623 if (!phba->sli4_hba.pc_sli4_params.supported)
15624 hw_page_size = cq->page_size;
15626 switch (idx) {
15627 case 0:
15628 bf_set(lpfc_mbx_cq_create_set_page_size,
15629 &cq_set->u.request,
15630 (hw_page_size / SLI4_PAGE_SIZE));
15631 bf_set(lpfc_mbx_cq_create_set_num_pages,
15632 &cq_set->u.request, cq->page_count);
15633 bf_set(lpfc_mbx_cq_create_set_evt,
15634 &cq_set->u.request, 1);
15635 bf_set(lpfc_mbx_cq_create_set_valid,
15636 &cq_set->u.request, 1);
15637 bf_set(lpfc_mbx_cq_create_set_cqe_size,
15638 &cq_set->u.request, 0);
15639 bf_set(lpfc_mbx_cq_create_set_num_cq,
15640 &cq_set->u.request, numcq);
15641 bf_set(lpfc_mbx_cq_create_set_autovalid,
15642 &cq_set->u.request,
15643 phba->sli4_hba.pc_sli4_params.cqav);
15644 switch (cq->entry_count) {
15645 case 2048:
15646 case 4096:
15647 if (phba->sli4_hba.pc_sli4_params.cqv ==
15648 LPFC_Q_CREATE_VERSION_2) {
15649 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15650 &cq_set->u.request,
15651 cq->entry_count);
15652 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15653 &cq_set->u.request,
15654 LPFC_CQ_CNT_WORD7);
15655 break;
15657 fallthrough;
15658 default:
15659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15660 "3118 Bad CQ count. (%d)\n",
15661 cq->entry_count);
15662 if (cq->entry_count < 256) {
15663 status = -EINVAL;
15664 goto out;
15666 fallthrough; /* otherwise default to smallest */
15667 case 256:
15668 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15669 &cq_set->u.request, LPFC_CQ_CNT_256);
15670 break;
15671 case 512:
15672 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15673 &cq_set->u.request, LPFC_CQ_CNT_512);
15674 break;
15675 case 1024:
15676 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15677 &cq_set->u.request, LPFC_CQ_CNT_1024);
15678 break;
15680 bf_set(lpfc_mbx_cq_create_set_eq_id0,
15681 &cq_set->u.request, eq->queue_id);
15682 break;
15683 case 1:
15684 bf_set(lpfc_mbx_cq_create_set_eq_id1,
15685 &cq_set->u.request, eq->queue_id);
15686 break;
15687 case 2:
15688 bf_set(lpfc_mbx_cq_create_set_eq_id2,
15689 &cq_set->u.request, eq->queue_id);
15690 break;
15691 case 3:
15692 bf_set(lpfc_mbx_cq_create_set_eq_id3,
15693 &cq_set->u.request, eq->queue_id);
15694 break;
15695 case 4:
15696 bf_set(lpfc_mbx_cq_create_set_eq_id4,
15697 &cq_set->u.request, eq->queue_id);
15698 break;
15699 case 5:
15700 bf_set(lpfc_mbx_cq_create_set_eq_id5,
15701 &cq_set->u.request, eq->queue_id);
15702 break;
15703 case 6:
15704 bf_set(lpfc_mbx_cq_create_set_eq_id6,
15705 &cq_set->u.request, eq->queue_id);
15706 break;
15707 case 7:
15708 bf_set(lpfc_mbx_cq_create_set_eq_id7,
15709 &cq_set->u.request, eq->queue_id);
15710 break;
15711 case 8:
15712 bf_set(lpfc_mbx_cq_create_set_eq_id8,
15713 &cq_set->u.request, eq->queue_id);
15714 break;
15715 case 9:
15716 bf_set(lpfc_mbx_cq_create_set_eq_id9,
15717 &cq_set->u.request, eq->queue_id);
15718 break;
15719 case 10:
15720 bf_set(lpfc_mbx_cq_create_set_eq_id10,
15721 &cq_set->u.request, eq->queue_id);
15722 break;
15723 case 11:
15724 bf_set(lpfc_mbx_cq_create_set_eq_id11,
15725 &cq_set->u.request, eq->queue_id);
15726 break;
15727 case 12:
15728 bf_set(lpfc_mbx_cq_create_set_eq_id12,
15729 &cq_set->u.request, eq->queue_id);
15730 break;
15731 case 13:
15732 bf_set(lpfc_mbx_cq_create_set_eq_id13,
15733 &cq_set->u.request, eq->queue_id);
15734 break;
15735 case 14:
15736 bf_set(lpfc_mbx_cq_create_set_eq_id14,
15737 &cq_set->u.request, eq->queue_id);
15738 break;
15739 case 15:
15740 bf_set(lpfc_mbx_cq_create_set_eq_id15,
15741 &cq_set->u.request, eq->queue_id);
15742 break;
15745 /* link the cq onto the parent eq child list */
15746 list_add_tail(&cq->list, &eq->child_list);
15747 /* Set up completion queue's type and subtype */
15748 cq->type = type;
15749 cq->subtype = subtype;
15750 cq->assoc_qid = eq->queue_id;
15751 cq->assoc_qp = eq;
15752 cq->host_index = 0;
15753 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15754 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15755 cq->entry_count);
15756 cq->chann = idx;
15758 rc = 0;
15759 list_for_each_entry(dmabuf, &cq->page_list, list) {
15760 memset(dmabuf->virt, 0, hw_page_size);
15761 cnt = page_idx + dmabuf->buffer_tag;
15762 cq_set->u.request.page[cnt].addr_lo =
15763 putPaddrLow(dmabuf->phys);
15764 cq_set->u.request.page[cnt].addr_hi =
15765 putPaddrHigh(dmabuf->phys);
15766 rc++;
15768 page_idx += rc;
15771 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15773 /* The IOCTL status is embedded in the mailbox subheader. */
15774 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15775 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15776 if (shdr_status || shdr_add_status || rc) {
15777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15778 "3119 CQ_CREATE_SET mailbox failed with "
15779 "status x%x add_status x%x, mbx status x%x\n",
15780 shdr_status, shdr_add_status, rc);
15781 status = -ENXIO;
15782 goto out;
15784 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15785 if (rc == 0xFFFF) {
15786 status = -ENXIO;
15787 goto out;
15790 for (idx = 0; idx < numcq; idx++) {
15791 cq = cqp[idx];
15792 cq->queue_id = rc + idx;
15793 if (cq->queue_id > phba->sli4_hba.cq_max)
15794 phba->sli4_hba.cq_max = cq->queue_id;
15797 out:
15798 lpfc_sli4_mbox_cmd_free(phba, mbox);
15799 return status;
15803 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15804 * @phba: HBA structure that indicates port to create a queue on.
15805 * @mq: The queue structure to use to create the mailbox queue.
15806 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15807 * @cq: The completion queue to associate with this cq.
15809 * This function provides failback (fb) functionality when the
15810 * mq_create_ext fails on older FW generations. It's purpose is identical
15811 * to mq_create_ext otherwise.
15813 * This routine cannot fail as all attributes were previously accessed and
15814 * initialized in mq_create_ext.
15816 static void
15817 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15818 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15820 struct lpfc_mbx_mq_create *mq_create;
15821 struct lpfc_dmabuf *dmabuf;
15822 int length;
15824 length = (sizeof(struct lpfc_mbx_mq_create) -
15825 sizeof(struct lpfc_sli4_cfg_mhdr));
15826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15827 LPFC_MBOX_OPCODE_MQ_CREATE,
15828 length, LPFC_SLI4_MBX_EMBED);
15829 mq_create = &mbox->u.mqe.un.mq_create;
15830 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15831 mq->page_count);
15832 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15833 cq->queue_id);
15834 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15835 switch (mq->entry_count) {
15836 case 16:
15837 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15838 LPFC_MQ_RING_SIZE_16);
15839 break;
15840 case 32:
15841 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15842 LPFC_MQ_RING_SIZE_32);
15843 break;
15844 case 64:
15845 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15846 LPFC_MQ_RING_SIZE_64);
15847 break;
15848 case 128:
15849 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15850 LPFC_MQ_RING_SIZE_128);
15851 break;
15853 list_for_each_entry(dmabuf, &mq->page_list, list) {
15854 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15855 putPaddrLow(dmabuf->phys);
15856 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15857 putPaddrHigh(dmabuf->phys);
15862 * lpfc_mq_create - Create a mailbox Queue on the HBA
15863 * @phba: HBA structure that indicates port to create a queue on.
15864 * @mq: The queue structure to use to create the mailbox queue.
15865 * @cq: The completion queue to associate with this cq.
15866 * @subtype: The queue's subtype.
15868 * This function creates a mailbox queue, as detailed in @mq, on a port,
15869 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15871 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15872 * is used to get the entry count and entry size that are necessary to
15873 * determine the number of pages to allocate and use for this queue. This
15874 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15875 * mailbox queue. This function is asynchronous and will wait for the mailbox
15876 * command to finish before continuing.
15878 * On success this function will return a zero. If unable to allocate enough
15879 * memory this function will return -ENOMEM. If the queue create mailbox command
15880 * fails this function will return -ENXIO.
15882 int32_t
15883 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15884 struct lpfc_queue *cq, uint32_t subtype)
15886 struct lpfc_mbx_mq_create *mq_create;
15887 struct lpfc_mbx_mq_create_ext *mq_create_ext;
15888 struct lpfc_dmabuf *dmabuf;
15889 LPFC_MBOXQ_t *mbox;
15890 int rc, length, status = 0;
15891 uint32_t shdr_status, shdr_add_status;
15892 union lpfc_sli4_cfg_shdr *shdr;
15893 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15895 /* sanity check on queue memory */
15896 if (!mq || !cq)
15897 return -ENODEV;
15898 if (!phba->sli4_hba.pc_sli4_params.supported)
15899 hw_page_size = SLI4_PAGE_SIZE;
15901 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15902 if (!mbox)
15903 return -ENOMEM;
15904 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15905 sizeof(struct lpfc_sli4_cfg_mhdr));
15906 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15907 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15908 length, LPFC_SLI4_MBX_EMBED);
15910 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15911 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15912 bf_set(lpfc_mbx_mq_create_ext_num_pages,
15913 &mq_create_ext->u.request, mq->page_count);
15914 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15915 &mq_create_ext->u.request, 1);
15916 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15917 &mq_create_ext->u.request, 1);
15918 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15919 &mq_create_ext->u.request, 1);
15920 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15921 &mq_create_ext->u.request, 1);
15922 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15923 &mq_create_ext->u.request, 1);
15924 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15925 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15926 phba->sli4_hba.pc_sli4_params.mqv);
15927 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15928 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15929 cq->queue_id);
15930 else
15931 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15932 cq->queue_id);
15933 switch (mq->entry_count) {
15934 default:
15935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15936 "0362 Unsupported MQ count. (%d)\n",
15937 mq->entry_count);
15938 if (mq->entry_count < 16) {
15939 status = -EINVAL;
15940 goto out;
15942 fallthrough; /* otherwise default to smallest count */
15943 case 16:
15944 bf_set(lpfc_mq_context_ring_size,
15945 &mq_create_ext->u.request.context,
15946 LPFC_MQ_RING_SIZE_16);
15947 break;
15948 case 32:
15949 bf_set(lpfc_mq_context_ring_size,
15950 &mq_create_ext->u.request.context,
15951 LPFC_MQ_RING_SIZE_32);
15952 break;
15953 case 64:
15954 bf_set(lpfc_mq_context_ring_size,
15955 &mq_create_ext->u.request.context,
15956 LPFC_MQ_RING_SIZE_64);
15957 break;
15958 case 128:
15959 bf_set(lpfc_mq_context_ring_size,
15960 &mq_create_ext->u.request.context,
15961 LPFC_MQ_RING_SIZE_128);
15962 break;
15964 list_for_each_entry(dmabuf, &mq->page_list, list) {
15965 memset(dmabuf->virt, 0, hw_page_size);
15966 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15967 putPaddrLow(dmabuf->phys);
15968 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15969 putPaddrHigh(dmabuf->phys);
15971 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15972 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15973 &mq_create_ext->u.response);
15974 if (rc != MBX_SUCCESS) {
15975 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15976 "2795 MQ_CREATE_EXT failed with "
15977 "status x%x. Failback to MQ_CREATE.\n",
15978 rc);
15979 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15980 mq_create = &mbox->u.mqe.un.mq_create;
15981 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15982 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15983 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15984 &mq_create->u.response);
15987 /* The IOCTL status is embedded in the mailbox subheader. */
15988 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15989 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15990 if (shdr_status || shdr_add_status || rc) {
15991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15992 "2502 MQ_CREATE mailbox failed with "
15993 "status x%x add_status x%x, mbx status x%x\n",
15994 shdr_status, shdr_add_status, rc);
15995 status = -ENXIO;
15996 goto out;
15998 if (mq->queue_id == 0xFFFF) {
15999 status = -ENXIO;
16000 goto out;
16002 mq->type = LPFC_MQ;
16003 mq->assoc_qid = cq->queue_id;
16004 mq->subtype = subtype;
16005 mq->host_index = 0;
16006 mq->hba_index = 0;
16008 /* link the mq onto the parent cq child list */
16009 list_add_tail(&mq->list, &cq->child_list);
16010 out:
16011 mempool_free(mbox, phba->mbox_mem_pool);
16012 return status;
16016 * lpfc_wq_create - Create a Work Queue on the HBA
16017 * @phba: HBA structure that indicates port to create a queue on.
16018 * @wq: The queue structure to use to create the work queue.
16019 * @cq: The completion queue to bind this work queue to.
16020 * @subtype: The subtype of the work queue indicating its functionality.
16022 * This function creates a work queue, as detailed in @wq, on a port, described
16023 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16025 * The @phba struct is used to send mailbox command to HBA. The @wq struct
16026 * is used to get the entry count and entry size that are necessary to
16027 * determine the number of pages to allocate and use for this queue. The @cq
16028 * is used to indicate which completion queue to bind this work queue to. This
16029 * function will send the WQ_CREATE mailbox command to the HBA to setup the
16030 * work queue. This function is asynchronous and will wait for the mailbox
16031 * command to finish before continuing.
16033 * On success this function will return a zero. If unable to allocate enough
16034 * memory this function will return -ENOMEM. If the queue create mailbox command
16035 * fails this function will return -ENXIO.
16038 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16039 struct lpfc_queue *cq, uint32_t subtype)
16041 struct lpfc_mbx_wq_create *wq_create;
16042 struct lpfc_dmabuf *dmabuf;
16043 LPFC_MBOXQ_t *mbox;
16044 int rc, length, status = 0;
16045 uint32_t shdr_status, shdr_add_status;
16046 union lpfc_sli4_cfg_shdr *shdr;
16047 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16048 struct dma_address *page;
16049 void __iomem *bar_memmap_p;
16050 uint32_t db_offset;
16051 uint16_t pci_barset;
16052 uint8_t dpp_barset;
16053 uint32_t dpp_offset;
16054 uint8_t wq_create_version;
16055 #ifdef CONFIG_X86
16056 unsigned long pg_addr;
16057 #endif
16059 /* sanity check on queue memory */
16060 if (!wq || !cq)
16061 return -ENODEV;
16062 if (!phba->sli4_hba.pc_sli4_params.supported)
16063 hw_page_size = wq->page_size;
16065 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16066 if (!mbox)
16067 return -ENOMEM;
16068 length = (sizeof(struct lpfc_mbx_wq_create) -
16069 sizeof(struct lpfc_sli4_cfg_mhdr));
16070 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16071 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16072 length, LPFC_SLI4_MBX_EMBED);
16073 wq_create = &mbox->u.mqe.un.wq_create;
16074 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16075 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16076 wq->page_count);
16077 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16078 cq->queue_id);
16080 /* wqv is the earliest version supported, NOT the latest */
16081 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16082 phba->sli4_hba.pc_sli4_params.wqv);
16084 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16085 (wq->page_size > SLI4_PAGE_SIZE))
16086 wq_create_version = LPFC_Q_CREATE_VERSION_1;
16087 else
16088 wq_create_version = LPFC_Q_CREATE_VERSION_0;
16090 switch (wq_create_version) {
16091 case LPFC_Q_CREATE_VERSION_1:
16092 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16093 wq->entry_count);
16094 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16095 LPFC_Q_CREATE_VERSION_1);
16097 switch (wq->entry_size) {
16098 default:
16099 case 64:
16100 bf_set(lpfc_mbx_wq_create_wqe_size,
16101 &wq_create->u.request_1,
16102 LPFC_WQ_WQE_SIZE_64);
16103 break;
16104 case 128:
16105 bf_set(lpfc_mbx_wq_create_wqe_size,
16106 &wq_create->u.request_1,
16107 LPFC_WQ_WQE_SIZE_128);
16108 break;
16110 /* Request DPP by default */
16111 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16112 bf_set(lpfc_mbx_wq_create_page_size,
16113 &wq_create->u.request_1,
16114 (wq->page_size / SLI4_PAGE_SIZE));
16115 page = wq_create->u.request_1.page;
16116 break;
16117 default:
16118 page = wq_create->u.request.page;
16119 break;
16122 list_for_each_entry(dmabuf, &wq->page_list, list) {
16123 memset(dmabuf->virt, 0, hw_page_size);
16124 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16125 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16128 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16129 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16131 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16132 /* The IOCTL status is embedded in the mailbox subheader. */
16133 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16134 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16135 if (shdr_status || shdr_add_status || rc) {
16136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16137 "2503 WQ_CREATE mailbox failed with "
16138 "status x%x add_status x%x, mbx status x%x\n",
16139 shdr_status, shdr_add_status, rc);
16140 status = -ENXIO;
16141 goto out;
16144 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16145 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16146 &wq_create->u.response);
16147 else
16148 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16149 &wq_create->u.response_1);
16151 if (wq->queue_id == 0xFFFF) {
16152 status = -ENXIO;
16153 goto out;
16156 wq->db_format = LPFC_DB_LIST_FORMAT;
16157 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16158 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16159 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16160 &wq_create->u.response);
16161 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16162 (wq->db_format != LPFC_DB_RING_FORMAT)) {
16163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16164 "3265 WQ[%d] doorbell format "
16165 "not supported: x%x\n",
16166 wq->queue_id, wq->db_format);
16167 status = -EINVAL;
16168 goto out;
16170 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16171 &wq_create->u.response);
16172 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16173 pci_barset);
16174 if (!bar_memmap_p) {
16175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16176 "3263 WQ[%d] failed to memmap "
16177 "pci barset:x%x\n",
16178 wq->queue_id, pci_barset);
16179 status = -ENOMEM;
16180 goto out;
16182 db_offset = wq_create->u.response.doorbell_offset;
16183 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16184 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16186 "3252 WQ[%d] doorbell offset "
16187 "not supported: x%x\n",
16188 wq->queue_id, db_offset);
16189 status = -EINVAL;
16190 goto out;
16192 wq->db_regaddr = bar_memmap_p + db_offset;
16193 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16194 "3264 WQ[%d]: barset:x%x, offset:x%x, "
16195 "format:x%x\n", wq->queue_id,
16196 pci_barset, db_offset, wq->db_format);
16197 } else
16198 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16199 } else {
16200 /* Check if DPP was honored by the firmware */
16201 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16202 &wq_create->u.response_1);
16203 if (wq->dpp_enable) {
16204 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16205 &wq_create->u.response_1);
16206 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16207 pci_barset);
16208 if (!bar_memmap_p) {
16209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16210 "3267 WQ[%d] failed to memmap "
16211 "pci barset:x%x\n",
16212 wq->queue_id, pci_barset);
16213 status = -ENOMEM;
16214 goto out;
16216 db_offset = wq_create->u.response_1.doorbell_offset;
16217 wq->db_regaddr = bar_memmap_p + db_offset;
16218 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16219 &wq_create->u.response_1);
16220 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16221 &wq_create->u.response_1);
16222 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16223 dpp_barset);
16224 if (!bar_memmap_p) {
16225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16226 "3268 WQ[%d] failed to memmap "
16227 "pci barset:x%x\n",
16228 wq->queue_id, dpp_barset);
16229 status = -ENOMEM;
16230 goto out;
16232 dpp_offset = wq_create->u.response_1.dpp_offset;
16233 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16234 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16235 "3271 WQ[%d]: barset:x%x, offset:x%x, "
16236 "dpp_id:x%x dpp_barset:x%x "
16237 "dpp_offset:x%x\n",
16238 wq->queue_id, pci_barset, db_offset,
16239 wq->dpp_id, dpp_barset, dpp_offset);
16241 #ifdef CONFIG_X86
16242 /* Enable combined writes for DPP aperture */
16243 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16244 rc = set_memory_wc(pg_addr, 1);
16245 if (rc) {
16246 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16247 "3272 Cannot setup Combined "
16248 "Write on WQ[%d] - disable DPP\n",
16249 wq->queue_id);
16250 phba->cfg_enable_dpp = 0;
16252 #else
16253 phba->cfg_enable_dpp = 0;
16254 #endif
16255 } else
16256 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16258 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16259 if (wq->pring == NULL) {
16260 status = -ENOMEM;
16261 goto out;
16263 wq->type = LPFC_WQ;
16264 wq->assoc_qid = cq->queue_id;
16265 wq->subtype = subtype;
16266 wq->host_index = 0;
16267 wq->hba_index = 0;
16268 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16270 /* link the wq onto the parent cq child list */
16271 list_add_tail(&wq->list, &cq->child_list);
16272 out:
16273 mempool_free(mbox, phba->mbox_mem_pool);
16274 return status;
16278 * lpfc_rq_create - Create a Receive Queue on the HBA
16279 * @phba: HBA structure that indicates port to create a queue on.
16280 * @hrq: The queue structure to use to create the header receive queue.
16281 * @drq: The queue structure to use to create the data receive queue.
16282 * @cq: The completion queue to bind this work queue to.
16283 * @subtype: The subtype of the work queue indicating its functionality.
16285 * This function creates a receive buffer queue pair , as detailed in @hrq and
16286 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16287 * to the HBA.
16289 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16290 * struct is used to get the entry count that is necessary to determine the
16291 * number of pages to use for this queue. The @cq is used to indicate which
16292 * completion queue to bind received buffers that are posted to these queues to.
16293 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16294 * receive queue pair. This function is asynchronous and will wait for the
16295 * mailbox command to finish before continuing.
16297 * On success this function will return a zero. If unable to allocate enough
16298 * memory this function will return -ENOMEM. If the queue create mailbox command
16299 * fails this function will return -ENXIO.
16302 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16303 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16305 struct lpfc_mbx_rq_create *rq_create;
16306 struct lpfc_dmabuf *dmabuf;
16307 LPFC_MBOXQ_t *mbox;
16308 int rc, length, status = 0;
16309 uint32_t shdr_status, shdr_add_status;
16310 union lpfc_sli4_cfg_shdr *shdr;
16311 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16312 void __iomem *bar_memmap_p;
16313 uint32_t db_offset;
16314 uint16_t pci_barset;
16316 /* sanity check on queue memory */
16317 if (!hrq || !drq || !cq)
16318 return -ENODEV;
16319 if (!phba->sli4_hba.pc_sli4_params.supported)
16320 hw_page_size = SLI4_PAGE_SIZE;
16322 if (hrq->entry_count != drq->entry_count)
16323 return -EINVAL;
16324 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16325 if (!mbox)
16326 return -ENOMEM;
16327 length = (sizeof(struct lpfc_mbx_rq_create) -
16328 sizeof(struct lpfc_sli4_cfg_mhdr));
16329 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16330 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16331 length, LPFC_SLI4_MBX_EMBED);
16332 rq_create = &mbox->u.mqe.un.rq_create;
16333 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16334 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16335 phba->sli4_hba.pc_sli4_params.rqv);
16336 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16337 bf_set(lpfc_rq_context_rqe_count_1,
16338 &rq_create->u.request.context,
16339 hrq->entry_count);
16340 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16341 bf_set(lpfc_rq_context_rqe_size,
16342 &rq_create->u.request.context,
16343 LPFC_RQE_SIZE_8);
16344 bf_set(lpfc_rq_context_page_size,
16345 &rq_create->u.request.context,
16346 LPFC_RQ_PAGE_SIZE_4096);
16347 } else {
16348 switch (hrq->entry_count) {
16349 default:
16350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16351 "2535 Unsupported RQ count. (%d)\n",
16352 hrq->entry_count);
16353 if (hrq->entry_count < 512) {
16354 status = -EINVAL;
16355 goto out;
16357 fallthrough; /* otherwise default to smallest count */
16358 case 512:
16359 bf_set(lpfc_rq_context_rqe_count,
16360 &rq_create->u.request.context,
16361 LPFC_RQ_RING_SIZE_512);
16362 break;
16363 case 1024:
16364 bf_set(lpfc_rq_context_rqe_count,
16365 &rq_create->u.request.context,
16366 LPFC_RQ_RING_SIZE_1024);
16367 break;
16368 case 2048:
16369 bf_set(lpfc_rq_context_rqe_count,
16370 &rq_create->u.request.context,
16371 LPFC_RQ_RING_SIZE_2048);
16372 break;
16373 case 4096:
16374 bf_set(lpfc_rq_context_rqe_count,
16375 &rq_create->u.request.context,
16376 LPFC_RQ_RING_SIZE_4096);
16377 break;
16379 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16380 LPFC_HDR_BUF_SIZE);
16382 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16383 cq->queue_id);
16384 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16385 hrq->page_count);
16386 list_for_each_entry(dmabuf, &hrq->page_list, list) {
16387 memset(dmabuf->virt, 0, hw_page_size);
16388 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16389 putPaddrLow(dmabuf->phys);
16390 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16391 putPaddrHigh(dmabuf->phys);
16393 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16394 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16396 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16397 /* The IOCTL status is embedded in the mailbox subheader. */
16398 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16399 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16400 if (shdr_status || shdr_add_status || rc) {
16401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16402 "2504 RQ_CREATE mailbox failed with "
16403 "status x%x add_status x%x, mbx status x%x\n",
16404 shdr_status, shdr_add_status, rc);
16405 status = -ENXIO;
16406 goto out;
16408 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16409 if (hrq->queue_id == 0xFFFF) {
16410 status = -ENXIO;
16411 goto out;
16414 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16415 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16416 &rq_create->u.response);
16417 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16418 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16420 "3262 RQ [%d] doorbell format not "
16421 "supported: x%x\n", hrq->queue_id,
16422 hrq->db_format);
16423 status = -EINVAL;
16424 goto out;
16427 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16428 &rq_create->u.response);
16429 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16430 if (!bar_memmap_p) {
16431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16432 "3269 RQ[%d] failed to memmap pci "
16433 "barset:x%x\n", hrq->queue_id,
16434 pci_barset);
16435 status = -ENOMEM;
16436 goto out;
16439 db_offset = rq_create->u.response.doorbell_offset;
16440 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16441 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16443 "3270 RQ[%d] doorbell offset not "
16444 "supported: x%x\n", hrq->queue_id,
16445 db_offset);
16446 status = -EINVAL;
16447 goto out;
16449 hrq->db_regaddr = bar_memmap_p + db_offset;
16450 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16451 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16452 "format:x%x\n", hrq->queue_id, pci_barset,
16453 db_offset, hrq->db_format);
16454 } else {
16455 hrq->db_format = LPFC_DB_RING_FORMAT;
16456 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16458 hrq->type = LPFC_HRQ;
16459 hrq->assoc_qid = cq->queue_id;
16460 hrq->subtype = subtype;
16461 hrq->host_index = 0;
16462 hrq->hba_index = 0;
16463 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16465 /* now create the data queue */
16466 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16467 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16468 length, LPFC_SLI4_MBX_EMBED);
16469 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16470 phba->sli4_hba.pc_sli4_params.rqv);
16471 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16472 bf_set(lpfc_rq_context_rqe_count_1,
16473 &rq_create->u.request.context, hrq->entry_count);
16474 if (subtype == LPFC_NVMET)
16475 rq_create->u.request.context.buffer_size =
16476 LPFC_NVMET_DATA_BUF_SIZE;
16477 else
16478 rq_create->u.request.context.buffer_size =
16479 LPFC_DATA_BUF_SIZE;
16480 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16481 LPFC_RQE_SIZE_8);
16482 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16483 (PAGE_SIZE/SLI4_PAGE_SIZE));
16484 } else {
16485 switch (drq->entry_count) {
16486 default:
16487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16488 "2536 Unsupported RQ count. (%d)\n",
16489 drq->entry_count);
16490 if (drq->entry_count < 512) {
16491 status = -EINVAL;
16492 goto out;
16494 fallthrough; /* otherwise default to smallest count */
16495 case 512:
16496 bf_set(lpfc_rq_context_rqe_count,
16497 &rq_create->u.request.context,
16498 LPFC_RQ_RING_SIZE_512);
16499 break;
16500 case 1024:
16501 bf_set(lpfc_rq_context_rqe_count,
16502 &rq_create->u.request.context,
16503 LPFC_RQ_RING_SIZE_1024);
16504 break;
16505 case 2048:
16506 bf_set(lpfc_rq_context_rqe_count,
16507 &rq_create->u.request.context,
16508 LPFC_RQ_RING_SIZE_2048);
16509 break;
16510 case 4096:
16511 bf_set(lpfc_rq_context_rqe_count,
16512 &rq_create->u.request.context,
16513 LPFC_RQ_RING_SIZE_4096);
16514 break;
16516 if (subtype == LPFC_NVMET)
16517 bf_set(lpfc_rq_context_buf_size,
16518 &rq_create->u.request.context,
16519 LPFC_NVMET_DATA_BUF_SIZE);
16520 else
16521 bf_set(lpfc_rq_context_buf_size,
16522 &rq_create->u.request.context,
16523 LPFC_DATA_BUF_SIZE);
16525 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16526 cq->queue_id);
16527 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16528 drq->page_count);
16529 list_for_each_entry(dmabuf, &drq->page_list, list) {
16530 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16531 putPaddrLow(dmabuf->phys);
16532 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16533 putPaddrHigh(dmabuf->phys);
16535 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16536 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16537 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16538 /* The IOCTL status is embedded in the mailbox subheader. */
16539 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16540 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16541 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16542 if (shdr_status || shdr_add_status || rc) {
16543 status = -ENXIO;
16544 goto out;
16546 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16547 if (drq->queue_id == 0xFFFF) {
16548 status = -ENXIO;
16549 goto out;
16551 drq->type = LPFC_DRQ;
16552 drq->assoc_qid = cq->queue_id;
16553 drq->subtype = subtype;
16554 drq->host_index = 0;
16555 drq->hba_index = 0;
16556 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16558 /* link the header and data RQs onto the parent cq child list */
16559 list_add_tail(&hrq->list, &cq->child_list);
16560 list_add_tail(&drq->list, &cq->child_list);
16562 out:
16563 mempool_free(mbox, phba->mbox_mem_pool);
16564 return status;
16568 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16569 * @phba: HBA structure that indicates port to create a queue on.
16570 * @hrqp: The queue structure array to use to create the header receive queues.
16571 * @drqp: The queue structure array to use to create the data receive queues.
16572 * @cqp: The completion queue array to bind these receive queues to.
16573 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16575 * This function creates a receive buffer queue pair , as detailed in @hrq and
16576 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16577 * to the HBA.
16579 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16580 * struct is used to get the entry count that is necessary to determine the
16581 * number of pages to use for this queue. The @cq is used to indicate which
16582 * completion queue to bind received buffers that are posted to these queues to.
16583 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16584 * receive queue pair. This function is asynchronous and will wait for the
16585 * mailbox command to finish before continuing.
16587 * On success this function will return a zero. If unable to allocate enough
16588 * memory this function will return -ENOMEM. If the queue create mailbox command
16589 * fails this function will return -ENXIO.
16592 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16593 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16594 uint32_t subtype)
16596 struct lpfc_queue *hrq, *drq, *cq;
16597 struct lpfc_mbx_rq_create_v2 *rq_create;
16598 struct lpfc_dmabuf *dmabuf;
16599 LPFC_MBOXQ_t *mbox;
16600 int rc, length, alloclen, status = 0;
16601 int cnt, idx, numrq, page_idx = 0;
16602 uint32_t shdr_status, shdr_add_status;
16603 union lpfc_sli4_cfg_shdr *shdr;
16604 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16606 numrq = phba->cfg_nvmet_mrq;
16607 /* sanity check on array memory */
16608 if (!hrqp || !drqp || !cqp || !numrq)
16609 return -ENODEV;
16610 if (!phba->sli4_hba.pc_sli4_params.supported)
16611 hw_page_size = SLI4_PAGE_SIZE;
16613 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16614 if (!mbox)
16615 return -ENOMEM;
16617 length = sizeof(struct lpfc_mbx_rq_create_v2);
16618 length += ((2 * numrq * hrqp[0]->page_count) *
16619 sizeof(struct dma_address));
16621 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16622 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16623 LPFC_SLI4_MBX_NEMBED);
16624 if (alloclen < length) {
16625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16626 "3099 Allocated DMA memory size (%d) is "
16627 "less than the requested DMA memory size "
16628 "(%d)\n", alloclen, length);
16629 status = -ENOMEM;
16630 goto out;
16635 rq_create = mbox->sge_array->addr[0];
16636 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16638 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16639 cnt = 0;
16641 for (idx = 0; idx < numrq; idx++) {
16642 hrq = hrqp[idx];
16643 drq = drqp[idx];
16644 cq = cqp[idx];
16646 /* sanity check on queue memory */
16647 if (!hrq || !drq || !cq) {
16648 status = -ENODEV;
16649 goto out;
16652 if (hrq->entry_count != drq->entry_count) {
16653 status = -EINVAL;
16654 goto out;
16657 if (idx == 0) {
16658 bf_set(lpfc_mbx_rq_create_num_pages,
16659 &rq_create->u.request,
16660 hrq->page_count);
16661 bf_set(lpfc_mbx_rq_create_rq_cnt,
16662 &rq_create->u.request, (numrq * 2));
16663 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16665 bf_set(lpfc_rq_context_base_cq,
16666 &rq_create->u.request.context,
16667 cq->queue_id);
16668 bf_set(lpfc_rq_context_data_size,
16669 &rq_create->u.request.context,
16670 LPFC_NVMET_DATA_BUF_SIZE);
16671 bf_set(lpfc_rq_context_hdr_size,
16672 &rq_create->u.request.context,
16673 LPFC_HDR_BUF_SIZE);
16674 bf_set(lpfc_rq_context_rqe_count_1,
16675 &rq_create->u.request.context,
16676 hrq->entry_count);
16677 bf_set(lpfc_rq_context_rqe_size,
16678 &rq_create->u.request.context,
16679 LPFC_RQE_SIZE_8);
16680 bf_set(lpfc_rq_context_page_size,
16681 &rq_create->u.request.context,
16682 (PAGE_SIZE/SLI4_PAGE_SIZE));
16684 rc = 0;
16685 list_for_each_entry(dmabuf, &hrq->page_list, list) {
16686 memset(dmabuf->virt, 0, hw_page_size);
16687 cnt = page_idx + dmabuf->buffer_tag;
16688 rq_create->u.request.page[cnt].addr_lo =
16689 putPaddrLow(dmabuf->phys);
16690 rq_create->u.request.page[cnt].addr_hi =
16691 putPaddrHigh(dmabuf->phys);
16692 rc++;
16694 page_idx += rc;
16696 rc = 0;
16697 list_for_each_entry(dmabuf, &drq->page_list, list) {
16698 memset(dmabuf->virt, 0, hw_page_size);
16699 cnt = page_idx + dmabuf->buffer_tag;
16700 rq_create->u.request.page[cnt].addr_lo =
16701 putPaddrLow(dmabuf->phys);
16702 rq_create->u.request.page[cnt].addr_hi =
16703 putPaddrHigh(dmabuf->phys);
16704 rc++;
16706 page_idx += rc;
16708 hrq->db_format = LPFC_DB_RING_FORMAT;
16709 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16710 hrq->type = LPFC_HRQ;
16711 hrq->assoc_qid = cq->queue_id;
16712 hrq->subtype = subtype;
16713 hrq->host_index = 0;
16714 hrq->hba_index = 0;
16715 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16717 drq->db_format = LPFC_DB_RING_FORMAT;
16718 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16719 drq->type = LPFC_DRQ;
16720 drq->assoc_qid = cq->queue_id;
16721 drq->subtype = subtype;
16722 drq->host_index = 0;
16723 drq->hba_index = 0;
16724 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16726 list_add_tail(&hrq->list, &cq->child_list);
16727 list_add_tail(&drq->list, &cq->child_list);
16730 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16731 /* The IOCTL status is embedded in the mailbox subheader. */
16732 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16733 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16734 if (shdr_status || shdr_add_status || rc) {
16735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16736 "3120 RQ_CREATE mailbox failed with "
16737 "status x%x add_status x%x, mbx status x%x\n",
16738 shdr_status, shdr_add_status, rc);
16739 status = -ENXIO;
16740 goto out;
16742 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16743 if (rc == 0xFFFF) {
16744 status = -ENXIO;
16745 goto out;
16748 /* Initialize all RQs with associated queue id */
16749 for (idx = 0; idx < numrq; idx++) {
16750 hrq = hrqp[idx];
16751 hrq->queue_id = rc + (2 * idx);
16752 drq = drqp[idx];
16753 drq->queue_id = rc + (2 * idx) + 1;
16756 out:
16757 lpfc_sli4_mbox_cmd_free(phba, mbox);
16758 return status;
16762 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16763 * @phba: HBA structure that indicates port to destroy a queue on.
16764 * @eq: The queue structure associated with the queue to destroy.
16766 * This function destroys a queue, as detailed in @eq by sending an mailbox
16767 * command, specific to the type of queue, to the HBA.
16769 * The @eq struct is used to get the queue ID of the queue to destroy.
16771 * On success this function will return a zero. If the queue destroy mailbox
16772 * command fails this function will return -ENXIO.
16775 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16777 LPFC_MBOXQ_t *mbox;
16778 int rc, length, status = 0;
16779 uint32_t shdr_status, shdr_add_status;
16780 union lpfc_sli4_cfg_shdr *shdr;
16782 /* sanity check on queue memory */
16783 if (!eq)
16784 return -ENODEV;
16786 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16787 if (!mbox)
16788 return -ENOMEM;
16789 length = (sizeof(struct lpfc_mbx_eq_destroy) -
16790 sizeof(struct lpfc_sli4_cfg_mhdr));
16791 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16792 LPFC_MBOX_OPCODE_EQ_DESTROY,
16793 length, LPFC_SLI4_MBX_EMBED);
16794 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16795 eq->queue_id);
16796 mbox->vport = eq->phba->pport;
16797 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16799 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16800 /* The IOCTL status is embedded in the mailbox subheader. */
16801 shdr = (union lpfc_sli4_cfg_shdr *)
16802 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16803 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16804 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16805 if (shdr_status || shdr_add_status || rc) {
16806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16807 "2505 EQ_DESTROY mailbox failed with "
16808 "status x%x add_status x%x, mbx status x%x\n",
16809 shdr_status, shdr_add_status, rc);
16810 status = -ENXIO;
16813 /* Remove eq from any list */
16814 list_del_init(&eq->list);
16815 mempool_free(mbox, eq->phba->mbox_mem_pool);
16816 return status;
16820 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16821 * @phba: HBA structure that indicates port to destroy a queue on.
16822 * @cq: The queue structure associated with the queue to destroy.
16824 * This function destroys a queue, as detailed in @cq by sending an mailbox
16825 * command, specific to the type of queue, to the HBA.
16827 * The @cq struct is used to get the queue ID of the queue to destroy.
16829 * On success this function will return a zero. If the queue destroy mailbox
16830 * command fails this function will return -ENXIO.
16833 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16835 LPFC_MBOXQ_t *mbox;
16836 int rc, length, status = 0;
16837 uint32_t shdr_status, shdr_add_status;
16838 union lpfc_sli4_cfg_shdr *shdr;
16840 /* sanity check on queue memory */
16841 if (!cq)
16842 return -ENODEV;
16843 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16844 if (!mbox)
16845 return -ENOMEM;
16846 length = (sizeof(struct lpfc_mbx_cq_destroy) -
16847 sizeof(struct lpfc_sli4_cfg_mhdr));
16848 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16849 LPFC_MBOX_OPCODE_CQ_DESTROY,
16850 length, LPFC_SLI4_MBX_EMBED);
16851 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16852 cq->queue_id);
16853 mbox->vport = cq->phba->pport;
16854 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16855 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16856 /* The IOCTL status is embedded in the mailbox subheader. */
16857 shdr = (union lpfc_sli4_cfg_shdr *)
16858 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
16859 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16860 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16861 if (shdr_status || shdr_add_status || rc) {
16862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16863 "2506 CQ_DESTROY mailbox failed with "
16864 "status x%x add_status x%x, mbx status x%x\n",
16865 shdr_status, shdr_add_status, rc);
16866 status = -ENXIO;
16868 /* Remove cq from any list */
16869 list_del_init(&cq->list);
16870 mempool_free(mbox, cq->phba->mbox_mem_pool);
16871 return status;
16875 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16876 * @phba: HBA structure that indicates port to destroy a queue on.
16877 * @mq: The queue structure associated with the queue to destroy.
16879 * This function destroys a queue, as detailed in @mq by sending an mailbox
16880 * command, specific to the type of queue, to the HBA.
16882 * The @mq struct is used to get the queue ID of the queue to destroy.
16884 * On success this function will return a zero. If the queue destroy mailbox
16885 * command fails this function will return -ENXIO.
16888 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16890 LPFC_MBOXQ_t *mbox;
16891 int rc, length, status = 0;
16892 uint32_t shdr_status, shdr_add_status;
16893 union lpfc_sli4_cfg_shdr *shdr;
16895 /* sanity check on queue memory */
16896 if (!mq)
16897 return -ENODEV;
16898 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16899 if (!mbox)
16900 return -ENOMEM;
16901 length = (sizeof(struct lpfc_mbx_mq_destroy) -
16902 sizeof(struct lpfc_sli4_cfg_mhdr));
16903 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16904 LPFC_MBOX_OPCODE_MQ_DESTROY,
16905 length, LPFC_SLI4_MBX_EMBED);
16906 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16907 mq->queue_id);
16908 mbox->vport = mq->phba->pport;
16909 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16910 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16911 /* The IOCTL status is embedded in the mailbox subheader. */
16912 shdr = (union lpfc_sli4_cfg_shdr *)
16913 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16914 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16915 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16916 if (shdr_status || shdr_add_status || rc) {
16917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16918 "2507 MQ_DESTROY mailbox failed with "
16919 "status x%x add_status x%x, mbx status x%x\n",
16920 shdr_status, shdr_add_status, rc);
16921 status = -ENXIO;
16923 /* Remove mq from any list */
16924 list_del_init(&mq->list);
16925 mempool_free(mbox, mq->phba->mbox_mem_pool);
16926 return status;
16930 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16931 * @phba: HBA structure that indicates port to destroy a queue on.
16932 * @wq: The queue structure associated with the queue to destroy.
16934 * This function destroys a queue, as detailed in @wq by sending an mailbox
16935 * command, specific to the type of queue, to the HBA.
16937 * The @wq struct is used to get the queue ID of the queue to destroy.
16939 * On success this function will return a zero. If the queue destroy mailbox
16940 * command fails this function will return -ENXIO.
16943 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16945 LPFC_MBOXQ_t *mbox;
16946 int rc, length, status = 0;
16947 uint32_t shdr_status, shdr_add_status;
16948 union lpfc_sli4_cfg_shdr *shdr;
16950 /* sanity check on queue memory */
16951 if (!wq)
16952 return -ENODEV;
16953 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16954 if (!mbox)
16955 return -ENOMEM;
16956 length = (sizeof(struct lpfc_mbx_wq_destroy) -
16957 sizeof(struct lpfc_sli4_cfg_mhdr));
16958 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16959 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16960 length, LPFC_SLI4_MBX_EMBED);
16961 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16962 wq->queue_id);
16963 mbox->vport = wq->phba->pport;
16964 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16965 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16966 shdr = (union lpfc_sli4_cfg_shdr *)
16967 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16968 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16969 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16970 if (shdr_status || shdr_add_status || rc) {
16971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16972 "2508 WQ_DESTROY mailbox failed with "
16973 "status x%x add_status x%x, mbx status x%x\n",
16974 shdr_status, shdr_add_status, rc);
16975 status = -ENXIO;
16977 /* Remove wq from any list */
16978 list_del_init(&wq->list);
16979 kfree(wq->pring);
16980 wq->pring = NULL;
16981 mempool_free(mbox, wq->phba->mbox_mem_pool);
16982 return status;
16986 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16987 * @phba: HBA structure that indicates port to destroy a queue on.
16988 * @hrq: The queue structure associated with the queue to destroy.
16989 * @drq: The queue structure associated with the queue to destroy.
16991 * This function destroys a queue, as detailed in @rq by sending an mailbox
16992 * command, specific to the type of queue, to the HBA.
16994 * The @rq struct is used to get the queue ID of the queue to destroy.
16996 * On success this function will return a zero. If the queue destroy mailbox
16997 * command fails this function will return -ENXIO.
17000 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17001 struct lpfc_queue *drq)
17003 LPFC_MBOXQ_t *mbox;
17004 int rc, length, status = 0;
17005 uint32_t shdr_status, shdr_add_status;
17006 union lpfc_sli4_cfg_shdr *shdr;
17008 /* sanity check on queue memory */
17009 if (!hrq || !drq)
17010 return -ENODEV;
17011 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17012 if (!mbox)
17013 return -ENOMEM;
17014 length = (sizeof(struct lpfc_mbx_rq_destroy) -
17015 sizeof(struct lpfc_sli4_cfg_mhdr));
17016 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17017 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17018 length, LPFC_SLI4_MBX_EMBED);
17019 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17020 hrq->queue_id);
17021 mbox->vport = hrq->phba->pport;
17022 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17023 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17024 /* The IOCTL status is embedded in the mailbox subheader. */
17025 shdr = (union lpfc_sli4_cfg_shdr *)
17026 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17027 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17028 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17029 if (shdr_status || shdr_add_status || rc) {
17030 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17031 "2509 RQ_DESTROY mailbox failed with "
17032 "status x%x add_status x%x, mbx status x%x\n",
17033 shdr_status, shdr_add_status, rc);
17034 if (rc != MBX_TIMEOUT)
17035 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17036 return -ENXIO;
17038 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17039 drq->queue_id);
17040 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17041 shdr = (union lpfc_sli4_cfg_shdr *)
17042 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17045 if (shdr_status || shdr_add_status || rc) {
17046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17047 "2510 RQ_DESTROY mailbox failed with "
17048 "status x%x add_status x%x, mbx status x%x\n",
17049 shdr_status, shdr_add_status, rc);
17050 status = -ENXIO;
17052 list_del_init(&hrq->list);
17053 list_del_init(&drq->list);
17054 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17055 return status;
17059 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17060 * @phba: The virtual port for which this call being executed.
17061 * @pdma_phys_addr0: Physical address of the 1st SGL page.
17062 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17063 * @xritag: the xritag that ties this io to the SGL pages.
17065 * This routine will post the sgl pages for the IO that has the xritag
17066 * that is in the iocbq structure. The xritag is assigned during iocbq
17067 * creation and persists for as long as the driver is loaded.
17068 * if the caller has fewer than 256 scatter gather segments to map then
17069 * pdma_phys_addr1 should be 0.
17070 * If the caller needs to map more than 256 scatter gather segment then
17071 * pdma_phys_addr1 should be a valid physical address.
17072 * physical address for SGLs must be 64 byte aligned.
17073 * If you are going to map 2 SGL's then the first one must have 256 entries
17074 * the second sgl can have between 1 and 256 entries.
17076 * Return codes:
17077 * 0 - Success
17078 * -ENXIO, -ENOMEM - Failure
17081 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17082 dma_addr_t pdma_phys_addr0,
17083 dma_addr_t pdma_phys_addr1,
17084 uint16_t xritag)
17086 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17087 LPFC_MBOXQ_t *mbox;
17088 int rc;
17089 uint32_t shdr_status, shdr_add_status;
17090 uint32_t mbox_tmo;
17091 union lpfc_sli4_cfg_shdr *shdr;
17093 if (xritag == NO_XRI) {
17094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17095 "0364 Invalid param:\n");
17096 return -EINVAL;
17099 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17100 if (!mbox)
17101 return -ENOMEM;
17103 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17104 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17105 sizeof(struct lpfc_mbx_post_sgl_pages) -
17106 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17108 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17109 &mbox->u.mqe.un.post_sgl_pages;
17110 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17111 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17113 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
17114 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17115 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17116 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17118 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
17119 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17120 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17121 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17122 if (!phba->sli4_hba.intr_enable)
17123 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17124 else {
17125 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17126 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17128 /* The IOCTL status is embedded in the mailbox subheader. */
17129 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17130 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17131 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17132 if (rc != MBX_TIMEOUT)
17133 mempool_free(mbox, phba->mbox_mem_pool);
17134 if (shdr_status || shdr_add_status || rc) {
17135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17136 "2511 POST_SGL mailbox failed with "
17137 "status x%x add_status x%x, mbx status x%x\n",
17138 shdr_status, shdr_add_status, rc);
17140 return 0;
17144 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17145 * @phba: pointer to lpfc hba data structure.
17147 * This routine is invoked to post rpi header templates to the
17148 * HBA consistent with the SLI-4 interface spec. This routine
17149 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17150 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17152 * Returns
17153 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17154 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
17156 static uint16_t
17157 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17159 unsigned long xri;
17162 * Fetch the next logical xri. Because this index is logical,
17163 * the driver starts at 0 each time.
17165 spin_lock_irq(&phba->hbalock);
17166 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
17167 phba->sli4_hba.max_cfg_param.max_xri, 0);
17168 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17169 spin_unlock_irq(&phba->hbalock);
17170 return NO_XRI;
17171 } else {
17172 set_bit(xri, phba->sli4_hba.xri_bmask);
17173 phba->sli4_hba.max_cfg_param.xri_used++;
17175 spin_unlock_irq(&phba->hbalock);
17176 return xri;
17180 * lpfc_sli4_free_xri - Release an xri for reuse.
17181 * @phba: pointer to lpfc hba data structure.
17182 * @xri: xri to release.
17184 * This routine is invoked to release an xri to the pool of
17185 * available rpis maintained by the driver.
17187 static void
17188 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17190 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17191 phba->sli4_hba.max_cfg_param.xri_used--;
17196 * lpfc_sli4_free_xri - Release an xri for reuse.
17197 * @phba: pointer to lpfc hba data structure.
17198 * @xri: xri to release.
17200 * This routine is invoked to release an xri to the pool of
17201 * available rpis maintained by the driver.
17203 void
17204 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17206 spin_lock_irq(&phba->hbalock);
17207 __lpfc_sli4_free_xri(phba, xri);
17208 spin_unlock_irq(&phba->hbalock);
17212 * lpfc_sli4_next_xritag - Get an xritag for the io
17213 * @phba: Pointer to HBA context object.
17215 * This function gets an xritag for the iocb. If there is no unused xritag
17216 * it will return 0xffff.
17217 * The function returns the allocated xritag if successful, else returns zero.
17218 * Zero is not a valid xritag.
17219 * The caller is not required to hold any lock.
17221 uint16_t
17222 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17224 uint16_t xri_index;
17226 xri_index = lpfc_sli4_alloc_xri(phba);
17227 if (xri_index == NO_XRI)
17228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17229 "2004 Failed to allocate XRI.last XRITAG is %d"
17230 " Max XRI is %d, Used XRI is %d\n",
17231 xri_index,
17232 phba->sli4_hba.max_cfg_param.max_xri,
17233 phba->sli4_hba.max_cfg_param.xri_used);
17234 return xri_index;
17238 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17239 * @phba: pointer to lpfc hba data structure.
17240 * @post_sgl_list: pointer to els sgl entry list.
17241 * @post_cnt: number of els sgl entries on the list.
17243 * This routine is invoked to post a block of driver's sgl pages to the
17244 * HBA using non-embedded mailbox command. No Lock is held. This routine
17245 * is only called when the driver is loading and after all IO has been
17246 * stopped.
17248 static int
17249 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17250 struct list_head *post_sgl_list,
17251 int post_cnt)
17253 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17254 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17255 struct sgl_page_pairs *sgl_pg_pairs;
17256 void *viraddr;
17257 LPFC_MBOXQ_t *mbox;
17258 uint32_t reqlen, alloclen, pg_pairs;
17259 uint32_t mbox_tmo;
17260 uint16_t xritag_start = 0;
17261 int rc = 0;
17262 uint32_t shdr_status, shdr_add_status;
17263 union lpfc_sli4_cfg_shdr *shdr;
17265 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17266 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17267 if (reqlen > SLI4_PAGE_SIZE) {
17268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17269 "2559 Block sgl registration required DMA "
17270 "size (%d) great than a page\n", reqlen);
17271 return -ENOMEM;
17274 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17275 if (!mbox)
17276 return -ENOMEM;
17278 /* Allocate DMA memory and set up the non-embedded mailbox command */
17279 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17280 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17281 LPFC_SLI4_MBX_NEMBED);
17283 if (alloclen < reqlen) {
17284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17285 "0285 Allocated DMA memory size (%d) is "
17286 "less than the requested DMA memory "
17287 "size (%d)\n", alloclen, reqlen);
17288 lpfc_sli4_mbox_cmd_free(phba, mbox);
17289 return -ENOMEM;
17291 /* Set up the SGL pages in the non-embedded DMA pages */
17292 viraddr = mbox->sge_array->addr[0];
17293 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17294 sgl_pg_pairs = &sgl->sgl_pg_pairs;
17296 pg_pairs = 0;
17297 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17298 /* Set up the sge entry */
17299 sgl_pg_pairs->sgl_pg0_addr_lo =
17300 cpu_to_le32(putPaddrLow(sglq_entry->phys));
17301 sgl_pg_pairs->sgl_pg0_addr_hi =
17302 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17303 sgl_pg_pairs->sgl_pg1_addr_lo =
17304 cpu_to_le32(putPaddrLow(0));
17305 sgl_pg_pairs->sgl_pg1_addr_hi =
17306 cpu_to_le32(putPaddrHigh(0));
17308 /* Keep the first xritag on the list */
17309 if (pg_pairs == 0)
17310 xritag_start = sglq_entry->sli4_xritag;
17311 sgl_pg_pairs++;
17312 pg_pairs++;
17315 /* Complete initialization and perform endian conversion. */
17316 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17317 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17318 sgl->word0 = cpu_to_le32(sgl->word0);
17320 if (!phba->sli4_hba.intr_enable)
17321 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17322 else {
17323 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17324 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17326 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17327 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17328 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17329 if (rc != MBX_TIMEOUT)
17330 lpfc_sli4_mbox_cmd_free(phba, mbox);
17331 if (shdr_status || shdr_add_status || rc) {
17332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17333 "2513 POST_SGL_BLOCK mailbox command failed "
17334 "status x%x add_status x%x mbx status x%x\n",
17335 shdr_status, shdr_add_status, rc);
17336 rc = -ENXIO;
17338 return rc;
17342 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17343 * @phba: pointer to lpfc hba data structure.
17344 * @nblist: pointer to nvme buffer list.
17345 * @count: number of scsi buffers on the list.
17347 * This routine is invoked to post a block of @count scsi sgl pages from a
17348 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17349 * No Lock is held.
17352 static int
17353 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17354 int count)
17356 struct lpfc_io_buf *lpfc_ncmd;
17357 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17358 struct sgl_page_pairs *sgl_pg_pairs;
17359 void *viraddr;
17360 LPFC_MBOXQ_t *mbox;
17361 uint32_t reqlen, alloclen, pg_pairs;
17362 uint32_t mbox_tmo;
17363 uint16_t xritag_start = 0;
17364 int rc = 0;
17365 uint32_t shdr_status, shdr_add_status;
17366 dma_addr_t pdma_phys_bpl1;
17367 union lpfc_sli4_cfg_shdr *shdr;
17369 /* Calculate the requested length of the dma memory */
17370 reqlen = count * sizeof(struct sgl_page_pairs) +
17371 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17372 if (reqlen > SLI4_PAGE_SIZE) {
17373 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17374 "6118 Block sgl registration required DMA "
17375 "size (%d) great than a page\n", reqlen);
17376 return -ENOMEM;
17378 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17379 if (!mbox) {
17380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17381 "6119 Failed to allocate mbox cmd memory\n");
17382 return -ENOMEM;
17385 /* Allocate DMA memory and set up the non-embedded mailbox command */
17386 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17387 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17388 reqlen, LPFC_SLI4_MBX_NEMBED);
17390 if (alloclen < reqlen) {
17391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17392 "6120 Allocated DMA memory size (%d) is "
17393 "less than the requested DMA memory "
17394 "size (%d)\n", alloclen, reqlen);
17395 lpfc_sli4_mbox_cmd_free(phba, mbox);
17396 return -ENOMEM;
17399 /* Get the first SGE entry from the non-embedded DMA memory */
17400 viraddr = mbox->sge_array->addr[0];
17402 /* Set up the SGL pages in the non-embedded DMA pages */
17403 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17404 sgl_pg_pairs = &sgl->sgl_pg_pairs;
17406 pg_pairs = 0;
17407 list_for_each_entry(lpfc_ncmd, nblist, list) {
17408 /* Set up the sge entry */
17409 sgl_pg_pairs->sgl_pg0_addr_lo =
17410 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17411 sgl_pg_pairs->sgl_pg0_addr_hi =
17412 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17413 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17414 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17415 SGL_PAGE_SIZE;
17416 else
17417 pdma_phys_bpl1 = 0;
17418 sgl_pg_pairs->sgl_pg1_addr_lo =
17419 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17420 sgl_pg_pairs->sgl_pg1_addr_hi =
17421 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17422 /* Keep the first xritag on the list */
17423 if (pg_pairs == 0)
17424 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17425 sgl_pg_pairs++;
17426 pg_pairs++;
17428 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17429 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17430 /* Perform endian conversion if necessary */
17431 sgl->word0 = cpu_to_le32(sgl->word0);
17433 if (!phba->sli4_hba.intr_enable) {
17434 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17435 } else {
17436 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17437 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17439 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17440 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17441 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17442 if (rc != MBX_TIMEOUT)
17443 lpfc_sli4_mbox_cmd_free(phba, mbox);
17444 if (shdr_status || shdr_add_status || rc) {
17445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17446 "6125 POST_SGL_BLOCK mailbox command failed "
17447 "status x%x add_status x%x mbx status x%x\n",
17448 shdr_status, shdr_add_status, rc);
17449 rc = -ENXIO;
17451 return rc;
17455 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17456 * @phba: pointer to lpfc hba data structure.
17457 * @post_nblist: pointer to the nvme buffer list.
17458 * @sb_count: number of nvme buffers.
17460 * This routine walks a list of nvme buffers that was passed in. It attempts
17461 * to construct blocks of nvme buffer sgls which contains contiguous xris and
17462 * uses the non-embedded SGL block post mailbox commands to post to the port.
17463 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17464 * embedded SGL post mailbox command for posting. The @post_nblist passed in
17465 * must be local list, thus no lock is needed when manipulate the list.
17467 * Returns: 0 = failure, non-zero number of successfully posted buffers.
17470 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17471 struct list_head *post_nblist, int sb_count)
17473 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17474 int status, sgl_size;
17475 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17476 dma_addr_t pdma_phys_sgl1;
17477 int last_xritag = NO_XRI;
17478 int cur_xritag;
17479 LIST_HEAD(prep_nblist);
17480 LIST_HEAD(blck_nblist);
17481 LIST_HEAD(nvme_nblist);
17483 /* sanity check */
17484 if (sb_count <= 0)
17485 return -EINVAL;
17487 sgl_size = phba->cfg_sg_dma_buf_size;
17488 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17489 list_del_init(&lpfc_ncmd->list);
17490 block_cnt++;
17491 if ((last_xritag != NO_XRI) &&
17492 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17493 /* a hole in xri block, form a sgl posting block */
17494 list_splice_init(&prep_nblist, &blck_nblist);
17495 post_cnt = block_cnt - 1;
17496 /* prepare list for next posting block */
17497 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17498 block_cnt = 1;
17499 } else {
17500 /* prepare list for next posting block */
17501 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17502 /* enough sgls for non-embed sgl mbox command */
17503 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17504 list_splice_init(&prep_nblist, &blck_nblist);
17505 post_cnt = block_cnt;
17506 block_cnt = 0;
17509 num_posting++;
17510 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17512 /* end of repost sgl list condition for NVME buffers */
17513 if (num_posting == sb_count) {
17514 if (post_cnt == 0) {
17515 /* last sgl posting block */
17516 list_splice_init(&prep_nblist, &blck_nblist);
17517 post_cnt = block_cnt;
17518 } else if (block_cnt == 1) {
17519 /* last single sgl with non-contiguous xri */
17520 if (sgl_size > SGL_PAGE_SIZE)
17521 pdma_phys_sgl1 =
17522 lpfc_ncmd->dma_phys_sgl +
17523 SGL_PAGE_SIZE;
17524 else
17525 pdma_phys_sgl1 = 0;
17526 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17527 status = lpfc_sli4_post_sgl(
17528 phba, lpfc_ncmd->dma_phys_sgl,
17529 pdma_phys_sgl1, cur_xritag);
17530 if (status) {
17531 /* Post error. Buffer unavailable. */
17532 lpfc_ncmd->flags |=
17533 LPFC_SBUF_NOT_POSTED;
17534 } else {
17535 /* Post success. Bffer available. */
17536 lpfc_ncmd->flags &=
17537 ~LPFC_SBUF_NOT_POSTED;
17538 lpfc_ncmd->status = IOSTAT_SUCCESS;
17539 num_posted++;
17541 /* success, put on NVME buffer sgl list */
17542 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17546 /* continue until a nembed page worth of sgls */
17547 if (post_cnt == 0)
17548 continue;
17550 /* post block of NVME buffer list sgls */
17551 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17552 post_cnt);
17554 /* don't reset xirtag due to hole in xri block */
17555 if (block_cnt == 0)
17556 last_xritag = NO_XRI;
17558 /* reset NVME buffer post count for next round of posting */
17559 post_cnt = 0;
17561 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17562 while (!list_empty(&blck_nblist)) {
17563 list_remove_head(&blck_nblist, lpfc_ncmd,
17564 struct lpfc_io_buf, list);
17565 if (status) {
17566 /* Post error. Mark buffer unavailable. */
17567 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17568 } else {
17569 /* Post success, Mark buffer available. */
17570 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17571 lpfc_ncmd->status = IOSTAT_SUCCESS;
17572 num_posted++;
17574 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17577 /* Push NVME buffers with sgl posted to the available list */
17578 lpfc_io_buf_replenish(phba, &nvme_nblist);
17580 return num_posted;
17584 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17585 * @phba: pointer to lpfc_hba struct that the frame was received on
17586 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17588 * This function checks the fields in the @fc_hdr to see if the FC frame is a
17589 * valid type of frame that the LPFC driver will handle. This function will
17590 * return a zero if the frame is a valid frame or a non zero value when the
17591 * frame does not pass the check.
17593 static int
17594 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17596 /* make rctl_names static to save stack space */
17597 struct fc_vft_header *fc_vft_hdr;
17598 uint32_t *header = (uint32_t *) fc_hdr;
17600 #define FC_RCTL_MDS_DIAGS 0xF4
17602 switch (fc_hdr->fh_r_ctl) {
17603 case FC_RCTL_DD_UNCAT: /* uncategorized information */
17604 case FC_RCTL_DD_SOL_DATA: /* solicited data */
17605 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
17606 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
17607 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
17608 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
17609 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
17610 case FC_RCTL_DD_CMD_STATUS: /* command status */
17611 case FC_RCTL_ELS_REQ: /* extended link services request */
17612 case FC_RCTL_ELS_REP: /* extended link services reply */
17613 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
17614 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
17615 case FC_RCTL_BA_NOP: /* basic link service NOP */
17616 case FC_RCTL_BA_ABTS: /* basic link service abort */
17617 case FC_RCTL_BA_RMC: /* remove connection */
17618 case FC_RCTL_BA_ACC: /* basic accept */
17619 case FC_RCTL_BA_RJT: /* basic reject */
17620 case FC_RCTL_BA_PRMT:
17621 case FC_RCTL_ACK_1: /* acknowledge_1 */
17622 case FC_RCTL_ACK_0: /* acknowledge_0 */
17623 case FC_RCTL_P_RJT: /* port reject */
17624 case FC_RCTL_F_RJT: /* fabric reject */
17625 case FC_RCTL_P_BSY: /* port busy */
17626 case FC_RCTL_F_BSY: /* fabric busy to data frame */
17627 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
17628 case FC_RCTL_LCR: /* link credit reset */
17629 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17630 case FC_RCTL_END: /* end */
17631 break;
17632 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
17633 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17634 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17635 return lpfc_fc_frame_check(phba, fc_hdr);
17636 default:
17637 goto drop;
17640 switch (fc_hdr->fh_type) {
17641 case FC_TYPE_BLS:
17642 case FC_TYPE_ELS:
17643 case FC_TYPE_FCP:
17644 case FC_TYPE_CT:
17645 case FC_TYPE_NVME:
17646 break;
17647 case FC_TYPE_IP:
17648 case FC_TYPE_ILS:
17649 default:
17650 goto drop;
17653 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17654 "2538 Received frame rctl:x%x, type:x%x, "
17655 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17656 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17657 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17658 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17659 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17660 be32_to_cpu(header[6]));
17661 return 0;
17662 drop:
17663 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17664 "2539 Dropped frame rctl:x%x type:x%x\n",
17665 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17666 return 1;
17670 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17671 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17673 * This function processes the FC header to retrieve the VFI from the VF
17674 * header, if one exists. This function will return the VFI if one exists
17675 * or 0 if no VSAN Header exists.
17677 static uint32_t
17678 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17680 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17682 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17683 return 0;
17684 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17688 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17689 * @phba: Pointer to the HBA structure to search for the vport on
17690 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17691 * @fcfi: The FC Fabric ID that the frame came from
17692 * @did: Destination ID to match against
17694 * This function searches the @phba for a vport that matches the content of the
17695 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17696 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17697 * returns the matching vport pointer or NULL if unable to match frame to a
17698 * vport.
17700 static struct lpfc_vport *
17701 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17702 uint16_t fcfi, uint32_t did)
17704 struct lpfc_vport **vports;
17705 struct lpfc_vport *vport = NULL;
17706 int i;
17708 if (did == Fabric_DID)
17709 return phba->pport;
17710 if ((phba->pport->fc_flag & FC_PT2PT) &&
17711 !(phba->link_state == LPFC_HBA_READY))
17712 return phba->pport;
17714 vports = lpfc_create_vport_work_array(phba);
17715 if (vports != NULL) {
17716 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17717 if (phba->fcf.fcfi == fcfi &&
17718 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17719 vports[i]->fc_myDID == did) {
17720 vport = vports[i];
17721 break;
17725 lpfc_destroy_vport_work_array(phba, vports);
17726 return vport;
17730 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17731 * @vport: The vport to work on.
17733 * This function updates the receive sequence time stamp for this vport. The
17734 * receive sequence time stamp indicates the time that the last frame of the
17735 * the sequence that has been idle for the longest amount of time was received.
17736 * the driver uses this time stamp to indicate if any received sequences have
17737 * timed out.
17739 static void
17740 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17742 struct lpfc_dmabuf *h_buf;
17743 struct hbq_dmabuf *dmabuf = NULL;
17745 /* get the oldest sequence on the rcv list */
17746 h_buf = list_get_first(&vport->rcv_buffer_list,
17747 struct lpfc_dmabuf, list);
17748 if (!h_buf)
17749 return;
17750 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17751 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17755 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17756 * @vport: The vport that the received sequences were sent to.
17758 * This function cleans up all outstanding received sequences. This is called
17759 * by the driver when a link event or user action invalidates all the received
17760 * sequences.
17762 void
17763 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17765 struct lpfc_dmabuf *h_buf, *hnext;
17766 struct lpfc_dmabuf *d_buf, *dnext;
17767 struct hbq_dmabuf *dmabuf = NULL;
17769 /* start with the oldest sequence on the rcv list */
17770 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17771 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17772 list_del_init(&dmabuf->hbuf.list);
17773 list_for_each_entry_safe(d_buf, dnext,
17774 &dmabuf->dbuf.list, list) {
17775 list_del_init(&d_buf->list);
17776 lpfc_in_buf_free(vport->phba, d_buf);
17778 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17783 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17784 * @vport: The vport that the received sequences were sent to.
17786 * This function determines whether any received sequences have timed out by
17787 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17788 * indicates that there is at least one timed out sequence this routine will
17789 * go through the received sequences one at a time from most inactive to most
17790 * active to determine which ones need to be cleaned up. Once it has determined
17791 * that a sequence needs to be cleaned up it will simply free up the resources
17792 * without sending an abort.
17794 void
17795 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17797 struct lpfc_dmabuf *h_buf, *hnext;
17798 struct lpfc_dmabuf *d_buf, *dnext;
17799 struct hbq_dmabuf *dmabuf = NULL;
17800 unsigned long timeout;
17801 int abort_count = 0;
17803 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17804 vport->rcv_buffer_time_stamp);
17805 if (list_empty(&vport->rcv_buffer_list) ||
17806 time_before(jiffies, timeout))
17807 return;
17808 /* start with the oldest sequence on the rcv list */
17809 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17810 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17811 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17812 dmabuf->time_stamp);
17813 if (time_before(jiffies, timeout))
17814 break;
17815 abort_count++;
17816 list_del_init(&dmabuf->hbuf.list);
17817 list_for_each_entry_safe(d_buf, dnext,
17818 &dmabuf->dbuf.list, list) {
17819 list_del_init(&d_buf->list);
17820 lpfc_in_buf_free(vport->phba, d_buf);
17822 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17824 if (abort_count)
17825 lpfc_update_rcv_time_stamp(vport);
17829 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17830 * @vport: pointer to a vitural port
17831 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17833 * This function searches through the existing incomplete sequences that have
17834 * been sent to this @vport. If the frame matches one of the incomplete
17835 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17836 * make up that sequence. If no sequence is found that matches this frame then
17837 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17838 * This function returns a pointer to the first dmabuf in the sequence list that
17839 * the frame was linked to.
17841 static struct hbq_dmabuf *
17842 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17844 struct fc_frame_header *new_hdr;
17845 struct fc_frame_header *temp_hdr;
17846 struct lpfc_dmabuf *d_buf;
17847 struct lpfc_dmabuf *h_buf;
17848 struct hbq_dmabuf *seq_dmabuf = NULL;
17849 struct hbq_dmabuf *temp_dmabuf = NULL;
17850 uint8_t found = 0;
17852 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17853 dmabuf->time_stamp = jiffies;
17854 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17856 /* Use the hdr_buf to find the sequence that this frame belongs to */
17857 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17858 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17859 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17860 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17861 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17862 continue;
17863 /* found a pending sequence that matches this frame */
17864 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17865 break;
17867 if (!seq_dmabuf) {
17869 * This indicates first frame received for this sequence.
17870 * Queue the buffer on the vport's rcv_buffer_list.
17872 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17873 lpfc_update_rcv_time_stamp(vport);
17874 return dmabuf;
17876 temp_hdr = seq_dmabuf->hbuf.virt;
17877 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17878 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17879 list_del_init(&seq_dmabuf->hbuf.list);
17880 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17881 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17882 lpfc_update_rcv_time_stamp(vport);
17883 return dmabuf;
17885 /* move this sequence to the tail to indicate a young sequence */
17886 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17887 seq_dmabuf->time_stamp = jiffies;
17888 lpfc_update_rcv_time_stamp(vport);
17889 if (list_empty(&seq_dmabuf->dbuf.list)) {
17890 temp_hdr = dmabuf->hbuf.virt;
17891 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17892 return seq_dmabuf;
17894 /* find the correct place in the sequence to insert this frame */
17895 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17896 while (!found) {
17897 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17898 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17900 * If the frame's sequence count is greater than the frame on
17901 * the list then insert the frame right after this frame
17903 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17904 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17905 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17906 found = 1;
17907 break;
17910 if (&d_buf->list == &seq_dmabuf->dbuf.list)
17911 break;
17912 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17915 if (found)
17916 return seq_dmabuf;
17917 return NULL;
17921 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17922 * @vport: pointer to a vitural port
17923 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17925 * This function tries to abort from the partially assembed sequence, described
17926 * by the information from basic abbort @dmabuf. It checks to see whether such
17927 * partially assembled sequence held by the driver. If so, it shall free up all
17928 * the frames from the partially assembled sequence.
17930 * Return
17931 * true -- if there is matching partially assembled sequence present and all
17932 * the frames freed with the sequence;
17933 * false -- if there is no matching partially assembled sequence present so
17934 * nothing got aborted in the lower layer driver
17936 static bool
17937 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17938 struct hbq_dmabuf *dmabuf)
17940 struct fc_frame_header *new_hdr;
17941 struct fc_frame_header *temp_hdr;
17942 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17943 struct hbq_dmabuf *seq_dmabuf = NULL;
17945 /* Use the hdr_buf to find the sequence that matches this frame */
17946 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17947 INIT_LIST_HEAD(&dmabuf->hbuf.list);
17948 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17949 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17950 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17951 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17952 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17953 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17954 continue;
17955 /* found a pending sequence that matches this frame */
17956 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17957 break;
17960 /* Free up all the frames from the partially assembled sequence */
17961 if (seq_dmabuf) {
17962 list_for_each_entry_safe(d_buf, n_buf,
17963 &seq_dmabuf->dbuf.list, list) {
17964 list_del_init(&d_buf->list);
17965 lpfc_in_buf_free(vport->phba, d_buf);
17967 return true;
17969 return false;
17973 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17974 * @vport: pointer to a vitural port
17975 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17977 * This function tries to abort from the assembed sequence from upper level
17978 * protocol, described by the information from basic abbort @dmabuf. It
17979 * checks to see whether such pending context exists at upper level protocol.
17980 * If so, it shall clean up the pending context.
17982 * Return
17983 * true -- if there is matching pending context of the sequence cleaned
17984 * at ulp;
17985 * false -- if there is no matching pending context of the sequence present
17986 * at ulp.
17988 static bool
17989 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17991 struct lpfc_hba *phba = vport->phba;
17992 int handled;
17994 /* Accepting abort at ulp with SLI4 only */
17995 if (phba->sli_rev < LPFC_SLI_REV4)
17996 return false;
17998 /* Register all caring upper level protocols to attend abort */
17999 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18000 if (handled)
18001 return true;
18003 return false;
18007 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18008 * @phba: Pointer to HBA context object.
18009 * @cmd_iocbq: pointer to the command iocbq structure.
18010 * @rsp_iocbq: pointer to the response iocbq structure.
18012 * This function handles the sequence abort response iocb command complete
18013 * event. It properly releases the memory allocated to the sequence abort
18014 * accept iocb.
18016 static void
18017 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18018 struct lpfc_iocbq *cmd_iocbq,
18019 struct lpfc_iocbq *rsp_iocbq)
18021 struct lpfc_nodelist *ndlp;
18023 if (cmd_iocbq) {
18024 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
18025 lpfc_nlp_put(ndlp);
18026 lpfc_nlp_not_used(ndlp);
18027 lpfc_sli_release_iocbq(phba, cmd_iocbq);
18030 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
18031 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18033 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
18034 rsp_iocbq->iocb.ulpStatus,
18035 rsp_iocbq->iocb.un.ulpWord[4]);
18039 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18040 * @phba: Pointer to HBA context object.
18041 * @xri: xri id in transaction.
18043 * This function validates the xri maps to the known range of XRIs allocated an
18044 * used by the driver.
18046 uint16_t
18047 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18048 uint16_t xri)
18050 uint16_t i;
18052 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18053 if (xri == phba->sli4_hba.xri_ids[i])
18054 return i;
18056 return NO_XRI;
18060 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18061 * @vport: pointer to a vitural port.
18062 * @fc_hdr: pointer to a FC frame header.
18063 * @aborted: was the partially assembled receive sequence successfully aborted
18065 * This function sends a basic response to a previous unsol sequence abort
18066 * event after aborting the sequence handling.
18068 void
18069 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18070 struct fc_frame_header *fc_hdr, bool aborted)
18072 struct lpfc_hba *phba = vport->phba;
18073 struct lpfc_iocbq *ctiocb = NULL;
18074 struct lpfc_nodelist *ndlp;
18075 uint16_t oxid, rxid, xri, lxri;
18076 uint32_t sid, fctl;
18077 IOCB_t *icmd;
18078 int rc;
18080 if (!lpfc_is_link_up(phba))
18081 return;
18083 sid = sli4_sid_from_fc_hdr(fc_hdr);
18084 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18085 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18087 ndlp = lpfc_findnode_did(vport, sid);
18088 if (!ndlp) {
18089 ndlp = lpfc_nlp_init(vport, sid);
18090 if (!ndlp) {
18091 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18092 "1268 Failed to allocate ndlp for "
18093 "oxid:x%x SID:x%x\n", oxid, sid);
18094 return;
18096 /* Put ndlp onto pport node list */
18097 lpfc_enqueue_node(vport, ndlp);
18100 /* Allocate buffer for rsp iocb */
18101 ctiocb = lpfc_sli_get_iocbq(phba);
18102 if (!ctiocb)
18103 return;
18105 /* Extract the F_CTL field from FC_HDR */
18106 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18108 icmd = &ctiocb->iocb;
18109 icmd->un.xseq64.bdl.bdeSize = 0;
18110 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
18111 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
18112 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
18113 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
18115 /* Fill in the rest of iocb fields */
18116 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
18117 icmd->ulpBdeCount = 0;
18118 icmd->ulpLe = 1;
18119 icmd->ulpClass = CLASS3;
18120 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
18121 ctiocb->context1 = lpfc_nlp_get(ndlp);
18122 if (!ctiocb->context1) {
18123 lpfc_sli_release_iocbq(phba, ctiocb);
18124 return;
18127 ctiocb->vport = phba->pport;
18128 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18129 ctiocb->sli4_lxritag = NO_XRI;
18130 ctiocb->sli4_xritag = NO_XRI;
18132 if (fctl & FC_FC_EX_CTX)
18133 /* Exchange responder sent the abort so we
18134 * own the oxid.
18136 xri = oxid;
18137 else
18138 xri = rxid;
18139 lxri = lpfc_sli4_xri_inrange(phba, xri);
18140 if (lxri != NO_XRI)
18141 lpfc_set_rrq_active(phba, ndlp, lxri,
18142 (xri == oxid) ? rxid : oxid, 0);
18143 /* For BA_ABTS from exchange responder, if the logical xri with
18144 * the oxid maps to the FCP XRI range, the port no longer has
18145 * that exchange context, send a BLS_RJT. Override the IOCB for
18146 * a BA_RJT.
18148 if ((fctl & FC_FC_EX_CTX) &&
18149 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18150 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18151 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18152 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18153 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18156 /* If BA_ABTS failed to abort a partially assembled receive sequence,
18157 * the driver no longer has that exchange, send a BLS_RJT. Override
18158 * the IOCB for a BA_RJT.
18160 if (aborted == false) {
18161 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18162 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18163 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18164 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18167 if (fctl & FC_FC_EX_CTX) {
18168 /* ABTS sent by responder to CT exchange, construction
18169 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18170 * field and RX_ID from ABTS for RX_ID field.
18172 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
18173 } else {
18174 /* ABTS sent by initiator to CT exchange, construction
18175 * of BA_ACC will need to allocate a new XRI as for the
18176 * XRI_TAG field.
18178 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
18180 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
18181 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
18183 /* Xmit CT abts response on exchange <xid> */
18184 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18185 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18186 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
18188 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18189 if (rc == IOCB_ERROR) {
18190 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18191 "2925 Failed to issue CT ABTS RSP x%x on "
18192 "xri x%x, Data x%x\n",
18193 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
18194 phba->link_state);
18195 lpfc_nlp_put(ndlp);
18196 ctiocb->context1 = NULL;
18197 lpfc_sli_release_iocbq(phba, ctiocb);
18202 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18203 * @vport: Pointer to the vport on which this sequence was received
18204 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18206 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18207 * receive sequence is only partially assembed by the driver, it shall abort
18208 * the partially assembled frames for the sequence. Otherwise, if the
18209 * unsolicited receive sequence has been completely assembled and passed to
18210 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18211 * unsolicited sequence has been aborted. After that, it will issue a basic
18212 * accept to accept the abort.
18214 static void
18215 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18216 struct hbq_dmabuf *dmabuf)
18218 struct lpfc_hba *phba = vport->phba;
18219 struct fc_frame_header fc_hdr;
18220 uint32_t fctl;
18221 bool aborted;
18223 /* Make a copy of fc_hdr before the dmabuf being released */
18224 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18225 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18227 if (fctl & FC_FC_EX_CTX) {
18228 /* ABTS by responder to exchange, no cleanup needed */
18229 aborted = true;
18230 } else {
18231 /* ABTS by initiator to exchange, need to do cleanup */
18232 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18233 if (aborted == false)
18234 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18236 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18238 if (phba->nvmet_support) {
18239 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18240 return;
18243 /* Respond with BA_ACC or BA_RJT accordingly */
18244 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18248 * lpfc_seq_complete - Indicates if a sequence is complete
18249 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18251 * This function checks the sequence, starting with the frame described by
18252 * @dmabuf, to see if all the frames associated with this sequence are present.
18253 * the frames associated with this sequence are linked to the @dmabuf using the
18254 * dbuf list. This function looks for two major things. 1) That the first frame
18255 * has a sequence count of zero. 2) There is a frame with last frame of sequence
18256 * set. 3) That there are no holes in the sequence count. The function will
18257 * return 1 when the sequence is complete, otherwise it will return 0.
18259 static int
18260 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18262 struct fc_frame_header *hdr;
18263 struct lpfc_dmabuf *d_buf;
18264 struct hbq_dmabuf *seq_dmabuf;
18265 uint32_t fctl;
18266 int seq_count = 0;
18268 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18269 /* make sure first fame of sequence has a sequence count of zero */
18270 if (hdr->fh_seq_cnt != seq_count)
18271 return 0;
18272 fctl = (hdr->fh_f_ctl[0] << 16 |
18273 hdr->fh_f_ctl[1] << 8 |
18274 hdr->fh_f_ctl[2]);
18275 /* If last frame of sequence we can return success. */
18276 if (fctl & FC_FC_END_SEQ)
18277 return 1;
18278 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18279 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18280 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18281 /* If there is a hole in the sequence count then fail. */
18282 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18283 return 0;
18284 fctl = (hdr->fh_f_ctl[0] << 16 |
18285 hdr->fh_f_ctl[1] << 8 |
18286 hdr->fh_f_ctl[2]);
18287 /* If last frame of sequence we can return success. */
18288 if (fctl & FC_FC_END_SEQ)
18289 return 1;
18291 return 0;
18295 * lpfc_prep_seq - Prep sequence for ULP processing
18296 * @vport: Pointer to the vport on which this sequence was received
18297 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18299 * This function takes a sequence, described by a list of frames, and creates
18300 * a list of iocbq structures to describe the sequence. This iocbq list will be
18301 * used to issue to the generic unsolicited sequence handler. This routine
18302 * returns a pointer to the first iocbq in the list. If the function is unable
18303 * to allocate an iocbq then it throw out the received frames that were not
18304 * able to be described and return a pointer to the first iocbq. If unable to
18305 * allocate any iocbqs (including the first) this function will return NULL.
18307 static struct lpfc_iocbq *
18308 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18310 struct hbq_dmabuf *hbq_buf;
18311 struct lpfc_dmabuf *d_buf, *n_buf;
18312 struct lpfc_iocbq *first_iocbq, *iocbq;
18313 struct fc_frame_header *fc_hdr;
18314 uint32_t sid;
18315 uint32_t len, tot_len;
18316 struct ulp_bde64 *pbde;
18318 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18319 /* remove from receive buffer list */
18320 list_del_init(&seq_dmabuf->hbuf.list);
18321 lpfc_update_rcv_time_stamp(vport);
18322 /* get the Remote Port's SID */
18323 sid = sli4_sid_from_fc_hdr(fc_hdr);
18324 tot_len = 0;
18325 /* Get an iocbq struct to fill in. */
18326 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18327 if (first_iocbq) {
18328 /* Initialize the first IOCB. */
18329 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
18330 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
18331 first_iocbq->vport = vport;
18333 /* Check FC Header to see what TYPE of frame we are rcv'ing */
18334 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18335 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
18336 first_iocbq->iocb.un.rcvels.parmRo =
18337 sli4_did_from_fc_hdr(fc_hdr);
18338 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
18339 } else
18340 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
18341 first_iocbq->iocb.ulpContext = NO_XRI;
18342 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
18343 be16_to_cpu(fc_hdr->fh_ox_id);
18344 /* iocbq is prepped for internal consumption. Physical vpi. */
18345 first_iocbq->iocb.unsli3.rcvsli3.vpi =
18346 vport->phba->vpi_ids[vport->vpi];
18347 /* put the first buffer into the first IOCBq */
18348 tot_len = bf_get(lpfc_rcqe_length,
18349 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18351 first_iocbq->context2 = &seq_dmabuf->dbuf;
18352 first_iocbq->context3 = NULL;
18353 first_iocbq->iocb.ulpBdeCount = 1;
18354 if (tot_len > LPFC_DATA_BUF_SIZE)
18355 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18356 LPFC_DATA_BUF_SIZE;
18357 else
18358 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
18360 first_iocbq->iocb.un.rcvels.remoteID = sid;
18362 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18364 iocbq = first_iocbq;
18366 * Each IOCBq can have two Buffers assigned, so go through the list
18367 * of buffers for this sequence and save two buffers in each IOCBq
18369 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18370 if (!iocbq) {
18371 lpfc_in_buf_free(vport->phba, d_buf);
18372 continue;
18374 if (!iocbq->context3) {
18375 iocbq->context3 = d_buf;
18376 iocbq->iocb.ulpBdeCount++;
18377 /* We need to get the size out of the right CQE */
18378 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18379 len = bf_get(lpfc_rcqe_length,
18380 &hbq_buf->cq_event.cqe.rcqe_cmpl);
18381 pbde = (struct ulp_bde64 *)
18382 &iocbq->iocb.unsli3.sli3Words[4];
18383 if (len > LPFC_DATA_BUF_SIZE)
18384 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
18385 else
18386 pbde->tus.f.bdeSize = len;
18388 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18389 tot_len += len;
18390 } else {
18391 iocbq = lpfc_sli_get_iocbq(vport->phba);
18392 if (!iocbq) {
18393 if (first_iocbq) {
18394 first_iocbq->iocb.ulpStatus =
18395 IOSTAT_FCP_RSP_ERROR;
18396 first_iocbq->iocb.un.ulpWord[4] =
18397 IOERR_NO_RESOURCES;
18399 lpfc_in_buf_free(vport->phba, d_buf);
18400 continue;
18402 /* We need to get the size out of the right CQE */
18403 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18404 len = bf_get(lpfc_rcqe_length,
18405 &hbq_buf->cq_event.cqe.rcqe_cmpl);
18406 iocbq->context2 = d_buf;
18407 iocbq->context3 = NULL;
18408 iocbq->iocb.ulpBdeCount = 1;
18409 if (len > LPFC_DATA_BUF_SIZE)
18410 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18411 LPFC_DATA_BUF_SIZE;
18412 else
18413 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18415 tot_len += len;
18416 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18418 iocbq->iocb.un.rcvels.remoteID = sid;
18419 list_add_tail(&iocbq->list, &first_iocbq->list);
18422 /* Free the sequence's header buffer */
18423 if (!first_iocbq)
18424 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18426 return first_iocbq;
18429 static void
18430 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18431 struct hbq_dmabuf *seq_dmabuf)
18433 struct fc_frame_header *fc_hdr;
18434 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18435 struct lpfc_hba *phba = vport->phba;
18437 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18438 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18439 if (!iocbq) {
18440 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18441 "2707 Ring %d handler: Failed to allocate "
18442 "iocb Rctl x%x Type x%x received\n",
18443 LPFC_ELS_RING,
18444 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18445 return;
18447 if (!lpfc_complete_unsol_iocb(phba,
18448 phba->sli4_hba.els_wq->pring,
18449 iocbq, fc_hdr->fh_r_ctl,
18450 fc_hdr->fh_type))
18451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18452 "2540 Ring %d handler: unexpected Rctl "
18453 "x%x Type x%x received\n",
18454 LPFC_ELS_RING,
18455 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18457 /* Free iocb created in lpfc_prep_seq */
18458 list_for_each_entry_safe(curr_iocb, next_iocb,
18459 &iocbq->list, list) {
18460 list_del_init(&curr_iocb->list);
18461 lpfc_sli_release_iocbq(phba, curr_iocb);
18463 lpfc_sli_release_iocbq(phba, iocbq);
18466 static void
18467 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18468 struct lpfc_iocbq *rspiocb)
18470 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18472 if (pcmd && pcmd->virt)
18473 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18474 kfree(pcmd);
18475 lpfc_sli_release_iocbq(phba, cmdiocb);
18476 lpfc_drain_txq(phba);
18479 static void
18480 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18481 struct hbq_dmabuf *dmabuf)
18483 struct fc_frame_header *fc_hdr;
18484 struct lpfc_hba *phba = vport->phba;
18485 struct lpfc_iocbq *iocbq = NULL;
18486 union lpfc_wqe *wqe;
18487 struct lpfc_dmabuf *pcmd = NULL;
18488 uint32_t frame_len;
18489 int rc;
18490 unsigned long iflags;
18492 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18493 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18495 /* Send the received frame back */
18496 iocbq = lpfc_sli_get_iocbq(phba);
18497 if (!iocbq) {
18498 /* Queue cq event and wakeup worker thread to process it */
18499 spin_lock_irqsave(&phba->hbalock, iflags);
18500 list_add_tail(&dmabuf->cq_event.list,
18501 &phba->sli4_hba.sp_queue_event);
18502 phba->hba_flag |= HBA_SP_QUEUE_EVT;
18503 spin_unlock_irqrestore(&phba->hbalock, iflags);
18504 lpfc_worker_wake_up(phba);
18505 return;
18508 /* Allocate buffer for command payload */
18509 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18510 if (pcmd)
18511 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18512 &pcmd->phys);
18513 if (!pcmd || !pcmd->virt)
18514 goto exit;
18516 INIT_LIST_HEAD(&pcmd->list);
18518 /* copyin the payload */
18519 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18521 /* fill in BDE's for command */
18522 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18523 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18524 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18525 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18527 iocbq->context2 = pcmd;
18528 iocbq->vport = vport;
18529 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18530 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18533 * Setup rest of the iocb as though it were a WQE
18534 * Build the SEND_FRAME WQE
18536 wqe = (union lpfc_wqe *)&iocbq->iocb;
18538 wqe->send_frame.frame_len = frame_len;
18539 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18540 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18541 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18542 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18543 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18544 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18546 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18547 iocbq->iocb.ulpLe = 1;
18548 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18549 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18550 if (rc == IOCB_ERROR)
18551 goto exit;
18553 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18554 return;
18556 exit:
18557 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18558 "2023 Unable to process MDS loopback frame\n");
18559 if (pcmd && pcmd->virt)
18560 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18561 kfree(pcmd);
18562 if (iocbq)
18563 lpfc_sli_release_iocbq(phba, iocbq);
18564 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18568 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18569 * @phba: Pointer to HBA context object.
18570 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
18572 * This function is called with no lock held. This function processes all
18573 * the received buffers and gives it to upper layers when a received buffer
18574 * indicates that it is the final frame in the sequence. The interrupt
18575 * service routine processes received buffers at interrupt contexts.
18576 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18577 * appropriate receive function when the final frame in a sequence is received.
18579 void
18580 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18581 struct hbq_dmabuf *dmabuf)
18583 struct hbq_dmabuf *seq_dmabuf;
18584 struct fc_frame_header *fc_hdr;
18585 struct lpfc_vport *vport;
18586 uint32_t fcfi;
18587 uint32_t did;
18589 /* Process each received buffer */
18590 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18592 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18593 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18594 vport = phba->pport;
18595 /* Handle MDS Loopback frames */
18596 if (!(phba->pport->load_flag & FC_UNLOADING))
18597 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18598 else
18599 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18600 return;
18603 /* check to see if this a valid type of frame */
18604 if (lpfc_fc_frame_check(phba, fc_hdr)) {
18605 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18606 return;
18609 if ((bf_get(lpfc_cqe_code,
18610 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18611 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18612 &dmabuf->cq_event.cqe.rcqe_cmpl);
18613 else
18614 fcfi = bf_get(lpfc_rcqe_fcf_id,
18615 &dmabuf->cq_event.cqe.rcqe_cmpl);
18617 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18618 vport = phba->pport;
18619 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18620 "2023 MDS Loopback %d bytes\n",
18621 bf_get(lpfc_rcqe_length,
18622 &dmabuf->cq_event.cqe.rcqe_cmpl));
18623 /* Handle MDS Loopback frames */
18624 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18625 return;
18628 /* d_id this frame is directed to */
18629 did = sli4_did_from_fc_hdr(fc_hdr);
18631 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18632 if (!vport) {
18633 /* throw out the frame */
18634 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18635 return;
18638 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18639 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18640 (did != Fabric_DID)) {
18642 * Throw out the frame if we are not pt2pt.
18643 * The pt2pt protocol allows for discovery frames
18644 * to be received without a registered VPI.
18646 if (!(vport->fc_flag & FC_PT2PT) ||
18647 (phba->link_state == LPFC_HBA_READY)) {
18648 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18649 return;
18653 /* Handle the basic abort sequence (BA_ABTS) event */
18654 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18655 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18656 return;
18659 /* Link this frame */
18660 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18661 if (!seq_dmabuf) {
18662 /* unable to add frame to vport - throw it out */
18663 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18664 return;
18666 /* If not last frame in sequence continue processing frames. */
18667 if (!lpfc_seq_complete(seq_dmabuf))
18668 return;
18670 /* Send the complete sequence to the upper layer protocol */
18671 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18675 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18676 * @phba: pointer to lpfc hba data structure.
18678 * This routine is invoked to post rpi header templates to the
18679 * HBA consistent with the SLI-4 interface spec. This routine
18680 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18681 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18683 * This routine does not require any locks. It's usage is expected
18684 * to be driver load or reset recovery when the driver is
18685 * sequential.
18687 * Return codes
18688 * 0 - successful
18689 * -EIO - The mailbox failed to complete successfully.
18690 * When this error occurs, the driver is not guaranteed
18691 * to have any rpi regions posted to the device and
18692 * must either attempt to repost the regions or take a
18693 * fatal error.
18696 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18698 struct lpfc_rpi_hdr *rpi_page;
18699 uint32_t rc = 0;
18700 uint16_t lrpi = 0;
18702 /* SLI4 ports that support extents do not require RPI headers. */
18703 if (!phba->sli4_hba.rpi_hdrs_in_use)
18704 goto exit;
18705 if (phba->sli4_hba.extents_in_use)
18706 return -EIO;
18708 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18710 * Assign the rpi headers a physical rpi only if the driver
18711 * has not initialized those resources. A port reset only
18712 * needs the headers posted.
18714 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18715 LPFC_RPI_RSRC_RDY)
18716 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18718 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18719 if (rc != MBX_SUCCESS) {
18720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18721 "2008 Error %d posting all rpi "
18722 "headers\n", rc);
18723 rc = -EIO;
18724 break;
18728 exit:
18729 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18730 LPFC_RPI_RSRC_RDY);
18731 return rc;
18735 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18736 * @phba: pointer to lpfc hba data structure.
18737 * @rpi_page: pointer to the rpi memory region.
18739 * This routine is invoked to post a single rpi header to the
18740 * HBA consistent with the SLI-4 interface spec. This memory region
18741 * maps up to 64 rpi context regions.
18743 * Return codes
18744 * 0 - successful
18745 * -ENOMEM - No available memory
18746 * -EIO - The mailbox failed to complete successfully.
18749 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18751 LPFC_MBOXQ_t *mboxq;
18752 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18753 uint32_t rc = 0;
18754 uint32_t shdr_status, shdr_add_status;
18755 union lpfc_sli4_cfg_shdr *shdr;
18757 /* SLI4 ports that support extents do not require RPI headers. */
18758 if (!phba->sli4_hba.rpi_hdrs_in_use)
18759 return rc;
18760 if (phba->sli4_hba.extents_in_use)
18761 return -EIO;
18763 /* The port is notified of the header region via a mailbox command. */
18764 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18765 if (!mboxq) {
18766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18767 "2001 Unable to allocate memory for issuing "
18768 "SLI_CONFIG_SPECIAL mailbox command\n");
18769 return -ENOMEM;
18772 /* Post all rpi memory regions to the port. */
18773 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18774 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18775 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18776 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18777 sizeof(struct lpfc_sli4_cfg_mhdr),
18778 LPFC_SLI4_MBX_EMBED);
18781 /* Post the physical rpi to the port for this rpi header. */
18782 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18783 rpi_page->start_rpi);
18784 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18785 hdr_tmpl, rpi_page->page_count);
18787 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18788 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18789 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18790 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18791 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18792 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18793 if (rc != MBX_TIMEOUT)
18794 mempool_free(mboxq, phba->mbox_mem_pool);
18795 if (shdr_status || shdr_add_status || rc) {
18796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18797 "2514 POST_RPI_HDR mailbox failed with "
18798 "status x%x add_status x%x, mbx status x%x\n",
18799 shdr_status, shdr_add_status, rc);
18800 rc = -ENXIO;
18801 } else {
18803 * The next_rpi stores the next logical module-64 rpi value used
18804 * to post physical rpis in subsequent rpi postings.
18806 spin_lock_irq(&phba->hbalock);
18807 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18808 spin_unlock_irq(&phba->hbalock);
18810 return rc;
18814 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18815 * @phba: pointer to lpfc hba data structure.
18817 * This routine is invoked to post rpi header templates to the
18818 * HBA consistent with the SLI-4 interface spec. This routine
18819 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18820 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18822 * Returns
18823 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18824 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18827 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18829 unsigned long rpi;
18830 uint16_t max_rpi, rpi_limit;
18831 uint16_t rpi_remaining, lrpi = 0;
18832 struct lpfc_rpi_hdr *rpi_hdr;
18833 unsigned long iflag;
18836 * Fetch the next logical rpi. Because this index is logical,
18837 * the driver starts at 0 each time.
18839 spin_lock_irqsave(&phba->hbalock, iflag);
18840 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18841 rpi_limit = phba->sli4_hba.next_rpi;
18843 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18844 if (rpi >= rpi_limit)
18845 rpi = LPFC_RPI_ALLOC_ERROR;
18846 else {
18847 set_bit(rpi, phba->sli4_hba.rpi_bmask);
18848 phba->sli4_hba.max_cfg_param.rpi_used++;
18849 phba->sli4_hba.rpi_count++;
18851 lpfc_printf_log(phba, KERN_INFO,
18852 LOG_NODE | LOG_DISCOVERY,
18853 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18854 (int) rpi, max_rpi, rpi_limit);
18857 * Don't try to allocate more rpi header regions if the device limit
18858 * has been exhausted.
18860 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18861 (phba->sli4_hba.rpi_count >= max_rpi)) {
18862 spin_unlock_irqrestore(&phba->hbalock, iflag);
18863 return rpi;
18867 * RPI header postings are not required for SLI4 ports capable of
18868 * extents.
18870 if (!phba->sli4_hba.rpi_hdrs_in_use) {
18871 spin_unlock_irqrestore(&phba->hbalock, iflag);
18872 return rpi;
18876 * If the driver is running low on rpi resources, allocate another
18877 * page now. Note that the next_rpi value is used because
18878 * it represents how many are actually in use whereas max_rpi notes
18879 * how many are supported max by the device.
18881 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18882 spin_unlock_irqrestore(&phba->hbalock, iflag);
18883 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18884 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18885 if (!rpi_hdr) {
18886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18887 "2002 Error Could not grow rpi "
18888 "count\n");
18889 } else {
18890 lrpi = rpi_hdr->start_rpi;
18891 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18892 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18896 return rpi;
18900 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18901 * @phba: pointer to lpfc hba data structure.
18902 * @rpi: rpi to free
18904 * This routine is invoked to release an rpi to the pool of
18905 * available rpis maintained by the driver.
18907 static void
18908 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18911 * if the rpi value indicates a prior unreg has already
18912 * been done, skip the unreg.
18914 if (rpi == LPFC_RPI_ALLOC_ERROR)
18915 return;
18917 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18918 phba->sli4_hba.rpi_count--;
18919 phba->sli4_hba.max_cfg_param.rpi_used--;
18920 } else {
18921 lpfc_printf_log(phba, KERN_INFO,
18922 LOG_NODE | LOG_DISCOVERY,
18923 "2016 rpi %x not inuse\n",
18924 rpi);
18929 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18930 * @phba: pointer to lpfc hba data structure.
18931 * @rpi: rpi to free
18933 * This routine is invoked to release an rpi to the pool of
18934 * available rpis maintained by the driver.
18936 void
18937 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18939 spin_lock_irq(&phba->hbalock);
18940 __lpfc_sli4_free_rpi(phba, rpi);
18941 spin_unlock_irq(&phba->hbalock);
18945 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18946 * @phba: pointer to lpfc hba data structure.
18948 * This routine is invoked to remove the memory region that
18949 * provided rpi via a bitmask.
18951 void
18952 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18954 kfree(phba->sli4_hba.rpi_bmask);
18955 kfree(phba->sli4_hba.rpi_ids);
18956 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18960 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18961 * @ndlp: pointer to lpfc nodelist data structure.
18962 * @cmpl: completion call-back.
18963 * @arg: data to load as MBox 'caller buffer information'
18965 * This routine is invoked to remove the memory region that
18966 * provided rpi via a bitmask.
18969 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18970 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18972 LPFC_MBOXQ_t *mboxq;
18973 struct lpfc_hba *phba = ndlp->phba;
18974 int rc;
18976 /* The port is notified of the header region via a mailbox command. */
18977 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18978 if (!mboxq)
18979 return -ENOMEM;
18981 /* Post all rpi memory regions to the port. */
18982 lpfc_resume_rpi(mboxq, ndlp);
18983 if (cmpl) {
18984 mboxq->mbox_cmpl = cmpl;
18985 mboxq->ctx_buf = arg;
18986 mboxq->ctx_ndlp = ndlp;
18987 } else
18988 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18989 mboxq->vport = ndlp->vport;
18990 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18991 if (rc == MBX_NOT_FINISHED) {
18992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18993 "2010 Resume RPI Mailbox failed "
18994 "status %d, mbxStatus x%x\n", rc,
18995 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18996 mempool_free(mboxq, phba->mbox_mem_pool);
18997 return -EIO;
18999 return 0;
19003 * lpfc_sli4_init_vpi - Initialize a vpi with the port
19004 * @vport: Pointer to the vport for which the vpi is being initialized
19006 * This routine is invoked to activate a vpi with the port.
19008 * Returns:
19009 * 0 success
19010 * -Evalue otherwise
19013 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19015 LPFC_MBOXQ_t *mboxq;
19016 int rc = 0;
19017 int retval = MBX_SUCCESS;
19018 uint32_t mbox_tmo;
19019 struct lpfc_hba *phba = vport->phba;
19020 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19021 if (!mboxq)
19022 return -ENOMEM;
19023 lpfc_init_vpi(phba, mboxq, vport->vpi);
19024 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19025 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19026 if (rc != MBX_SUCCESS) {
19027 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19028 "2022 INIT VPI Mailbox failed "
19029 "status %d, mbxStatus x%x\n", rc,
19030 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19031 retval = -EIO;
19033 if (rc != MBX_TIMEOUT)
19034 mempool_free(mboxq, vport->phba->mbox_mem_pool);
19036 return retval;
19040 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19041 * @phba: pointer to lpfc hba data structure.
19042 * @mboxq: Pointer to mailbox object.
19044 * This routine is invoked to manually add a single FCF record. The caller
19045 * must pass a completely initialized FCF_Record. This routine takes
19046 * care of the nonembedded mailbox operations.
19048 static void
19049 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19051 void *virt_addr;
19052 union lpfc_sli4_cfg_shdr *shdr;
19053 uint32_t shdr_status, shdr_add_status;
19055 virt_addr = mboxq->sge_array->addr[0];
19056 /* The IOCTL status is embedded in the mailbox subheader. */
19057 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19058 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19059 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19061 if ((shdr_status || shdr_add_status) &&
19062 (shdr_status != STATUS_FCF_IN_USE))
19063 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19064 "2558 ADD_FCF_RECORD mailbox failed with "
19065 "status x%x add_status x%x\n",
19066 shdr_status, shdr_add_status);
19068 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19072 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19073 * @phba: pointer to lpfc hba data structure.
19074 * @fcf_record: pointer to the initialized fcf record to add.
19076 * This routine is invoked to manually add a single FCF record. The caller
19077 * must pass a completely initialized FCF_Record. This routine takes
19078 * care of the nonembedded mailbox operations.
19081 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19083 int rc = 0;
19084 LPFC_MBOXQ_t *mboxq;
19085 uint8_t *bytep;
19086 void *virt_addr;
19087 struct lpfc_mbx_sge sge;
19088 uint32_t alloc_len, req_len;
19089 uint32_t fcfindex;
19091 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19092 if (!mboxq) {
19093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19094 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
19095 return -ENOMEM;
19098 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19099 sizeof(uint32_t);
19101 /* Allocate DMA memory and set up the non-embedded mailbox command */
19102 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19103 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19104 req_len, LPFC_SLI4_MBX_NEMBED);
19105 if (alloc_len < req_len) {
19106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19107 "2523 Allocated DMA memory size (x%x) is "
19108 "less than the requested DMA memory "
19109 "size (x%x)\n", alloc_len, req_len);
19110 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19111 return -ENOMEM;
19115 * Get the first SGE entry from the non-embedded DMA memory. This
19116 * routine only uses a single SGE.
19118 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19119 virt_addr = mboxq->sge_array->addr[0];
19121 * Configure the FCF record for FCFI 0. This is the driver's
19122 * hardcoded default and gets used in nonFIP mode.
19124 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19125 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19126 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19129 * Copy the fcf_index and the FCF Record Data. The data starts after
19130 * the FCoE header plus word10. The data copy needs to be endian
19131 * correct.
19133 bytep += sizeof(uint32_t);
19134 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19135 mboxq->vport = phba->pport;
19136 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19137 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19138 if (rc == MBX_NOT_FINISHED) {
19139 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19140 "2515 ADD_FCF_RECORD mailbox failed with "
19141 "status 0x%x\n", rc);
19142 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19143 rc = -EIO;
19144 } else
19145 rc = 0;
19147 return rc;
19151 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19152 * @phba: pointer to lpfc hba data structure.
19153 * @fcf_record: pointer to the fcf record to write the default data.
19154 * @fcf_index: FCF table entry index.
19156 * This routine is invoked to build the driver's default FCF record. The
19157 * values used are hardcoded. This routine handles memory initialization.
19160 void
19161 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19162 struct fcf_record *fcf_record,
19163 uint16_t fcf_index)
19165 memset(fcf_record, 0, sizeof(struct fcf_record));
19166 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19167 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19168 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19169 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19170 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19171 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19172 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19173 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19174 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19175 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19176 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19177 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19178 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19179 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19180 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19181 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19182 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19183 /* Set the VLAN bit map */
19184 if (phba->valid_vlan) {
19185 fcf_record->vlan_bitmap[phba->vlan_id / 8]
19186 = 1 << (phba->vlan_id % 8);
19191 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19192 * @phba: pointer to lpfc hba data structure.
19193 * @fcf_index: FCF table entry offset.
19195 * This routine is invoked to scan the entire FCF table by reading FCF
19196 * record and processing it one at a time starting from the @fcf_index
19197 * for initial FCF discovery or fast FCF failover rediscovery.
19199 * Return 0 if the mailbox command is submitted successfully, none 0
19200 * otherwise.
19203 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19205 int rc = 0, error;
19206 LPFC_MBOXQ_t *mboxq;
19208 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19209 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19210 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19211 if (!mboxq) {
19212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19213 "2000 Failed to allocate mbox for "
19214 "READ_FCF cmd\n");
19215 error = -ENOMEM;
19216 goto fail_fcf_scan;
19218 /* Construct the read FCF record mailbox command */
19219 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19220 if (rc) {
19221 error = -EINVAL;
19222 goto fail_fcf_scan;
19224 /* Issue the mailbox command asynchronously */
19225 mboxq->vport = phba->pport;
19226 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19228 spin_lock_irq(&phba->hbalock);
19229 phba->hba_flag |= FCF_TS_INPROG;
19230 spin_unlock_irq(&phba->hbalock);
19232 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19233 if (rc == MBX_NOT_FINISHED)
19234 error = -EIO;
19235 else {
19236 /* Reset eligible FCF count for new scan */
19237 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19238 phba->fcf.eligible_fcf_cnt = 0;
19239 error = 0;
19241 fail_fcf_scan:
19242 if (error) {
19243 if (mboxq)
19244 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19245 /* FCF scan failed, clear FCF_TS_INPROG flag */
19246 spin_lock_irq(&phba->hbalock);
19247 phba->hba_flag &= ~FCF_TS_INPROG;
19248 spin_unlock_irq(&phba->hbalock);
19250 return error;
19254 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19255 * @phba: pointer to lpfc hba data structure.
19256 * @fcf_index: FCF table entry offset.
19258 * This routine is invoked to read an FCF record indicated by @fcf_index
19259 * and to use it for FLOGI roundrobin FCF failover.
19261 * Return 0 if the mailbox command is submitted successfully, none 0
19262 * otherwise.
19265 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19267 int rc = 0, error;
19268 LPFC_MBOXQ_t *mboxq;
19270 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19271 if (!mboxq) {
19272 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19273 "2763 Failed to allocate mbox for "
19274 "READ_FCF cmd\n");
19275 error = -ENOMEM;
19276 goto fail_fcf_read;
19278 /* Construct the read FCF record mailbox command */
19279 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19280 if (rc) {
19281 error = -EINVAL;
19282 goto fail_fcf_read;
19284 /* Issue the mailbox command asynchronously */
19285 mboxq->vport = phba->pport;
19286 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19287 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19288 if (rc == MBX_NOT_FINISHED)
19289 error = -EIO;
19290 else
19291 error = 0;
19293 fail_fcf_read:
19294 if (error && mboxq)
19295 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19296 return error;
19300 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19301 * @phba: pointer to lpfc hba data structure.
19302 * @fcf_index: FCF table entry offset.
19304 * This routine is invoked to read an FCF record indicated by @fcf_index to
19305 * determine whether it's eligible for FLOGI roundrobin failover list.
19307 * Return 0 if the mailbox command is submitted successfully, none 0
19308 * otherwise.
19311 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19313 int rc = 0, error;
19314 LPFC_MBOXQ_t *mboxq;
19316 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19317 if (!mboxq) {
19318 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19319 "2758 Failed to allocate mbox for "
19320 "READ_FCF cmd\n");
19321 error = -ENOMEM;
19322 goto fail_fcf_read;
19324 /* Construct the read FCF record mailbox command */
19325 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19326 if (rc) {
19327 error = -EINVAL;
19328 goto fail_fcf_read;
19330 /* Issue the mailbox command asynchronously */
19331 mboxq->vport = phba->pport;
19332 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19333 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19334 if (rc == MBX_NOT_FINISHED)
19335 error = -EIO;
19336 else
19337 error = 0;
19339 fail_fcf_read:
19340 if (error && mboxq)
19341 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19342 return error;
19346 * lpfc_check_next_fcf_pri_level
19347 * @phba: pointer to the lpfc_hba struct for this port.
19348 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19349 * routine when the rr_bmask is empty. The FCF indecies are put into the
19350 * rr_bmask based on their priority level. Starting from the highest priority
19351 * to the lowest. The most likely FCF candidate will be in the highest
19352 * priority group. When this routine is called it searches the fcf_pri list for
19353 * next lowest priority group and repopulates the rr_bmask with only those
19354 * fcf_indexes.
19355 * returns:
19356 * 1=success 0=failure
19358 static int
19359 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19361 uint16_t next_fcf_pri;
19362 uint16_t last_index;
19363 struct lpfc_fcf_pri *fcf_pri;
19364 int rc;
19365 int ret = 0;
19367 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19368 LPFC_SLI4_FCF_TBL_INDX_MAX);
19369 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19370 "3060 Last IDX %d\n", last_index);
19372 /* Verify the priority list has 2 or more entries */
19373 spin_lock_irq(&phba->hbalock);
19374 if (list_empty(&phba->fcf.fcf_pri_list) ||
19375 list_is_singular(&phba->fcf.fcf_pri_list)) {
19376 spin_unlock_irq(&phba->hbalock);
19377 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19378 "3061 Last IDX %d\n", last_index);
19379 return 0; /* Empty rr list */
19381 spin_unlock_irq(&phba->hbalock);
19383 next_fcf_pri = 0;
19385 * Clear the rr_bmask and set all of the bits that are at this
19386 * priority.
19388 memset(phba->fcf.fcf_rr_bmask, 0,
19389 sizeof(*phba->fcf.fcf_rr_bmask));
19390 spin_lock_irq(&phba->hbalock);
19391 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19392 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19393 continue;
19395 * the 1st priority that has not FLOGI failed
19396 * will be the highest.
19398 if (!next_fcf_pri)
19399 next_fcf_pri = fcf_pri->fcf_rec.priority;
19400 spin_unlock_irq(&phba->hbalock);
19401 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19402 rc = lpfc_sli4_fcf_rr_index_set(phba,
19403 fcf_pri->fcf_rec.fcf_index);
19404 if (rc)
19405 return 0;
19407 spin_lock_irq(&phba->hbalock);
19410 * if next_fcf_pri was not set above and the list is not empty then
19411 * we have failed flogis on all of them. So reset flogi failed
19412 * and start at the beginning.
19414 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19415 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19416 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19418 * the 1st priority that has not FLOGI failed
19419 * will be the highest.
19421 if (!next_fcf_pri)
19422 next_fcf_pri = fcf_pri->fcf_rec.priority;
19423 spin_unlock_irq(&phba->hbalock);
19424 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19425 rc = lpfc_sli4_fcf_rr_index_set(phba,
19426 fcf_pri->fcf_rec.fcf_index);
19427 if (rc)
19428 return 0;
19430 spin_lock_irq(&phba->hbalock);
19432 } else
19433 ret = 1;
19434 spin_unlock_irq(&phba->hbalock);
19436 return ret;
19439 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19440 * @phba: pointer to lpfc hba data structure.
19442 * This routine is to get the next eligible FCF record index in a round
19443 * robin fashion. If the next eligible FCF record index equals to the
19444 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19445 * shall be returned, otherwise, the next eligible FCF record's index
19446 * shall be returned.
19448 uint16_t
19449 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19451 uint16_t next_fcf_index;
19453 initial_priority:
19454 /* Search start from next bit of currently registered FCF index */
19455 next_fcf_index = phba->fcf.current_rec.fcf_indx;
19457 next_priority:
19458 /* Determine the next fcf index to check */
19459 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19460 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19461 LPFC_SLI4_FCF_TBL_INDX_MAX,
19462 next_fcf_index);
19464 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
19465 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19467 * If we have wrapped then we need to clear the bits that
19468 * have been tested so that we can detect when we should
19469 * change the priority level.
19471 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19472 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19476 /* Check roundrobin failover list empty condition */
19477 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19478 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19480 * If next fcf index is not found check if there are lower
19481 * Priority level fcf's in the fcf_priority list.
19482 * Set up the rr_bmask with all of the avaiable fcf bits
19483 * at that level and continue the selection process.
19485 if (lpfc_check_next_fcf_pri_level(phba))
19486 goto initial_priority;
19487 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19488 "2844 No roundrobin failover FCF available\n");
19490 return LPFC_FCOE_FCF_NEXT_NONE;
19493 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19494 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19495 LPFC_FCF_FLOGI_FAILED) {
19496 if (list_is_singular(&phba->fcf.fcf_pri_list))
19497 return LPFC_FCOE_FCF_NEXT_NONE;
19499 goto next_priority;
19502 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19503 "2845 Get next roundrobin failover FCF (x%x)\n",
19504 next_fcf_index);
19506 return next_fcf_index;
19510 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19511 * @phba: pointer to lpfc hba data structure.
19512 * @fcf_index: index into the FCF table to 'set'
19514 * This routine sets the FCF record index in to the eligible bmask for
19515 * roundrobin failover search. It checks to make sure that the index
19516 * does not go beyond the range of the driver allocated bmask dimension
19517 * before setting the bit.
19519 * Returns 0 if the index bit successfully set, otherwise, it returns
19520 * -EINVAL.
19523 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19525 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19526 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19527 "2610 FCF (x%x) reached driver's book "
19528 "keeping dimension:x%x\n",
19529 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19530 return -EINVAL;
19532 /* Set the eligible FCF record index bmask */
19533 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19535 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19536 "2790 Set FCF (x%x) to roundrobin FCF failover "
19537 "bmask\n", fcf_index);
19539 return 0;
19543 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19544 * @phba: pointer to lpfc hba data structure.
19545 * @fcf_index: index into the FCF table to 'clear'
19547 * This routine clears the FCF record index from the eligible bmask for
19548 * roundrobin failover search. It checks to make sure that the index
19549 * does not go beyond the range of the driver allocated bmask dimension
19550 * before clearing the bit.
19552 void
19553 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19555 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19556 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19557 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19558 "2762 FCF (x%x) reached driver's book "
19559 "keeping dimension:x%x\n",
19560 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19561 return;
19563 /* Clear the eligible FCF record index bmask */
19564 spin_lock_irq(&phba->hbalock);
19565 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19566 list) {
19567 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19568 list_del_init(&fcf_pri->list);
19569 break;
19572 spin_unlock_irq(&phba->hbalock);
19573 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19575 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19576 "2791 Clear FCF (x%x) from roundrobin failover "
19577 "bmask\n", fcf_index);
19581 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19582 * @phba: pointer to lpfc hba data structure.
19583 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
19585 * This routine is the completion routine for the rediscover FCF table mailbox
19586 * command. If the mailbox command returned failure, it will try to stop the
19587 * FCF rediscover wait timer.
19589 static void
19590 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19592 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19593 uint32_t shdr_status, shdr_add_status;
19595 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19597 shdr_status = bf_get(lpfc_mbox_hdr_status,
19598 &redisc_fcf->header.cfg_shdr.response);
19599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19600 &redisc_fcf->header.cfg_shdr.response);
19601 if (shdr_status || shdr_add_status) {
19602 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19603 "2746 Requesting for FCF rediscovery failed "
19604 "status x%x add_status x%x\n",
19605 shdr_status, shdr_add_status);
19606 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19607 spin_lock_irq(&phba->hbalock);
19608 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19609 spin_unlock_irq(&phba->hbalock);
19611 * CVL event triggered FCF rediscover request failed,
19612 * last resort to re-try current registered FCF entry.
19614 lpfc_retry_pport_discovery(phba);
19615 } else {
19616 spin_lock_irq(&phba->hbalock);
19617 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19618 spin_unlock_irq(&phba->hbalock);
19620 * DEAD FCF event triggered FCF rediscover request
19621 * failed, last resort to fail over as a link down
19622 * to FCF registration.
19624 lpfc_sli4_fcf_dead_failthrough(phba);
19626 } else {
19627 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19628 "2775 Start FCF rediscover quiescent timer\n");
19630 * Start FCF rediscovery wait timer for pending FCF
19631 * before rescan FCF record table.
19633 lpfc_fcf_redisc_wait_start_timer(phba);
19636 mempool_free(mbox, phba->mbox_mem_pool);
19640 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19641 * @phba: pointer to lpfc hba data structure.
19643 * This routine is invoked to request for rediscovery of the entire FCF table
19644 * by the port.
19647 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19649 LPFC_MBOXQ_t *mbox;
19650 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19651 int rc, length;
19653 /* Cancel retry delay timers to all vports before FCF rediscover */
19654 lpfc_cancel_all_vport_retry_delay_timer(phba);
19656 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19657 if (!mbox) {
19658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19659 "2745 Failed to allocate mbox for "
19660 "requesting FCF rediscover.\n");
19661 return -ENOMEM;
19664 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19665 sizeof(struct lpfc_sli4_cfg_mhdr));
19666 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19667 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19668 length, LPFC_SLI4_MBX_EMBED);
19670 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19671 /* Set count to 0 for invalidating the entire FCF database */
19672 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19674 /* Issue the mailbox command asynchronously */
19675 mbox->vport = phba->pport;
19676 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19677 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19679 if (rc == MBX_NOT_FINISHED) {
19680 mempool_free(mbox, phba->mbox_mem_pool);
19681 return -EIO;
19683 return 0;
19687 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19688 * @phba: pointer to lpfc hba data structure.
19690 * This function is the failover routine as a last resort to the FCF DEAD
19691 * event when driver failed to perform fast FCF failover.
19693 void
19694 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19696 uint32_t link_state;
19699 * Last resort as FCF DEAD event failover will treat this as
19700 * a link down, but save the link state because we don't want
19701 * it to be changed to Link Down unless it is already down.
19703 link_state = phba->link_state;
19704 lpfc_linkdown(phba);
19705 phba->link_state = link_state;
19707 /* Unregister FCF if no devices connected to it */
19708 lpfc_unregister_unused_fcf(phba);
19712 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19713 * @phba: pointer to lpfc hba data structure.
19714 * @rgn23_data: pointer to configure region 23 data.
19716 * This function gets SLI3 port configure region 23 data through memory dump
19717 * mailbox command. When it successfully retrieves data, the size of the data
19718 * will be returned, otherwise, 0 will be returned.
19720 static uint32_t
19721 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19723 LPFC_MBOXQ_t *pmb = NULL;
19724 MAILBOX_t *mb;
19725 uint32_t offset = 0;
19726 int i, rc;
19728 if (!rgn23_data)
19729 return 0;
19731 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19732 if (!pmb) {
19733 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19734 "2600 failed to allocate mailbox memory\n");
19735 return 0;
19737 mb = &pmb->u.mb;
19739 do {
19740 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19741 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19743 if (rc != MBX_SUCCESS) {
19744 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19745 "2601 failed to read config "
19746 "region 23, rc 0x%x Status 0x%x\n",
19747 rc, mb->mbxStatus);
19748 mb->un.varDmp.word_cnt = 0;
19751 * dump mem may return a zero when finished or we got a
19752 * mailbox error, either way we are done.
19754 if (mb->un.varDmp.word_cnt == 0)
19755 break;
19757 i = mb->un.varDmp.word_cnt * sizeof(uint32_t);
19758 if (offset + i > DMP_RGN23_SIZE)
19759 i = DMP_RGN23_SIZE - offset;
19760 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19761 rgn23_data + offset, i);
19762 offset += i;
19763 } while (offset < DMP_RGN23_SIZE);
19765 mempool_free(pmb, phba->mbox_mem_pool);
19766 return offset;
19770 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19771 * @phba: pointer to lpfc hba data structure.
19772 * @rgn23_data: pointer to configure region 23 data.
19774 * This function gets SLI4 port configure region 23 data through memory dump
19775 * mailbox command. When it successfully retrieves data, the size of the data
19776 * will be returned, otherwise, 0 will be returned.
19778 static uint32_t
19779 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19781 LPFC_MBOXQ_t *mboxq = NULL;
19782 struct lpfc_dmabuf *mp = NULL;
19783 struct lpfc_mqe *mqe;
19784 uint32_t data_length = 0;
19785 int rc;
19787 if (!rgn23_data)
19788 return 0;
19790 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19791 if (!mboxq) {
19792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19793 "3105 failed to allocate mailbox memory\n");
19794 return 0;
19797 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19798 goto out;
19799 mqe = &mboxq->u.mqe;
19800 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19802 if (rc)
19803 goto out;
19804 data_length = mqe->un.mb_words[5];
19805 if (data_length == 0)
19806 goto out;
19807 if (data_length > DMP_RGN23_SIZE) {
19808 data_length = 0;
19809 goto out;
19811 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19812 out:
19813 mempool_free(mboxq, phba->mbox_mem_pool);
19814 if (mp) {
19815 lpfc_mbuf_free(phba, mp->virt, mp->phys);
19816 kfree(mp);
19818 return data_length;
19822 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19823 * @phba: pointer to lpfc hba data structure.
19825 * This function read region 23 and parse TLV for port status to
19826 * decide if the user disaled the port. If the TLV indicates the
19827 * port is disabled, the hba_flag is set accordingly.
19829 void
19830 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19832 uint8_t *rgn23_data = NULL;
19833 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19834 uint32_t offset = 0;
19836 /* Get adapter Region 23 data */
19837 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19838 if (!rgn23_data)
19839 goto out;
19841 if (phba->sli_rev < LPFC_SLI_REV4)
19842 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19843 else {
19844 if_type = bf_get(lpfc_sli_intf_if_type,
19845 &phba->sli4_hba.sli_intf);
19846 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19847 goto out;
19848 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19851 if (!data_size)
19852 goto out;
19854 /* Check the region signature first */
19855 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19857 "2619 Config region 23 has bad signature\n");
19858 goto out;
19860 offset += 4;
19862 /* Check the data structure version */
19863 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19865 "2620 Config region 23 has bad version\n");
19866 goto out;
19868 offset += 4;
19870 /* Parse TLV entries in the region */
19871 while (offset < data_size) {
19872 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19873 break;
19875 * If the TLV is not driver specific TLV or driver id is
19876 * not linux driver id, skip the record.
19878 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19879 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19880 (rgn23_data[offset + 3] != 0)) {
19881 offset += rgn23_data[offset + 1] * 4 + 4;
19882 continue;
19885 /* Driver found a driver specific TLV in the config region */
19886 sub_tlv_len = rgn23_data[offset + 1] * 4;
19887 offset += 4;
19888 tlv_offset = 0;
19891 * Search for configured port state sub-TLV.
19893 while ((offset < data_size) &&
19894 (tlv_offset < sub_tlv_len)) {
19895 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19896 offset += 4;
19897 tlv_offset += 4;
19898 break;
19900 if (rgn23_data[offset] != PORT_STE_TYPE) {
19901 offset += rgn23_data[offset + 1] * 4 + 4;
19902 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19903 continue;
19906 /* This HBA contains PORT_STE configured */
19907 if (!rgn23_data[offset + 2])
19908 phba->hba_flag |= LINK_DISABLED;
19910 goto out;
19914 out:
19915 kfree(rgn23_data);
19916 return;
19920 * lpfc_wr_object - write an object to the firmware
19921 * @phba: HBA structure that indicates port to create a queue on.
19922 * @dmabuf_list: list of dmabufs to write to the port.
19923 * @size: the total byte value of the objects to write to the port.
19924 * @offset: the current offset to be used to start the transfer.
19926 * This routine will create a wr_object mailbox command to send to the port.
19927 * the mailbox command will be constructed using the dma buffers described in
19928 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19929 * BDEs that the imbedded mailbox can support. The @offset variable will be
19930 * used to indicate the starting offset of the transfer and will also return
19931 * the offset after the write object mailbox has completed. @size is used to
19932 * determine the end of the object and whether the eof bit should be set.
19934 * Return 0 is successful and offset will contain the the new offset to use
19935 * for the next write.
19936 * Return negative value for error cases.
19939 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19940 uint32_t size, uint32_t *offset)
19942 struct lpfc_mbx_wr_object *wr_object;
19943 LPFC_MBOXQ_t *mbox;
19944 int rc = 0, i = 0;
19945 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19946 uint32_t mbox_tmo;
19947 struct lpfc_dmabuf *dmabuf;
19948 uint32_t written = 0;
19949 bool check_change_status = false;
19951 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19952 if (!mbox)
19953 return -ENOMEM;
19955 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19956 LPFC_MBOX_OPCODE_WRITE_OBJECT,
19957 sizeof(struct lpfc_mbx_wr_object) -
19958 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19960 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19961 wr_object->u.request.write_offset = *offset;
19962 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19963 wr_object->u.request.object_name[0] =
19964 cpu_to_le32(wr_object->u.request.object_name[0]);
19965 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19966 list_for_each_entry(dmabuf, dmabuf_list, list) {
19967 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19968 break;
19969 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19970 wr_object->u.request.bde[i].addrHigh =
19971 putPaddrHigh(dmabuf->phys);
19972 if (written + SLI4_PAGE_SIZE >= size) {
19973 wr_object->u.request.bde[i].tus.f.bdeSize =
19974 (size - written);
19975 written += (size - written);
19976 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19977 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19978 check_change_status = true;
19979 } else {
19980 wr_object->u.request.bde[i].tus.f.bdeSize =
19981 SLI4_PAGE_SIZE;
19982 written += SLI4_PAGE_SIZE;
19984 i++;
19986 wr_object->u.request.bde_count = i;
19987 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19988 if (!phba->sli4_hba.intr_enable)
19989 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19990 else {
19991 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19992 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19994 /* The IOCTL status is embedded in the mailbox subheader. */
19995 shdr_status = bf_get(lpfc_mbox_hdr_status,
19996 &wr_object->header.cfg_shdr.response);
19997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19998 &wr_object->header.cfg_shdr.response);
19999 if (check_change_status) {
20000 shdr_change_status = bf_get(lpfc_wr_object_change_status,
20001 &wr_object->u.response);
20003 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20004 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20005 shdr_csf = bf_get(lpfc_wr_object_csf,
20006 &wr_object->u.response);
20007 if (shdr_csf)
20008 shdr_change_status =
20009 LPFC_CHANGE_STATUS_PCI_RESET;
20012 switch (shdr_change_status) {
20013 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20014 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20015 "3198 Firmware write complete: System "
20016 "reboot required to instantiate\n");
20017 break;
20018 case (LPFC_CHANGE_STATUS_FW_RESET):
20019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20020 "3199 Firmware write complete: Firmware"
20021 " reset required to instantiate\n");
20022 break;
20023 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20024 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20025 "3200 Firmware write complete: Port "
20026 "Migration or PCI Reset required to "
20027 "instantiate\n");
20028 break;
20029 case (LPFC_CHANGE_STATUS_PCI_RESET):
20030 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20031 "3201 Firmware write complete: PCI "
20032 "Reset required to instantiate\n");
20033 break;
20034 default:
20035 break;
20038 if (rc != MBX_TIMEOUT)
20039 mempool_free(mbox, phba->mbox_mem_pool);
20040 if (shdr_status || shdr_add_status || rc) {
20041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20042 "3025 Write Object mailbox failed with "
20043 "status x%x add_status x%x, mbx status x%x\n",
20044 shdr_status, shdr_add_status, rc);
20045 rc = -ENXIO;
20046 *offset = shdr_add_status;
20047 } else
20048 *offset += wr_object->u.response.actual_write_length;
20049 return rc;
20053 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20054 * @vport: pointer to vport data structure.
20056 * This function iterate through the mailboxq and clean up all REG_LOGIN
20057 * and REG_VPI mailbox commands associated with the vport. This function
20058 * is called when driver want to restart discovery of the vport due to
20059 * a Clear Virtual Link event.
20061 void
20062 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20064 struct lpfc_hba *phba = vport->phba;
20065 LPFC_MBOXQ_t *mb, *nextmb;
20066 struct lpfc_dmabuf *mp;
20067 struct lpfc_nodelist *ndlp;
20068 struct lpfc_nodelist *act_mbx_ndlp = NULL;
20069 LIST_HEAD(mbox_cmd_list);
20070 uint8_t restart_loop;
20072 /* Clean up internally queued mailbox commands with the vport */
20073 spin_lock_irq(&phba->hbalock);
20074 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20075 if (mb->vport != vport)
20076 continue;
20078 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20079 (mb->u.mb.mbxCommand != MBX_REG_VPI))
20080 continue;
20082 list_del(&mb->list);
20083 list_add_tail(&mb->list, &mbox_cmd_list);
20085 /* Clean up active mailbox command with the vport */
20086 mb = phba->sli.mbox_active;
20087 if (mb && (mb->vport == vport)) {
20088 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20089 (mb->u.mb.mbxCommand == MBX_REG_VPI))
20090 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20091 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20092 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20093 /* Put reference count for delayed processing */
20094 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20095 /* Unregister the RPI when mailbox complete */
20096 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20099 /* Cleanup any mailbox completions which are not yet processed */
20100 do {
20101 restart_loop = 0;
20102 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20104 * If this mailox is already processed or it is
20105 * for another vport ignore it.
20107 if ((mb->vport != vport) ||
20108 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20109 continue;
20111 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20112 (mb->u.mb.mbxCommand != MBX_REG_VPI))
20113 continue;
20115 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20116 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20117 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20118 /* Unregister the RPI when mailbox complete */
20119 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20120 restart_loop = 1;
20121 spin_unlock_irq(&phba->hbalock);
20122 spin_lock(&ndlp->lock);
20123 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20124 spin_unlock(&ndlp->lock);
20125 spin_lock_irq(&phba->hbalock);
20126 break;
20129 } while (restart_loop);
20131 spin_unlock_irq(&phba->hbalock);
20133 /* Release the cleaned-up mailbox commands */
20134 while (!list_empty(&mbox_cmd_list)) {
20135 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20136 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20137 mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
20138 if (mp) {
20139 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
20140 kfree(mp);
20142 mb->ctx_buf = NULL;
20143 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20144 mb->ctx_ndlp = NULL;
20145 if (ndlp) {
20146 spin_lock(&ndlp->lock);
20147 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20148 spin_unlock(&ndlp->lock);
20149 lpfc_nlp_put(ndlp);
20152 mempool_free(mb, phba->mbox_mem_pool);
20155 /* Release the ndlp with the cleaned-up active mailbox command */
20156 if (act_mbx_ndlp) {
20157 spin_lock(&act_mbx_ndlp->lock);
20158 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20159 spin_unlock(&act_mbx_ndlp->lock);
20160 lpfc_nlp_put(act_mbx_ndlp);
20165 * lpfc_drain_txq - Drain the txq
20166 * @phba: Pointer to HBA context object.
20168 * This function attempt to submit IOCBs on the txq
20169 * to the adapter. For SLI4 adapters, the txq contains
20170 * ELS IOCBs that have been deferred because the there
20171 * are no SGLs. This congestion can occur with large
20172 * vport counts during node discovery.
20175 uint32_t
20176 lpfc_drain_txq(struct lpfc_hba *phba)
20178 LIST_HEAD(completions);
20179 struct lpfc_sli_ring *pring;
20180 struct lpfc_iocbq *piocbq = NULL;
20181 unsigned long iflags = 0;
20182 char *fail_msg = NULL;
20183 struct lpfc_sglq *sglq;
20184 union lpfc_wqe128 wqe;
20185 uint32_t txq_cnt = 0;
20186 struct lpfc_queue *wq;
20188 if (phba->link_flag & LS_MDS_LOOPBACK) {
20189 /* MDS WQE are posted only to first WQ*/
20190 wq = phba->sli4_hba.hdwq[0].io_wq;
20191 if (unlikely(!wq))
20192 return 0;
20193 pring = wq->pring;
20194 } else {
20195 wq = phba->sli4_hba.els_wq;
20196 if (unlikely(!wq))
20197 return 0;
20198 pring = lpfc_phba_elsring(phba);
20201 if (unlikely(!pring) || list_empty(&pring->txq))
20202 return 0;
20204 spin_lock_irqsave(&pring->ring_lock, iflags);
20205 list_for_each_entry(piocbq, &pring->txq, list) {
20206 txq_cnt++;
20209 if (txq_cnt > pring->txq_max)
20210 pring->txq_max = txq_cnt;
20212 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20214 while (!list_empty(&pring->txq)) {
20215 spin_lock_irqsave(&pring->ring_lock, iflags);
20217 piocbq = lpfc_sli_ringtx_get(phba, pring);
20218 if (!piocbq) {
20219 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20221 "2823 txq empty and txq_cnt is %d\n ",
20222 txq_cnt);
20223 break;
20225 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
20226 if (!sglq) {
20227 __lpfc_sli_ringtx_put(phba, pring, piocbq);
20228 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20229 break;
20231 txq_cnt--;
20233 /* The xri and iocb resources secured,
20234 * attempt to issue request
20236 piocbq->sli4_lxritag = sglq->sli4_lxritag;
20237 piocbq->sli4_xritag = sglq->sli4_xritag;
20238 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
20239 fail_msg = "to convert bpl to sgl";
20240 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
20241 fail_msg = "to convert iocb to wqe";
20242 else if (lpfc_sli4_wq_put(wq, &wqe))
20243 fail_msg = " - Wq is full";
20244 else
20245 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
20247 if (fail_msg) {
20248 /* Failed means we can't issue and need to cancel */
20249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20250 "2822 IOCB failed %s iotag 0x%x "
20251 "xri 0x%x\n",
20252 fail_msg,
20253 piocbq->iotag, piocbq->sli4_xritag);
20254 list_add_tail(&piocbq->list, &completions);
20256 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20259 /* Cancel all the IOCBs that cannot be issued */
20260 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20261 IOERR_SLI_ABORTED);
20263 return txq_cnt;
20267 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20268 * @phba: Pointer to HBA context object.
20269 * @pwqeq: Pointer to command WQE.
20270 * @sglq: Pointer to the scatter gather queue object.
20272 * This routine converts the bpl or bde that is in the WQE
20273 * to a sgl list for the sli4 hardware. The physical address
20274 * of the bpl/bde is converted back to a virtual address.
20275 * If the WQE contains a BPL then the list of BDE's is
20276 * converted to sli4_sge's. If the WQE contains a single
20277 * BDE then it is converted to a single sli_sge.
20278 * The WQE is still in cpu endianness so the contents of
20279 * the bpl can be used without byte swapping.
20281 * Returns valid XRI = Success, NO_XRI = Failure.
20283 static uint16_t
20284 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20285 struct lpfc_sglq *sglq)
20287 uint16_t xritag = NO_XRI;
20288 struct ulp_bde64 *bpl = NULL;
20289 struct ulp_bde64 bde;
20290 struct sli4_sge *sgl = NULL;
20291 struct lpfc_dmabuf *dmabuf;
20292 union lpfc_wqe128 *wqe;
20293 int numBdes = 0;
20294 int i = 0;
20295 uint32_t offset = 0; /* accumulated offset in the sg request list */
20296 int inbound = 0; /* number of sg reply entries inbound from firmware */
20297 uint32_t cmd;
20299 if (!pwqeq || !sglq)
20300 return xritag;
20302 sgl = (struct sli4_sge *)sglq->sgl;
20303 wqe = &pwqeq->wqe;
20304 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20306 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20307 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20308 return sglq->sli4_xritag;
20309 numBdes = pwqeq->rsvd2;
20310 if (numBdes) {
20311 /* The addrHigh and addrLow fields within the WQE
20312 * have not been byteswapped yet so there is no
20313 * need to swap them back.
20315 if (pwqeq->context3)
20316 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20317 else
20318 return xritag;
20320 bpl = (struct ulp_bde64 *)dmabuf->virt;
20321 if (!bpl)
20322 return xritag;
20324 for (i = 0; i < numBdes; i++) {
20325 /* Should already be byte swapped. */
20326 sgl->addr_hi = bpl->addrHigh;
20327 sgl->addr_lo = bpl->addrLow;
20329 sgl->word2 = le32_to_cpu(sgl->word2);
20330 if ((i+1) == numBdes)
20331 bf_set(lpfc_sli4_sge_last, sgl, 1);
20332 else
20333 bf_set(lpfc_sli4_sge_last, sgl, 0);
20334 /* swap the size field back to the cpu so we
20335 * can assign it to the sgl.
20337 bde.tus.w = le32_to_cpu(bpl->tus.w);
20338 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20339 /* The offsets in the sgl need to be accumulated
20340 * separately for the request and reply lists.
20341 * The request is always first, the reply follows.
20343 switch (cmd) {
20344 case CMD_GEN_REQUEST64_WQE:
20345 /* add up the reply sg entries */
20346 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20347 inbound++;
20348 /* first inbound? reset the offset */
20349 if (inbound == 1)
20350 offset = 0;
20351 bf_set(lpfc_sli4_sge_offset, sgl, offset);
20352 bf_set(lpfc_sli4_sge_type, sgl,
20353 LPFC_SGE_TYPE_DATA);
20354 offset += bde.tus.f.bdeSize;
20355 break;
20356 case CMD_FCP_TRSP64_WQE:
20357 bf_set(lpfc_sli4_sge_offset, sgl, 0);
20358 bf_set(lpfc_sli4_sge_type, sgl,
20359 LPFC_SGE_TYPE_DATA);
20360 break;
20361 case CMD_FCP_TSEND64_WQE:
20362 case CMD_FCP_TRECEIVE64_WQE:
20363 bf_set(lpfc_sli4_sge_type, sgl,
20364 bpl->tus.f.bdeFlags);
20365 if (i < 3)
20366 offset = 0;
20367 else
20368 offset += bde.tus.f.bdeSize;
20369 bf_set(lpfc_sli4_sge_offset, sgl, offset);
20370 break;
20372 sgl->word2 = cpu_to_le32(sgl->word2);
20373 bpl++;
20374 sgl++;
20376 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20377 /* The addrHigh and addrLow fields of the BDE have not
20378 * been byteswapped yet so they need to be swapped
20379 * before putting them in the sgl.
20381 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20382 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20383 sgl->word2 = le32_to_cpu(sgl->word2);
20384 bf_set(lpfc_sli4_sge_last, sgl, 1);
20385 sgl->word2 = cpu_to_le32(sgl->word2);
20386 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20388 return sglq->sli4_xritag;
20392 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20393 * @phba: Pointer to HBA context object.
20394 * @qp: Pointer to HDW queue.
20395 * @pwqe: Pointer to command WQE.
20398 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20399 struct lpfc_iocbq *pwqe)
20401 union lpfc_wqe128 *wqe = &pwqe->wqe;
20402 struct lpfc_async_xchg_ctx *ctxp;
20403 struct lpfc_queue *wq;
20404 struct lpfc_sglq *sglq;
20405 struct lpfc_sli_ring *pring;
20406 unsigned long iflags;
20407 uint32_t ret = 0;
20409 /* NVME_LS and NVME_LS ABTS requests. */
20410 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20411 pring = phba->sli4_hba.nvmels_wq->pring;
20412 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20413 qp, wq_access);
20414 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20415 if (!sglq) {
20416 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20417 return WQE_BUSY;
20419 pwqe->sli4_lxritag = sglq->sli4_lxritag;
20420 pwqe->sli4_xritag = sglq->sli4_xritag;
20421 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20422 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20423 return WQE_ERROR;
20425 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20426 pwqe->sli4_xritag);
20427 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20428 if (ret) {
20429 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20430 return ret;
20433 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20434 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20436 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20437 return 0;
20440 /* NVME_FCREQ and NVME_ABTS requests */
20441 if (pwqe->iocb_flag & LPFC_IO_NVME ||
20442 pwqe->iocb_flag & LPFC_IO_FCP) {
20443 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
20444 wq = qp->io_wq;
20445 pring = wq->pring;
20447 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20449 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20450 qp, wq_access);
20451 ret = lpfc_sli4_wq_put(wq, wqe);
20452 if (ret) {
20453 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20454 return ret;
20456 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20457 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20459 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20460 return 0;
20463 /* NVMET requests */
20464 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20465 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
20466 wq = qp->io_wq;
20467 pring = wq->pring;
20469 ctxp = pwqe->context2;
20470 sglq = ctxp->ctxbuf->sglq;
20471 if (pwqe->sli4_xritag == NO_XRI) {
20472 pwqe->sli4_lxritag = sglq->sli4_lxritag;
20473 pwqe->sli4_xritag = sglq->sli4_xritag;
20475 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20476 pwqe->sli4_xritag);
20477 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20479 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20480 qp, wq_access);
20481 ret = lpfc_sli4_wq_put(wq, wqe);
20482 if (ret) {
20483 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20484 return ret;
20486 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20487 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20489 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20490 return 0;
20492 return WQE_ERROR;
20496 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
20497 * @phba: Pointer to HBA context object.
20498 * @cmdiocb: Pointer to driver command iocb object.
20499 * @cmpl: completion function.
20501 * Fill the appropriate fields for the abort WQE and call
20502 * internal routine lpfc_sli4_issue_wqe to send the WQE
20503 * This function is called with hbalock held and no ring_lock held.
20505 * RETURNS 0 - SUCCESS
20509 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
20510 void *cmpl)
20512 struct lpfc_vport *vport = cmdiocb->vport;
20513 struct lpfc_iocbq *abtsiocb = NULL;
20514 union lpfc_wqe128 *abtswqe;
20515 struct lpfc_io_buf *lpfc_cmd;
20516 int retval = IOCB_ERROR;
20517 u16 xritag = cmdiocb->sli4_xritag;
20520 * The scsi command can not be in txq and it is in flight because the
20521 * pCmd is still pointing at the SCSI command we have to abort. There
20522 * is no need to search the txcmplq. Just send an abort to the FW.
20525 abtsiocb = __lpfc_sli_get_iocbq(phba);
20526 if (!abtsiocb)
20527 return WQE_NORESOURCE;
20529 /* Indicate the IO is being aborted by the driver. */
20530 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
20532 abtswqe = &abtsiocb->wqe;
20533 memset(abtswqe, 0, sizeof(*abtswqe));
20535 if (lpfc_is_link_up(phba))
20536 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
20537 else
20538 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0);
20539 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
20540 abtswqe->abort_cmd.rsrvd5 = 0;
20541 abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
20542 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
20543 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
20544 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
20545 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
20546 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
20547 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
20549 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
20550 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
20551 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
20552 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
20553 abtsiocb->iocb_flag |= LPFC_IO_FCP;
20554 if (cmdiocb->iocb_flag & LPFC_IO_NVME)
20555 abtsiocb->iocb_flag |= LPFC_IO_NVME;
20556 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
20557 abtsiocb->iocb_flag |= LPFC_IO_FOF;
20558 abtsiocb->vport = vport;
20559 abtsiocb->wqe_cmpl = cmpl;
20561 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
20562 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
20564 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
20565 "0359 Abort xri x%x, original iotag x%x, "
20566 "abort cmd iotag x%x retval x%x\n",
20567 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
20569 if (retval) {
20570 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
20571 __lpfc_sli_release_iocbq(phba, abtsiocb);
20574 return retval;
20577 #ifdef LPFC_MXP_STAT
20579 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20580 * @phba: pointer to lpfc hba data structure.
20581 * @hwqid: belong to which HWQ.
20583 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20584 * 15 seconds after a test case is running.
20586 * The user should call lpfc_debugfs_multixripools_write before running a test
20587 * case to clear stat_snapshot_taken. Then the user starts a test case. During
20588 * test case is running, stat_snapshot_taken is incremented by 1 every time when
20589 * this routine is called from heartbeat timer. When stat_snapshot_taken is
20590 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20592 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20594 struct lpfc_sli4_hdw_queue *qp;
20595 struct lpfc_multixri_pool *multixri_pool;
20596 struct lpfc_pvt_pool *pvt_pool;
20597 struct lpfc_pbl_pool *pbl_pool;
20598 u32 txcmplq_cnt;
20600 qp = &phba->sli4_hba.hdwq[hwqid];
20601 multixri_pool = qp->p_multixri_pool;
20602 if (!multixri_pool)
20603 return;
20605 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20606 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20607 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20608 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20610 multixri_pool->stat_pbl_count = pbl_pool->count;
20611 multixri_pool->stat_pvt_count = pvt_pool->count;
20612 multixri_pool->stat_busy_count = txcmplq_cnt;
20615 multixri_pool->stat_snapshot_taken++;
20617 #endif
20620 * lpfc_adjust_pvt_pool_count - Adjust private pool count
20621 * @phba: pointer to lpfc hba data structure.
20622 * @hwqid: belong to which HWQ.
20624 * This routine moves some XRIs from private to public pool when private pool
20625 * is not busy.
20627 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20629 struct lpfc_multixri_pool *multixri_pool;
20630 u32 io_req_count;
20631 u32 prev_io_req_count;
20633 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20634 if (!multixri_pool)
20635 return;
20636 io_req_count = multixri_pool->io_req_count;
20637 prev_io_req_count = multixri_pool->prev_io_req_count;
20639 if (prev_io_req_count != io_req_count) {
20640 /* Private pool is busy */
20641 multixri_pool->prev_io_req_count = io_req_count;
20642 } else {
20643 /* Private pool is not busy.
20644 * Move XRIs from private to public pool.
20646 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20651 * lpfc_adjust_high_watermark - Adjust high watermark
20652 * @phba: pointer to lpfc hba data structure.
20653 * @hwqid: belong to which HWQ.
20655 * This routine sets high watermark as number of outstanding XRIs,
20656 * but make sure the new value is between xri_limit/2 and xri_limit.
20658 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20660 u32 new_watermark;
20661 u32 watermark_max;
20662 u32 watermark_min;
20663 u32 xri_limit;
20664 u32 txcmplq_cnt;
20665 u32 abts_io_bufs;
20666 struct lpfc_multixri_pool *multixri_pool;
20667 struct lpfc_sli4_hdw_queue *qp;
20669 qp = &phba->sli4_hba.hdwq[hwqid];
20670 multixri_pool = qp->p_multixri_pool;
20671 if (!multixri_pool)
20672 return;
20673 xri_limit = multixri_pool->xri_limit;
20675 watermark_max = xri_limit;
20676 watermark_min = xri_limit / 2;
20678 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20679 abts_io_bufs = qp->abts_scsi_io_bufs;
20680 abts_io_bufs += qp->abts_nvme_io_bufs;
20682 new_watermark = txcmplq_cnt + abts_io_bufs;
20683 new_watermark = min(watermark_max, new_watermark);
20684 new_watermark = max(watermark_min, new_watermark);
20685 multixri_pool->pvt_pool.high_watermark = new_watermark;
20687 #ifdef LPFC_MXP_STAT
20688 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20689 new_watermark);
20690 #endif
20694 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20695 * @phba: pointer to lpfc hba data structure.
20696 * @hwqid: belong to which HWQ.
20698 * This routine is called from hearbeat timer when pvt_pool is idle.
20699 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20700 * The first step moves (all - low_watermark) amount of XRIs.
20701 * The second step moves the rest of XRIs.
20703 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20705 struct lpfc_pbl_pool *pbl_pool;
20706 struct lpfc_pvt_pool *pvt_pool;
20707 struct lpfc_sli4_hdw_queue *qp;
20708 struct lpfc_io_buf *lpfc_ncmd;
20709 struct lpfc_io_buf *lpfc_ncmd_next;
20710 unsigned long iflag;
20711 struct list_head tmp_list;
20712 u32 tmp_count;
20714 qp = &phba->sli4_hba.hdwq[hwqid];
20715 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20716 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20717 tmp_count = 0;
20719 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20720 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20722 if (pvt_pool->count > pvt_pool->low_watermark) {
20723 /* Step 1: move (all - low_watermark) from pvt_pool
20724 * to pbl_pool
20727 /* Move low watermark of bufs from pvt_pool to tmp_list */
20728 INIT_LIST_HEAD(&tmp_list);
20729 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20730 &pvt_pool->list, list) {
20731 list_move_tail(&lpfc_ncmd->list, &tmp_list);
20732 tmp_count++;
20733 if (tmp_count >= pvt_pool->low_watermark)
20734 break;
20737 /* Move all bufs from pvt_pool to pbl_pool */
20738 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20740 /* Move all bufs from tmp_list to pvt_pool */
20741 list_splice(&tmp_list, &pvt_pool->list);
20743 pbl_pool->count += (pvt_pool->count - tmp_count);
20744 pvt_pool->count = tmp_count;
20745 } else {
20746 /* Step 2: move the rest from pvt_pool to pbl_pool */
20747 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20748 pbl_pool->count += pvt_pool->count;
20749 pvt_pool->count = 0;
20752 spin_unlock(&pvt_pool->lock);
20753 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20757 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20758 * @phba: pointer to lpfc hba data structure
20759 * @qp: pointer to HDW queue
20760 * @pbl_pool: specified public free XRI pool
20761 * @pvt_pool: specified private free XRI pool
20762 * @count: number of XRIs to move
20764 * This routine tries to move some free common bufs from the specified pbl_pool
20765 * to the specified pvt_pool. It might move less than count XRIs if there's not
20766 * enough in public pool.
20768 * Return:
20769 * true - if XRIs are successfully moved from the specified pbl_pool to the
20770 * specified pvt_pool
20771 * false - if the specified pbl_pool is empty or locked by someone else
20773 static bool
20774 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20775 struct lpfc_pbl_pool *pbl_pool,
20776 struct lpfc_pvt_pool *pvt_pool, u32 count)
20778 struct lpfc_io_buf *lpfc_ncmd;
20779 struct lpfc_io_buf *lpfc_ncmd_next;
20780 unsigned long iflag;
20781 int ret;
20783 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20784 if (ret) {
20785 if (pbl_pool->count) {
20786 /* Move a batch of XRIs from public to private pool */
20787 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20788 list_for_each_entry_safe(lpfc_ncmd,
20789 lpfc_ncmd_next,
20790 &pbl_pool->list,
20791 list) {
20792 list_move_tail(&lpfc_ncmd->list,
20793 &pvt_pool->list);
20794 pvt_pool->count++;
20795 pbl_pool->count--;
20796 count--;
20797 if (count == 0)
20798 break;
20801 spin_unlock(&pvt_pool->lock);
20802 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20803 return true;
20805 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20808 return false;
20812 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20813 * @phba: pointer to lpfc hba data structure.
20814 * @hwqid: belong to which HWQ.
20815 * @count: number of XRIs to move
20817 * This routine tries to find some free common bufs in one of public pools with
20818 * Round Robin method. The search always starts from local hwqid, then the next
20819 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20820 * a batch of free common bufs are moved to private pool on hwqid.
20821 * It might move less than count XRIs if there's not enough in public pool.
20823 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20825 struct lpfc_multixri_pool *multixri_pool;
20826 struct lpfc_multixri_pool *next_multixri_pool;
20827 struct lpfc_pvt_pool *pvt_pool;
20828 struct lpfc_pbl_pool *pbl_pool;
20829 struct lpfc_sli4_hdw_queue *qp;
20830 u32 next_hwqid;
20831 u32 hwq_count;
20832 int ret;
20834 qp = &phba->sli4_hba.hdwq[hwqid];
20835 multixri_pool = qp->p_multixri_pool;
20836 pvt_pool = &multixri_pool->pvt_pool;
20837 pbl_pool = &multixri_pool->pbl_pool;
20839 /* Check if local pbl_pool is available */
20840 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20841 if (ret) {
20842 #ifdef LPFC_MXP_STAT
20843 multixri_pool->local_pbl_hit_count++;
20844 #endif
20845 return;
20848 hwq_count = phba->cfg_hdw_queue;
20850 /* Get the next hwqid which was found last time */
20851 next_hwqid = multixri_pool->rrb_next_hwqid;
20853 do {
20854 /* Go to next hwq */
20855 next_hwqid = (next_hwqid + 1) % hwq_count;
20857 next_multixri_pool =
20858 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20859 pbl_pool = &next_multixri_pool->pbl_pool;
20861 /* Check if the public free xri pool is available */
20862 ret = _lpfc_move_xri_pbl_to_pvt(
20863 phba, qp, pbl_pool, pvt_pool, count);
20865 /* Exit while-loop if success or all hwqid are checked */
20866 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20868 /* Starting point for the next time */
20869 multixri_pool->rrb_next_hwqid = next_hwqid;
20871 if (!ret) {
20872 /* stats: all public pools are empty*/
20873 multixri_pool->pbl_empty_count++;
20876 #ifdef LPFC_MXP_STAT
20877 if (ret) {
20878 if (next_hwqid == hwqid)
20879 multixri_pool->local_pbl_hit_count++;
20880 else
20881 multixri_pool->other_pbl_hit_count++;
20883 #endif
20887 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20888 * @phba: pointer to lpfc hba data structure.
20889 * @hwqid: belong to which HWQ.
20891 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20892 * low watermark.
20894 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20896 struct lpfc_multixri_pool *multixri_pool;
20897 struct lpfc_pvt_pool *pvt_pool;
20899 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20900 pvt_pool = &multixri_pool->pvt_pool;
20902 if (pvt_pool->count < pvt_pool->low_watermark)
20903 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20907 * lpfc_release_io_buf - Return one IO buf back to free pool
20908 * @phba: pointer to lpfc hba data structure.
20909 * @lpfc_ncmd: IO buf to be returned.
20910 * @qp: belong to which HWQ.
20912 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20913 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20914 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20915 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
20916 * lpfc_io_buf_list_put.
20918 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20919 struct lpfc_sli4_hdw_queue *qp)
20921 unsigned long iflag;
20922 struct lpfc_pbl_pool *pbl_pool;
20923 struct lpfc_pvt_pool *pvt_pool;
20924 struct lpfc_epd_pool *epd_pool;
20925 u32 txcmplq_cnt;
20926 u32 xri_owned;
20927 u32 xri_limit;
20928 u32 abts_io_bufs;
20930 /* MUST zero fields if buffer is reused by another protocol */
20931 lpfc_ncmd->nvmeCmd = NULL;
20932 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20933 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20935 if (phba->cfg_xpsgl && !phba->nvmet_support &&
20936 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20937 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20939 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20940 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20942 if (phba->cfg_xri_rebalancing) {
20943 if (lpfc_ncmd->expedite) {
20944 /* Return to expedite pool */
20945 epd_pool = &phba->epd_pool;
20946 spin_lock_irqsave(&epd_pool->lock, iflag);
20947 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20948 epd_pool->count++;
20949 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20950 return;
20953 /* Avoid invalid access if an IO sneaks in and is being rejected
20954 * just _after_ xri pools are destroyed in lpfc_offline.
20955 * Nothing much can be done at this point.
20957 if (!qp->p_multixri_pool)
20958 return;
20960 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20961 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20963 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20964 abts_io_bufs = qp->abts_scsi_io_bufs;
20965 abts_io_bufs += qp->abts_nvme_io_bufs;
20967 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20968 xri_limit = qp->p_multixri_pool->xri_limit;
20970 #ifdef LPFC_MXP_STAT
20971 if (xri_owned <= xri_limit)
20972 qp->p_multixri_pool->below_limit_count++;
20973 else
20974 qp->p_multixri_pool->above_limit_count++;
20975 #endif
20977 /* XRI goes to either public or private free xri pool
20978 * based on watermark and xri_limit
20980 if ((pvt_pool->count < pvt_pool->low_watermark) ||
20981 (xri_owned < xri_limit &&
20982 pvt_pool->count < pvt_pool->high_watermark)) {
20983 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20984 qp, free_pvt_pool);
20985 list_add_tail(&lpfc_ncmd->list,
20986 &pvt_pool->list);
20987 pvt_pool->count++;
20988 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20989 } else {
20990 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20991 qp, free_pub_pool);
20992 list_add_tail(&lpfc_ncmd->list,
20993 &pbl_pool->list);
20994 pbl_pool->count++;
20995 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20997 } else {
20998 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20999 qp, free_xri);
21000 list_add_tail(&lpfc_ncmd->list,
21001 &qp->lpfc_io_buf_list_put);
21002 qp->put_io_bufs++;
21003 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21004 iflag);
21009 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21010 * @phba: pointer to lpfc hba data structure.
21011 * @qp: pointer to HDW queue
21012 * @pvt_pool: pointer to private pool data structure.
21013 * @ndlp: pointer to lpfc nodelist data structure.
21015 * This routine tries to get one free IO buf from private pool.
21017 * Return:
21018 * pointer to one free IO buf - if private pool is not empty
21019 * NULL - if private pool is empty
21021 static struct lpfc_io_buf *
21022 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21023 struct lpfc_sli4_hdw_queue *qp,
21024 struct lpfc_pvt_pool *pvt_pool,
21025 struct lpfc_nodelist *ndlp)
21027 struct lpfc_io_buf *lpfc_ncmd;
21028 struct lpfc_io_buf *lpfc_ncmd_next;
21029 unsigned long iflag;
21031 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21032 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21033 &pvt_pool->list, list) {
21034 if (lpfc_test_rrq_active(
21035 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21036 continue;
21037 list_del(&lpfc_ncmd->list);
21038 pvt_pool->count--;
21039 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21040 return lpfc_ncmd;
21042 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21044 return NULL;
21048 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21049 * @phba: pointer to lpfc hba data structure.
21051 * This routine tries to get one free IO buf from expedite pool.
21053 * Return:
21054 * pointer to one free IO buf - if expedite pool is not empty
21055 * NULL - if expedite pool is empty
21057 static struct lpfc_io_buf *
21058 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21060 struct lpfc_io_buf *lpfc_ncmd;
21061 struct lpfc_io_buf *lpfc_ncmd_next;
21062 unsigned long iflag;
21063 struct lpfc_epd_pool *epd_pool;
21065 epd_pool = &phba->epd_pool;
21066 lpfc_ncmd = NULL;
21068 spin_lock_irqsave(&epd_pool->lock, iflag);
21069 if (epd_pool->count > 0) {
21070 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21071 &epd_pool->list, list) {
21072 list_del(&lpfc_ncmd->list);
21073 epd_pool->count--;
21074 break;
21077 spin_unlock_irqrestore(&epd_pool->lock, iflag);
21079 return lpfc_ncmd;
21083 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21084 * @phba: pointer to lpfc hba data structure.
21085 * @ndlp: pointer to lpfc nodelist data structure.
21086 * @hwqid: belong to which HWQ
21087 * @expedite: 1 means this request is urgent.
21089 * This routine will do the following actions and then return a pointer to
21090 * one free IO buf.
21092 * 1. If private free xri count is empty, move some XRIs from public to
21093 * private pool.
21094 * 2. Get one XRI from private free xri pool.
21095 * 3. If we fail to get one from pvt_pool and this is an expedite request,
21096 * get one free xri from expedite pool.
21098 * Note: ndlp is only used on SCSI side for RRQ testing.
21099 * The caller should pass NULL for ndlp on NVME side.
21101 * Return:
21102 * pointer to one free IO buf - if private pool is not empty
21103 * NULL - if private pool is empty
21105 static struct lpfc_io_buf *
21106 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21107 struct lpfc_nodelist *ndlp,
21108 int hwqid, int expedite)
21110 struct lpfc_sli4_hdw_queue *qp;
21111 struct lpfc_multixri_pool *multixri_pool;
21112 struct lpfc_pvt_pool *pvt_pool;
21113 struct lpfc_io_buf *lpfc_ncmd;
21115 qp = &phba->sli4_hba.hdwq[hwqid];
21116 lpfc_ncmd = NULL;
21117 multixri_pool = qp->p_multixri_pool;
21118 pvt_pool = &multixri_pool->pvt_pool;
21119 multixri_pool->io_req_count++;
21121 /* If pvt_pool is empty, move some XRIs from public to private pool */
21122 if (pvt_pool->count == 0)
21123 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21125 /* Get one XRI from private free xri pool */
21126 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21128 if (lpfc_ncmd) {
21129 lpfc_ncmd->hdwq = qp;
21130 lpfc_ncmd->hdwq_no = hwqid;
21131 } else if (expedite) {
21132 /* If we fail to get one from pvt_pool and this is an expedite
21133 * request, get one free xri from expedite pool.
21135 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21138 return lpfc_ncmd;
21141 static inline struct lpfc_io_buf *
21142 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21144 struct lpfc_sli4_hdw_queue *qp;
21145 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21147 qp = &phba->sli4_hba.hdwq[idx];
21148 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21149 &qp->lpfc_io_buf_list_get, list) {
21150 if (lpfc_test_rrq_active(phba, ndlp,
21151 lpfc_cmd->cur_iocbq.sli4_lxritag))
21152 continue;
21154 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21155 continue;
21157 list_del_init(&lpfc_cmd->list);
21158 qp->get_io_bufs--;
21159 lpfc_cmd->hdwq = qp;
21160 lpfc_cmd->hdwq_no = idx;
21161 return lpfc_cmd;
21163 return NULL;
21167 * lpfc_get_io_buf - Get one IO buffer from free pool
21168 * @phba: The HBA for which this call is being executed.
21169 * @ndlp: pointer to lpfc nodelist data structure.
21170 * @hwqid: belong to which HWQ
21171 * @expedite: 1 means this request is urgent.
21173 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
21174 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
21175 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
21177 * Note: ndlp is only used on SCSI side for RRQ testing.
21178 * The caller should pass NULL for ndlp on NVME side.
21180 * Return codes:
21181 * NULL - Error
21182 * Pointer to lpfc_io_buf - Success
21184 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
21185 struct lpfc_nodelist *ndlp,
21186 u32 hwqid, int expedite)
21188 struct lpfc_sli4_hdw_queue *qp;
21189 unsigned long iflag;
21190 struct lpfc_io_buf *lpfc_cmd;
21192 qp = &phba->sli4_hba.hdwq[hwqid];
21193 lpfc_cmd = NULL;
21195 if (phba->cfg_xri_rebalancing)
21196 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
21197 phba, ndlp, hwqid, expedite);
21198 else {
21199 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
21200 qp, alloc_xri_get);
21201 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
21202 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21203 if (!lpfc_cmd) {
21204 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
21205 qp, alloc_xri_put);
21206 list_splice(&qp->lpfc_io_buf_list_put,
21207 &qp->lpfc_io_buf_list_get);
21208 qp->get_io_bufs += qp->put_io_bufs;
21209 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
21210 qp->put_io_bufs = 0;
21211 spin_unlock(&qp->io_buf_list_put_lock);
21212 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
21213 expedite)
21214 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21216 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
21219 return lpfc_cmd;
21223 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
21224 * @phba: The HBA for which this call is being executed.
21225 * @lpfc_buf: IO buf structure to append the SGL chunk
21227 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
21228 * and will allocate an SGL chunk if the pool is empty.
21230 * Return codes:
21231 * NULL - Error
21232 * Pointer to sli4_hybrid_sgl - Success
21234 struct sli4_hybrid_sgl *
21235 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21237 struct sli4_hybrid_sgl *list_entry = NULL;
21238 struct sli4_hybrid_sgl *tmp = NULL;
21239 struct sli4_hybrid_sgl *allocated_sgl = NULL;
21240 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21241 struct list_head *buf_list = &hdwq->sgl_list;
21242 unsigned long iflags;
21244 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21246 if (likely(!list_empty(buf_list))) {
21247 /* break off 1 chunk from the sgl_list */
21248 list_for_each_entry_safe(list_entry, tmp,
21249 buf_list, list_node) {
21250 list_move_tail(&list_entry->list_node,
21251 &lpfc_buf->dma_sgl_xtra_list);
21252 break;
21254 } else {
21255 /* allocate more */
21256 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21257 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21258 cpu_to_node(hdwq->io_wq->chann));
21259 if (!tmp) {
21260 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21261 "8353 error kmalloc memory for HDWQ "
21262 "%d %s\n",
21263 lpfc_buf->hdwq_no, __func__);
21264 return NULL;
21267 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
21268 GFP_ATOMIC, &tmp->dma_phys_sgl);
21269 if (!tmp->dma_sgl) {
21270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21271 "8354 error pool_alloc memory for HDWQ "
21272 "%d %s\n",
21273 lpfc_buf->hdwq_no, __func__);
21274 kfree(tmp);
21275 return NULL;
21278 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21279 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
21282 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
21283 struct sli4_hybrid_sgl,
21284 list_node);
21286 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21288 return allocated_sgl;
21292 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
21293 * @phba: The HBA for which this call is being executed.
21294 * @lpfc_buf: IO buf structure with the SGL chunk
21296 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
21298 * Return codes:
21299 * 0 - Success
21300 * -EINVAL - Error
21303 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21305 int rc = 0;
21306 struct sli4_hybrid_sgl *list_entry = NULL;
21307 struct sli4_hybrid_sgl *tmp = NULL;
21308 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21309 struct list_head *buf_list = &hdwq->sgl_list;
21310 unsigned long iflags;
21312 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21314 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21315 list_for_each_entry_safe(list_entry, tmp,
21316 &lpfc_buf->dma_sgl_xtra_list,
21317 list_node) {
21318 list_move_tail(&list_entry->list_node,
21319 buf_list);
21321 } else {
21322 rc = -EINVAL;
21325 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21326 return rc;
21330 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
21331 * @phba: phba object
21332 * @hdwq: hdwq to cleanup sgl buff resources on
21334 * This routine frees all SGL chunks of hdwq SGL chunk pool.
21336 * Return codes:
21337 * None
21339 void
21340 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
21341 struct lpfc_sli4_hdw_queue *hdwq)
21343 struct list_head *buf_list = &hdwq->sgl_list;
21344 struct sli4_hybrid_sgl *list_entry = NULL;
21345 struct sli4_hybrid_sgl *tmp = NULL;
21346 unsigned long iflags;
21348 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21350 /* Free sgl pool */
21351 list_for_each_entry_safe(list_entry, tmp,
21352 buf_list, list_node) {
21353 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
21354 list_entry->dma_sgl,
21355 list_entry->dma_phys_sgl);
21356 list_del(&list_entry->list_node);
21357 kfree(list_entry);
21360 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21364 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
21365 * @phba: The HBA for which this call is being executed.
21366 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
21368 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
21369 * and will allocate an CMD/RSP buffer if the pool is empty.
21371 * Return codes:
21372 * NULL - Error
21373 * Pointer to fcp_cmd_rsp_buf - Success
21375 struct fcp_cmd_rsp_buf *
21376 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21377 struct lpfc_io_buf *lpfc_buf)
21379 struct fcp_cmd_rsp_buf *list_entry = NULL;
21380 struct fcp_cmd_rsp_buf *tmp = NULL;
21381 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
21382 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21383 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21384 unsigned long iflags;
21386 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21388 if (likely(!list_empty(buf_list))) {
21389 /* break off 1 chunk from the list */
21390 list_for_each_entry_safe(list_entry, tmp,
21391 buf_list,
21392 list_node) {
21393 list_move_tail(&list_entry->list_node,
21394 &lpfc_buf->dma_cmd_rsp_list);
21395 break;
21397 } else {
21398 /* allocate more */
21399 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21400 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21401 cpu_to_node(hdwq->io_wq->chann));
21402 if (!tmp) {
21403 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21404 "8355 error kmalloc memory for HDWQ "
21405 "%d %s\n",
21406 lpfc_buf->hdwq_no, __func__);
21407 return NULL;
21410 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
21411 GFP_ATOMIC,
21412 &tmp->fcp_cmd_rsp_dma_handle);
21414 if (!tmp->fcp_cmnd) {
21415 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21416 "8356 error pool_alloc memory for HDWQ "
21417 "%d %s\n",
21418 lpfc_buf->hdwq_no, __func__);
21419 kfree(tmp);
21420 return NULL;
21423 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
21424 sizeof(struct fcp_cmnd));
21426 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21427 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
21430 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
21431 struct fcp_cmd_rsp_buf,
21432 list_node);
21434 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21436 return allocated_buf;
21440 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
21441 * @phba: The HBA for which this call is being executed.
21442 * @lpfc_buf: IO buf structure with the CMD/RSP buf
21444 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
21446 * Return codes:
21447 * 0 - Success
21448 * -EINVAL - Error
21451 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21452 struct lpfc_io_buf *lpfc_buf)
21454 int rc = 0;
21455 struct fcp_cmd_rsp_buf *list_entry = NULL;
21456 struct fcp_cmd_rsp_buf *tmp = NULL;
21457 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21458 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21459 unsigned long iflags;
21461 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21463 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
21464 list_for_each_entry_safe(list_entry, tmp,
21465 &lpfc_buf->dma_cmd_rsp_list,
21466 list_node) {
21467 list_move_tail(&list_entry->list_node,
21468 buf_list);
21470 } else {
21471 rc = -EINVAL;
21474 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21475 return rc;
21479 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
21480 * @phba: phba object
21481 * @hdwq: hdwq to cleanup cmd rsp buff resources on
21483 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21485 * Return codes:
21486 * None
21488 void
21489 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21490 struct lpfc_sli4_hdw_queue *hdwq)
21492 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21493 struct fcp_cmd_rsp_buf *list_entry = NULL;
21494 struct fcp_cmd_rsp_buf *tmp = NULL;
21495 unsigned long iflags;
21497 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21499 /* Free cmd_rsp buf pool */
21500 list_for_each_entry_safe(list_entry, tmp,
21501 buf_list,
21502 list_node) {
21503 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21504 list_entry->fcp_cmnd,
21505 list_entry->fcp_cmd_rsp_dma_handle);
21506 list_del(&list_entry->list_node);
21507 kfree(list_entry);
21510 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);