Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / scsi / sun_esp.c
blob5dc38d35745b4b237eee3affc5202f993e036a5f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* sun_esp.c: ESP front-end for Sparc SBUS systems.
4 * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/init.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/gfp.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi_host.h>
24 #include "esp_scsi.h"
26 #define DRV_MODULE_NAME "sun_esp"
27 #define PFX DRV_MODULE_NAME ": "
28 #define DRV_VERSION "1.100"
29 #define DRV_MODULE_RELDATE "August 27, 2008"
31 #define dma_read32(REG) \
32 sbus_readl(esp->dma_regs + (REG))
33 #define dma_write32(VAL, REG) \
34 sbus_writel((VAL), esp->dma_regs + (REG))
36 /* DVMA chip revisions */
37 enum dvma_rev {
38 dvmarev0,
39 dvmaesc1,
40 dvmarev1,
41 dvmarev2,
42 dvmarev3,
43 dvmarevplus,
44 dvmahme
47 static int esp_sbus_setup_dma(struct esp *esp, struct platform_device *dma_of)
49 esp->dma = dma_of;
51 esp->dma_regs = of_ioremap(&dma_of->resource[0], 0,
52 resource_size(&dma_of->resource[0]),
53 "espdma");
54 if (!esp->dma_regs)
55 return -ENOMEM;
57 switch (dma_read32(DMA_CSR) & DMA_DEVICE_ID) {
58 case DMA_VERS0:
59 esp->dmarev = dvmarev0;
60 break;
61 case DMA_ESCV1:
62 esp->dmarev = dvmaesc1;
63 break;
64 case DMA_VERS1:
65 esp->dmarev = dvmarev1;
66 break;
67 case DMA_VERS2:
68 esp->dmarev = dvmarev2;
69 break;
70 case DMA_VERHME:
71 esp->dmarev = dvmahme;
72 break;
73 case DMA_VERSPLUS:
74 esp->dmarev = dvmarevplus;
75 break;
78 return 0;
82 static int esp_sbus_map_regs(struct esp *esp, int hme)
84 struct platform_device *op = to_platform_device(esp->dev);
85 struct resource *res;
87 /* On HME, two reg sets exist, first is DVMA,
88 * second is ESP registers.
90 if (hme)
91 res = &op->resource[1];
92 else
93 res = &op->resource[0];
95 esp->regs = of_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP");
96 if (!esp->regs)
97 return -ENOMEM;
99 return 0;
102 static int esp_sbus_map_command_block(struct esp *esp)
104 esp->command_block = dma_alloc_coherent(esp->dev, 16,
105 &esp->command_block_dma,
106 GFP_KERNEL);
107 if (!esp->command_block)
108 return -ENOMEM;
109 return 0;
112 static int esp_sbus_register_irq(struct esp *esp)
114 struct Scsi_Host *host = esp->host;
115 struct platform_device *op = to_platform_device(esp->dev);
117 host->irq = op->archdata.irqs[0];
118 return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp);
121 static void esp_get_scsi_id(struct esp *esp, struct platform_device *espdma)
123 struct platform_device *op = to_platform_device(esp->dev);
124 struct device_node *dp;
126 dp = op->dev.of_node;
127 esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff);
128 if (esp->scsi_id != 0xff)
129 goto done;
131 esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff);
132 if (esp->scsi_id != 0xff)
133 goto done;
135 esp->scsi_id = of_getintprop_default(espdma->dev.of_node,
136 "scsi-initiator-id", 7);
138 done:
139 esp->host->this_id = esp->scsi_id;
140 esp->scsi_id_mask = (1 << esp->scsi_id);
143 static void esp_get_differential(struct esp *esp)
145 struct platform_device *op = to_platform_device(esp->dev);
146 struct device_node *dp;
148 dp = op->dev.of_node;
149 if (of_find_property(dp, "differential", NULL))
150 esp->flags |= ESP_FLAG_DIFFERENTIAL;
151 else
152 esp->flags &= ~ESP_FLAG_DIFFERENTIAL;
155 static void esp_get_clock_params(struct esp *esp)
157 struct platform_device *op = to_platform_device(esp->dev);
158 struct device_node *bus_dp, *dp;
159 int fmhz;
161 dp = op->dev.of_node;
162 bus_dp = dp->parent;
164 fmhz = of_getintprop_default(dp, "clock-frequency", 0);
165 if (fmhz == 0)
166 fmhz = of_getintprop_default(bus_dp, "clock-frequency", 0);
168 esp->cfreq = fmhz;
171 static void esp_get_bursts(struct esp *esp, struct platform_device *dma_of)
173 struct device_node *dma_dp = dma_of->dev.of_node;
174 struct platform_device *op = to_platform_device(esp->dev);
175 struct device_node *dp;
176 u8 bursts, val;
178 dp = op->dev.of_node;
179 bursts = of_getintprop_default(dp, "burst-sizes", 0xff);
180 val = of_getintprop_default(dma_dp, "burst-sizes", 0xff);
181 if (val != 0xff)
182 bursts &= val;
184 val = of_getintprop_default(dma_dp->parent, "burst-sizes", 0xff);
185 if (val != 0xff)
186 bursts &= val;
188 if (bursts == 0xff ||
189 (bursts & DMA_BURST16) == 0 ||
190 (bursts & DMA_BURST32) == 0)
191 bursts = (DMA_BURST32 - 1);
193 esp->bursts = bursts;
196 static void esp_sbus_get_props(struct esp *esp, struct platform_device *espdma)
198 esp_get_scsi_id(esp, espdma);
199 esp_get_differential(esp);
200 esp_get_clock_params(esp);
201 esp_get_bursts(esp, espdma);
204 static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg)
206 sbus_writeb(val, esp->regs + (reg * 4UL));
209 static u8 sbus_esp_read8(struct esp *esp, unsigned long reg)
211 return sbus_readb(esp->regs + (reg * 4UL));
214 static int sbus_esp_irq_pending(struct esp *esp)
216 if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))
217 return 1;
218 return 0;
221 static void sbus_esp_reset_dma(struct esp *esp)
223 int can_do_burst16, can_do_burst32, can_do_burst64;
224 int can_do_sbus64, lim;
225 struct platform_device *op = to_platform_device(esp->dev);
226 u32 val;
228 can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
229 can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
230 can_do_burst64 = 0;
231 can_do_sbus64 = 0;
232 if (sbus_can_dma_64bit())
233 can_do_sbus64 = 1;
234 if (sbus_can_burst64())
235 can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
237 /* Put the DVMA into a known state. */
238 if (esp->dmarev != dvmahme) {
239 val = dma_read32(DMA_CSR);
240 dma_write32(val | DMA_RST_SCSI, DMA_CSR);
241 dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
243 switch (esp->dmarev) {
244 case dvmahme:
245 dma_write32(DMA_RESET_FAS366, DMA_CSR);
246 dma_write32(DMA_RST_SCSI, DMA_CSR);
248 esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS |
249 DMA_SCSI_DISAB | DMA_INT_ENAB);
251 esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE |
252 DMA_BRST_SZ);
254 if (can_do_burst64)
255 esp->prev_hme_dmacsr |= DMA_BRST64;
256 else if (can_do_burst32)
257 esp->prev_hme_dmacsr |= DMA_BRST32;
259 if (can_do_sbus64) {
260 esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
261 sbus_set_sbus64(&op->dev, esp->bursts);
264 lim = 1000;
265 while (dma_read32(DMA_CSR) & DMA_PEND_READ) {
266 if (--lim == 0) {
267 printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ "
268 "will not clear!\n",
269 esp->host->unique_id);
270 break;
272 udelay(1);
275 dma_write32(0, DMA_CSR);
276 dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
278 dma_write32(0, DMA_ADDR);
279 break;
281 case dvmarev2:
282 if (esp->rev != ESP100) {
283 val = dma_read32(DMA_CSR);
284 dma_write32(val | DMA_3CLKS, DMA_CSR);
286 break;
288 case dvmarev3:
289 val = dma_read32(DMA_CSR);
290 val &= ~DMA_3CLKS;
291 val |= DMA_2CLKS;
292 if (can_do_burst32) {
293 val &= ~DMA_BRST_SZ;
294 val |= DMA_BRST32;
296 dma_write32(val, DMA_CSR);
297 break;
299 case dvmaesc1:
300 val = dma_read32(DMA_CSR);
301 val |= DMA_ADD_ENABLE;
302 val &= ~DMA_BCNT_ENAB;
303 if (!can_do_burst32 && can_do_burst16) {
304 val |= DMA_ESC_BURST;
305 } else {
306 val &= ~(DMA_ESC_BURST);
308 dma_write32(val, DMA_CSR);
309 break;
311 default:
312 break;
315 /* Enable interrupts. */
316 val = dma_read32(DMA_CSR);
317 dma_write32(val | DMA_INT_ENAB, DMA_CSR);
320 static void sbus_esp_dma_drain(struct esp *esp)
322 u32 csr;
323 int lim;
325 if (esp->dmarev == dvmahme)
326 return;
328 csr = dma_read32(DMA_CSR);
329 if (!(csr & DMA_FIFO_ISDRAIN))
330 return;
332 if (esp->dmarev != dvmarev3 && esp->dmarev != dvmaesc1)
333 dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR);
335 lim = 1000;
336 while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) {
337 if (--lim == 0) {
338 printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n",
339 esp->host->unique_id);
340 break;
342 udelay(1);
346 static void sbus_esp_dma_invalidate(struct esp *esp)
348 if (esp->dmarev == dvmahme) {
349 dma_write32(DMA_RST_SCSI, DMA_CSR);
351 esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
352 (DMA_PARITY_OFF | DMA_2CLKS |
353 DMA_SCSI_DISAB | DMA_INT_ENAB)) &
354 ~(DMA_ST_WRITE | DMA_ENABLE));
356 dma_write32(0, DMA_CSR);
357 dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
359 /* This is necessary to avoid having the SCSI channel
360 * engine lock up on us.
362 dma_write32(0, DMA_ADDR);
363 } else {
364 u32 val;
365 int lim;
367 lim = 1000;
368 while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) {
369 if (--lim == 0) {
370 printk(KERN_ALERT PFX "esp%d: DMA will not "
371 "invalidate!\n", esp->host->unique_id);
372 break;
374 udelay(1);
377 val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
378 val |= DMA_FIFO_INV;
379 dma_write32(val, DMA_CSR);
380 val &= ~DMA_FIFO_INV;
381 dma_write32(val, DMA_CSR);
385 static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
386 u32 dma_count, int write, u8 cmd)
388 u32 csr;
390 BUG_ON(!(cmd & ESP_CMD_DMA));
392 sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
393 sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
394 if (esp->rev == FASHME) {
395 sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO);
396 sbus_esp_write8(esp, 0, FAS_RHI);
398 scsi_esp_cmd(esp, cmd);
400 csr = esp->prev_hme_dmacsr;
401 csr |= DMA_SCSI_DISAB | DMA_ENABLE;
402 if (write)
403 csr |= DMA_ST_WRITE;
404 else
405 csr &= ~DMA_ST_WRITE;
406 esp->prev_hme_dmacsr = csr;
408 dma_write32(dma_count, DMA_COUNT);
409 dma_write32(addr, DMA_ADDR);
410 dma_write32(csr, DMA_CSR);
411 } else {
412 csr = dma_read32(DMA_CSR);
413 csr |= DMA_ENABLE;
414 if (write)
415 csr |= DMA_ST_WRITE;
416 else
417 csr &= ~DMA_ST_WRITE;
418 dma_write32(csr, DMA_CSR);
419 if (esp->dmarev == dvmaesc1) {
420 u32 end = PAGE_ALIGN(addr + dma_count + 16U);
421 dma_write32(end - addr, DMA_COUNT);
423 dma_write32(addr, DMA_ADDR);
425 scsi_esp_cmd(esp, cmd);
430 static int sbus_esp_dma_error(struct esp *esp)
432 u32 csr = dma_read32(DMA_CSR);
434 if (csr & DMA_HNDL_ERROR)
435 return 1;
437 return 0;
440 static const struct esp_driver_ops sbus_esp_ops = {
441 .esp_write8 = sbus_esp_write8,
442 .esp_read8 = sbus_esp_read8,
443 .irq_pending = sbus_esp_irq_pending,
444 .reset_dma = sbus_esp_reset_dma,
445 .dma_drain = sbus_esp_dma_drain,
446 .dma_invalidate = sbus_esp_dma_invalidate,
447 .send_dma_cmd = sbus_esp_send_dma_cmd,
448 .dma_error = sbus_esp_dma_error,
451 static int esp_sbus_probe_one(struct platform_device *op,
452 struct platform_device *espdma, int hme)
454 struct scsi_host_template *tpnt = &scsi_esp_template;
455 struct Scsi_Host *host;
456 struct esp *esp;
457 int err;
459 host = scsi_host_alloc(tpnt, sizeof(struct esp));
461 err = -ENOMEM;
462 if (!host)
463 goto fail;
465 host->max_id = (hme ? 16 : 8);
466 esp = shost_priv(host);
468 esp->host = host;
469 esp->dev = &op->dev;
470 esp->ops = &sbus_esp_ops;
472 if (hme)
473 esp->flags |= ESP_FLAG_WIDE_CAPABLE;
475 err = esp_sbus_setup_dma(esp, espdma);
476 if (err < 0)
477 goto fail_unlink;
479 err = esp_sbus_map_regs(esp, hme);
480 if (err < 0)
481 goto fail_unlink;
483 err = esp_sbus_map_command_block(esp);
484 if (err < 0)
485 goto fail_unmap_regs;
487 err = esp_sbus_register_irq(esp);
488 if (err < 0)
489 goto fail_unmap_command_block;
491 esp_sbus_get_props(esp, espdma);
493 /* Before we try to touch the ESP chip, ESC1 dma can
494 * come up with the reset bit set, so make sure that
495 * is clear first.
497 if (esp->dmarev == dvmaesc1) {
498 u32 val = dma_read32(DMA_CSR);
500 dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
503 dev_set_drvdata(&op->dev, esp);
505 err = scsi_esp_register(esp);
506 if (err)
507 goto fail_free_irq;
509 return 0;
511 fail_free_irq:
512 free_irq(host->irq, esp);
513 fail_unmap_command_block:
514 dma_free_coherent(&op->dev, 16,
515 esp->command_block,
516 esp->command_block_dma);
517 fail_unmap_regs:
518 of_iounmap(&op->resource[(hme ? 1 : 0)], esp->regs, SBUS_ESP_REG_SIZE);
519 fail_unlink:
520 scsi_host_put(host);
521 fail:
522 return err;
525 static int esp_sbus_probe(struct platform_device *op)
527 struct device_node *dma_node = NULL;
528 struct device_node *dp = op->dev.of_node;
529 struct platform_device *dma_of = NULL;
530 int hme = 0;
531 int ret;
533 if (of_node_name_eq(dp->parent, "espdma") ||
534 of_node_name_eq(dp->parent, "dma"))
535 dma_node = dp->parent;
536 else if (of_node_name_eq(dp, "SUNW,fas")) {
537 dma_node = op->dev.of_node;
538 hme = 1;
540 if (dma_node)
541 dma_of = of_find_device_by_node(dma_node);
542 if (!dma_of)
543 return -ENODEV;
545 ret = esp_sbus_probe_one(op, dma_of, hme);
546 if (ret)
547 put_device(&dma_of->dev);
549 return ret;
552 static int esp_sbus_remove(struct platform_device *op)
554 struct esp *esp = dev_get_drvdata(&op->dev);
555 struct platform_device *dma_of = esp->dma;
556 unsigned int irq = esp->host->irq;
557 bool is_hme;
558 u32 val;
560 scsi_esp_unregister(esp);
562 /* Disable interrupts. */
563 val = dma_read32(DMA_CSR);
564 dma_write32(val & ~DMA_INT_ENAB, DMA_CSR);
566 free_irq(irq, esp);
568 is_hme = (esp->dmarev == dvmahme);
570 dma_free_coherent(&op->dev, 16,
571 esp->command_block,
572 esp->command_block_dma);
573 of_iounmap(&op->resource[(is_hme ? 1 : 0)], esp->regs,
574 SBUS_ESP_REG_SIZE);
575 of_iounmap(&dma_of->resource[0], esp->dma_regs,
576 resource_size(&dma_of->resource[0]));
578 scsi_host_put(esp->host);
580 dev_set_drvdata(&op->dev, NULL);
582 put_device(&dma_of->dev);
584 return 0;
587 static const struct of_device_id esp_match[] = {
589 .name = "SUNW,esp",
592 .name = "SUNW,fas",
595 .name = "esp",
599 MODULE_DEVICE_TABLE(of, esp_match);
601 static struct platform_driver esp_sbus_driver = {
602 .driver = {
603 .name = "esp",
604 .of_match_table = esp_match,
606 .probe = esp_sbus_probe,
607 .remove = esp_sbus_remove,
609 module_platform_driver(esp_sbus_driver);
611 MODULE_DESCRIPTION("Sun ESP SCSI driver");
612 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
613 MODULE_LICENSE("GPL");
614 MODULE_VERSION(DRV_VERSION);