Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / soc / fsl / dpio / qbman-portal.c
blobf13da4d7d1c526cb14f14aee27928b2a152fe276
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
6 */
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
14 #include "qbman-portal.h"
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE 0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI 0x800
25 #define QBMAN_CINH_SWP_EQCR_CI 0x840
26 #define QBMAN_CINH_SWP_EQAR 0x8c0
27 #define QBMAN_CINH_SWP_CR_RT 0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
31 #define QBMAN_CINH_SWP_DQPI 0xa00
32 #define QBMAN_CINH_SWP_DCAP 0xac0
33 #define QBMAN_CINH_SWP_SDQCR 0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
35 #define QBMAN_CINH_SWP_RCR_PI 0xc00
36 #define QBMAN_CINH_SWP_RAR 0xcc0
37 #define QBMAN_CINH_SWP_ISR 0xe00
38 #define QBMAN_CINH_SWP_IER 0xe40
39 #define QBMAN_CINH_SWP_ISDR 0xe80
40 #define QBMAN_CINH_SWP_IIR 0xec0
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR 0x600
47 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR 0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM 0x1600
56 #define QBMAN_CENA_SWP_RR_MEM 0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT 29
67 #define QB_SDQCR_FC_MASK 0x1
68 #define QB_SDQCR_DCT_SHIFT 24
69 #define QB_SDQCR_DCT_MASK 0x3
70 #define QB_SDQCR_TOK_SHIFT 16
71 #define QB_SDQCR_TOK_MASK 0xff
72 #define QB_SDQCR_SRC_SHIFT 0
73 #define QB_SDQCR_SRC_MASK 0xffff
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN 0xbb
78 #define QBMAN_EQCR_DCA_IDXMASK 0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
84 enum qbman_sdqcr_dct {
85 qbman_sdqcr_dct_null = 0,
86 qbman_sdqcr_dct_prio_ics,
87 qbman_sdqcr_dct_active_ics,
88 qbman_sdqcr_dct_active
91 enum qbman_sdqcr_fc {
92 qbman_sdqcr_fc_one = 0,
93 qbman_sdqcr_fc_up_to_3 = 1
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98 const struct qbman_eq_desc *d,
99 const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101 const struct qbman_eq_desc *d,
102 const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104 const struct qbman_eq_desc *d,
105 const struct dpaa2_fd *fd,
106 uint32_t *flags,
107 int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109 const struct qbman_eq_desc *d,
110 const struct dpaa2_fd *fd,
111 uint32_t *flags,
112 int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115 const struct qbman_eq_desc *d,
116 const struct dpaa2_fd *fd,
117 int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120 const struct qbman_eq_desc *d,
121 const struct dpaa2_fd *fd,
122 int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124 struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126 struct qbman_pull_desc *d);
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132 const struct qbman_release_desc *d,
133 const u64 *buffers,
134 unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136 const struct qbman_release_desc *d,
137 const u64 *buffers,
138 unsigned int num_buffers);
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142 const struct qbman_eq_desc *d,
143 const struct dpaa2_fd *fd)
144 = qbman_swp_enqueue_direct;
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147 const struct qbman_eq_desc *d,
148 const struct dpaa2_fd *fd,
149 uint32_t *flags,
150 int num_frames)
151 = qbman_swp_enqueue_multiple_direct;
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155 const struct qbman_eq_desc *d,
156 const struct dpaa2_fd *fd,
157 int num_frames)
158 = qbman_swp_enqueue_multiple_desc_direct;
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161 = qbman_swp_pull_direct;
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164 = qbman_swp_dqrr_next_direct;
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167 const struct qbman_release_desc *d,
168 const u64 *buffers,
169 unsigned int num_buffers)
170 = qbman_swp_release_direct;
172 /* Portal Access */
174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
176 return readl_relaxed(p->addr_cinh + offset);
179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180 u32 value)
182 writel_relaxed(value, p->addr_cinh + offset);
185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
187 return p->addr_cena + offset;
190 #define QBMAN_CINH_SWP_CFG 0xd00
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT 16
194 #define SWP_CFG_CPBS_SHIFT 15
195 #define SWP_CFG_WN_SHIFT 14
196 #define SWP_CFG_RPM_SHIFT 12
197 #define SWP_CFG_DCM_SHIFT 10
198 #define SWP_CFG_EPM_SHIFT 8
199 #define SWP_CFG_VPM_SHIFT 7
200 #define SWP_CFG_CPM_SHIFT 6
201 #define SWP_CFG_SD_SHIFT 5
202 #define SWP_CFG_SP_SHIFT 4
203 #define SWP_CFG_SE_SHIFT 3
204 #define SWP_CFG_DP_SHIFT 2
205 #define SWP_CFG_DE_SHIFT 1
206 #define SWP_CFG_EP_SHIFT 0
208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
209 u8 epm, int sd, int sp, int se,
210 int dp, int de, int ep)
212 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213 est << SWP_CFG_EST_SHIFT |
214 wn << SWP_CFG_WN_SHIFT |
215 rpm << SWP_CFG_RPM_SHIFT |
216 dcm << SWP_CFG_DCM_SHIFT |
217 epm << SWP_CFG_EPM_SHIFT |
218 sd << SWP_CFG_SD_SHIFT |
219 sp << SWP_CFG_SP_SHIFT |
220 se << SWP_CFG_SE_SHIFT |
221 dp << SWP_CFG_DP_SHIFT |
222 de << SWP_CFG_DE_SHIFT |
223 ep << SWP_CFG_EP_SHIFT);
226 #define QMAN_RT_MODE 0x00000100
228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
230 /* 'first' is included, 'last' is excluded */
231 if (first <= last)
232 return last - first;
233 else
234 return (2 * ringsize) - (first - last);
238 * qbman_swp_init() - Create a functional object representing the given
239 * QBMan portal descriptor.
240 * @d: the given qbman swp descriptor
242 * Return qbman_swp portal for success, NULL if the object cannot
243 * be created.
245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
247 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248 u32 reg;
249 u32 mask_size;
250 u32 eqcr_pi;
252 if (!p)
253 return NULL;
255 spin_lock_init(&p->access_spinlock);
257 p->desc = d;
258 p->mc.valid_bit = QB_VALID_BIT;
259 p->sdq = 0;
260 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264 p->mr.valid_bit = QB_VALID_BIT;
266 atomic_set(&p->vdq.available, 1);
267 p->vdq.valid_bit = QB_VALID_BIT;
268 p->dqrr.next_idx = 0;
269 p->dqrr.valid_bit = QB_VALID_BIT;
271 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272 p->dqrr.dqrr_size = 4;
273 p->dqrr.reset_bug = 1;
274 } else {
275 p->dqrr.dqrr_size = 8;
276 p->dqrr.reset_bug = 0;
279 p->addr_cena = d->cena_bar;
280 p->addr_cinh = d->cinh_bar;
282 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
284 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285 1, /* Writes Non-cacheable */
286 0, /* EQCR_CI stashing threshold */
287 3, /* RPM: RCR in array mode */
288 2, /* DCM: Discrete consumption ack */
289 2, /* EPM: EQCR in ring mode */
290 1, /* mem stashing drop enable enable */
291 1, /* mem stashing priority enable */
292 1, /* mem stashing enable */
293 1, /* dequeue stashing priority enable */
294 0, /* dequeue stashing enable enable */
295 0); /* EQCR_CI stashing priority enable */
296 } else {
297 memset(p->addr_cena, 0, 64 * 1024);
298 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299 1, /* Writes Non-cacheable */
300 1, /* EQCR_CI stashing threshold */
301 3, /* RPM: RCR in array mode */
302 2, /* DCM: Discrete consumption ack */
303 0, /* EPM: EQCR in ring mode */
304 1, /* mem stashing drop enable */
305 1, /* mem stashing priority enable */
306 1, /* mem stashing enable */
307 1, /* dequeue stashing priority enable */
308 0, /* dequeue stashing enable */
309 0); /* EQCR_CI stashing priority enable */
310 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
312 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
315 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317 if (!reg) {
318 pr_err("qbman: the portal is not enabled!\n");
319 kfree(p);
320 return NULL;
323 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
328 * SDQCR needs to be initialized to 0 when no channels are
329 * being dequeued from or else the QMan HW will indicate an
330 * error. The values that were calculated above will be
331 * applied when dequeues from a specific channel are enabled.
333 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
335 p->eqcr.pi_ring_size = 8;
336 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337 p->eqcr.pi_ring_size = 32;
338 qbman_swp_enqueue_ptr =
339 qbman_swp_enqueue_mem_back;
340 qbman_swp_enqueue_multiple_ptr =
341 qbman_swp_enqueue_multiple_mem_back;
342 qbman_swp_enqueue_multiple_desc_ptr =
343 qbman_swp_enqueue_multiple_desc_mem_back;
344 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346 qbman_swp_release_ptr = qbman_swp_release_mem_back;
349 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355 & p->eqcr.pi_ci_mask;
356 p->eqcr.available = p->eqcr.pi_ring_size;
358 return p;
362 * qbman_swp_finish() - Create and destroy a functional object representing
363 * the given QBMan portal descriptor.
364 * @p: the qbman_swp object to be destroyed
366 void qbman_swp_finish(struct qbman_swp *p)
368 kfree(p);
372 * qbman_swp_interrupt_read_status()
373 * @p: the given software portal
375 * Return the value in the SWP_ISR register.
377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
379 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
383 * qbman_swp_interrupt_clear_status()
384 * @p: the given software portal
385 * @mask: The mask to clear in SWP_ISR register
387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
389 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394 * @p: the given software portal
396 * Return the value in the SWP_IER register.
398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
400 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405 * @p: the given software portal
406 * @mask: The mask of bits to enable in SWP_IER
408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
410 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415 * @p: the given software portal object
417 * Return the value in the SWP_IIR register.
419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
421 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426 * @p: the given software portal object
427 * @inhibit: whether to inhibit the IRQs
429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
431 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
435 * Different management commands all use this common base layer of code to issue
436 * commands and poll for results.
440 * Returns a pointer to where the caller should fill in their management command
441 * (caller should ignore the verb byte)
443 void *qbman_swp_mc_start(struct qbman_swp *p)
445 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447 else
448 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
452 * Commits merges in the caller-supplied command verb (which should not include
453 * the valid-bit) and submits the command to hardware
455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
457 u8 *v = cmd;
459 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460 dma_wmb();
461 *v = cmd_verb | p->mc.valid_bit;
462 } else {
463 *v = cmd_verb | p->mc.valid_bit;
464 dma_wmb();
465 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
470 * Checks for a completed response (returns non-NULL if only if the response
471 * is complete).
473 void *qbman_swp_mc_result(struct qbman_swp *p)
475 u32 *ret, verb;
477 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479 /* Remove the valid-bit - command completed if the rest
480 * is non-zero.
482 verb = ret[0] & ~QB_VALID_BIT;
483 if (!verb)
484 return NULL;
485 p->mc.valid_bit ^= QB_VALID_BIT;
486 } else {
487 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488 /* Command completed if the valid bit is toggled */
489 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490 return NULL;
491 /* Command completed if the rest is non-zero */
492 verb = ret[0] & ~QB_VALID_BIT;
493 if (!verb)
494 return NULL;
495 p->mr.valid_bit ^= QB_VALID_BIT;
498 return ret;
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
502 enum qb_enqueue_commands {
503 enqueue_empty = 0,
504 enqueue_response_always = 1,
505 enqueue_rejects_to_fq = 2
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515 * default/starting state.
517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
519 memset(d, 0, sizeof(*d));
523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524 * @d: the enqueue descriptor.
525 * @respond_success: 1 = enqueue with response always; 0 = enqueue with
526 * rejections returned on a FQ.
528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
530 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531 if (respond_success)
532 d->verb |= enqueue_response_always;
533 else
534 d->verb |= enqueue_rejects_to_fq;
538 * Exactly one of the following descriptor "targets" should be set. (Calling any
539 * one of these will replace the effect of any prior call to one of these.)
540 * -enqueue to a frame queue
541 * -enqueue to a queuing destination
545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546 * @d: the enqueue descriptor
547 * @fqid: the id of the frame queue to be enqueued
549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
551 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552 d->tgtid = cpu_to_le32(fqid);
556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557 * @d: the enqueue descriptor
558 * @qdid: the id of the queuing destination to be enqueued
559 * @qd_bin: the queuing destination bin
560 * @qd_prio: the queuing destination priority
562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563 u32 qd_bin, u32 qd_prio)
565 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566 d->tgtid = cpu_to_le32(qdid);
567 d->qdbin = cpu_to_le16(qd_bin);
568 d->qpri = qd_prio;
571 #define EQAR_IDX(eqar) ((eqar) & 0x7)
572 #define EQAR_VB(eqar) ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
575 #define QB_RT_BIT ((u32)0x100)
577 * qbman_swp_enqueue_direct() - Issue an enqueue command
578 * @s: the software portal used for enqueue
579 * @d: the enqueue descriptor
580 * @fd: the frame descriptor to be enqueued
582 * Please note that 'fd' should only be NULL if the "action" of the
583 * descriptor is "orp_hole" or "orp_nesn".
585 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
587 static
588 int qbman_swp_enqueue_direct(struct qbman_swp *s,
589 const struct qbman_eq_desc *d,
590 const struct dpaa2_fd *fd)
592 int flags = 0;
593 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
595 if (ret >= 0)
596 ret = 0;
597 else
598 ret = -EBUSY;
599 return ret;
603 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
604 * @s: the software portal used for enqueue
605 * @d: the enqueue descriptor
606 * @fd: the frame descriptor to be enqueued
608 * Please note that 'fd' should only be NULL if the "action" of the
609 * descriptor is "orp_hole" or "orp_nesn".
611 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
613 static
614 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
615 const struct qbman_eq_desc *d,
616 const struct dpaa2_fd *fd)
618 int flags = 0;
619 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
621 if (ret >= 0)
622 ret = 0;
623 else
624 ret = -EBUSY;
625 return ret;
629 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
630 * using one enqueue descriptor
631 * @s: the software portal used for enqueue
632 * @d: the enqueue descriptor
633 * @fd: table pointer of frame descriptor table to be enqueued
634 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
635 * @num_frames: number of fd to be enqueued
637 * Return the number of fd enqueued, or a negative error number.
639 static
640 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
641 const struct qbman_eq_desc *d,
642 const struct dpaa2_fd *fd,
643 uint32_t *flags,
644 int num_frames)
646 uint32_t *p = NULL;
647 const uint32_t *cl = (uint32_t *)d;
648 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
649 int i, num_enqueued = 0;
651 spin_lock(&s->access_spinlock);
652 half_mask = (s->eqcr.pi_ci_mask>>1);
653 full_mask = s->eqcr.pi_ci_mask;
655 if (!s->eqcr.available) {
656 eqcr_ci = s->eqcr.ci;
657 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
658 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
659 s->eqcr.ci &= full_mask;
661 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
662 eqcr_ci, s->eqcr.ci);
663 if (!s->eqcr.available) {
664 spin_unlock(&s->access_spinlock);
665 return 0;
669 eqcr_pi = s->eqcr.pi;
670 num_enqueued = (s->eqcr.available < num_frames) ?
671 s->eqcr.available : num_frames;
672 s->eqcr.available -= num_enqueued;
673 /* Fill in the EQCR ring */
674 for (i = 0; i < num_enqueued; i++) {
675 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
676 /* Skip copying the verb */
677 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
678 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
679 &fd[i], sizeof(*fd));
680 eqcr_pi++;
683 dma_wmb();
685 /* Set the verb byte, have to substitute in the valid-bit */
686 eqcr_pi = s->eqcr.pi;
687 for (i = 0; i < num_enqueued; i++) {
688 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
689 p[0] = cl[0] | s->eqcr.pi_vb;
690 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
691 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
693 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
694 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
696 eqcr_pi++;
697 if (!(eqcr_pi & half_mask))
698 s->eqcr.pi_vb ^= QB_VALID_BIT;
701 /* Flush all the cacheline without load/store in between */
702 eqcr_pi = s->eqcr.pi;
703 for (i = 0; i < num_enqueued; i++)
704 eqcr_pi++;
705 s->eqcr.pi = eqcr_pi & full_mask;
706 spin_unlock(&s->access_spinlock);
708 return num_enqueued;
712 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
713 * using one enqueue descriptor
714 * @s: the software portal used for enqueue
715 * @d: the enqueue descriptor
716 * @fd: table pointer of frame descriptor table to be enqueued
717 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
718 * @num_frames: number of fd to be enqueued
720 * Return the number of fd enqueued, or a negative error number.
722 static
723 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
724 const struct qbman_eq_desc *d,
725 const struct dpaa2_fd *fd,
726 uint32_t *flags,
727 int num_frames)
729 uint32_t *p = NULL;
730 const uint32_t *cl = (uint32_t *)(d);
731 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
732 int i, num_enqueued = 0;
733 unsigned long irq_flags;
735 spin_lock(&s->access_spinlock);
736 local_irq_save(irq_flags);
738 half_mask = (s->eqcr.pi_ci_mask>>1);
739 full_mask = s->eqcr.pi_ci_mask;
740 if (!s->eqcr.available) {
741 eqcr_ci = s->eqcr.ci;
742 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
743 s->eqcr.ci = *p & full_mask;
744 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
745 eqcr_ci, s->eqcr.ci);
746 if (!s->eqcr.available) {
747 local_irq_restore(irq_flags);
748 spin_unlock(&s->access_spinlock);
749 return 0;
753 eqcr_pi = s->eqcr.pi;
754 num_enqueued = (s->eqcr.available < num_frames) ?
755 s->eqcr.available : num_frames;
756 s->eqcr.available -= num_enqueued;
757 /* Fill in the EQCR ring */
758 for (i = 0; i < num_enqueued; i++) {
759 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
760 /* Skip copying the verb */
761 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
762 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
763 &fd[i], sizeof(*fd));
764 eqcr_pi++;
767 /* Set the verb byte, have to substitute in the valid-bit */
768 eqcr_pi = s->eqcr.pi;
769 for (i = 0; i < num_enqueued; i++) {
770 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
771 p[0] = cl[0] | s->eqcr.pi_vb;
772 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
773 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
775 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
776 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
778 eqcr_pi++;
779 if (!(eqcr_pi & half_mask))
780 s->eqcr.pi_vb ^= QB_VALID_BIT;
782 s->eqcr.pi = eqcr_pi & full_mask;
784 dma_wmb();
785 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
786 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
787 local_irq_restore(irq_flags);
788 spin_unlock(&s->access_spinlock);
790 return num_enqueued;
794 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
795 * using multiple enqueue descriptor
796 * @s: the software portal used for enqueue
797 * @d: table of minimal enqueue descriptor
798 * @fd: table pointer of frame descriptor table to be enqueued
799 * @num_frames: number of fd to be enqueued
801 * Return the number of fd enqueued, or a negative error number.
803 static
804 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
805 const struct qbman_eq_desc *d,
806 const struct dpaa2_fd *fd,
807 int num_frames)
809 uint32_t *p;
810 const uint32_t *cl;
811 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
812 int i, num_enqueued = 0;
814 half_mask = (s->eqcr.pi_ci_mask>>1);
815 full_mask = s->eqcr.pi_ci_mask;
816 if (!s->eqcr.available) {
817 eqcr_ci = s->eqcr.ci;
818 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
819 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
820 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
821 eqcr_ci, s->eqcr.ci);
822 if (!s->eqcr.available)
823 return 0;
826 eqcr_pi = s->eqcr.pi;
827 num_enqueued = (s->eqcr.available < num_frames) ?
828 s->eqcr.available : num_frames;
829 s->eqcr.available -= num_enqueued;
830 /* Fill in the EQCR ring */
831 for (i = 0; i < num_enqueued; i++) {
832 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
833 cl = (uint32_t *)(&d[i]);
834 /* Skip copying the verb */
835 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
836 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
837 &fd[i], sizeof(*fd));
838 eqcr_pi++;
841 dma_wmb();
843 /* Set the verb byte, have to substitute in the valid-bit */
844 eqcr_pi = s->eqcr.pi;
845 for (i = 0; i < num_enqueued; i++) {
846 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
847 cl = (uint32_t *)(&d[i]);
848 p[0] = cl[0] | s->eqcr.pi_vb;
849 eqcr_pi++;
850 if (!(eqcr_pi & half_mask))
851 s->eqcr.pi_vb ^= QB_VALID_BIT;
854 /* Flush all the cacheline without load/store in between */
855 eqcr_pi = s->eqcr.pi;
856 for (i = 0; i < num_enqueued; i++)
857 eqcr_pi++;
858 s->eqcr.pi = eqcr_pi & full_mask;
860 return num_enqueued;
864 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
865 * using multiple enqueue descriptor
866 * @s: the software portal used for enqueue
867 * @d: table of minimal enqueue descriptor
868 * @fd: table pointer of frame descriptor table to be enqueued
869 * @num_frames: number of fd to be enqueued
871 * Return the number of fd enqueued, or a negative error number.
873 static
874 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
875 const struct qbman_eq_desc *d,
876 const struct dpaa2_fd *fd,
877 int num_frames)
879 uint32_t *p;
880 const uint32_t *cl;
881 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
882 int i, num_enqueued = 0;
884 half_mask = (s->eqcr.pi_ci_mask>>1);
885 full_mask = s->eqcr.pi_ci_mask;
886 if (!s->eqcr.available) {
887 eqcr_ci = s->eqcr.ci;
888 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
889 s->eqcr.ci = *p & full_mask;
890 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
891 eqcr_ci, s->eqcr.ci);
892 if (!s->eqcr.available)
893 return 0;
896 eqcr_pi = s->eqcr.pi;
897 num_enqueued = (s->eqcr.available < num_frames) ?
898 s->eqcr.available : num_frames;
899 s->eqcr.available -= num_enqueued;
900 /* Fill in the EQCR ring */
901 for (i = 0; i < num_enqueued; i++) {
902 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
903 cl = (uint32_t *)(&d[i]);
904 /* Skip copying the verb */
905 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
906 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
907 &fd[i], sizeof(*fd));
908 eqcr_pi++;
911 /* Set the verb byte, have to substitute in the valid-bit */
912 eqcr_pi = s->eqcr.pi;
913 for (i = 0; i < num_enqueued; i++) {
914 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
915 cl = (uint32_t *)(&d[i]);
916 p[0] = cl[0] | s->eqcr.pi_vb;
917 eqcr_pi++;
918 if (!(eqcr_pi & half_mask))
919 s->eqcr.pi_vb ^= QB_VALID_BIT;
922 s->eqcr.pi = eqcr_pi & full_mask;
924 dma_wmb();
925 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
926 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
928 return num_enqueued;
931 /* Static (push) dequeue */
934 * qbman_swp_push_get() - Get the push dequeue setup
935 * @s: the software portal object
936 * @channel_idx: the channel index to query
937 * @enabled: returned boolean to show whether the push dequeue is enabled
938 * for the given channel
940 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
942 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
944 WARN_ON(channel_idx > 15);
945 *enabled = src | (1 << channel_idx);
949 * qbman_swp_push_set() - Enable or disable push dequeue
950 * @s: the software portal object
951 * @channel_idx: the channel index (0 to 15)
952 * @enable: enable or disable push dequeue
954 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
956 u16 dqsrc;
958 WARN_ON(channel_idx > 15);
959 if (enable)
960 s->sdq |= 1 << channel_idx;
961 else
962 s->sdq &= ~(1 << channel_idx);
964 /* Read make the complete src map. If no channels are enabled
965 * the SDQCR must be 0 or else QMan will assert errors
967 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
968 if (dqsrc != 0)
969 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
970 else
971 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
974 #define QB_VDQCR_VERB_DCT_SHIFT 0
975 #define QB_VDQCR_VERB_DT_SHIFT 2
976 #define QB_VDQCR_VERB_RLS_SHIFT 4
977 #define QB_VDQCR_VERB_WAE_SHIFT 5
979 enum qb_pull_dt_e {
980 qb_pull_dt_channel,
981 qb_pull_dt_workqueue,
982 qb_pull_dt_framequeue
986 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
987 * default/starting state
988 * @d: the pull dequeue descriptor to be cleared
990 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
992 memset(d, 0, sizeof(*d));
996 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
997 * @d: the pull dequeue descriptor to be set
998 * @storage: the pointer of the memory to store the dequeue result
999 * @storage_phys: the physical address of the storage memory
1000 * @stash: to indicate whether write allocate is enabled
1002 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1003 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1004 * produced to the given memory location (using the DMA address which
1005 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1006 * those writes to main-memory express a cache-warming attribute.
1008 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1009 struct dpaa2_dq *storage,
1010 dma_addr_t storage_phys,
1011 int stash)
1013 /* save the virtual address */
1014 d->rsp_addr_virt = (u64)(uintptr_t)storage;
1016 if (!storage) {
1017 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1018 return;
1020 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1021 if (stash)
1022 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1023 else
1024 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1026 d->rsp_addr = cpu_to_le64(storage_phys);
1030 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1031 * @d: the pull dequeue descriptor to be set
1032 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1034 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1036 d->numf = numframes - 1;
1040 * Exactly one of the following descriptor "actions" should be set. (Calling any
1041 * one of these will replace the effect of any prior call to one of these.)
1042 * - pull dequeue from the given frame queue (FQ)
1043 * - pull dequeue from any FQ in the given work queue (WQ)
1044 * - pull dequeue from any FQ in any WQ in the given channel
1048 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1049 * @d: the pull dequeue descriptor to be set
1050 * @fqid: the frame queue index of the given FQ
1052 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1054 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1055 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1056 d->dq_src = cpu_to_le32(fqid);
1060 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1061 * @d: the pull dequeue descriptor to be set
1062 * @wqid: composed of channel id and wqid within the channel
1063 * @dct: the dequeue command type
1065 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1066 enum qbman_pull_type_e dct)
1068 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1069 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1070 d->dq_src = cpu_to_le32(wqid);
1074 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1075 * dequeues
1076 * @d: the pull dequeue descriptor to be set
1077 * @chid: the channel id to be dequeued
1078 * @dct: the dequeue command type
1080 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1081 enum qbman_pull_type_e dct)
1083 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1084 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1085 d->dq_src = cpu_to_le32(chid);
1089 * qbman_swp_pull_direct() - Issue the pull dequeue command
1090 * @s: the software portal object
1091 * @d: the software portal descriptor which has been configured with
1092 * the set of qbman_pull_desc_set_*() calls
1094 * Return 0 for success, and -EBUSY if the software portal is not ready
1095 * to do pull dequeue.
1097 static
1098 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1100 struct qbman_pull_desc *p;
1102 if (!atomic_dec_and_test(&s->vdq.available)) {
1103 atomic_inc(&s->vdq.available);
1104 return -EBUSY;
1106 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1107 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1108 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1109 else
1110 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1111 p->numf = d->numf;
1112 p->tok = QMAN_DQ_TOKEN_VALID;
1113 p->dq_src = d->dq_src;
1114 p->rsp_addr = d->rsp_addr;
1115 p->rsp_addr_virt = d->rsp_addr_virt;
1116 dma_wmb();
1117 /* Set the verb byte, have to substitute in the valid-bit */
1118 p->verb = d->verb | s->vdq.valid_bit;
1119 s->vdq.valid_bit ^= QB_VALID_BIT;
1121 return 0;
1125 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1126 * @s: the software portal object
1127 * @d: the software portal descriptor which has been configured with
1128 * the set of qbman_pull_desc_set_*() calls
1130 * Return 0 for success, and -EBUSY if the software portal is not ready
1131 * to do pull dequeue.
1133 static
1134 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1136 struct qbman_pull_desc *p;
1138 if (!atomic_dec_and_test(&s->vdq.available)) {
1139 atomic_inc(&s->vdq.available);
1140 return -EBUSY;
1142 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1143 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1144 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1145 else
1146 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1147 p->numf = d->numf;
1148 p->tok = QMAN_DQ_TOKEN_VALID;
1149 p->dq_src = d->dq_src;
1150 p->rsp_addr = d->rsp_addr;
1151 p->rsp_addr_virt = d->rsp_addr_virt;
1153 /* Set the verb byte, have to substitute in the valid-bit */
1154 p->verb = d->verb | s->vdq.valid_bit;
1155 s->vdq.valid_bit ^= QB_VALID_BIT;
1156 dma_wmb();
1157 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1159 return 0;
1162 #define QMAN_DQRR_PI_MASK 0xf
1165 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1166 * @s: the software portal object
1168 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1169 * only once, so repeated calls can return a sequence of DQRR entries, without
1170 * requiring they be consumed immediately or in any particular order.
1172 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1174 u32 verb;
1175 u32 response_verb;
1176 u32 flags;
1177 struct dpaa2_dq *p;
1179 /* Before using valid-bit to detect if something is there, we have to
1180 * handle the case of the DQRR reset bug...
1182 if (unlikely(s->dqrr.reset_bug)) {
1184 * We pick up new entries by cache-inhibited producer index,
1185 * which means that a non-coherent mapping would require us to
1186 * invalidate and read *only* once that PI has indicated that
1187 * there's an entry here. The first trip around the DQRR ring
1188 * will be much less efficient than all subsequent trips around
1189 * it...
1191 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1192 QMAN_DQRR_PI_MASK;
1194 /* there are new entries if pi != next_idx */
1195 if (pi == s->dqrr.next_idx)
1196 return NULL;
1199 * if next_idx is/was the last ring index, and 'pi' is
1200 * different, we can disable the workaround as all the ring
1201 * entries have now been DMA'd to so valid-bit checking is
1202 * repaired. Note: this logic needs to be based on next_idx
1203 * (which increments one at a time), rather than on pi (which
1204 * can burst and wrap-around between our snapshots of it).
1206 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1207 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1208 s->dqrr.next_idx, pi);
1209 s->dqrr.reset_bug = 0;
1211 prefetch(qbman_get_cmd(s,
1212 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1215 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1216 verb = p->dq.verb;
1219 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1220 * in the DQRR reset bug workaround, we shouldn't need to skip these
1221 * check, because we've already determined that a new entry is available
1222 * and we've invalidated the cacheline before reading it, so the
1223 * valid-bit behaviour is repaired and should tell us what we already
1224 * knew from reading PI.
1226 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1227 prefetch(qbman_get_cmd(s,
1228 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1229 return NULL;
1232 * There's something there. Move "next_idx" attention to the next ring
1233 * entry (and prefetch it) before returning what we found.
1235 s->dqrr.next_idx++;
1236 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1237 if (!s->dqrr.next_idx)
1238 s->dqrr.valid_bit ^= QB_VALID_BIT;
1241 * If this is the final response to a volatile dequeue command
1242 * indicate that the vdq is available
1244 flags = p->dq.stat;
1245 response_verb = verb & QBMAN_RESULT_MASK;
1246 if ((response_verb == QBMAN_RESULT_DQ) &&
1247 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1248 (flags & DPAA2_DQ_STAT_EXPIRED))
1249 atomic_inc(&s->vdq.available);
1251 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1253 return p;
1257 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1258 * @s: the software portal object
1260 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1261 * only once, so repeated calls can return a sequence of DQRR entries, without
1262 * requiring they be consumed immediately or in any particular order.
1264 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1266 u32 verb;
1267 u32 response_verb;
1268 u32 flags;
1269 struct dpaa2_dq *p;
1271 /* Before using valid-bit to detect if something is there, we have to
1272 * handle the case of the DQRR reset bug...
1274 if (unlikely(s->dqrr.reset_bug)) {
1276 * We pick up new entries by cache-inhibited producer index,
1277 * which means that a non-coherent mapping would require us to
1278 * invalidate and read *only* once that PI has indicated that
1279 * there's an entry here. The first trip around the DQRR ring
1280 * will be much less efficient than all subsequent trips around
1281 * it...
1283 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1284 QMAN_DQRR_PI_MASK;
1286 /* there are new entries if pi != next_idx */
1287 if (pi == s->dqrr.next_idx)
1288 return NULL;
1291 * if next_idx is/was the last ring index, and 'pi' is
1292 * different, we can disable the workaround as all the ring
1293 * entries have now been DMA'd to so valid-bit checking is
1294 * repaired. Note: this logic needs to be based on next_idx
1295 * (which increments one at a time), rather than on pi (which
1296 * can burst and wrap-around between our snapshots of it).
1298 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1299 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1300 s->dqrr.next_idx, pi);
1301 s->dqrr.reset_bug = 0;
1303 prefetch(qbman_get_cmd(s,
1304 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1307 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1308 verb = p->dq.verb;
1311 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1312 * in the DQRR reset bug workaround, we shouldn't need to skip these
1313 * check, because we've already determined that a new entry is available
1314 * and we've invalidated the cacheline before reading it, so the
1315 * valid-bit behaviour is repaired and should tell us what we already
1316 * knew from reading PI.
1318 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1319 prefetch(qbman_get_cmd(s,
1320 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1321 return NULL;
1324 * There's something there. Move "next_idx" attention to the next ring
1325 * entry (and prefetch it) before returning what we found.
1327 s->dqrr.next_idx++;
1328 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1329 if (!s->dqrr.next_idx)
1330 s->dqrr.valid_bit ^= QB_VALID_BIT;
1333 * If this is the final response to a volatile dequeue command
1334 * indicate that the vdq is available
1336 flags = p->dq.stat;
1337 response_verb = verb & QBMAN_RESULT_MASK;
1338 if ((response_verb == QBMAN_RESULT_DQ) &&
1339 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1340 (flags & DPAA2_DQ_STAT_EXPIRED))
1341 atomic_inc(&s->vdq.available);
1343 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1345 return p;
1349 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
1350 * qbman_swp_dqrr_next().
1351 * @s: the software portal object
1352 * @dq: the DQRR entry to be consumed
1354 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1356 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1360 * qbman_result_has_new_result() - Check and get the dequeue response from the
1361 * dq storage memory set in pull dequeue command
1362 * @s: the software portal object
1363 * @dq: the dequeue result read from the memory
1365 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1366 * dequeue result.
1368 * Only used for user-provided storage of dequeue results, not DQRR. For
1369 * efficiency purposes, the driver will perform any required endianness
1370 * conversion to ensure that the user's dequeue result storage is in host-endian
1371 * format. As such, once the user has called qbman_result_has_new_result() and
1372 * been returned a valid dequeue result, they should not call it again on
1373 * the same memory location (except of course if another dequeue command has
1374 * been executed to produce a new result to that location).
1376 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1378 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1379 return 0;
1382 * Set token to be 0 so we will detect change back to 1
1383 * next time the looping is traversed. Const is cast away here
1384 * as we want users to treat the dequeue responses as read only.
1386 ((struct dpaa2_dq *)dq)->dq.tok = 0;
1389 * Determine whether VDQCR is available based on whether the
1390 * current result is sitting in the first storage location of
1391 * the busy command.
1393 if (s->vdq.storage == dq) {
1394 s->vdq.storage = NULL;
1395 atomic_inc(&s->vdq.available);
1398 return 1;
1402 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1403 * default/starting state.
1404 * @d: the pull dequeue descriptor to be cleared
1406 void qbman_release_desc_clear(struct qbman_release_desc *d)
1408 memset(d, 0, sizeof(*d));
1409 d->verb = 1 << 5; /* Release Command Valid */
1413 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1414 * @d: the pull dequeue descriptor to be set
1415 * @bpid: the bpid value to be set
1417 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1419 d->bpid = cpu_to_le16(bpid);
1423 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1424 * interrupt source should be asserted after the release command is completed.
1425 * @d: the pull dequeue descriptor to be set
1426 * @enable: enable (1) or disable (0) value
1428 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1430 if (enable)
1431 d->verb |= 1 << 6;
1432 else
1433 d->verb &= ~(1 << 6);
1436 #define RAR_IDX(rar) ((rar) & 0x7)
1437 #define RAR_VB(rar) ((rar) & 0x80)
1438 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1441 * qbman_swp_release_direct() - Issue a buffer release command
1442 * @s: the software portal object
1443 * @d: the release descriptor
1444 * @buffers: a pointer pointing to the buffer address to be released
1445 * @num_buffers: number of buffers to be released, must be less than 8
1447 * Return 0 for success, -EBUSY if the release command ring is not ready.
1449 int qbman_swp_release_direct(struct qbman_swp *s,
1450 const struct qbman_release_desc *d,
1451 const u64 *buffers, unsigned int num_buffers)
1453 int i;
1454 struct qbman_release_desc *p;
1455 u32 rar;
1457 if (!num_buffers || (num_buffers > 7))
1458 return -EINVAL;
1460 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1461 if (!RAR_SUCCESS(rar))
1462 return -EBUSY;
1464 /* Start the release command */
1465 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1467 /* Copy the caller's buffer pointers to the command */
1468 for (i = 0; i < num_buffers; i++)
1469 p->buf[i] = cpu_to_le64(buffers[i]);
1470 p->bpid = d->bpid;
1473 * Set the verb byte, have to substitute in the valid-bit
1474 * and the number of buffers.
1476 dma_wmb();
1477 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1479 return 0;
1483 * qbman_swp_release_mem_back() - Issue a buffer release command
1484 * @s: the software portal object
1485 * @d: the release descriptor
1486 * @buffers: a pointer pointing to the buffer address to be released
1487 * @num_buffers: number of buffers to be released, must be less than 8
1489 * Return 0 for success, -EBUSY if the release command ring is not ready.
1491 int qbman_swp_release_mem_back(struct qbman_swp *s,
1492 const struct qbman_release_desc *d,
1493 const u64 *buffers, unsigned int num_buffers)
1495 int i;
1496 struct qbman_release_desc *p;
1497 u32 rar;
1499 if (!num_buffers || (num_buffers > 7))
1500 return -EINVAL;
1502 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1503 if (!RAR_SUCCESS(rar))
1504 return -EBUSY;
1506 /* Start the release command */
1507 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1509 /* Copy the caller's buffer pointers to the command */
1510 for (i = 0; i < num_buffers; i++)
1511 p->buf[i] = cpu_to_le64(buffers[i]);
1512 p->bpid = d->bpid;
1514 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1515 dma_wmb();
1516 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1517 RAR_IDX(rar) * 4, QMAN_RT_MODE);
1519 return 0;
1522 struct qbman_acquire_desc {
1523 u8 verb;
1524 u8 reserved;
1525 __le16 bpid;
1526 u8 num;
1527 u8 reserved2[59];
1530 struct qbman_acquire_rslt {
1531 u8 verb;
1532 u8 rslt;
1533 __le16 reserved;
1534 u8 num;
1535 u8 reserved2[3];
1536 __le64 buf[7];
1540 * qbman_swp_acquire() - Issue a buffer acquire command
1541 * @s: the software portal object
1542 * @bpid: the buffer pool index
1543 * @buffers: a pointer pointing to the acquired buffer addresses
1544 * @num_buffers: number of buffers to be acquired, must be less than 8
1546 * Return 0 for success, or negative error code if the acquire command
1547 * fails.
1549 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1550 unsigned int num_buffers)
1552 struct qbman_acquire_desc *p;
1553 struct qbman_acquire_rslt *r;
1554 int i;
1556 if (!num_buffers || (num_buffers > 7))
1557 return -EINVAL;
1559 /* Start the management command */
1560 p = qbman_swp_mc_start(s);
1562 if (!p)
1563 return -EBUSY;
1565 /* Encode the caller-provided attributes */
1566 p->bpid = cpu_to_le16(bpid);
1567 p->num = num_buffers;
1569 /* Complete the management command */
1570 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1571 if (unlikely(!r)) {
1572 pr_err("qbman: acquire from BPID %d failed, no response\n",
1573 bpid);
1574 return -EIO;
1577 /* Decode the outcome */
1578 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1580 /* Determine success or failure */
1581 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1582 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1583 bpid, r->rslt);
1584 return -EIO;
1587 WARN_ON(r->num > num_buffers);
1589 /* Copy the acquired buffers to the caller's array */
1590 for (i = 0; i < r->num; i++)
1591 buffers[i] = le64_to_cpu(r->buf[i]);
1593 return (int)r->num;
1596 struct qbman_alt_fq_state_desc {
1597 u8 verb;
1598 u8 reserved[3];
1599 __le32 fqid;
1600 u8 reserved2[56];
1603 struct qbman_alt_fq_state_rslt {
1604 u8 verb;
1605 u8 rslt;
1606 u8 reserved[62];
1609 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1611 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1612 u8 alt_fq_verb)
1614 struct qbman_alt_fq_state_desc *p;
1615 struct qbman_alt_fq_state_rslt *r;
1617 /* Start the management command */
1618 p = qbman_swp_mc_start(s);
1619 if (!p)
1620 return -EBUSY;
1622 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1624 /* Complete the management command */
1625 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1626 if (unlikely(!r)) {
1627 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1628 alt_fq_verb);
1629 return -EIO;
1632 /* Decode the outcome */
1633 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1635 /* Determine success or failure */
1636 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1637 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1638 fqid, r->verb, r->rslt);
1639 return -EIO;
1642 return 0;
1645 struct qbman_cdan_ctrl_desc {
1646 u8 verb;
1647 u8 reserved;
1648 __le16 ch;
1649 u8 we;
1650 u8 ctrl;
1651 __le16 reserved2;
1652 __le64 cdan_ctx;
1653 u8 reserved3[48];
1657 struct qbman_cdan_ctrl_rslt {
1658 u8 verb;
1659 u8 rslt;
1660 __le16 ch;
1661 u8 reserved[60];
1664 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1665 u8 we_mask, u8 cdan_en,
1666 u64 ctx)
1668 struct qbman_cdan_ctrl_desc *p = NULL;
1669 struct qbman_cdan_ctrl_rslt *r = NULL;
1671 /* Start the management command */
1672 p = qbman_swp_mc_start(s);
1673 if (!p)
1674 return -EBUSY;
1676 /* Encode the caller-provided attributes */
1677 p->ch = cpu_to_le16(channelid);
1678 p->we = we_mask;
1679 if (cdan_en)
1680 p->ctrl = 1;
1681 else
1682 p->ctrl = 0;
1683 p->cdan_ctx = cpu_to_le64(ctx);
1685 /* Complete the management command */
1686 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1687 if (unlikely(!r)) {
1688 pr_err("qbman: wqchan config failed, no response\n");
1689 return -EIO;
1692 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1694 /* Determine success or failure */
1695 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1696 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1697 channelid, r->rslt);
1698 return -EIO;
1701 return 0;
1704 #define QBMAN_RESPONSE_VERB_MASK 0x7f
1705 #define QBMAN_FQ_QUERY_NP 0x45
1706 #define QBMAN_BP_QUERY 0x32
1708 struct qbman_fq_query_desc {
1709 u8 verb;
1710 u8 reserved[3];
1711 __le32 fqid;
1712 u8 reserved2[56];
1715 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1716 struct qbman_fq_query_np_rslt *r)
1718 struct qbman_fq_query_desc *p;
1719 void *resp;
1721 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1722 if (!p)
1723 return -EBUSY;
1725 /* FQID is a 24 bit value */
1726 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1727 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1728 if (!resp) {
1729 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1730 fqid);
1731 return -EIO;
1733 *r = *(struct qbman_fq_query_np_rslt *)resp;
1734 /* Decode the outcome */
1735 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1737 /* Determine success or failure */
1738 if (r->rslt != QBMAN_MC_RSLT_OK) {
1739 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1740 p->fqid, r->rslt);
1741 return -EIO;
1744 return 0;
1747 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1749 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1752 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1754 return le32_to_cpu(r->byte_cnt);
1757 struct qbman_bp_query_desc {
1758 u8 verb;
1759 u8 reserved;
1760 __le16 bpid;
1761 u8 reserved2[60];
1764 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1765 struct qbman_bp_query_rslt *r)
1767 struct qbman_bp_query_desc *p;
1768 void *resp;
1770 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1771 if (!p)
1772 return -EBUSY;
1774 p->bpid = cpu_to_le16(bpid);
1775 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1776 if (!resp) {
1777 pr_err("qbman: Query BPID %d fields failed, no response\n",
1778 bpid);
1779 return -EIO;
1781 *r = *(struct qbman_bp_query_rslt *)resp;
1782 /* Decode the outcome */
1783 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1785 /* Determine success or failure */
1786 if (r->rslt != QBMAN_MC_RSLT_OK) {
1787 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1788 bpid, r->rslt);
1789 return -EIO;
1792 return 0;
1795 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1797 return le32_to_cpu(a->fill);