1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012 - 2014 Allwinner Tech
4 * Pan Nan <pannan@allwinnertech.com>
6 * Copyright (C) 2014 Maxime Ripard
7 * Maxime Ripard <maxime.ripard@free-electrons.com>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
23 #include <linux/spi/spi.h>
25 #define SUN6I_AUTOSUSPEND_TIMEOUT 2000
27 #define SUN6I_FIFO_DEPTH 128
28 #define SUN8I_FIFO_DEPTH 64
30 #define SUN6I_GBL_CTL_REG 0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
32 #define SUN6I_GBL_CTL_MASTER BIT(1)
33 #define SUN6I_GBL_CTL_TP BIT(7)
34 #define SUN6I_GBL_CTL_RST BIT(31)
36 #define SUN6I_TFR_CTL_REG 0x08
37 #define SUN6I_TFR_CTL_CPHA BIT(0)
38 #define SUN6I_TFR_CTL_CPOL BIT(1)
39 #define SUN6I_TFR_CTL_SPOL BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK 0x30
41 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
44 #define SUN6I_TFR_CTL_DHB BIT(8)
45 #define SUN6I_TFR_CTL_FBS BIT(12)
46 #define SUN6I_TFR_CTL_XCH BIT(31)
48 #define SUN6I_INT_CTL_REG 0x10
49 #define SUN6I_INT_CTL_RF_RDY BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF BIT(8)
52 #define SUN6I_INT_CTL_TC BIT(12)
54 #define SUN6I_INT_STA_REG 0x14
56 #define SUN6I_FIFO_CTL_REG 0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
58 #define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8)
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
60 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
62 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
63 #define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24)
64 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
66 #define SUN6I_FIFO_STA_REG 0x1c
67 #define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
68 #define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
70 #define SUN6I_CLK_CTL_REG 0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
72 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
74 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS BIT(12)
77 #define SUN6I_MAX_XFER_SIZE 0xffffff
79 #define SUN6I_BURST_CNT_REG 0x30
81 #define SUN6I_XMIT_CNT_REG 0x34
83 #define SUN6I_BURST_CTL_CNT_REG 0x38
85 #define SUN6I_TXDATA_REG 0x200
86 #define SUN6I_RXDATA_REG 0x300
89 struct spi_master
*master
;
90 void __iomem
*base_addr
;
91 dma_addr_t dma_addr_rx
;
92 dma_addr_t dma_addr_tx
;
95 struct reset_control
*rstc
;
97 struct completion done
;
102 unsigned long fifo_depth
;
105 static inline u32
sun6i_spi_read(struct sun6i_spi
*sspi
, u32 reg
)
107 return readl(sspi
->base_addr
+ reg
);
110 static inline void sun6i_spi_write(struct sun6i_spi
*sspi
, u32 reg
, u32 value
)
112 writel(value
, sspi
->base_addr
+ reg
);
115 static inline u32
sun6i_spi_get_rx_fifo_count(struct sun6i_spi
*sspi
)
117 u32 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
119 return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK
, reg
);
122 static inline u32
sun6i_spi_get_tx_fifo_count(struct sun6i_spi
*sspi
)
124 u32 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
126 return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK
, reg
);
129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi
*sspi
, u32 mask
)
131 u32 reg
= sun6i_spi_read(sspi
, SUN6I_INT_CTL_REG
);
134 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi
*sspi
)
142 /* See how much data is available */
143 len
= sun6i_spi_get_rx_fifo_count(sspi
);
146 byte
= readb(sspi
->base_addr
+ SUN6I_RXDATA_REG
);
148 *sspi
->rx_buf
++ = byte
;
152 static inline void sun6i_spi_fill_fifo(struct sun6i_spi
*sspi
)
158 /* See how much data we can fit */
159 cnt
= sspi
->fifo_depth
- sun6i_spi_get_tx_fifo_count(sspi
);
161 len
= min((int)cnt
, sspi
->len
);
164 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
165 writeb(byte
, sspi
->base_addr
+ SUN6I_TXDATA_REG
);
170 static void sun6i_spi_set_cs(struct spi_device
*spi
, bool enable
)
172 struct sun6i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
175 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
176 reg
&= ~SUN6I_TFR_CTL_CS_MASK
;
177 reg
|= SUN6I_TFR_CTL_CS(spi
->chip_select
);
180 reg
|= SUN6I_TFR_CTL_CS_LEVEL
;
182 reg
&= ~SUN6I_TFR_CTL_CS_LEVEL
;
184 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
187 static size_t sun6i_spi_max_transfer_size(struct spi_device
*spi
)
189 return SUN6I_MAX_XFER_SIZE
- 1;
192 static int sun6i_spi_prepare_dma(struct sun6i_spi
*sspi
,
193 struct spi_transfer
*tfr
)
195 struct dma_async_tx_descriptor
*rxdesc
, *txdesc
;
196 struct spi_master
*master
= sspi
->master
;
200 struct dma_slave_config rxconf
= {
201 .direction
= DMA_DEV_TO_MEM
,
202 .src_addr
= sspi
->dma_addr_rx
,
203 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
207 dmaengine_slave_config(master
->dma_rx
, &rxconf
);
209 rxdesc
= dmaengine_prep_slave_sg(master
->dma_rx
,
220 struct dma_slave_config txconf
= {
221 .direction
= DMA_MEM_TO_DEV
,
222 .dst_addr
= sspi
->dma_addr_tx
,
223 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
227 dmaengine_slave_config(master
->dma_tx
, &txconf
);
229 txdesc
= dmaengine_prep_slave_sg(master
->dma_tx
,
236 dmaengine_terminate_sync(master
->dma_rx
);
242 dmaengine_submit(rxdesc
);
243 dma_async_issue_pending(master
->dma_rx
);
247 dmaengine_submit(txdesc
);
248 dma_async_issue_pending(master
->dma_tx
);
254 static int sun6i_spi_transfer_one(struct spi_master
*master
,
255 struct spi_device
*spi
,
256 struct spi_transfer
*tfr
)
258 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
259 unsigned int mclk_rate
, div
, div_cdr1
, div_cdr2
, timeout
;
260 unsigned int start
, end
, tx_time
;
261 unsigned int trig_level
;
262 unsigned int tx_len
= 0, rx_len
= 0;
267 if (tfr
->len
> SUN6I_MAX_XFER_SIZE
)
270 reinit_completion(&sspi
->done
);
271 sspi
->tx_buf
= tfr
->tx_buf
;
272 sspi
->rx_buf
= tfr
->rx_buf
;
273 sspi
->len
= tfr
->len
;
274 use_dma
= master
->can_dma
? master
->can_dma(master
, spi
, tfr
) : false;
276 /* Clear pending interrupts */
277 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, ~0);
280 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
281 SUN6I_FIFO_CTL_RF_RST
| SUN6I_FIFO_CTL_TF_RST
);
287 * Setup FIFO interrupt trigger level
288 * Here we choose 3/4 of the full fifo depth, as it's
289 * the hardcoded value used in old generation of Allwinner
290 * SPI controller. (See spi-sun4i.c)
292 trig_level
= sspi
->fifo_depth
/ 4 * 3;
295 * Setup FIFO DMA request trigger level
296 * We choose 1/2 of the full fifo depth, that value will
297 * be used as DMA burst length.
299 trig_level
= sspi
->fifo_depth
/ 2;
302 reg
|= SUN6I_FIFO_CTL_TF_DRQ_EN
;
304 reg
|= SUN6I_FIFO_CTL_RF_DRQ_EN
;
307 reg
|= (trig_level
<< SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS
) |
308 (trig_level
<< SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS
);
310 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
, reg
);
313 * Setup the transfer control register: Chip Select,
316 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
318 if (spi
->mode
& SPI_CPOL
)
319 reg
|= SUN6I_TFR_CTL_CPOL
;
321 reg
&= ~SUN6I_TFR_CTL_CPOL
;
323 if (spi
->mode
& SPI_CPHA
)
324 reg
|= SUN6I_TFR_CTL_CPHA
;
326 reg
&= ~SUN6I_TFR_CTL_CPHA
;
328 if (spi
->mode
& SPI_LSB_FIRST
)
329 reg
|= SUN6I_TFR_CTL_FBS
;
331 reg
&= ~SUN6I_TFR_CTL_FBS
;
334 * If it's a TX only transfer, we don't want to fill the RX
335 * FIFO with bogus data
338 reg
&= ~SUN6I_TFR_CTL_DHB
;
341 reg
|= SUN6I_TFR_CTL_DHB
;
344 /* We want to control the chip select manually */
345 reg
|= SUN6I_TFR_CTL_CS_MANUAL
;
347 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
349 /* Ensure that we have a parent clock fast enough */
350 mclk_rate
= clk_get_rate(sspi
->mclk
);
351 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
352 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
353 mclk_rate
= clk_get_rate(sspi
->mclk
);
357 * Setup clock divider.
359 * We have two choices there. Either we can use the clock
360 * divide rate 1, which is calculated thanks to this formula:
361 * SPI_CLK = MOD_CLK / (2 ^ cdr)
362 * Or we can use CDR2, which is calculated with the formula:
363 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
364 * Wether we use the former or the latter is set through the
367 * First try CDR2, and if we can't reach the expected
368 * frequency, fall back to CDR1.
370 div_cdr1
= DIV_ROUND_UP(mclk_rate
, tfr
->speed_hz
);
371 div_cdr2
= DIV_ROUND_UP(div_cdr1
, 2);
372 if (div_cdr2
<= (SUN6I_CLK_CTL_CDR2_MASK
+ 1)) {
373 reg
= SUN6I_CLK_CTL_CDR2(div_cdr2
- 1) | SUN6I_CLK_CTL_DRS
;
374 tfr
->effective_speed_hz
= mclk_rate
/ (2 * div_cdr2
);
376 div
= min(SUN6I_CLK_CTL_CDR1_MASK
, order_base_2(div_cdr1
));
377 reg
= SUN6I_CLK_CTL_CDR1(div
);
378 tfr
->effective_speed_hz
= mclk_rate
/ (1 << div
);
381 sun6i_spi_write(sspi
, SUN6I_CLK_CTL_REG
, reg
);
383 /* Setup the transfer now... */
387 /* Setup the counters */
388 sun6i_spi_write(sspi
, SUN6I_BURST_CNT_REG
, tfr
->len
);
389 sun6i_spi_write(sspi
, SUN6I_XMIT_CNT_REG
, tx_len
);
390 sun6i_spi_write(sspi
, SUN6I_BURST_CTL_CNT_REG
, tx_len
);
393 /* Fill the TX FIFO */
394 sun6i_spi_fill_fifo(sspi
);
396 ret
= sun6i_spi_prepare_dma(sspi
, tfr
);
398 dev_warn(&master
->dev
,
399 "%s: prepare DMA failed, ret=%d",
400 dev_name(&spi
->dev
), ret
);
405 /* Enable the interrupts */
406 reg
= SUN6I_INT_CTL_TC
;
409 if (rx_len
> sspi
->fifo_depth
)
410 reg
|= SUN6I_INT_CTL_RF_RDY
;
411 if (tx_len
> sspi
->fifo_depth
)
412 reg
|= SUN6I_INT_CTL_TF_ERQ
;
415 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
417 /* Start the transfer */
418 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
419 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
| SUN6I_TFR_CTL_XCH
);
421 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
423 timeout
= wait_for_completion_timeout(&sspi
->done
,
424 msecs_to_jiffies(tx_time
));
427 dev_warn(&master
->dev
,
428 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
429 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
430 jiffies_to_msecs(end
- start
), tx_time
);
434 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, 0);
436 if (ret
&& use_dma
) {
437 dmaengine_terminate_sync(master
->dma_rx
);
438 dmaengine_terminate_sync(master
->dma_tx
);
444 static irqreturn_t
sun6i_spi_handler(int irq
, void *dev_id
)
446 struct sun6i_spi
*sspi
= dev_id
;
447 u32 status
= sun6i_spi_read(sspi
, SUN6I_INT_STA_REG
);
449 /* Transfer complete */
450 if (status
& SUN6I_INT_CTL_TC
) {
451 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TC
);
452 sun6i_spi_drain_fifo(sspi
);
453 complete(&sspi
->done
);
457 /* Receive FIFO 3/4 full */
458 if (status
& SUN6I_INT_CTL_RF_RDY
) {
459 sun6i_spi_drain_fifo(sspi
);
460 /* Only clear the interrupt _after_ draining the FIFO */
461 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_RF_RDY
);
465 /* Transmit FIFO 3/4 empty */
466 if (status
& SUN6I_INT_CTL_TF_ERQ
) {
467 sun6i_spi_fill_fifo(sspi
);
470 /* nothing left to transmit */
471 sun6i_spi_disable_interrupt(sspi
, SUN6I_INT_CTL_TF_ERQ
);
473 /* Only clear the interrupt _after_ re-seeding the FIFO */
474 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TF_ERQ
);
482 static int sun6i_spi_runtime_resume(struct device
*dev
)
484 struct spi_master
*master
= dev_get_drvdata(dev
);
485 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
488 ret
= clk_prepare_enable(sspi
->hclk
);
490 dev_err(dev
, "Couldn't enable AHB clock\n");
494 ret
= clk_prepare_enable(sspi
->mclk
);
496 dev_err(dev
, "Couldn't enable module clock\n");
500 ret
= reset_control_deassert(sspi
->rstc
);
502 dev_err(dev
, "Couldn't deassert the device from reset\n");
506 sun6i_spi_write(sspi
, SUN6I_GBL_CTL_REG
,
507 SUN6I_GBL_CTL_BUS_ENABLE
| SUN6I_GBL_CTL_MASTER
| SUN6I_GBL_CTL_TP
);
512 clk_disable_unprepare(sspi
->mclk
);
514 clk_disable_unprepare(sspi
->hclk
);
519 static int sun6i_spi_runtime_suspend(struct device
*dev
)
521 struct spi_master
*master
= dev_get_drvdata(dev
);
522 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
524 reset_control_assert(sspi
->rstc
);
525 clk_disable_unprepare(sspi
->mclk
);
526 clk_disable_unprepare(sspi
->hclk
);
531 static bool sun6i_spi_can_dma(struct spi_master
*master
,
532 struct spi_device
*spi
,
533 struct spi_transfer
*xfer
)
535 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
538 * If the number of spi words to transfer is less or equal than
539 * the fifo length we can just fill the fifo and wait for a single
540 * irq, so don't bother setting up dma
542 return xfer
->len
> sspi
->fifo_depth
;
545 static int sun6i_spi_probe(struct platform_device
*pdev
)
547 struct spi_master
*master
;
548 struct sun6i_spi
*sspi
;
549 struct resource
*mem
;
552 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun6i_spi
));
554 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
558 platform_set_drvdata(pdev
, master
);
559 sspi
= spi_master_get_devdata(master
);
561 sspi
->base_addr
= devm_platform_get_and_ioremap_resource(pdev
, 0, &mem
);
562 if (IS_ERR(sspi
->base_addr
)) {
563 ret
= PTR_ERR(sspi
->base_addr
);
564 goto err_free_master
;
567 irq
= platform_get_irq(pdev
, 0);
570 goto err_free_master
;
573 ret
= devm_request_irq(&pdev
->dev
, irq
, sun6i_spi_handler
,
574 0, "sun6i-spi", sspi
);
576 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
577 goto err_free_master
;
580 sspi
->master
= master
;
581 sspi
->fifo_depth
= (unsigned long)of_device_get_match_data(&pdev
->dev
);
583 master
->max_speed_hz
= 100 * 1000 * 1000;
584 master
->min_speed_hz
= 3 * 1000;
585 master
->use_gpio_descriptors
= true;
586 master
->set_cs
= sun6i_spi_set_cs
;
587 master
->transfer_one
= sun6i_spi_transfer_one
;
588 master
->num_chipselect
= 4;
589 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
590 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
591 master
->dev
.of_node
= pdev
->dev
.of_node
;
592 master
->auto_runtime_pm
= true;
593 master
->max_transfer_size
= sun6i_spi_max_transfer_size
;
595 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
596 if (IS_ERR(sspi
->hclk
)) {
597 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
598 ret
= PTR_ERR(sspi
->hclk
);
599 goto err_free_master
;
602 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
603 if (IS_ERR(sspi
->mclk
)) {
604 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
605 ret
= PTR_ERR(sspi
->mclk
);
606 goto err_free_master
;
609 init_completion(&sspi
->done
);
611 sspi
->rstc
= devm_reset_control_get_exclusive(&pdev
->dev
, NULL
);
612 if (IS_ERR(sspi
->rstc
)) {
613 dev_err(&pdev
->dev
, "Couldn't get reset controller\n");
614 ret
= PTR_ERR(sspi
->rstc
);
615 goto err_free_master
;
618 master
->dma_tx
= dma_request_chan(&pdev
->dev
, "tx");
619 if (IS_ERR(master
->dma_tx
)) {
620 /* Check tx to see if we need defer probing driver */
621 if (PTR_ERR(master
->dma_tx
) == -EPROBE_DEFER
) {
623 goto err_free_master
;
625 dev_warn(&pdev
->dev
, "Failed to request TX DMA channel\n");
626 master
->dma_tx
= NULL
;
629 master
->dma_rx
= dma_request_chan(&pdev
->dev
, "rx");
630 if (IS_ERR(master
->dma_rx
)) {
631 if (PTR_ERR(master
->dma_rx
) == -EPROBE_DEFER
) {
633 goto err_free_dma_tx
;
635 dev_warn(&pdev
->dev
, "Failed to request RX DMA channel\n");
636 master
->dma_rx
= NULL
;
639 if (master
->dma_tx
&& master
->dma_rx
) {
640 sspi
->dma_addr_tx
= mem
->start
+ SUN6I_TXDATA_REG
;
641 sspi
->dma_addr_rx
= mem
->start
+ SUN6I_RXDATA_REG
;
642 master
->can_dma
= sun6i_spi_can_dma
;
646 * This wake-up/shutdown pattern is to be able to have the
647 * device woken up, even if runtime_pm is disabled
649 ret
= sun6i_spi_runtime_resume(&pdev
->dev
);
651 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
652 goto err_free_dma_rx
;
655 pm_runtime_set_autosuspend_delay(&pdev
->dev
, SUN6I_AUTOSUSPEND_TIMEOUT
);
656 pm_runtime_use_autosuspend(&pdev
->dev
);
657 pm_runtime_set_active(&pdev
->dev
);
658 pm_runtime_enable(&pdev
->dev
);
660 ret
= devm_spi_register_master(&pdev
->dev
, master
);
662 dev_err(&pdev
->dev
, "cannot register SPI master\n");
669 pm_runtime_disable(&pdev
->dev
);
670 sun6i_spi_runtime_suspend(&pdev
->dev
);
673 dma_release_channel(master
->dma_rx
);
676 dma_release_channel(master
->dma_tx
);
678 spi_master_put(master
);
682 static int sun6i_spi_remove(struct platform_device
*pdev
)
684 struct spi_master
*master
= platform_get_drvdata(pdev
);
686 pm_runtime_force_suspend(&pdev
->dev
);
689 dma_release_channel(master
->dma_tx
);
691 dma_release_channel(master
->dma_rx
);
695 static const struct of_device_id sun6i_spi_match
[] = {
696 { .compatible
= "allwinner,sun6i-a31-spi", .data
= (void *)SUN6I_FIFO_DEPTH
},
697 { .compatible
= "allwinner,sun8i-h3-spi", .data
= (void *)SUN8I_FIFO_DEPTH
},
700 MODULE_DEVICE_TABLE(of
, sun6i_spi_match
);
702 static const struct dev_pm_ops sun6i_spi_pm_ops
= {
703 .runtime_resume
= sun6i_spi_runtime_resume
,
704 .runtime_suspend
= sun6i_spi_runtime_suspend
,
707 static struct platform_driver sun6i_spi_driver
= {
708 .probe
= sun6i_spi_probe
,
709 .remove
= sun6i_spi_remove
,
712 .of_match_table
= sun6i_spi_match
,
713 .pm
= &sun6i_spi_pm_ops
,
716 module_platform_driver(sun6i_spi_driver
);
718 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
719 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
720 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
721 MODULE_LICENSE("GPL");