Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / spi / spi-topcliff-pch.c
blobb459e369079f8128d83b152240ea37210f907db4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
22 /* Register offsets */
23 #define PCH_SPCR 0x00 /* SPI control register */
24 #define PCH_SPBRR 0x04 /* SPI baud rate register */
25 #define PCH_SPSR 0x08 /* SPI status register */
26 #define PCH_SPDWR 0x0C /* SPI write data register */
27 #define PCH_SPDRR 0x10 /* SPI read data register */
28 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
29 #define PCH_SRST 0x1C /* SPI reset register */
30 #define PCH_ADDRESS_SIZE 0x20
32 #define PCH_SPSR_TFD 0x000007C0
33 #define PCH_SPSR_RFD 0x0000F800
35 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
38 #define PCH_RX_THOLD 7
39 #define PCH_RX_THOLD_MAX 15
41 #define PCH_TX_THOLD 2
43 #define PCH_MAX_BAUDRATE 5000000
44 #define PCH_MAX_FIFO_DEPTH 16
46 #define STATUS_RUNNING 1
47 #define STATUS_EXITING 2
48 #define PCH_SLEEP_TIME 10
50 #define SSN_LOW 0x02U
51 #define SSN_HIGH 0x03U
52 #define SSN_NO_CONTROL 0x00U
53 #define PCH_MAX_CS 0xFF
54 #define PCI_DEVICE_ID_GE_SPI 0x8816
56 #define SPCR_SPE_BIT (1 << 0)
57 #define SPCR_MSTR_BIT (1 << 1)
58 #define SPCR_LSBF_BIT (1 << 4)
59 #define SPCR_CPHA_BIT (1 << 5)
60 #define SPCR_CPOL_BIT (1 << 6)
61 #define SPCR_TFIE_BIT (1 << 8)
62 #define SPCR_RFIE_BIT (1 << 9)
63 #define SPCR_FIE_BIT (1 << 10)
64 #define SPCR_ORIE_BIT (1 << 11)
65 #define SPCR_MDFIE_BIT (1 << 12)
66 #define SPCR_FICLR_BIT (1 << 24)
67 #define SPSR_TFI_BIT (1 << 0)
68 #define SPSR_RFI_BIT (1 << 1)
69 #define SPSR_FI_BIT (1 << 2)
70 #define SPSR_ORF_BIT (1 << 3)
71 #define SPBRR_SIZE_BIT (1 << 10)
73 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
76 #define SPCR_RFIC_FIELD 20
77 #define SPCR_TFIC_FIELD 16
79 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
83 #define PCH_CLOCK_HZ 50000000
84 #define PCH_MAX_SPBR 1023
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
92 * Set the number of SPI instance max
93 * Intel EG20T PCH : 1ch
94 * LAPIS Semiconductor ML7213 IOH : 2ch
95 * LAPIS Semiconductor ML7223 IOH : 1ch
96 * LAPIS Semiconductor ML7831 IOH : 1ch
98 #define PCH_SPI_MAX_DEV 2
100 #define PCH_BUF_SIZE 4096
101 #define PCH_DMA_TRANS_SIZE 12
103 static int use_dma = 1;
105 struct pch_spi_dma_ctrl {
106 struct dma_async_tx_descriptor *desc_tx;
107 struct dma_async_tx_descriptor *desc_rx;
108 struct pch_dma_slave param_tx;
109 struct pch_dma_slave param_rx;
110 struct dma_chan *chan_tx;
111 struct dma_chan *chan_rx;
112 struct scatterlist *sg_tx_p;
113 struct scatterlist *sg_rx_p;
114 struct scatterlist sg_tx;
115 struct scatterlist sg_rx;
116 int nent;
117 void *tx_buf_virt;
118 void *rx_buf_virt;
119 dma_addr_t tx_buf_dma;
120 dma_addr_t rx_buf_dma;
123 * struct pch_spi_data - Holds the SPI channel specific details
124 * @io_remap_addr: The remapped PCI base address
125 * @io_base_addr: Base address
126 * @master: Pointer to the SPI master structure
127 * @work: Reference to work queue handler
128 * @wait: Wait queue for waking up upon receiving an
129 * interrupt.
130 * @transfer_complete: Status of SPI Transfer
131 * @bcurrent_msg_processing: Status flag for message processing
132 * @lock: Lock for protecting this structure
133 * @queue: SPI Message queue
134 * @status: Status of the SPI driver
135 * @bpw_len: Length of data to be transferred in bits per
136 * word
137 * @transfer_active: Flag showing active transfer
138 * @tx_index: Transmit data count; for bookkeeping during
139 * transfer
140 * @rx_index: Receive data count; for bookkeeping during
141 * transfer
142 * @pkt_tx_buff: Buffer for data to be transmitted
143 * @pkt_rx_buff: Buffer for received data
144 * @n_curnt_chip: The chip number that this SPI driver currently
145 * operates on
146 * @current_chip: Reference to the current chip that this SPI
147 * driver currently operates on
148 * @current_msg: The current message that this SPI driver is
149 * handling
150 * @cur_trans: The current transfer that this SPI driver is
151 * handling
152 * @board_dat: Reference to the SPI device data structure
153 * @plat_dev: platform_device structure
154 * @ch: SPI channel number
155 * @dma: Local DMA information
156 * @use_dma: True if DMA is to be used
157 * @irq_reg_sts: Status of IRQ registration
158 * @save_total_len: Save length while data is being transferred
160 struct pch_spi_data {
161 void __iomem *io_remap_addr;
162 unsigned long io_base_addr;
163 struct spi_master *master;
164 struct work_struct work;
165 wait_queue_head_t wait;
166 u8 transfer_complete;
167 u8 bcurrent_msg_processing;
168 spinlock_t lock;
169 struct list_head queue;
170 u8 status;
171 u32 bpw_len;
172 u8 transfer_active;
173 u32 tx_index;
174 u32 rx_index;
175 u16 *pkt_tx_buff;
176 u16 *pkt_rx_buff;
177 u8 n_curnt_chip;
178 struct spi_device *current_chip;
179 struct spi_message *current_msg;
180 struct spi_transfer *cur_trans;
181 struct pch_spi_board_data *board_dat;
182 struct platform_device *plat_dev;
183 int ch;
184 struct pch_spi_dma_ctrl dma;
185 int use_dma;
186 u8 irq_reg_sts;
187 int save_total_len;
191 * struct pch_spi_board_data - Holds the SPI device specific details
192 * @pdev: Pointer to the PCI device
193 * @suspend_sts: Status of suspend
194 * @num: The number of SPI device instance
196 struct pch_spi_board_data {
197 struct pci_dev *pdev;
198 u8 suspend_sts;
199 int num;
202 struct pch_pd_dev_save {
203 int num;
204 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
205 struct pch_spi_board_data *board_dat;
208 static const struct pci_device_id pch_spi_pcidev_id[] = {
209 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
210 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
211 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
212 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
217 * pch_spi_writereg() - Performs register writes
218 * @master: Pointer to struct spi_master.
219 * @idx: Register offset.
220 * @val: Value to be written to register.
222 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
224 struct pch_spi_data *data = spi_master_get_devdata(master);
225 iowrite32(val, (data->io_remap_addr + idx));
229 * pch_spi_readreg() - Performs register reads
230 * @master: Pointer to struct spi_master.
231 * @idx: Register offset.
233 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
235 struct pch_spi_data *data = spi_master_get_devdata(master);
236 return ioread32(data->io_remap_addr + idx);
239 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
240 u32 set, u32 clr)
242 u32 tmp = pch_spi_readreg(master, idx);
243 tmp = (tmp & ~clr) | set;
244 pch_spi_writereg(master, idx, tmp);
247 static void pch_spi_set_master_mode(struct spi_master *master)
249 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
253 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
254 * @master: Pointer to struct spi_master.
256 static void pch_spi_clear_fifo(struct spi_master *master)
258 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
259 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
262 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
263 void __iomem *io_remap_addr)
265 u32 n_read, tx_index, rx_index, bpw_len;
266 u16 *pkt_rx_buffer, *pkt_tx_buff;
267 int read_cnt;
268 u32 reg_spcr_val;
269 void __iomem *spsr;
270 void __iomem *spdrr;
271 void __iomem *spdwr;
273 spsr = io_remap_addr + PCH_SPSR;
274 iowrite32(reg_spsr_val, spsr);
276 if (data->transfer_active) {
277 rx_index = data->rx_index;
278 tx_index = data->tx_index;
279 bpw_len = data->bpw_len;
280 pkt_rx_buffer = data->pkt_rx_buff;
281 pkt_tx_buff = data->pkt_tx_buff;
283 spdrr = io_remap_addr + PCH_SPDRR;
284 spdwr = io_remap_addr + PCH_SPDWR;
286 n_read = PCH_READABLE(reg_spsr_val);
288 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
289 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
290 if (tx_index < bpw_len)
291 iowrite32(pkt_tx_buff[tx_index++], spdwr);
294 /* disable RFI if not needed */
295 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
296 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
297 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
299 /* reset rx threshold */
300 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
301 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
303 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
306 /* update counts */
307 data->tx_index = tx_index;
308 data->rx_index = rx_index;
310 /* if transfer complete interrupt */
311 if (reg_spsr_val & SPSR_FI_BIT) {
312 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
313 /* disable interrupts */
314 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
315 PCH_ALL);
317 /* transfer is completed;
318 inform pch_spi_process_messages */
319 data->transfer_complete = true;
320 data->transfer_active = false;
321 wake_up(&data->wait);
322 } else {
323 dev_vdbg(&data->master->dev,
324 "%s : Transfer is not completed",
325 __func__);
332 * pch_spi_handler() - Interrupt handler
333 * @irq: The interrupt number.
334 * @dev_id: Pointer to struct pch_spi_board_data.
336 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
338 u32 reg_spsr_val;
339 void __iomem *spsr;
340 void __iomem *io_remap_addr;
341 irqreturn_t ret = IRQ_NONE;
342 struct pch_spi_data *data = dev_id;
343 struct pch_spi_board_data *board_dat = data->board_dat;
345 if (board_dat->suspend_sts) {
346 dev_dbg(&board_dat->pdev->dev,
347 "%s returning due to suspend\n", __func__);
348 return IRQ_NONE;
351 io_remap_addr = data->io_remap_addr;
352 spsr = io_remap_addr + PCH_SPSR;
354 reg_spsr_val = ioread32(spsr);
356 if (reg_spsr_val & SPSR_ORF_BIT) {
357 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
358 if (data->current_msg->complete) {
359 data->transfer_complete = true;
360 data->current_msg->status = -EIO;
361 data->current_msg->complete(data->current_msg->context);
362 data->bcurrent_msg_processing = false;
363 data->current_msg = NULL;
364 data->cur_trans = NULL;
368 if (data->use_dma)
369 return IRQ_NONE;
371 /* Check if the interrupt is for SPI device */
372 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
373 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
374 ret = IRQ_HANDLED;
377 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
378 __func__, ret);
380 return ret;
384 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
385 * @master: Pointer to struct spi_master.
386 * @speed_hz: Baud rate.
388 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
390 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
392 /* if baud rate is less than we can support limit it */
393 if (n_spbr > PCH_MAX_SPBR)
394 n_spbr = PCH_MAX_SPBR;
396 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
400 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
401 * @master: Pointer to struct spi_master.
402 * @bits_per_word: Bits per word for SPI transfer.
404 static void pch_spi_set_bits_per_word(struct spi_master *master,
405 u8 bits_per_word)
407 if (bits_per_word == 8)
408 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
409 else
410 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
414 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
415 * @spi: Pointer to struct spi_device.
417 static void pch_spi_setup_transfer(struct spi_device *spi)
419 u32 flags = 0;
421 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
422 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
423 spi->max_speed_hz);
424 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
426 /* set bits per word */
427 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
429 if (!(spi->mode & SPI_LSB_FIRST))
430 flags |= SPCR_LSBF_BIT;
431 if (spi->mode & SPI_CPOL)
432 flags |= SPCR_CPOL_BIT;
433 if (spi->mode & SPI_CPHA)
434 flags |= SPCR_CPHA_BIT;
435 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
436 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
438 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
439 pch_spi_clear_fifo(spi->master);
443 * pch_spi_reset() - Clears SPI registers
444 * @master: Pointer to struct spi_master.
446 static void pch_spi_reset(struct spi_master *master)
448 /* write 1 to reset SPI */
449 pch_spi_writereg(master, PCH_SRST, 0x1);
451 /* clear reset */
452 pch_spi_writereg(master, PCH_SRST, 0x0);
455 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
458 struct spi_transfer *transfer;
459 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
460 int retval;
461 unsigned long flags;
463 spin_lock_irqsave(&data->lock, flags);
464 /* validate Tx/Rx buffers and Transfer length */
465 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
466 if (!transfer->tx_buf && !transfer->rx_buf) {
467 dev_err(&pspi->dev,
468 "%s Tx and Rx buffer NULL\n", __func__);
469 retval = -EINVAL;
470 goto err_return_spinlock;
473 if (!transfer->len) {
474 dev_err(&pspi->dev, "%s Transfer length invalid\n",
475 __func__);
476 retval = -EINVAL;
477 goto err_return_spinlock;
480 dev_dbg(&pspi->dev,
481 "%s Tx/Rx buffer valid. Transfer length valid\n",
482 __func__);
484 spin_unlock_irqrestore(&data->lock, flags);
486 /* We won't process any messages if we have been asked to terminate */
487 if (data->status == STATUS_EXITING) {
488 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
489 retval = -ESHUTDOWN;
490 goto err_out;
493 /* If suspended ,return -EINVAL */
494 if (data->board_dat->suspend_sts) {
495 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
496 retval = -EINVAL;
497 goto err_out;
500 /* set status of message */
501 pmsg->actual_length = 0;
502 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
504 pmsg->status = -EINPROGRESS;
505 spin_lock_irqsave(&data->lock, flags);
506 /* add message to queue */
507 list_add_tail(&pmsg->queue, &data->queue);
508 spin_unlock_irqrestore(&data->lock, flags);
510 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
512 schedule_work(&data->work);
513 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
515 retval = 0;
517 err_out:
518 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
519 return retval;
520 err_return_spinlock:
521 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
522 spin_unlock_irqrestore(&data->lock, flags);
523 return retval;
526 static inline void pch_spi_select_chip(struct pch_spi_data *data,
527 struct spi_device *pspi)
529 if (data->current_chip != NULL) {
530 if (pspi->chip_select != data->n_curnt_chip) {
531 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
532 data->current_chip = NULL;
536 data->current_chip = pspi;
538 data->n_curnt_chip = data->current_chip->chip_select;
540 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
541 pch_spi_setup_transfer(pspi);
544 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
546 int size;
547 u32 n_writes;
548 int j;
549 struct spi_message *pmsg, *tmp;
550 const u8 *tx_buf;
551 const u16 *tx_sbuf;
553 /* set baud rate if needed */
554 if (data->cur_trans->speed_hz) {
555 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
556 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
559 /* set bits per word if needed */
560 if (data->cur_trans->bits_per_word &&
561 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
562 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
563 pch_spi_set_bits_per_word(data->master,
564 data->cur_trans->bits_per_word);
565 *bpw = data->cur_trans->bits_per_word;
566 } else {
567 *bpw = data->current_msg->spi->bits_per_word;
570 /* reset Tx/Rx index */
571 data->tx_index = 0;
572 data->rx_index = 0;
574 data->bpw_len = data->cur_trans->len / (*bpw / 8);
576 /* find alloc size */
577 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
579 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
580 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
581 if (data->pkt_tx_buff != NULL) {
582 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
583 if (!data->pkt_rx_buff)
584 kfree(data->pkt_tx_buff);
587 if (!data->pkt_rx_buff) {
588 /* flush queue and set status of all transfers to -ENOMEM */
589 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
590 pmsg->status = -ENOMEM;
592 if (pmsg->complete)
593 pmsg->complete(pmsg->context);
595 /* delete from queue */
596 list_del_init(&pmsg->queue);
598 return;
601 /* copy Tx Data */
602 if (data->cur_trans->tx_buf != NULL) {
603 if (*bpw == 8) {
604 tx_buf = data->cur_trans->tx_buf;
605 for (j = 0; j < data->bpw_len; j++)
606 data->pkt_tx_buff[j] = *tx_buf++;
607 } else {
608 tx_sbuf = data->cur_trans->tx_buf;
609 for (j = 0; j < data->bpw_len; j++)
610 data->pkt_tx_buff[j] = *tx_sbuf++;
614 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
615 n_writes = data->bpw_len;
616 if (n_writes > PCH_MAX_FIFO_DEPTH)
617 n_writes = PCH_MAX_FIFO_DEPTH;
619 dev_dbg(&data->master->dev,
620 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
621 __func__);
622 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
624 for (j = 0; j < n_writes; j++)
625 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
627 /* update tx_index */
628 data->tx_index = j;
630 /* reset transfer complete flag */
631 data->transfer_complete = false;
632 data->transfer_active = true;
635 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
637 struct spi_message *pmsg, *tmp;
638 dev_dbg(&data->master->dev, "%s called\n", __func__);
639 /* Invoke complete callback
640 * [To the spi core..indicating end of transfer] */
641 data->current_msg->status = 0;
643 if (data->current_msg->complete) {
644 dev_dbg(&data->master->dev,
645 "%s:Invoking callback of SPI core\n", __func__);
646 data->current_msg->complete(data->current_msg->context);
649 /* update status in global variable */
650 data->bcurrent_msg_processing = false;
652 dev_dbg(&data->master->dev,
653 "%s:data->bcurrent_msg_processing = false\n", __func__);
655 data->current_msg = NULL;
656 data->cur_trans = NULL;
658 /* check if we have items in list and not suspending
659 * return 1 if list empty */
660 if ((list_empty(&data->queue) == 0) &&
661 (!data->board_dat->suspend_sts) &&
662 (data->status != STATUS_EXITING)) {
663 /* We have some more work to do (either there is more tranint
664 * bpw;sfer requests in the current message or there are
665 *more messages)
667 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
668 schedule_work(&data->work);
669 } else if (data->board_dat->suspend_sts ||
670 data->status == STATUS_EXITING) {
671 dev_dbg(&data->master->dev,
672 "%s suspend/remove initiated, flushing queue\n",
673 __func__);
674 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
675 pmsg->status = -EIO;
677 if (pmsg->complete)
678 pmsg->complete(pmsg->context);
680 /* delete from queue */
681 list_del_init(&pmsg->queue);
686 static void pch_spi_set_ir(struct pch_spi_data *data)
688 /* enable interrupts, set threshold, enable SPI */
689 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
690 /* set receive threshold to PCH_RX_THOLD */
691 pch_spi_setclr_reg(data->master, PCH_SPCR,
692 PCH_RX_THOLD << SPCR_RFIC_FIELD |
693 SPCR_FIE_BIT | SPCR_RFIE_BIT |
694 SPCR_ORIE_BIT | SPCR_SPE_BIT,
695 MASK_RFIC_SPCR_BITS | PCH_ALL);
696 else
697 /* set receive threshold to maximum */
698 pch_spi_setclr_reg(data->master, PCH_SPCR,
699 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
700 SPCR_FIE_BIT | SPCR_ORIE_BIT |
701 SPCR_SPE_BIT,
702 MASK_RFIC_SPCR_BITS | PCH_ALL);
704 /* Wait until the transfer completes; go to sleep after
705 initiating the transfer. */
706 dev_dbg(&data->master->dev,
707 "%s:waiting for transfer to get over\n", __func__);
709 wait_event_interruptible(data->wait, data->transfer_complete);
711 /* clear all interrupts */
712 pch_spi_writereg(data->master, PCH_SPSR,
713 pch_spi_readreg(data->master, PCH_SPSR));
714 /* Disable interrupts and SPI transfer */
715 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
716 /* clear FIFO */
717 pch_spi_clear_fifo(data->master);
720 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
722 int j;
723 u8 *rx_buf;
724 u16 *rx_sbuf;
726 /* copy Rx Data */
727 if (!data->cur_trans->rx_buf)
728 return;
730 if (bpw == 8) {
731 rx_buf = data->cur_trans->rx_buf;
732 for (j = 0; j < data->bpw_len; j++)
733 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
734 } else {
735 rx_sbuf = data->cur_trans->rx_buf;
736 for (j = 0; j < data->bpw_len; j++)
737 *rx_sbuf++ = data->pkt_rx_buff[j];
741 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
743 int j;
744 u8 *rx_buf;
745 u16 *rx_sbuf;
746 const u8 *rx_dma_buf;
747 const u16 *rx_dma_sbuf;
749 /* copy Rx Data */
750 if (!data->cur_trans->rx_buf)
751 return;
753 if (bpw == 8) {
754 rx_buf = data->cur_trans->rx_buf;
755 rx_dma_buf = data->dma.rx_buf_virt;
756 for (j = 0; j < data->bpw_len; j++)
757 *rx_buf++ = *rx_dma_buf++ & 0xFF;
758 data->cur_trans->rx_buf = rx_buf;
759 } else {
760 rx_sbuf = data->cur_trans->rx_buf;
761 rx_dma_sbuf = data->dma.rx_buf_virt;
762 for (j = 0; j < data->bpw_len; j++)
763 *rx_sbuf++ = *rx_dma_sbuf++;
764 data->cur_trans->rx_buf = rx_sbuf;
768 static int pch_spi_start_transfer(struct pch_spi_data *data)
770 struct pch_spi_dma_ctrl *dma;
771 unsigned long flags;
772 int rtn;
774 dma = &data->dma;
776 spin_lock_irqsave(&data->lock, flags);
778 /* disable interrupts, SPI set enable */
779 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
781 spin_unlock_irqrestore(&data->lock, flags);
783 /* Wait until the transfer completes; go to sleep after
784 initiating the transfer. */
785 dev_dbg(&data->master->dev,
786 "%s:waiting for transfer to get over\n", __func__);
787 rtn = wait_event_interruptible_timeout(data->wait,
788 data->transfer_complete,
789 msecs_to_jiffies(2 * HZ));
790 if (!rtn)
791 dev_err(&data->master->dev,
792 "%s wait-event timeout\n", __func__);
794 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
795 DMA_FROM_DEVICE);
797 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
798 DMA_FROM_DEVICE);
799 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
801 async_tx_ack(dma->desc_rx);
802 async_tx_ack(dma->desc_tx);
803 kfree(dma->sg_tx_p);
804 kfree(dma->sg_rx_p);
806 spin_lock_irqsave(&data->lock, flags);
808 /* clear fifo threshold, disable interrupts, disable SPI transfer */
809 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
810 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
811 SPCR_SPE_BIT);
812 /* clear all interrupts */
813 pch_spi_writereg(data->master, PCH_SPSR,
814 pch_spi_readreg(data->master, PCH_SPSR));
815 /* clear FIFO */
816 pch_spi_clear_fifo(data->master);
818 spin_unlock_irqrestore(&data->lock, flags);
820 return rtn;
823 static void pch_dma_rx_complete(void *arg)
825 struct pch_spi_data *data = arg;
827 /* transfer is completed;inform pch_spi_process_messages_dma */
828 data->transfer_complete = true;
829 wake_up_interruptible(&data->wait);
832 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
834 struct pch_dma_slave *param = slave;
836 if ((chan->chan_id == param->chan_id) &&
837 (param->dma_dev == chan->device->dev)) {
838 chan->private = param;
839 return true;
840 } else {
841 return false;
845 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
847 dma_cap_mask_t mask;
848 struct dma_chan *chan;
849 struct pci_dev *dma_dev;
850 struct pch_dma_slave *param;
851 struct pch_spi_dma_ctrl *dma;
852 unsigned int width;
854 if (bpw == 8)
855 width = PCH_DMA_WIDTH_1_BYTE;
856 else
857 width = PCH_DMA_WIDTH_2_BYTES;
859 dma = &data->dma;
860 dma_cap_zero(mask);
861 dma_cap_set(DMA_SLAVE, mask);
863 /* Get DMA's dev information */
864 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
865 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
867 /* Set Tx DMA */
868 param = &dma->param_tx;
869 param->dma_dev = &dma_dev->dev;
870 param->chan_id = data->ch * 2; /* Tx = 0, 2 */
871 param->tx_reg = data->io_base_addr + PCH_SPDWR;
872 param->width = width;
873 chan = dma_request_channel(mask, pch_spi_filter, param);
874 if (!chan) {
875 dev_err(&data->master->dev,
876 "ERROR: dma_request_channel FAILS(Tx)\n");
877 data->use_dma = 0;
878 return;
880 dma->chan_tx = chan;
882 /* Set Rx DMA */
883 param = &dma->param_rx;
884 param->dma_dev = &dma_dev->dev;
885 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
886 param->rx_reg = data->io_base_addr + PCH_SPDRR;
887 param->width = width;
888 chan = dma_request_channel(mask, pch_spi_filter, param);
889 if (!chan) {
890 dev_err(&data->master->dev,
891 "ERROR: dma_request_channel FAILS(Rx)\n");
892 dma_release_channel(dma->chan_tx);
893 dma->chan_tx = NULL;
894 data->use_dma = 0;
895 return;
897 dma->chan_rx = chan;
900 static void pch_spi_release_dma(struct pch_spi_data *data)
902 struct pch_spi_dma_ctrl *dma;
904 dma = &data->dma;
905 if (dma->chan_tx) {
906 dma_release_channel(dma->chan_tx);
907 dma->chan_tx = NULL;
909 if (dma->chan_rx) {
910 dma_release_channel(dma->chan_rx);
911 dma->chan_rx = NULL;
915 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
917 const u8 *tx_buf;
918 const u16 *tx_sbuf;
919 u8 *tx_dma_buf;
920 u16 *tx_dma_sbuf;
921 struct scatterlist *sg;
922 struct dma_async_tx_descriptor *desc_tx;
923 struct dma_async_tx_descriptor *desc_rx;
924 int num;
925 int i;
926 int size;
927 int rem;
928 int head;
929 unsigned long flags;
930 struct pch_spi_dma_ctrl *dma;
932 dma = &data->dma;
934 /* set baud rate if needed */
935 if (data->cur_trans->speed_hz) {
936 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
937 spin_lock_irqsave(&data->lock, flags);
938 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
939 spin_unlock_irqrestore(&data->lock, flags);
942 /* set bits per word if needed */
943 if (data->cur_trans->bits_per_word &&
944 (data->current_msg->spi->bits_per_word !=
945 data->cur_trans->bits_per_word)) {
946 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
947 spin_lock_irqsave(&data->lock, flags);
948 pch_spi_set_bits_per_word(data->master,
949 data->cur_trans->bits_per_word);
950 spin_unlock_irqrestore(&data->lock, flags);
951 *bpw = data->cur_trans->bits_per_word;
952 } else {
953 *bpw = data->current_msg->spi->bits_per_word;
955 data->bpw_len = data->cur_trans->len / (*bpw / 8);
957 if (data->bpw_len > PCH_BUF_SIZE) {
958 data->bpw_len = PCH_BUF_SIZE;
959 data->cur_trans->len -= PCH_BUF_SIZE;
962 /* copy Tx Data */
963 if (data->cur_trans->tx_buf != NULL) {
964 if (*bpw == 8) {
965 tx_buf = data->cur_trans->tx_buf;
966 tx_dma_buf = dma->tx_buf_virt;
967 for (i = 0; i < data->bpw_len; i++)
968 *tx_dma_buf++ = *tx_buf++;
969 } else {
970 tx_sbuf = data->cur_trans->tx_buf;
971 tx_dma_sbuf = dma->tx_buf_virt;
972 for (i = 0; i < data->bpw_len; i++)
973 *tx_dma_sbuf++ = *tx_sbuf++;
977 /* Calculate Rx parameter for DMA transmitting */
978 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
979 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
980 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
981 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
982 } else {
983 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
984 rem = PCH_DMA_TRANS_SIZE;
986 size = PCH_DMA_TRANS_SIZE;
987 } else {
988 num = 1;
989 size = data->bpw_len;
990 rem = data->bpw_len;
992 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
993 __func__, num, size, rem);
994 spin_lock_irqsave(&data->lock, flags);
996 /* set receive fifo threshold and transmit fifo threshold */
997 pch_spi_setclr_reg(data->master, PCH_SPCR,
998 ((size - 1) << SPCR_RFIC_FIELD) |
999 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1000 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1002 spin_unlock_irqrestore(&data->lock, flags);
1004 /* RX */
1005 dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1006 if (!dma->sg_rx_p)
1007 return;
1009 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1010 /* offset, length setting */
1011 sg = dma->sg_rx_p;
1012 for (i = 0; i < num; i++, sg++) {
1013 if (i == (num - 2)) {
1014 sg->offset = size * i;
1015 sg->offset = sg->offset * (*bpw / 8);
1016 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1017 sg->offset);
1018 sg_dma_len(sg) = rem;
1019 } else if (i == (num - 1)) {
1020 sg->offset = size * (i - 1) + rem;
1021 sg->offset = sg->offset * (*bpw / 8);
1022 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1023 sg->offset);
1024 sg_dma_len(sg) = size;
1025 } else {
1026 sg->offset = size * i;
1027 sg->offset = sg->offset * (*bpw / 8);
1028 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1029 sg->offset);
1030 sg_dma_len(sg) = size;
1032 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1034 sg = dma->sg_rx_p;
1035 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1036 num, DMA_DEV_TO_MEM,
1037 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1038 if (!desc_rx) {
1039 dev_err(&data->master->dev,
1040 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1041 return;
1043 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1044 desc_rx->callback = pch_dma_rx_complete;
1045 desc_rx->callback_param = data;
1046 dma->nent = num;
1047 dma->desc_rx = desc_rx;
1049 /* Calculate Tx parameter for DMA transmitting */
1050 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1051 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1052 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1053 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1054 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1055 } else {
1056 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1057 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1058 PCH_DMA_TRANS_SIZE - head;
1060 size = PCH_DMA_TRANS_SIZE;
1061 } else {
1062 num = 1;
1063 size = data->bpw_len;
1064 rem = data->bpw_len;
1065 head = 0;
1068 dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1069 if (!dma->sg_tx_p)
1070 return;
1072 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1073 /* offset, length setting */
1074 sg = dma->sg_tx_p;
1075 for (i = 0; i < num; i++, sg++) {
1076 if (i == 0) {
1077 sg->offset = 0;
1078 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1079 sg->offset);
1080 sg_dma_len(sg) = size + head;
1081 } else if (i == (num - 1)) {
1082 sg->offset = head + size * i;
1083 sg->offset = sg->offset * (*bpw / 8);
1084 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1085 sg->offset);
1086 sg_dma_len(sg) = rem;
1087 } else {
1088 sg->offset = head + size * i;
1089 sg->offset = sg->offset * (*bpw / 8);
1090 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1091 sg->offset);
1092 sg_dma_len(sg) = size;
1094 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1096 sg = dma->sg_tx_p;
1097 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1098 sg, num, DMA_MEM_TO_DEV,
1099 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1100 if (!desc_tx) {
1101 dev_err(&data->master->dev,
1102 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1103 return;
1105 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1106 desc_tx->callback = NULL;
1107 desc_tx->callback_param = data;
1108 dma->nent = num;
1109 dma->desc_tx = desc_tx;
1111 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1113 spin_lock_irqsave(&data->lock, flags);
1114 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1115 desc_rx->tx_submit(desc_rx);
1116 desc_tx->tx_submit(desc_tx);
1117 spin_unlock_irqrestore(&data->lock, flags);
1119 /* reset transfer complete flag */
1120 data->transfer_complete = false;
1123 static void pch_spi_process_messages(struct work_struct *pwork)
1125 struct spi_message *pmsg, *tmp;
1126 struct pch_spi_data *data;
1127 int bpw;
1129 data = container_of(pwork, struct pch_spi_data, work);
1130 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1132 spin_lock(&data->lock);
1133 /* check if suspend has been initiated;if yes flush queue */
1134 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1135 dev_dbg(&data->master->dev,
1136 "%s suspend/remove initiated, flushing queue\n", __func__);
1137 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1138 pmsg->status = -EIO;
1140 if (pmsg->complete) {
1141 spin_unlock(&data->lock);
1142 pmsg->complete(pmsg->context);
1143 spin_lock(&data->lock);
1146 /* delete from queue */
1147 list_del_init(&pmsg->queue);
1150 spin_unlock(&data->lock);
1151 return;
1154 data->bcurrent_msg_processing = true;
1155 dev_dbg(&data->master->dev,
1156 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1158 /* Get the message from the queue and delete it from there. */
1159 data->current_msg = list_entry(data->queue.next, struct spi_message,
1160 queue);
1162 list_del_init(&data->current_msg->queue);
1164 data->current_msg->status = 0;
1166 pch_spi_select_chip(data, data->current_msg->spi);
1168 spin_unlock(&data->lock);
1170 if (data->use_dma)
1171 pch_spi_request_dma(data,
1172 data->current_msg->spi->bits_per_word);
1173 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1174 do {
1175 int cnt;
1176 /* If we are already processing a message get the next
1177 transfer structure from the message otherwise retrieve
1178 the 1st transfer request from the message. */
1179 spin_lock(&data->lock);
1180 if (data->cur_trans == NULL) {
1181 data->cur_trans =
1182 list_entry(data->current_msg->transfers.next,
1183 struct spi_transfer, transfer_list);
1184 dev_dbg(&data->master->dev,
1185 "%s :Getting 1st transfer message\n",
1186 __func__);
1187 } else {
1188 data->cur_trans =
1189 list_entry(data->cur_trans->transfer_list.next,
1190 struct spi_transfer, transfer_list);
1191 dev_dbg(&data->master->dev,
1192 "%s :Getting next transfer message\n",
1193 __func__);
1195 spin_unlock(&data->lock);
1197 if (!data->cur_trans->len)
1198 goto out;
1199 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1200 data->save_total_len = data->cur_trans->len;
1201 if (data->use_dma) {
1202 int i;
1203 char *save_rx_buf = data->cur_trans->rx_buf;
1204 for (i = 0; i < cnt; i ++) {
1205 pch_spi_handle_dma(data, &bpw);
1206 if (!pch_spi_start_transfer(data)) {
1207 data->transfer_complete = true;
1208 data->current_msg->status = -EIO;
1209 data->current_msg->complete
1210 (data->current_msg->context);
1211 data->bcurrent_msg_processing = false;
1212 data->current_msg = NULL;
1213 data->cur_trans = NULL;
1214 goto out;
1216 pch_spi_copy_rx_data_for_dma(data, bpw);
1218 data->cur_trans->rx_buf = save_rx_buf;
1219 } else {
1220 pch_spi_set_tx(data, &bpw);
1221 pch_spi_set_ir(data);
1222 pch_spi_copy_rx_data(data, bpw);
1223 kfree(data->pkt_rx_buff);
1224 data->pkt_rx_buff = NULL;
1225 kfree(data->pkt_tx_buff);
1226 data->pkt_tx_buff = NULL;
1228 /* increment message count */
1229 data->cur_trans->len = data->save_total_len;
1230 data->current_msg->actual_length += data->cur_trans->len;
1232 dev_dbg(&data->master->dev,
1233 "%s:data->current_msg->actual_length=%d\n",
1234 __func__, data->current_msg->actual_length);
1236 spi_transfer_delay_exec(data->cur_trans);
1238 spin_lock(&data->lock);
1240 /* No more transfer in this message. */
1241 if ((data->cur_trans->transfer_list.next) ==
1242 &(data->current_msg->transfers)) {
1243 pch_spi_nomore_transfer(data);
1246 spin_unlock(&data->lock);
1248 } while (data->cur_trans != NULL);
1250 out:
1251 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1252 if (data->use_dma)
1253 pch_spi_release_dma(data);
1256 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1257 struct pch_spi_data *data)
1259 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1261 flush_work(&data->work);
1264 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1265 struct pch_spi_data *data)
1267 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1269 /* reset PCH SPI h/w */
1270 pch_spi_reset(data->master);
1271 dev_dbg(&board_dat->pdev->dev,
1272 "%s pch_spi_reset invoked successfully\n", __func__);
1274 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1276 return 0;
1279 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1280 struct pch_spi_data *data)
1282 struct pch_spi_dma_ctrl *dma;
1284 dma = &data->dma;
1285 if (dma->tx_buf_dma)
1286 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1287 dma->tx_buf_virt, dma->tx_buf_dma);
1288 if (dma->rx_buf_dma)
1289 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1290 dma->rx_buf_virt, dma->rx_buf_dma);
1293 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1294 struct pch_spi_data *data)
1296 struct pch_spi_dma_ctrl *dma;
1297 int ret;
1299 dma = &data->dma;
1300 ret = 0;
1301 /* Get Consistent memory for Tx DMA */
1302 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1303 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1304 if (!dma->tx_buf_virt)
1305 ret = -ENOMEM;
1307 /* Get Consistent memory for Rx DMA */
1308 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1309 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1310 if (!dma->rx_buf_virt)
1311 ret = -ENOMEM;
1313 return ret;
1316 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1318 int ret;
1319 struct spi_master *master;
1320 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1321 struct pch_spi_data *data;
1323 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1325 master = spi_alloc_master(&board_dat->pdev->dev,
1326 sizeof(struct pch_spi_data));
1327 if (!master) {
1328 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1329 plat_dev->id);
1330 return -ENOMEM;
1333 data = spi_master_get_devdata(master);
1334 data->master = master;
1336 platform_set_drvdata(plat_dev, data);
1338 /* baseaddress + address offset) */
1339 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1340 PCH_ADDRESS_SIZE * plat_dev->id;
1341 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1342 if (!data->io_remap_addr) {
1343 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1344 ret = -ENOMEM;
1345 goto err_pci_iomap;
1347 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1349 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1350 plat_dev->id, data->io_remap_addr);
1352 /* initialize members of SPI master */
1353 master->num_chipselect = PCH_MAX_CS;
1354 master->transfer = pch_spi_transfer;
1355 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1356 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1357 master->max_speed_hz = PCH_MAX_BAUDRATE;
1359 data->board_dat = board_dat;
1360 data->plat_dev = plat_dev;
1361 data->n_curnt_chip = 255;
1362 data->status = STATUS_RUNNING;
1363 data->ch = plat_dev->id;
1364 data->use_dma = use_dma;
1366 INIT_LIST_HEAD(&data->queue);
1367 spin_lock_init(&data->lock);
1368 INIT_WORK(&data->work, pch_spi_process_messages);
1369 init_waitqueue_head(&data->wait);
1371 ret = pch_spi_get_resources(board_dat, data);
1372 if (ret) {
1373 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1374 goto err_spi_get_resources;
1377 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1378 IRQF_SHARED, KBUILD_MODNAME, data);
1379 if (ret) {
1380 dev_err(&plat_dev->dev,
1381 "%s request_irq failed\n", __func__);
1382 goto err_request_irq;
1384 data->irq_reg_sts = true;
1386 pch_spi_set_master_mode(master);
1388 if (use_dma) {
1389 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1390 ret = pch_alloc_dma_buf(board_dat, data);
1391 if (ret)
1392 goto err_spi_register_master;
1395 ret = spi_register_master(master);
1396 if (ret != 0) {
1397 dev_err(&plat_dev->dev,
1398 "%s spi_register_master FAILED\n", __func__);
1399 goto err_spi_register_master;
1402 return 0;
1404 err_spi_register_master:
1405 pch_free_dma_buf(board_dat, data);
1406 free_irq(board_dat->pdev->irq, data);
1407 err_request_irq:
1408 pch_spi_free_resources(board_dat, data);
1409 err_spi_get_resources:
1410 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1411 err_pci_iomap:
1412 spi_master_put(master);
1414 return ret;
1417 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1419 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1420 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1421 int count;
1422 unsigned long flags;
1424 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1425 __func__, plat_dev->id, board_dat->pdev->irq);
1427 if (use_dma)
1428 pch_free_dma_buf(board_dat, data);
1430 /* check for any pending messages; no action is taken if the queue
1431 * is still full; but at least we tried. Unload anyway */
1432 count = 500;
1433 spin_lock_irqsave(&data->lock, flags);
1434 data->status = STATUS_EXITING;
1435 while ((list_empty(&data->queue) == 0) && --count) {
1436 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1437 __func__);
1438 spin_unlock_irqrestore(&data->lock, flags);
1439 msleep(PCH_SLEEP_TIME);
1440 spin_lock_irqsave(&data->lock, flags);
1442 spin_unlock_irqrestore(&data->lock, flags);
1444 pch_spi_free_resources(board_dat, data);
1445 /* disable interrupts & free IRQ */
1446 if (data->irq_reg_sts) {
1447 /* disable interrupts */
1448 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1449 data->irq_reg_sts = false;
1450 free_irq(board_dat->pdev->irq, data);
1453 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1454 spi_unregister_master(data->master);
1456 return 0;
1458 #ifdef CONFIG_PM
1459 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1460 pm_message_t state)
1462 u8 count;
1463 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1464 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1466 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1468 if (!board_dat) {
1469 dev_err(&pd_dev->dev,
1470 "%s pci_get_drvdata returned NULL\n", __func__);
1471 return -EFAULT;
1474 /* check if the current message is processed:
1475 Only after thats done the transfer will be suspended */
1476 count = 255;
1477 while ((--count) > 0) {
1478 if (!(data->bcurrent_msg_processing))
1479 break;
1480 msleep(PCH_SLEEP_TIME);
1483 /* Free IRQ */
1484 if (data->irq_reg_sts) {
1485 /* disable all interrupts */
1486 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1487 pch_spi_reset(data->master);
1488 free_irq(board_dat->pdev->irq, data);
1490 data->irq_reg_sts = false;
1491 dev_dbg(&pd_dev->dev,
1492 "%s free_irq invoked successfully.\n", __func__);
1495 return 0;
1498 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1500 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1501 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1502 int retval;
1504 if (!board_dat) {
1505 dev_err(&pd_dev->dev,
1506 "%s pci_get_drvdata returned NULL\n", __func__);
1507 return -EFAULT;
1510 if (!data->irq_reg_sts) {
1511 /* register IRQ */
1512 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1513 IRQF_SHARED, KBUILD_MODNAME, data);
1514 if (retval < 0) {
1515 dev_err(&pd_dev->dev,
1516 "%s request_irq failed\n", __func__);
1517 return retval;
1520 /* reset PCH SPI h/w */
1521 pch_spi_reset(data->master);
1522 pch_spi_set_master_mode(data->master);
1523 data->irq_reg_sts = true;
1525 return 0;
1527 #else
1528 #define pch_spi_pd_suspend NULL
1529 #define pch_spi_pd_resume NULL
1530 #endif
1532 static struct platform_driver pch_spi_pd_driver = {
1533 .driver = {
1534 .name = "pch-spi",
1536 .probe = pch_spi_pd_probe,
1537 .remove = pch_spi_pd_remove,
1538 .suspend = pch_spi_pd_suspend,
1539 .resume = pch_spi_pd_resume
1542 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1544 struct pch_spi_board_data *board_dat;
1545 struct platform_device *pd_dev = NULL;
1546 int retval;
1547 int i;
1548 struct pch_pd_dev_save *pd_dev_save;
1550 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1551 if (!pd_dev_save)
1552 return -ENOMEM;
1554 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1555 if (!board_dat) {
1556 retval = -ENOMEM;
1557 goto err_no_mem;
1560 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1561 if (retval) {
1562 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1563 goto pci_request_regions;
1566 board_dat->pdev = pdev;
1567 board_dat->num = id->driver_data;
1568 pd_dev_save->num = id->driver_data;
1569 pd_dev_save->board_dat = board_dat;
1571 retval = pci_enable_device(pdev);
1572 if (retval) {
1573 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1574 goto pci_enable_device;
1577 for (i = 0; i < board_dat->num; i++) {
1578 pd_dev = platform_device_alloc("pch-spi", i);
1579 if (!pd_dev) {
1580 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1581 retval = -ENOMEM;
1582 goto err_platform_device;
1584 pd_dev_save->pd_save[i] = pd_dev;
1585 pd_dev->dev.parent = &pdev->dev;
1587 retval = platform_device_add_data(pd_dev, board_dat,
1588 sizeof(*board_dat));
1589 if (retval) {
1590 dev_err(&pdev->dev,
1591 "platform_device_add_data failed\n");
1592 platform_device_put(pd_dev);
1593 goto err_platform_device;
1596 retval = platform_device_add(pd_dev);
1597 if (retval) {
1598 dev_err(&pdev->dev, "platform_device_add failed\n");
1599 platform_device_put(pd_dev);
1600 goto err_platform_device;
1604 pci_set_drvdata(pdev, pd_dev_save);
1606 return 0;
1608 err_platform_device:
1609 while (--i >= 0)
1610 platform_device_unregister(pd_dev_save->pd_save[i]);
1611 pci_disable_device(pdev);
1612 pci_enable_device:
1613 pci_release_regions(pdev);
1614 pci_request_regions:
1615 kfree(board_dat);
1616 err_no_mem:
1617 kfree(pd_dev_save);
1619 return retval;
1622 static void pch_spi_remove(struct pci_dev *pdev)
1624 int i;
1625 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1627 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1629 for (i = 0; i < pd_dev_save->num; i++)
1630 platform_device_unregister(pd_dev_save->pd_save[i]);
1632 pci_disable_device(pdev);
1633 pci_release_regions(pdev);
1634 kfree(pd_dev_save->board_dat);
1635 kfree(pd_dev_save);
1638 static int __maybe_unused pch_spi_suspend(struct device *dev)
1640 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1642 dev_dbg(dev, "%s ENTRY\n", __func__);
1644 pd_dev_save->board_dat->suspend_sts = true;
1646 return 0;
1649 static int __maybe_unused pch_spi_resume(struct device *dev)
1651 struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1653 dev_dbg(dev, "%s ENTRY\n", __func__);
1655 /* set suspend status to false */
1656 pd_dev_save->board_dat->suspend_sts = false;
1658 return 0;
1661 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1663 static struct pci_driver pch_spi_pcidev_driver = {
1664 .name = "pch_spi",
1665 .id_table = pch_spi_pcidev_id,
1666 .probe = pch_spi_probe,
1667 .remove = pch_spi_remove,
1668 .driver.pm = &pch_spi_pm_ops,
1671 static int __init pch_spi_init(void)
1673 int ret;
1674 ret = platform_driver_register(&pch_spi_pd_driver);
1675 if (ret)
1676 return ret;
1678 ret = pci_register_driver(&pch_spi_pcidev_driver);
1679 if (ret) {
1680 platform_driver_unregister(&pch_spi_pd_driver);
1681 return ret;
1684 return 0;
1686 module_init(pch_spi_init);
1688 static void __exit pch_spi_exit(void)
1690 pci_unregister_driver(&pch_spi_pcidev_driver);
1691 platform_driver_unregister(&pch_spi_pd_driver);
1693 module_exit(pch_spi_exit);
1695 module_param(use_dma, int, 0644);
1696 MODULE_PARM_DESC(use_dma,
1697 "to use DMA for data transfers pass 1 else 0; default 1");
1699 MODULE_LICENSE("GPL");
1700 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1701 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);