Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / spi / spi.c
blob720ab34784c1d7c7bc430f0212706902dca62359
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
99 device_unlock(dev);
100 kfree(old);
102 return count;
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
299 if (l2len < 0)
300 l2len = 0;
302 spin_lock_irqsave(&stats->lock, flags);
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
331 return NULL;
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 static int spi_probe(struct device *dev)
379 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
380 struct spi_device *spi = to_spi_device(dev);
381 int ret;
383 ret = of_clk_set_defaults(dev->of_node, false);
384 if (ret)
385 return ret;
387 if (dev->of_node) {
388 spi->irq = of_irq_get(dev->of_node, 0);
389 if (spi->irq == -EPROBE_DEFER)
390 return -EPROBE_DEFER;
391 if (spi->irq < 0)
392 spi->irq = 0;
395 ret = dev_pm_domain_attach(dev, true);
396 if (ret)
397 return ret;
399 if (sdrv->probe) {
400 ret = sdrv->probe(spi);
401 if (ret)
402 dev_pm_domain_detach(dev, true);
405 return ret;
408 static int spi_remove(struct device *dev)
410 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
412 if (sdrv->remove) {
413 int ret;
415 ret = sdrv->remove(to_spi_device(dev));
416 if (ret)
417 dev_warn(dev,
418 "Failed to unbind driver (%pe), ignoring\n",
419 ERR_PTR(ret));
422 dev_pm_domain_detach(dev, true);
424 return 0;
427 static void spi_shutdown(struct device *dev)
429 if (dev->driver) {
430 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
432 if (sdrv->shutdown)
433 sdrv->shutdown(to_spi_device(dev));
437 struct bus_type spi_bus_type = {
438 .name = "spi",
439 .dev_groups = spi_dev_groups,
440 .match = spi_match_device,
441 .uevent = spi_uevent,
442 .probe = spi_probe,
443 .remove = spi_remove,
444 .shutdown = spi_shutdown,
446 EXPORT_SYMBOL_GPL(spi_bus_type);
449 * __spi_register_driver - register a SPI driver
450 * @owner: owner module of the driver to register
451 * @sdrv: the driver to register
452 * Context: can sleep
454 * Return: zero on success, else a negative error code.
456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
458 sdrv->driver.owner = owner;
459 sdrv->driver.bus = &spi_bus_type;
460 return driver_register(&sdrv->driver);
462 EXPORT_SYMBOL_GPL(__spi_register_driver);
464 /*-------------------------------------------------------------------------*/
466 /* SPI devices should normally not be created by SPI device drivers; that
467 * would make them board-specific. Similarly with SPI controller drivers.
468 * Device registration normally goes into like arch/.../mach.../board-YYY.c
469 * with other readonly (flashable) information about mainboard devices.
472 struct boardinfo {
473 struct list_head list;
474 struct spi_board_info board_info;
477 static LIST_HEAD(board_list);
478 static LIST_HEAD(spi_controller_list);
481 * Used to protect add/del operation for board_info list and
482 * spi_controller list, and their matching process
483 * also used to protect object of type struct idr
485 static DEFINE_MUTEX(board_lock);
488 * Prevents addition of devices with same chip select and
489 * addition of devices below an unregistering controller.
491 static DEFINE_MUTEX(spi_add_lock);
494 * spi_alloc_device - Allocate a new SPI device
495 * @ctlr: Controller to which device is connected
496 * Context: can sleep
498 * Allows a driver to allocate and initialize a spi_device without
499 * registering it immediately. This allows a driver to directly
500 * fill the spi_device with device parameters before calling
501 * spi_add_device() on it.
503 * Caller is responsible to call spi_add_device() on the returned
504 * spi_device structure to add it to the SPI controller. If the caller
505 * needs to discard the spi_device without adding it, then it should
506 * call spi_dev_put() on it.
508 * Return: a pointer to the new device, or NULL.
510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
512 struct spi_device *spi;
514 if (!spi_controller_get(ctlr))
515 return NULL;
517 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
518 if (!spi) {
519 spi_controller_put(ctlr);
520 return NULL;
523 spi->master = spi->controller = ctlr;
524 spi->dev.parent = &ctlr->dev;
525 spi->dev.bus = &spi_bus_type;
526 spi->dev.release = spidev_release;
527 spi->cs_gpio = -ENOENT;
528 spi->mode = ctlr->buswidth_override_bits;
530 spin_lock_init(&spi->statistics.lock);
532 device_initialize(&spi->dev);
533 return spi;
535 EXPORT_SYMBOL_GPL(spi_alloc_device);
537 static void spi_dev_set_name(struct spi_device *spi)
539 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
541 if (adev) {
542 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
543 return;
546 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
547 spi->chip_select);
550 static int spi_dev_check(struct device *dev, void *data)
552 struct spi_device *spi = to_spi_device(dev);
553 struct spi_device *new_spi = data;
555 if (spi->controller == new_spi->controller &&
556 spi->chip_select == new_spi->chip_select)
557 return -EBUSY;
558 return 0;
562 * spi_add_device - Add spi_device allocated with spi_alloc_device
563 * @spi: spi_device to register
565 * Companion function to spi_alloc_device. Devices allocated with
566 * spi_alloc_device can be added onto the spi bus with this function.
568 * Return: 0 on success; negative errno on failure
570 int spi_add_device(struct spi_device *spi)
572 struct spi_controller *ctlr = spi->controller;
573 struct device *dev = ctlr->dev.parent;
574 int status;
576 /* Chipselects are numbered 0..max; validate. */
577 if (spi->chip_select >= ctlr->num_chipselect) {
578 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
579 ctlr->num_chipselect);
580 return -EINVAL;
583 /* Set the bus ID string */
584 spi_dev_set_name(spi);
586 /* We need to make sure there's no other device with this
587 * chipselect **BEFORE** we call setup(), else we'll trash
588 * its configuration. Lock against concurrent add() calls.
590 mutex_lock(&spi_add_lock);
592 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
593 if (status) {
594 dev_err(dev, "chipselect %d already in use\n",
595 spi->chip_select);
596 goto done;
599 /* Controller may unregister concurrently */
600 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
601 !device_is_registered(&ctlr->dev)) {
602 status = -ENODEV;
603 goto done;
606 /* Descriptors take precedence */
607 if (ctlr->cs_gpiods)
608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
609 else if (ctlr->cs_gpios)
610 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
612 /* Drivers may modify this initial i/o setup, but will
613 * normally rely on the device being setup. Devices
614 * using SPI_CS_HIGH can't coexist well otherwise...
616 status = spi_setup(spi);
617 if (status < 0) {
618 dev_err(dev, "can't setup %s, status %d\n",
619 dev_name(&spi->dev), status);
620 goto done;
623 /* Device may be bound to an active driver when this returns */
624 status = device_add(&spi->dev);
625 if (status < 0)
626 dev_err(dev, "can't add %s, status %d\n",
627 dev_name(&spi->dev), status);
628 else
629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
631 done:
632 mutex_unlock(&spi_add_lock);
633 return status;
635 EXPORT_SYMBOL_GPL(spi_add_device);
638 * spi_new_device - instantiate one new SPI device
639 * @ctlr: Controller to which device is connected
640 * @chip: Describes the SPI device
641 * Context: can sleep
643 * On typical mainboards, this is purely internal; and it's not needed
644 * after board init creates the hard-wired devices. Some development
645 * platforms may not be able to use spi_register_board_info though, and
646 * this is exported so that for example a USB or parport based adapter
647 * driver could add devices (which it would learn about out-of-band).
649 * Return: the new device, or NULL.
651 struct spi_device *spi_new_device(struct spi_controller *ctlr,
652 struct spi_board_info *chip)
654 struct spi_device *proxy;
655 int status;
657 /* NOTE: caller did any chip->bus_num checks necessary.
659 * Also, unless we change the return value convention to use
660 * error-or-pointer (not NULL-or-pointer), troubleshootability
661 * suggests syslogged diagnostics are best here (ugh).
664 proxy = spi_alloc_device(ctlr);
665 if (!proxy)
666 return NULL;
668 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
670 proxy->chip_select = chip->chip_select;
671 proxy->max_speed_hz = chip->max_speed_hz;
672 proxy->mode = chip->mode;
673 proxy->irq = chip->irq;
674 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
675 proxy->dev.platform_data = (void *) chip->platform_data;
676 proxy->controller_data = chip->controller_data;
677 proxy->controller_state = NULL;
679 if (chip->properties) {
680 status = device_add_properties(&proxy->dev, chip->properties);
681 if (status) {
682 dev_err(&ctlr->dev,
683 "failed to add properties to '%s': %d\n",
684 chip->modalias, status);
685 goto err_dev_put;
689 status = spi_add_device(proxy);
690 if (status < 0)
691 goto err_remove_props;
693 return proxy;
695 err_remove_props:
696 if (chip->properties)
697 device_remove_properties(&proxy->dev);
698 err_dev_put:
699 spi_dev_put(proxy);
700 return NULL;
702 EXPORT_SYMBOL_GPL(spi_new_device);
705 * spi_unregister_device - unregister a single SPI device
706 * @spi: spi_device to unregister
708 * Start making the passed SPI device vanish. Normally this would be handled
709 * by spi_unregister_controller().
711 void spi_unregister_device(struct spi_device *spi)
713 if (!spi)
714 return;
716 if (spi->dev.of_node) {
717 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
718 of_node_put(spi->dev.of_node);
720 if (ACPI_COMPANION(&spi->dev))
721 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
722 device_unregister(&spi->dev);
724 EXPORT_SYMBOL_GPL(spi_unregister_device);
726 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
727 struct spi_board_info *bi)
729 struct spi_device *dev;
731 if (ctlr->bus_num != bi->bus_num)
732 return;
734 dev = spi_new_device(ctlr, bi);
735 if (!dev)
736 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
737 bi->modalias);
741 * spi_register_board_info - register SPI devices for a given board
742 * @info: array of chip descriptors
743 * @n: how many descriptors are provided
744 * Context: can sleep
746 * Board-specific early init code calls this (probably during arch_initcall)
747 * with segments of the SPI device table. Any device nodes are created later,
748 * after the relevant parent SPI controller (bus_num) is defined. We keep
749 * this table of devices forever, so that reloading a controller driver will
750 * not make Linux forget about these hard-wired devices.
752 * Other code can also call this, e.g. a particular add-on board might provide
753 * SPI devices through its expansion connector, so code initializing that board
754 * would naturally declare its SPI devices.
756 * The board info passed can safely be __initdata ... but be careful of
757 * any embedded pointers (platform_data, etc), they're copied as-is.
758 * Device properties are deep-copied though.
760 * Return: zero on success, else a negative error code.
762 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
764 struct boardinfo *bi;
765 int i;
767 if (!n)
768 return 0;
770 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
771 if (!bi)
772 return -ENOMEM;
774 for (i = 0; i < n; i++, bi++, info++) {
775 struct spi_controller *ctlr;
777 memcpy(&bi->board_info, info, sizeof(*info));
778 if (info->properties) {
779 bi->board_info.properties =
780 property_entries_dup(info->properties);
781 if (IS_ERR(bi->board_info.properties))
782 return PTR_ERR(bi->board_info.properties);
785 mutex_lock(&board_lock);
786 list_add_tail(&bi->list, &board_list);
787 list_for_each_entry(ctlr, &spi_controller_list, list)
788 spi_match_controller_to_boardinfo(ctlr,
789 &bi->board_info);
790 mutex_unlock(&board_lock);
793 return 0;
796 /*-------------------------------------------------------------------------*/
798 static void spi_set_cs(struct spi_device *spi, bool enable)
800 bool enable1 = enable;
803 * Avoid calling into the driver (or doing delays) if the chip select
804 * isn't actually changing from the last time this was called.
806 if ((spi->controller->last_cs_enable == enable) &&
807 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
808 return;
810 spi->controller->last_cs_enable = enable;
811 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
813 if (!spi->controller->set_cs_timing) {
814 if (enable1)
815 spi_delay_exec(&spi->controller->cs_setup, NULL);
816 else
817 spi_delay_exec(&spi->controller->cs_hold, NULL);
820 if (spi->mode & SPI_CS_HIGH)
821 enable = !enable;
823 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
824 if (!(spi->mode & SPI_NO_CS)) {
825 if (spi->cs_gpiod)
826 /* polarity handled by gpiolib */
827 gpiod_set_value_cansleep(spi->cs_gpiod,
828 enable1);
829 else
831 * invert the enable line, as active low is
832 * default for SPI.
834 gpio_set_value_cansleep(spi->cs_gpio, !enable);
836 /* Some SPI masters need both GPIO CS & slave_select */
837 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
838 spi->controller->set_cs)
839 spi->controller->set_cs(spi, !enable);
840 } else if (spi->controller->set_cs) {
841 spi->controller->set_cs(spi, !enable);
844 if (!spi->controller->set_cs_timing) {
845 if (!enable1)
846 spi_delay_exec(&spi->controller->cs_inactive, NULL);
850 #ifdef CONFIG_HAS_DMA
851 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
852 struct sg_table *sgt, void *buf, size_t len,
853 enum dma_data_direction dir)
855 const bool vmalloced_buf = is_vmalloc_addr(buf);
856 unsigned int max_seg_size = dma_get_max_seg_size(dev);
857 #ifdef CONFIG_HIGHMEM
858 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
859 (unsigned long)buf < (PKMAP_BASE +
860 (LAST_PKMAP * PAGE_SIZE)));
861 #else
862 const bool kmap_buf = false;
863 #endif
864 int desc_len;
865 int sgs;
866 struct page *vm_page;
867 struct scatterlist *sg;
868 void *sg_buf;
869 size_t min;
870 int i, ret;
872 if (vmalloced_buf || kmap_buf) {
873 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
874 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
875 } else if (virt_addr_valid(buf)) {
876 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
877 sgs = DIV_ROUND_UP(len, desc_len);
878 } else {
879 return -EINVAL;
882 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
883 if (ret != 0)
884 return ret;
886 sg = &sgt->sgl[0];
887 for (i = 0; i < sgs; i++) {
889 if (vmalloced_buf || kmap_buf) {
891 * Next scatterlist entry size is the minimum between
892 * the desc_len and the remaining buffer length that
893 * fits in a page.
895 min = min_t(size_t, desc_len,
896 min_t(size_t, len,
897 PAGE_SIZE - offset_in_page(buf)));
898 if (vmalloced_buf)
899 vm_page = vmalloc_to_page(buf);
900 else
901 vm_page = kmap_to_page(buf);
902 if (!vm_page) {
903 sg_free_table(sgt);
904 return -ENOMEM;
906 sg_set_page(sg, vm_page,
907 min, offset_in_page(buf));
908 } else {
909 min = min_t(size_t, len, desc_len);
910 sg_buf = buf;
911 sg_set_buf(sg, sg_buf, min);
914 buf += min;
915 len -= min;
916 sg = sg_next(sg);
919 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
920 if (!ret)
921 ret = -ENOMEM;
922 if (ret < 0) {
923 sg_free_table(sgt);
924 return ret;
927 sgt->nents = ret;
929 return 0;
932 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
933 struct sg_table *sgt, enum dma_data_direction dir)
935 if (sgt->orig_nents) {
936 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
937 sg_free_table(sgt);
941 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
943 struct device *tx_dev, *rx_dev;
944 struct spi_transfer *xfer;
945 int ret;
947 if (!ctlr->can_dma)
948 return 0;
950 if (ctlr->dma_tx)
951 tx_dev = ctlr->dma_tx->device->dev;
952 else
953 tx_dev = ctlr->dev.parent;
955 if (ctlr->dma_rx)
956 rx_dev = ctlr->dma_rx->device->dev;
957 else
958 rx_dev = ctlr->dev.parent;
960 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
961 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
962 continue;
964 if (xfer->tx_buf != NULL) {
965 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
966 (void *)xfer->tx_buf, xfer->len,
967 DMA_TO_DEVICE);
968 if (ret != 0)
969 return ret;
972 if (xfer->rx_buf != NULL) {
973 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
974 xfer->rx_buf, xfer->len,
975 DMA_FROM_DEVICE);
976 if (ret != 0) {
977 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
978 DMA_TO_DEVICE);
979 return ret;
984 ctlr->cur_msg_mapped = true;
986 return 0;
989 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
991 struct spi_transfer *xfer;
992 struct device *tx_dev, *rx_dev;
994 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
995 return 0;
997 if (ctlr->dma_tx)
998 tx_dev = ctlr->dma_tx->device->dev;
999 else
1000 tx_dev = ctlr->dev.parent;
1002 if (ctlr->dma_rx)
1003 rx_dev = ctlr->dma_rx->device->dev;
1004 else
1005 rx_dev = ctlr->dev.parent;
1007 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1008 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1009 continue;
1011 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1012 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1015 ctlr->cur_msg_mapped = false;
1017 return 0;
1019 #else /* !CONFIG_HAS_DMA */
1020 static inline int __spi_map_msg(struct spi_controller *ctlr,
1021 struct spi_message *msg)
1023 return 0;
1026 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1027 struct spi_message *msg)
1029 return 0;
1031 #endif /* !CONFIG_HAS_DMA */
1033 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1034 struct spi_message *msg)
1036 struct spi_transfer *xfer;
1038 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1040 * Restore the original value of tx_buf or rx_buf if they are
1041 * NULL.
1043 if (xfer->tx_buf == ctlr->dummy_tx)
1044 xfer->tx_buf = NULL;
1045 if (xfer->rx_buf == ctlr->dummy_rx)
1046 xfer->rx_buf = NULL;
1049 return __spi_unmap_msg(ctlr, msg);
1052 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1054 struct spi_transfer *xfer;
1055 void *tmp;
1056 unsigned int max_tx, max_rx;
1058 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1059 && !(msg->spi->mode & SPI_3WIRE)) {
1060 max_tx = 0;
1061 max_rx = 0;
1063 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1064 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1065 !xfer->tx_buf)
1066 max_tx = max(xfer->len, max_tx);
1067 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1068 !xfer->rx_buf)
1069 max_rx = max(xfer->len, max_rx);
1072 if (max_tx) {
1073 tmp = krealloc(ctlr->dummy_tx, max_tx,
1074 GFP_KERNEL | GFP_DMA);
1075 if (!tmp)
1076 return -ENOMEM;
1077 ctlr->dummy_tx = tmp;
1078 memset(tmp, 0, max_tx);
1081 if (max_rx) {
1082 tmp = krealloc(ctlr->dummy_rx, max_rx,
1083 GFP_KERNEL | GFP_DMA);
1084 if (!tmp)
1085 return -ENOMEM;
1086 ctlr->dummy_rx = tmp;
1089 if (max_tx || max_rx) {
1090 list_for_each_entry(xfer, &msg->transfers,
1091 transfer_list) {
1092 if (!xfer->len)
1093 continue;
1094 if (!xfer->tx_buf)
1095 xfer->tx_buf = ctlr->dummy_tx;
1096 if (!xfer->rx_buf)
1097 xfer->rx_buf = ctlr->dummy_rx;
1102 return __spi_map_msg(ctlr, msg);
1105 static int spi_transfer_wait(struct spi_controller *ctlr,
1106 struct spi_message *msg,
1107 struct spi_transfer *xfer)
1109 struct spi_statistics *statm = &ctlr->statistics;
1110 struct spi_statistics *stats = &msg->spi->statistics;
1111 u32 speed_hz = xfer->speed_hz;
1112 unsigned long long ms;
1114 if (spi_controller_is_slave(ctlr)) {
1115 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1116 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1117 return -EINTR;
1119 } else {
1120 if (!speed_hz)
1121 speed_hz = 100000;
1123 ms = 8LL * 1000LL * xfer->len;
1124 do_div(ms, speed_hz);
1125 ms += ms + 200; /* some tolerance */
1127 if (ms > UINT_MAX)
1128 ms = UINT_MAX;
1130 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1131 msecs_to_jiffies(ms));
1133 if (ms == 0) {
1134 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1135 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1136 dev_err(&msg->spi->dev,
1137 "SPI transfer timed out\n");
1138 return -ETIMEDOUT;
1142 return 0;
1145 static void _spi_transfer_delay_ns(u32 ns)
1147 if (!ns)
1148 return;
1149 if (ns <= 1000) {
1150 ndelay(ns);
1151 } else {
1152 u32 us = DIV_ROUND_UP(ns, 1000);
1154 if (us <= 10)
1155 udelay(us);
1156 else
1157 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1161 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1163 u32 delay = _delay->value;
1164 u32 unit = _delay->unit;
1165 u32 hz;
1167 if (!delay)
1168 return 0;
1170 switch (unit) {
1171 case SPI_DELAY_UNIT_USECS:
1172 delay *= 1000;
1173 break;
1174 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1175 break;
1176 case SPI_DELAY_UNIT_SCK:
1177 /* clock cycles need to be obtained from spi_transfer */
1178 if (!xfer)
1179 return -EINVAL;
1180 /* if there is no effective speed know, then approximate
1181 * by underestimating with half the requested hz
1183 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1184 if (!hz)
1185 return -EINVAL;
1186 delay *= DIV_ROUND_UP(1000000000, hz);
1187 break;
1188 default:
1189 return -EINVAL;
1192 return delay;
1194 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1196 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1198 int delay;
1200 might_sleep();
1202 if (!_delay)
1203 return -EINVAL;
1205 delay = spi_delay_to_ns(_delay, xfer);
1206 if (delay < 0)
1207 return delay;
1209 _spi_transfer_delay_ns(delay);
1211 return 0;
1213 EXPORT_SYMBOL_GPL(spi_delay_exec);
1215 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1216 struct spi_transfer *xfer)
1218 u32 delay = xfer->cs_change_delay.value;
1219 u32 unit = xfer->cs_change_delay.unit;
1220 int ret;
1222 /* return early on "fast" mode - for everything but USECS */
1223 if (!delay) {
1224 if (unit == SPI_DELAY_UNIT_USECS)
1225 _spi_transfer_delay_ns(10000);
1226 return;
1229 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1230 if (ret) {
1231 dev_err_once(&msg->spi->dev,
1232 "Use of unsupported delay unit %i, using default of 10us\n",
1233 unit);
1234 _spi_transfer_delay_ns(10000);
1239 * spi_transfer_one_message - Default implementation of transfer_one_message()
1241 * This is a standard implementation of transfer_one_message() for
1242 * drivers which implement a transfer_one() operation. It provides
1243 * standard handling of delays and chip select management.
1245 static int spi_transfer_one_message(struct spi_controller *ctlr,
1246 struct spi_message *msg)
1248 struct spi_transfer *xfer;
1249 bool keep_cs = false;
1250 int ret = 0;
1251 struct spi_statistics *statm = &ctlr->statistics;
1252 struct spi_statistics *stats = &msg->spi->statistics;
1254 spi_set_cs(msg->spi, true);
1256 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1257 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1259 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1260 trace_spi_transfer_start(msg, xfer);
1262 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1263 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1265 if (!ctlr->ptp_sts_supported) {
1266 xfer->ptp_sts_word_pre = 0;
1267 ptp_read_system_prets(xfer->ptp_sts);
1270 if (xfer->tx_buf || xfer->rx_buf) {
1271 reinit_completion(&ctlr->xfer_completion);
1273 fallback_pio:
1274 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1275 if (ret < 0) {
1276 if (ctlr->cur_msg_mapped &&
1277 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1278 __spi_unmap_msg(ctlr, msg);
1279 ctlr->fallback = true;
1280 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1281 goto fallback_pio;
1284 SPI_STATISTICS_INCREMENT_FIELD(statm,
1285 errors);
1286 SPI_STATISTICS_INCREMENT_FIELD(stats,
1287 errors);
1288 dev_err(&msg->spi->dev,
1289 "SPI transfer failed: %d\n", ret);
1290 goto out;
1293 if (ret > 0) {
1294 ret = spi_transfer_wait(ctlr, msg, xfer);
1295 if (ret < 0)
1296 msg->status = ret;
1298 } else {
1299 if (xfer->len)
1300 dev_err(&msg->spi->dev,
1301 "Bufferless transfer has length %u\n",
1302 xfer->len);
1305 if (!ctlr->ptp_sts_supported) {
1306 ptp_read_system_postts(xfer->ptp_sts);
1307 xfer->ptp_sts_word_post = xfer->len;
1310 trace_spi_transfer_stop(msg, xfer);
1312 if (msg->status != -EINPROGRESS)
1313 goto out;
1315 spi_transfer_delay_exec(xfer);
1317 if (xfer->cs_change) {
1318 if (list_is_last(&xfer->transfer_list,
1319 &msg->transfers)) {
1320 keep_cs = true;
1321 } else {
1322 spi_set_cs(msg->spi, false);
1323 _spi_transfer_cs_change_delay(msg, xfer);
1324 spi_set_cs(msg->spi, true);
1328 msg->actual_length += xfer->len;
1331 out:
1332 if (ret != 0 || !keep_cs)
1333 spi_set_cs(msg->spi, false);
1335 if (msg->status == -EINPROGRESS)
1336 msg->status = ret;
1338 if (msg->status && ctlr->handle_err)
1339 ctlr->handle_err(ctlr, msg);
1341 spi_finalize_current_message(ctlr);
1343 return ret;
1347 * spi_finalize_current_transfer - report completion of a transfer
1348 * @ctlr: the controller reporting completion
1350 * Called by SPI drivers using the core transfer_one_message()
1351 * implementation to notify it that the current interrupt driven
1352 * transfer has finished and the next one may be scheduled.
1354 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1356 complete(&ctlr->xfer_completion);
1358 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1360 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1362 if (ctlr->auto_runtime_pm) {
1363 pm_runtime_mark_last_busy(ctlr->dev.parent);
1364 pm_runtime_put_autosuspend(ctlr->dev.parent);
1369 * __spi_pump_messages - function which processes spi message queue
1370 * @ctlr: controller to process queue for
1371 * @in_kthread: true if we are in the context of the message pump thread
1373 * This function checks if there is any spi message in the queue that
1374 * needs processing and if so call out to the driver to initialize hardware
1375 * and transfer each message.
1377 * Note that it is called both from the kthread itself and also from
1378 * inside spi_sync(); the queue extraction handling at the top of the
1379 * function should deal with this safely.
1381 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1383 struct spi_transfer *xfer;
1384 struct spi_message *msg;
1385 bool was_busy = false;
1386 unsigned long flags;
1387 int ret;
1389 /* Lock queue */
1390 spin_lock_irqsave(&ctlr->queue_lock, flags);
1392 /* Make sure we are not already running a message */
1393 if (ctlr->cur_msg) {
1394 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1395 return;
1398 /* If another context is idling the device then defer */
1399 if (ctlr->idling) {
1400 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402 return;
1405 /* Check if the queue is idle */
1406 if (list_empty(&ctlr->queue) || !ctlr->running) {
1407 if (!ctlr->busy) {
1408 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409 return;
1412 /* Defer any non-atomic teardown to the thread */
1413 if (!in_kthread) {
1414 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1415 !ctlr->unprepare_transfer_hardware) {
1416 spi_idle_runtime_pm(ctlr);
1417 ctlr->busy = false;
1418 trace_spi_controller_idle(ctlr);
1419 } else {
1420 kthread_queue_work(ctlr->kworker,
1421 &ctlr->pump_messages);
1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 return;
1427 ctlr->busy = false;
1428 ctlr->idling = true;
1429 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1431 kfree(ctlr->dummy_rx);
1432 ctlr->dummy_rx = NULL;
1433 kfree(ctlr->dummy_tx);
1434 ctlr->dummy_tx = NULL;
1435 if (ctlr->unprepare_transfer_hardware &&
1436 ctlr->unprepare_transfer_hardware(ctlr))
1437 dev_err(&ctlr->dev,
1438 "failed to unprepare transfer hardware\n");
1439 spi_idle_runtime_pm(ctlr);
1440 trace_spi_controller_idle(ctlr);
1442 spin_lock_irqsave(&ctlr->queue_lock, flags);
1443 ctlr->idling = false;
1444 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1445 return;
1448 /* Extract head of queue */
1449 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1450 ctlr->cur_msg = msg;
1452 list_del_init(&msg->queue);
1453 if (ctlr->busy)
1454 was_busy = true;
1455 else
1456 ctlr->busy = true;
1457 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1459 mutex_lock(&ctlr->io_mutex);
1461 if (!was_busy && ctlr->auto_runtime_pm) {
1462 ret = pm_runtime_get_sync(ctlr->dev.parent);
1463 if (ret < 0) {
1464 pm_runtime_put_noidle(ctlr->dev.parent);
1465 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1466 ret);
1467 mutex_unlock(&ctlr->io_mutex);
1468 return;
1472 if (!was_busy)
1473 trace_spi_controller_busy(ctlr);
1475 if (!was_busy && ctlr->prepare_transfer_hardware) {
1476 ret = ctlr->prepare_transfer_hardware(ctlr);
1477 if (ret) {
1478 dev_err(&ctlr->dev,
1479 "failed to prepare transfer hardware: %d\n",
1480 ret);
1482 if (ctlr->auto_runtime_pm)
1483 pm_runtime_put(ctlr->dev.parent);
1485 msg->status = ret;
1486 spi_finalize_current_message(ctlr);
1488 mutex_unlock(&ctlr->io_mutex);
1489 return;
1493 trace_spi_message_start(msg);
1495 if (ctlr->prepare_message) {
1496 ret = ctlr->prepare_message(ctlr, msg);
1497 if (ret) {
1498 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1499 ret);
1500 msg->status = ret;
1501 spi_finalize_current_message(ctlr);
1502 goto out;
1504 ctlr->cur_msg_prepared = true;
1507 ret = spi_map_msg(ctlr, msg);
1508 if (ret) {
1509 msg->status = ret;
1510 spi_finalize_current_message(ctlr);
1511 goto out;
1514 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1515 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516 xfer->ptp_sts_word_pre = 0;
1517 ptp_read_system_prets(xfer->ptp_sts);
1521 ret = ctlr->transfer_one_message(ctlr, msg);
1522 if (ret) {
1523 dev_err(&ctlr->dev,
1524 "failed to transfer one message from queue\n");
1525 goto out;
1528 out:
1529 mutex_unlock(&ctlr->io_mutex);
1531 /* Prod the scheduler in case transfer_one() was busy waiting */
1532 if (!ret)
1533 cond_resched();
1537 * spi_pump_messages - kthread work function which processes spi message queue
1538 * @work: pointer to kthread work struct contained in the controller struct
1540 static void spi_pump_messages(struct kthread_work *work)
1542 struct spi_controller *ctlr =
1543 container_of(work, struct spi_controller, pump_messages);
1545 __spi_pump_messages(ctlr, true);
1549 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1550 * TX timestamp for the requested byte from the SPI
1551 * transfer. The frequency with which this function
1552 * must be called (once per word, once for the whole
1553 * transfer, once per batch of words etc) is arbitrary
1554 * as long as the @tx buffer offset is greater than or
1555 * equal to the requested byte at the time of the
1556 * call. The timestamp is only taken once, at the
1557 * first such call. It is assumed that the driver
1558 * advances its @tx buffer pointer monotonically.
1559 * @ctlr: Pointer to the spi_controller structure of the driver
1560 * @xfer: Pointer to the transfer being timestamped
1561 * @progress: How many words (not bytes) have been transferred so far
1562 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1563 * transfer, for less jitter in time measurement. Only compatible
1564 * with PIO drivers. If true, must follow up with
1565 * spi_take_timestamp_post or otherwise system will crash.
1566 * WARNING: for fully predictable results, the CPU frequency must
1567 * also be under control (governor).
1569 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1570 struct spi_transfer *xfer,
1571 size_t progress, bool irqs_off)
1573 if (!xfer->ptp_sts)
1574 return;
1576 if (xfer->timestamped)
1577 return;
1579 if (progress > xfer->ptp_sts_word_pre)
1580 return;
1582 /* Capture the resolution of the timestamp */
1583 xfer->ptp_sts_word_pre = progress;
1585 if (irqs_off) {
1586 local_irq_save(ctlr->irq_flags);
1587 preempt_disable();
1590 ptp_read_system_prets(xfer->ptp_sts);
1592 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1595 * spi_take_timestamp_post - helper for drivers to collect the end of the
1596 * TX timestamp for the requested byte from the SPI
1597 * transfer. Can be called with an arbitrary
1598 * frequency: only the first call where @tx exceeds
1599 * or is equal to the requested word will be
1600 * timestamped.
1601 * @ctlr: Pointer to the spi_controller structure of the driver
1602 * @xfer: Pointer to the transfer being timestamped
1603 * @progress: How many words (not bytes) have been transferred so far
1604 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1606 void spi_take_timestamp_post(struct spi_controller *ctlr,
1607 struct spi_transfer *xfer,
1608 size_t progress, bool irqs_off)
1610 if (!xfer->ptp_sts)
1611 return;
1613 if (xfer->timestamped)
1614 return;
1616 if (progress < xfer->ptp_sts_word_post)
1617 return;
1619 ptp_read_system_postts(xfer->ptp_sts);
1621 if (irqs_off) {
1622 local_irq_restore(ctlr->irq_flags);
1623 preempt_enable();
1626 /* Capture the resolution of the timestamp */
1627 xfer->ptp_sts_word_post = progress;
1629 xfer->timestamped = true;
1631 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1634 * spi_set_thread_rt - set the controller to pump at realtime priority
1635 * @ctlr: controller to boost priority of
1637 * This can be called because the controller requested realtime priority
1638 * (by setting the ->rt value before calling spi_register_controller()) or
1639 * because a device on the bus said that its transfers needed realtime
1640 * priority.
1642 * NOTE: at the moment if any device on a bus says it needs realtime then
1643 * the thread will be at realtime priority for all transfers on that
1644 * controller. If this eventually becomes a problem we may see if we can
1645 * find a way to boost the priority only temporarily during relevant
1646 * transfers.
1648 static void spi_set_thread_rt(struct spi_controller *ctlr)
1650 dev_info(&ctlr->dev,
1651 "will run message pump with realtime priority\n");
1652 sched_set_fifo(ctlr->kworker->task);
1655 static int spi_init_queue(struct spi_controller *ctlr)
1657 ctlr->running = false;
1658 ctlr->busy = false;
1660 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1661 if (IS_ERR(ctlr->kworker)) {
1662 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1663 return PTR_ERR(ctlr->kworker);
1666 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1669 * Controller config will indicate if this controller should run the
1670 * message pump with high (realtime) priority to reduce the transfer
1671 * latency on the bus by minimising the delay between a transfer
1672 * request and the scheduling of the message pump thread. Without this
1673 * setting the message pump thread will remain at default priority.
1675 if (ctlr->rt)
1676 spi_set_thread_rt(ctlr);
1678 return 0;
1682 * spi_get_next_queued_message() - called by driver to check for queued
1683 * messages
1684 * @ctlr: the controller to check for queued messages
1686 * If there are more messages in the queue, the next message is returned from
1687 * this call.
1689 * Return: the next message in the queue, else NULL if the queue is empty.
1691 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1693 struct spi_message *next;
1694 unsigned long flags;
1696 /* get a pointer to the next message, if any */
1697 spin_lock_irqsave(&ctlr->queue_lock, flags);
1698 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1699 queue);
1700 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1702 return next;
1704 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1707 * spi_finalize_current_message() - the current message is complete
1708 * @ctlr: the controller to return the message to
1710 * Called by the driver to notify the core that the message in the front of the
1711 * queue is complete and can be removed from the queue.
1713 void spi_finalize_current_message(struct spi_controller *ctlr)
1715 struct spi_transfer *xfer;
1716 struct spi_message *mesg;
1717 unsigned long flags;
1718 int ret;
1720 spin_lock_irqsave(&ctlr->queue_lock, flags);
1721 mesg = ctlr->cur_msg;
1722 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1724 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1725 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1726 ptp_read_system_postts(xfer->ptp_sts);
1727 xfer->ptp_sts_word_post = xfer->len;
1731 if (unlikely(ctlr->ptp_sts_supported))
1732 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1733 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1735 spi_unmap_msg(ctlr, mesg);
1737 /* In the prepare_messages callback the spi bus has the opportunity to
1738 * split a transfer to smaller chunks.
1739 * Release splited transfers here since spi_map_msg is done on the
1740 * splited transfers.
1742 spi_res_release(ctlr, mesg);
1744 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1745 ret = ctlr->unprepare_message(ctlr, mesg);
1746 if (ret) {
1747 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1748 ret);
1752 spin_lock_irqsave(&ctlr->queue_lock, flags);
1753 ctlr->cur_msg = NULL;
1754 ctlr->cur_msg_prepared = false;
1755 ctlr->fallback = false;
1756 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1757 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1759 trace_spi_message_done(mesg);
1761 mesg->state = NULL;
1762 if (mesg->complete)
1763 mesg->complete(mesg->context);
1765 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1767 static int spi_start_queue(struct spi_controller *ctlr)
1769 unsigned long flags;
1771 spin_lock_irqsave(&ctlr->queue_lock, flags);
1773 if (ctlr->running || ctlr->busy) {
1774 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1775 return -EBUSY;
1778 ctlr->running = true;
1779 ctlr->cur_msg = NULL;
1780 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1782 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1784 return 0;
1787 static int spi_stop_queue(struct spi_controller *ctlr)
1789 unsigned long flags;
1790 unsigned limit = 500;
1791 int ret = 0;
1793 spin_lock_irqsave(&ctlr->queue_lock, flags);
1796 * This is a bit lame, but is optimized for the common execution path.
1797 * A wait_queue on the ctlr->busy could be used, but then the common
1798 * execution path (pump_messages) would be required to call wake_up or
1799 * friends on every SPI message. Do this instead.
1801 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1802 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1803 usleep_range(10000, 11000);
1804 spin_lock_irqsave(&ctlr->queue_lock, flags);
1807 if (!list_empty(&ctlr->queue) || ctlr->busy)
1808 ret = -EBUSY;
1809 else
1810 ctlr->running = false;
1812 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1814 if (ret) {
1815 dev_warn(&ctlr->dev, "could not stop message queue\n");
1816 return ret;
1818 return ret;
1821 static int spi_destroy_queue(struct spi_controller *ctlr)
1823 int ret;
1825 ret = spi_stop_queue(ctlr);
1828 * kthread_flush_worker will block until all work is done.
1829 * If the reason that stop_queue timed out is that the work will never
1830 * finish, then it does no good to call flush/stop thread, so
1831 * return anyway.
1833 if (ret) {
1834 dev_err(&ctlr->dev, "problem destroying queue\n");
1835 return ret;
1838 kthread_destroy_worker(ctlr->kworker);
1840 return 0;
1843 static int __spi_queued_transfer(struct spi_device *spi,
1844 struct spi_message *msg,
1845 bool need_pump)
1847 struct spi_controller *ctlr = spi->controller;
1848 unsigned long flags;
1850 spin_lock_irqsave(&ctlr->queue_lock, flags);
1852 if (!ctlr->running) {
1853 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1854 return -ESHUTDOWN;
1856 msg->actual_length = 0;
1857 msg->status = -EINPROGRESS;
1859 list_add_tail(&msg->queue, &ctlr->queue);
1860 if (!ctlr->busy && need_pump)
1861 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1863 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1864 return 0;
1868 * spi_queued_transfer - transfer function for queued transfers
1869 * @spi: spi device which is requesting transfer
1870 * @msg: spi message which is to handled is queued to driver queue
1872 * Return: zero on success, else a negative error code.
1874 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1876 return __spi_queued_transfer(spi, msg, true);
1879 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1881 int ret;
1883 ctlr->transfer = spi_queued_transfer;
1884 if (!ctlr->transfer_one_message)
1885 ctlr->transfer_one_message = spi_transfer_one_message;
1887 /* Initialize and start queue */
1888 ret = spi_init_queue(ctlr);
1889 if (ret) {
1890 dev_err(&ctlr->dev, "problem initializing queue\n");
1891 goto err_init_queue;
1893 ctlr->queued = true;
1894 ret = spi_start_queue(ctlr);
1895 if (ret) {
1896 dev_err(&ctlr->dev, "problem starting queue\n");
1897 goto err_start_queue;
1900 return 0;
1902 err_start_queue:
1903 spi_destroy_queue(ctlr);
1904 err_init_queue:
1905 return ret;
1909 * spi_flush_queue - Send all pending messages in the queue from the callers'
1910 * context
1911 * @ctlr: controller to process queue for
1913 * This should be used when one wants to ensure all pending messages have been
1914 * sent before doing something. Is used by the spi-mem code to make sure SPI
1915 * memory operations do not preempt regular SPI transfers that have been queued
1916 * before the spi-mem operation.
1918 void spi_flush_queue(struct spi_controller *ctlr)
1920 if (ctlr->transfer == spi_queued_transfer)
1921 __spi_pump_messages(ctlr, false);
1924 /*-------------------------------------------------------------------------*/
1926 #if defined(CONFIG_OF)
1927 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1928 struct device_node *nc)
1930 u32 value;
1931 int rc;
1933 /* Mode (clock phase/polarity/etc.) */
1934 if (of_property_read_bool(nc, "spi-cpha"))
1935 spi->mode |= SPI_CPHA;
1936 if (of_property_read_bool(nc, "spi-cpol"))
1937 spi->mode |= SPI_CPOL;
1938 if (of_property_read_bool(nc, "spi-3wire"))
1939 spi->mode |= SPI_3WIRE;
1940 if (of_property_read_bool(nc, "spi-lsb-first"))
1941 spi->mode |= SPI_LSB_FIRST;
1942 if (of_property_read_bool(nc, "spi-cs-high"))
1943 spi->mode |= SPI_CS_HIGH;
1945 /* Device DUAL/QUAD mode */
1946 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1947 switch (value) {
1948 case 1:
1949 break;
1950 case 2:
1951 spi->mode |= SPI_TX_DUAL;
1952 break;
1953 case 4:
1954 spi->mode |= SPI_TX_QUAD;
1955 break;
1956 case 8:
1957 spi->mode |= SPI_TX_OCTAL;
1958 break;
1959 default:
1960 dev_warn(&ctlr->dev,
1961 "spi-tx-bus-width %d not supported\n",
1962 value);
1963 break;
1967 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1968 switch (value) {
1969 case 1:
1970 break;
1971 case 2:
1972 spi->mode |= SPI_RX_DUAL;
1973 break;
1974 case 4:
1975 spi->mode |= SPI_RX_QUAD;
1976 break;
1977 case 8:
1978 spi->mode |= SPI_RX_OCTAL;
1979 break;
1980 default:
1981 dev_warn(&ctlr->dev,
1982 "spi-rx-bus-width %d not supported\n",
1983 value);
1984 break;
1988 if (spi_controller_is_slave(ctlr)) {
1989 if (!of_node_name_eq(nc, "slave")) {
1990 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1991 nc);
1992 return -EINVAL;
1994 return 0;
1997 /* Device address */
1998 rc = of_property_read_u32(nc, "reg", &value);
1999 if (rc) {
2000 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2001 nc, rc);
2002 return rc;
2004 spi->chip_select = value;
2006 /* Device speed */
2007 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2008 spi->max_speed_hz = value;
2010 return 0;
2013 static struct spi_device *
2014 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2016 struct spi_device *spi;
2017 int rc;
2019 /* Alloc an spi_device */
2020 spi = spi_alloc_device(ctlr);
2021 if (!spi) {
2022 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2023 rc = -ENOMEM;
2024 goto err_out;
2027 /* Select device driver */
2028 rc = of_modalias_node(nc, spi->modalias,
2029 sizeof(spi->modalias));
2030 if (rc < 0) {
2031 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2032 goto err_out;
2035 rc = of_spi_parse_dt(ctlr, spi, nc);
2036 if (rc)
2037 goto err_out;
2039 /* Store a pointer to the node in the device structure */
2040 of_node_get(nc);
2041 spi->dev.of_node = nc;
2043 /* Register the new device */
2044 rc = spi_add_device(spi);
2045 if (rc) {
2046 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2047 goto err_of_node_put;
2050 return spi;
2052 err_of_node_put:
2053 of_node_put(nc);
2054 err_out:
2055 spi_dev_put(spi);
2056 return ERR_PTR(rc);
2060 * of_register_spi_devices() - Register child devices onto the SPI bus
2061 * @ctlr: Pointer to spi_controller device
2063 * Registers an spi_device for each child node of controller node which
2064 * represents a valid SPI slave.
2066 static void of_register_spi_devices(struct spi_controller *ctlr)
2068 struct spi_device *spi;
2069 struct device_node *nc;
2071 if (!ctlr->dev.of_node)
2072 return;
2074 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2075 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2076 continue;
2077 spi = of_register_spi_device(ctlr, nc);
2078 if (IS_ERR(spi)) {
2079 dev_warn(&ctlr->dev,
2080 "Failed to create SPI device for %pOF\n", nc);
2081 of_node_clear_flag(nc, OF_POPULATED);
2085 #else
2086 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2087 #endif
2089 #ifdef CONFIG_ACPI
2090 struct acpi_spi_lookup {
2091 struct spi_controller *ctlr;
2092 u32 max_speed_hz;
2093 u32 mode;
2094 int irq;
2095 u8 bits_per_word;
2096 u8 chip_select;
2099 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2100 struct acpi_spi_lookup *lookup)
2102 const union acpi_object *obj;
2104 if (!x86_apple_machine)
2105 return;
2107 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2108 && obj->buffer.length >= 4)
2109 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2111 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2112 && obj->buffer.length == 8)
2113 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2115 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2116 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2117 lookup->mode |= SPI_LSB_FIRST;
2119 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2120 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2121 lookup->mode |= SPI_CPOL;
2123 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2124 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2125 lookup->mode |= SPI_CPHA;
2128 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2130 struct acpi_spi_lookup *lookup = data;
2131 struct spi_controller *ctlr = lookup->ctlr;
2133 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2134 struct acpi_resource_spi_serialbus *sb;
2135 acpi_handle parent_handle;
2136 acpi_status status;
2138 sb = &ares->data.spi_serial_bus;
2139 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2141 status = acpi_get_handle(NULL,
2142 sb->resource_source.string_ptr,
2143 &parent_handle);
2145 if (ACPI_FAILURE(status) ||
2146 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2147 return -ENODEV;
2150 * ACPI DeviceSelection numbering is handled by the
2151 * host controller driver in Windows and can vary
2152 * from driver to driver. In Linux we always expect
2153 * 0 .. max - 1 so we need to ask the driver to
2154 * translate between the two schemes.
2156 if (ctlr->fw_translate_cs) {
2157 int cs = ctlr->fw_translate_cs(ctlr,
2158 sb->device_selection);
2159 if (cs < 0)
2160 return cs;
2161 lookup->chip_select = cs;
2162 } else {
2163 lookup->chip_select = sb->device_selection;
2166 lookup->max_speed_hz = sb->connection_speed;
2167 lookup->bits_per_word = sb->data_bit_length;
2169 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2170 lookup->mode |= SPI_CPHA;
2171 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2172 lookup->mode |= SPI_CPOL;
2173 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2174 lookup->mode |= SPI_CS_HIGH;
2176 } else if (lookup->irq < 0) {
2177 struct resource r;
2179 if (acpi_dev_resource_interrupt(ares, 0, &r))
2180 lookup->irq = r.start;
2183 /* Always tell the ACPI core to skip this resource */
2184 return 1;
2187 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2188 struct acpi_device *adev)
2190 acpi_handle parent_handle = NULL;
2191 struct list_head resource_list;
2192 struct acpi_spi_lookup lookup = {};
2193 struct spi_device *spi;
2194 int ret;
2196 if (acpi_bus_get_status(adev) || !adev->status.present ||
2197 acpi_device_enumerated(adev))
2198 return AE_OK;
2200 lookup.ctlr = ctlr;
2201 lookup.irq = -1;
2203 INIT_LIST_HEAD(&resource_list);
2204 ret = acpi_dev_get_resources(adev, &resource_list,
2205 acpi_spi_add_resource, &lookup);
2206 acpi_dev_free_resource_list(&resource_list);
2208 if (ret < 0)
2209 /* found SPI in _CRS but it points to another controller */
2210 return AE_OK;
2212 if (!lookup.max_speed_hz &&
2213 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2214 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2215 /* Apple does not use _CRS but nested devices for SPI slaves */
2216 acpi_spi_parse_apple_properties(adev, &lookup);
2219 if (!lookup.max_speed_hz)
2220 return AE_OK;
2222 spi = spi_alloc_device(ctlr);
2223 if (!spi) {
2224 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2225 dev_name(&adev->dev));
2226 return AE_NO_MEMORY;
2230 ACPI_COMPANION_SET(&spi->dev, adev);
2231 spi->max_speed_hz = lookup.max_speed_hz;
2232 spi->mode |= lookup.mode;
2233 spi->irq = lookup.irq;
2234 spi->bits_per_word = lookup.bits_per_word;
2235 spi->chip_select = lookup.chip_select;
2237 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2238 sizeof(spi->modalias));
2240 if (spi->irq < 0)
2241 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2243 acpi_device_set_enumerated(adev);
2245 adev->power.flags.ignore_parent = true;
2246 if (spi_add_device(spi)) {
2247 adev->power.flags.ignore_parent = false;
2248 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2249 dev_name(&adev->dev));
2250 spi_dev_put(spi);
2253 return AE_OK;
2256 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2257 void *data, void **return_value)
2259 struct spi_controller *ctlr = data;
2260 struct acpi_device *adev;
2262 if (acpi_bus_get_device(handle, &adev))
2263 return AE_OK;
2265 return acpi_register_spi_device(ctlr, adev);
2268 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2270 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2272 acpi_status status;
2273 acpi_handle handle;
2275 handle = ACPI_HANDLE(ctlr->dev.parent);
2276 if (!handle)
2277 return;
2279 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2280 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2281 acpi_spi_add_device, NULL, ctlr, NULL);
2282 if (ACPI_FAILURE(status))
2283 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2285 #else
2286 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2287 #endif /* CONFIG_ACPI */
2289 static void spi_controller_release(struct device *dev)
2291 struct spi_controller *ctlr;
2293 ctlr = container_of(dev, struct spi_controller, dev);
2294 kfree(ctlr);
2297 static struct class spi_master_class = {
2298 .name = "spi_master",
2299 .owner = THIS_MODULE,
2300 .dev_release = spi_controller_release,
2301 .dev_groups = spi_master_groups,
2304 #ifdef CONFIG_SPI_SLAVE
2306 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2307 * controller
2308 * @spi: device used for the current transfer
2310 int spi_slave_abort(struct spi_device *spi)
2312 struct spi_controller *ctlr = spi->controller;
2314 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2315 return ctlr->slave_abort(ctlr);
2317 return -ENOTSUPP;
2319 EXPORT_SYMBOL_GPL(spi_slave_abort);
2321 static int match_true(struct device *dev, void *data)
2323 return 1;
2326 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2327 char *buf)
2329 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2330 dev);
2331 struct device *child;
2333 child = device_find_child(&ctlr->dev, NULL, match_true);
2334 return sprintf(buf, "%s\n",
2335 child ? to_spi_device(child)->modalias : NULL);
2338 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2339 const char *buf, size_t count)
2341 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2342 dev);
2343 struct spi_device *spi;
2344 struct device *child;
2345 char name[32];
2346 int rc;
2348 rc = sscanf(buf, "%31s", name);
2349 if (rc != 1 || !name[0])
2350 return -EINVAL;
2352 child = device_find_child(&ctlr->dev, NULL, match_true);
2353 if (child) {
2354 /* Remove registered slave */
2355 device_unregister(child);
2356 put_device(child);
2359 if (strcmp(name, "(null)")) {
2360 /* Register new slave */
2361 spi = spi_alloc_device(ctlr);
2362 if (!spi)
2363 return -ENOMEM;
2365 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2367 rc = spi_add_device(spi);
2368 if (rc) {
2369 spi_dev_put(spi);
2370 return rc;
2374 return count;
2377 static DEVICE_ATTR_RW(slave);
2379 static struct attribute *spi_slave_attrs[] = {
2380 &dev_attr_slave.attr,
2381 NULL,
2384 static const struct attribute_group spi_slave_group = {
2385 .attrs = spi_slave_attrs,
2388 static const struct attribute_group *spi_slave_groups[] = {
2389 &spi_controller_statistics_group,
2390 &spi_slave_group,
2391 NULL,
2394 static struct class spi_slave_class = {
2395 .name = "spi_slave",
2396 .owner = THIS_MODULE,
2397 .dev_release = spi_controller_release,
2398 .dev_groups = spi_slave_groups,
2400 #else
2401 extern struct class spi_slave_class; /* dummy */
2402 #endif
2405 * __spi_alloc_controller - allocate an SPI master or slave controller
2406 * @dev: the controller, possibly using the platform_bus
2407 * @size: how much zeroed driver-private data to allocate; the pointer to this
2408 * memory is in the driver_data field of the returned device, accessible
2409 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2410 * drivers granting DMA access to portions of their private data need to
2411 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2412 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2413 * slave (true) controller
2414 * Context: can sleep
2416 * This call is used only by SPI controller drivers, which are the
2417 * only ones directly touching chip registers. It's how they allocate
2418 * an spi_controller structure, prior to calling spi_register_controller().
2420 * This must be called from context that can sleep.
2422 * The caller is responsible for assigning the bus number and initializing the
2423 * controller's methods before calling spi_register_controller(); and (after
2424 * errors adding the device) calling spi_controller_put() to prevent a memory
2425 * leak.
2427 * Return: the SPI controller structure on success, else NULL.
2429 struct spi_controller *__spi_alloc_controller(struct device *dev,
2430 unsigned int size, bool slave)
2432 struct spi_controller *ctlr;
2433 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2435 if (!dev)
2436 return NULL;
2438 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2439 if (!ctlr)
2440 return NULL;
2442 device_initialize(&ctlr->dev);
2443 ctlr->bus_num = -1;
2444 ctlr->num_chipselect = 1;
2445 ctlr->slave = slave;
2446 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2447 ctlr->dev.class = &spi_slave_class;
2448 else
2449 ctlr->dev.class = &spi_master_class;
2450 ctlr->dev.parent = dev;
2451 pm_suspend_ignore_children(&ctlr->dev, true);
2452 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2454 return ctlr;
2456 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2458 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2460 spi_controller_put(*(struct spi_controller **)ctlr);
2464 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2465 * @dev: physical device of SPI controller
2466 * @size: how much zeroed driver-private data to allocate
2467 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2468 * Context: can sleep
2470 * Allocate an SPI controller and automatically release a reference on it
2471 * when @dev is unbound from its driver. Drivers are thus relieved from
2472 * having to call spi_controller_put().
2474 * The arguments to this function are identical to __spi_alloc_controller().
2476 * Return: the SPI controller structure on success, else NULL.
2478 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2479 unsigned int size,
2480 bool slave)
2482 struct spi_controller **ptr, *ctlr;
2484 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2485 GFP_KERNEL);
2486 if (!ptr)
2487 return NULL;
2489 ctlr = __spi_alloc_controller(dev, size, slave);
2490 if (ctlr) {
2491 *ptr = ctlr;
2492 devres_add(dev, ptr);
2493 } else {
2494 devres_free(ptr);
2497 return ctlr;
2499 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2501 #ifdef CONFIG_OF
2502 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2504 int nb, i, *cs;
2505 struct device_node *np = ctlr->dev.of_node;
2507 if (!np)
2508 return 0;
2510 nb = of_gpio_named_count(np, "cs-gpios");
2511 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2513 /* Return error only for an incorrectly formed cs-gpios property */
2514 if (nb == 0 || nb == -ENOENT)
2515 return 0;
2516 else if (nb < 0)
2517 return nb;
2519 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2520 GFP_KERNEL);
2521 ctlr->cs_gpios = cs;
2523 if (!ctlr->cs_gpios)
2524 return -ENOMEM;
2526 for (i = 0; i < ctlr->num_chipselect; i++)
2527 cs[i] = -ENOENT;
2529 for (i = 0; i < nb; i++)
2530 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2532 return 0;
2534 #else
2535 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2537 return 0;
2539 #endif
2542 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2543 * @ctlr: The SPI master to grab GPIO descriptors for
2545 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2547 int nb, i;
2548 struct gpio_desc **cs;
2549 struct device *dev = &ctlr->dev;
2550 unsigned long native_cs_mask = 0;
2551 unsigned int num_cs_gpios = 0;
2553 nb = gpiod_count(dev, "cs");
2554 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2556 /* No GPIOs at all is fine, else return the error */
2557 if (nb == 0 || nb == -ENOENT)
2558 return 0;
2559 else if (nb < 0)
2560 return nb;
2562 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2563 GFP_KERNEL);
2564 if (!cs)
2565 return -ENOMEM;
2566 ctlr->cs_gpiods = cs;
2568 for (i = 0; i < nb; i++) {
2570 * Most chipselects are active low, the inverted
2571 * semantics are handled by special quirks in gpiolib,
2572 * so initializing them GPIOD_OUT_LOW here means
2573 * "unasserted", in most cases this will drive the physical
2574 * line high.
2576 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2577 GPIOD_OUT_LOW);
2578 if (IS_ERR(cs[i]))
2579 return PTR_ERR(cs[i]);
2581 if (cs[i]) {
2583 * If we find a CS GPIO, name it after the device and
2584 * chip select line.
2586 char *gpioname;
2588 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2589 dev_name(dev), i);
2590 if (!gpioname)
2591 return -ENOMEM;
2592 gpiod_set_consumer_name(cs[i], gpioname);
2593 num_cs_gpios++;
2594 continue;
2597 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2598 dev_err(dev, "Invalid native chip select %d\n", i);
2599 return -EINVAL;
2601 native_cs_mask |= BIT(i);
2604 ctlr->unused_native_cs = ffz(native_cs_mask);
2605 if (num_cs_gpios && ctlr->max_native_cs &&
2606 ctlr->unused_native_cs >= ctlr->max_native_cs) {
2607 dev_err(dev, "No unused native chip select available\n");
2608 return -EINVAL;
2611 return 0;
2614 static int spi_controller_check_ops(struct spi_controller *ctlr)
2617 * The controller may implement only the high-level SPI-memory like
2618 * operations if it does not support regular SPI transfers, and this is
2619 * valid use case.
2620 * If ->mem_ops is NULL, we request that at least one of the
2621 * ->transfer_xxx() method be implemented.
2623 if (ctlr->mem_ops) {
2624 if (!ctlr->mem_ops->exec_op)
2625 return -EINVAL;
2626 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2627 !ctlr->transfer_one_message) {
2628 return -EINVAL;
2631 return 0;
2635 * spi_register_controller - register SPI master or slave controller
2636 * @ctlr: initialized master, originally from spi_alloc_master() or
2637 * spi_alloc_slave()
2638 * Context: can sleep
2640 * SPI controllers connect to their drivers using some non-SPI bus,
2641 * such as the platform bus. The final stage of probe() in that code
2642 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2644 * SPI controllers use board specific (often SOC specific) bus numbers,
2645 * and board-specific addressing for SPI devices combines those numbers
2646 * with chip select numbers. Since SPI does not directly support dynamic
2647 * device identification, boards need configuration tables telling which
2648 * chip is at which address.
2650 * This must be called from context that can sleep. It returns zero on
2651 * success, else a negative error code (dropping the controller's refcount).
2652 * After a successful return, the caller is responsible for calling
2653 * spi_unregister_controller().
2655 * Return: zero on success, else a negative error code.
2657 int spi_register_controller(struct spi_controller *ctlr)
2659 struct device *dev = ctlr->dev.parent;
2660 struct boardinfo *bi;
2661 int status;
2662 int id, first_dynamic;
2664 if (!dev)
2665 return -ENODEV;
2668 * Make sure all necessary hooks are implemented before registering
2669 * the SPI controller.
2671 status = spi_controller_check_ops(ctlr);
2672 if (status)
2673 return status;
2675 if (ctlr->bus_num >= 0) {
2676 /* devices with a fixed bus num must check-in with the num */
2677 mutex_lock(&board_lock);
2678 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2679 ctlr->bus_num + 1, GFP_KERNEL);
2680 mutex_unlock(&board_lock);
2681 if (WARN(id < 0, "couldn't get idr"))
2682 return id == -ENOSPC ? -EBUSY : id;
2683 ctlr->bus_num = id;
2684 } else if (ctlr->dev.of_node) {
2685 /* allocate dynamic bus number using Linux idr */
2686 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2687 if (id >= 0) {
2688 ctlr->bus_num = id;
2689 mutex_lock(&board_lock);
2690 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2691 ctlr->bus_num + 1, GFP_KERNEL);
2692 mutex_unlock(&board_lock);
2693 if (WARN(id < 0, "couldn't get idr"))
2694 return id == -ENOSPC ? -EBUSY : id;
2697 if (ctlr->bus_num < 0) {
2698 first_dynamic = of_alias_get_highest_id("spi");
2699 if (first_dynamic < 0)
2700 first_dynamic = 0;
2701 else
2702 first_dynamic++;
2704 mutex_lock(&board_lock);
2705 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2706 0, GFP_KERNEL);
2707 mutex_unlock(&board_lock);
2708 if (WARN(id < 0, "couldn't get idr"))
2709 return id;
2710 ctlr->bus_num = id;
2712 INIT_LIST_HEAD(&ctlr->queue);
2713 spin_lock_init(&ctlr->queue_lock);
2714 spin_lock_init(&ctlr->bus_lock_spinlock);
2715 mutex_init(&ctlr->bus_lock_mutex);
2716 mutex_init(&ctlr->io_mutex);
2717 ctlr->bus_lock_flag = 0;
2718 init_completion(&ctlr->xfer_completion);
2719 if (!ctlr->max_dma_len)
2720 ctlr->max_dma_len = INT_MAX;
2722 /* register the device, then userspace will see it.
2723 * registration fails if the bus ID is in use.
2725 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2727 if (!spi_controller_is_slave(ctlr)) {
2728 if (ctlr->use_gpio_descriptors) {
2729 status = spi_get_gpio_descs(ctlr);
2730 if (status)
2731 goto free_bus_id;
2733 * A controller using GPIO descriptors always
2734 * supports SPI_CS_HIGH if need be.
2736 ctlr->mode_bits |= SPI_CS_HIGH;
2737 } else {
2738 /* Legacy code path for GPIOs from DT */
2739 status = of_spi_get_gpio_numbers(ctlr);
2740 if (status)
2741 goto free_bus_id;
2746 * Even if it's just one always-selected device, there must
2747 * be at least one chipselect.
2749 if (!ctlr->num_chipselect) {
2750 status = -EINVAL;
2751 goto free_bus_id;
2754 status = device_add(&ctlr->dev);
2755 if (status < 0)
2756 goto free_bus_id;
2757 dev_dbg(dev, "registered %s %s\n",
2758 spi_controller_is_slave(ctlr) ? "slave" : "master",
2759 dev_name(&ctlr->dev));
2762 * If we're using a queued driver, start the queue. Note that we don't
2763 * need the queueing logic if the driver is only supporting high-level
2764 * memory operations.
2766 if (ctlr->transfer) {
2767 dev_info(dev, "controller is unqueued, this is deprecated\n");
2768 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2769 status = spi_controller_initialize_queue(ctlr);
2770 if (status) {
2771 device_del(&ctlr->dev);
2772 goto free_bus_id;
2775 /* add statistics */
2776 spin_lock_init(&ctlr->statistics.lock);
2778 mutex_lock(&board_lock);
2779 list_add_tail(&ctlr->list, &spi_controller_list);
2780 list_for_each_entry(bi, &board_list, list)
2781 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2782 mutex_unlock(&board_lock);
2784 /* Register devices from the device tree and ACPI */
2785 of_register_spi_devices(ctlr);
2786 acpi_register_spi_devices(ctlr);
2787 return status;
2789 free_bus_id:
2790 mutex_lock(&board_lock);
2791 idr_remove(&spi_master_idr, ctlr->bus_num);
2792 mutex_unlock(&board_lock);
2793 return status;
2795 EXPORT_SYMBOL_GPL(spi_register_controller);
2797 static void devm_spi_unregister(struct device *dev, void *res)
2799 spi_unregister_controller(*(struct spi_controller **)res);
2803 * devm_spi_register_controller - register managed SPI master or slave
2804 * controller
2805 * @dev: device managing SPI controller
2806 * @ctlr: initialized controller, originally from spi_alloc_master() or
2807 * spi_alloc_slave()
2808 * Context: can sleep
2810 * Register a SPI device as with spi_register_controller() which will
2811 * automatically be unregistered and freed.
2813 * Return: zero on success, else a negative error code.
2815 int devm_spi_register_controller(struct device *dev,
2816 struct spi_controller *ctlr)
2818 struct spi_controller **ptr;
2819 int ret;
2821 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2822 if (!ptr)
2823 return -ENOMEM;
2825 ret = spi_register_controller(ctlr);
2826 if (!ret) {
2827 *ptr = ctlr;
2828 devres_add(dev, ptr);
2829 } else {
2830 devres_free(ptr);
2833 return ret;
2835 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2837 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr)
2839 return *(struct spi_controller **)res == ctlr;
2842 static int __unregister(struct device *dev, void *null)
2844 spi_unregister_device(to_spi_device(dev));
2845 return 0;
2849 * spi_unregister_controller - unregister SPI master or slave controller
2850 * @ctlr: the controller being unregistered
2851 * Context: can sleep
2853 * This call is used only by SPI controller drivers, which are the
2854 * only ones directly touching chip registers.
2856 * This must be called from context that can sleep.
2858 * Note that this function also drops a reference to the controller.
2860 void spi_unregister_controller(struct spi_controller *ctlr)
2862 struct spi_controller *found;
2863 int id = ctlr->bus_num;
2865 /* Prevent addition of new devices, unregister existing ones */
2866 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2867 mutex_lock(&spi_add_lock);
2869 device_for_each_child(&ctlr->dev, NULL, __unregister);
2871 /* First make sure that this controller was ever added */
2872 mutex_lock(&board_lock);
2873 found = idr_find(&spi_master_idr, id);
2874 mutex_unlock(&board_lock);
2875 if (ctlr->queued) {
2876 if (spi_destroy_queue(ctlr))
2877 dev_err(&ctlr->dev, "queue remove failed\n");
2879 mutex_lock(&board_lock);
2880 list_del(&ctlr->list);
2881 mutex_unlock(&board_lock);
2883 device_del(&ctlr->dev);
2885 /* Release the last reference on the controller if its driver
2886 * has not yet been converted to devm_spi_alloc_master/slave().
2888 if (!devres_find(ctlr->dev.parent, devm_spi_release_controller,
2889 devm_spi_match_controller, ctlr))
2890 put_device(&ctlr->dev);
2892 /* free bus id */
2893 mutex_lock(&board_lock);
2894 if (found == ctlr)
2895 idr_remove(&spi_master_idr, id);
2896 mutex_unlock(&board_lock);
2898 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2899 mutex_unlock(&spi_add_lock);
2901 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2903 int spi_controller_suspend(struct spi_controller *ctlr)
2905 int ret;
2907 /* Basically no-ops for non-queued controllers */
2908 if (!ctlr->queued)
2909 return 0;
2911 ret = spi_stop_queue(ctlr);
2912 if (ret)
2913 dev_err(&ctlr->dev, "queue stop failed\n");
2915 return ret;
2917 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2919 int spi_controller_resume(struct spi_controller *ctlr)
2921 int ret;
2923 if (!ctlr->queued)
2924 return 0;
2926 ret = spi_start_queue(ctlr);
2927 if (ret)
2928 dev_err(&ctlr->dev, "queue restart failed\n");
2930 return ret;
2932 EXPORT_SYMBOL_GPL(spi_controller_resume);
2934 static int __spi_controller_match(struct device *dev, const void *data)
2936 struct spi_controller *ctlr;
2937 const u16 *bus_num = data;
2939 ctlr = container_of(dev, struct spi_controller, dev);
2940 return ctlr->bus_num == *bus_num;
2944 * spi_busnum_to_master - look up master associated with bus_num
2945 * @bus_num: the master's bus number
2946 * Context: can sleep
2948 * This call may be used with devices that are registered after
2949 * arch init time. It returns a refcounted pointer to the relevant
2950 * spi_controller (which the caller must release), or NULL if there is
2951 * no such master registered.
2953 * Return: the SPI master structure on success, else NULL.
2955 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2957 struct device *dev;
2958 struct spi_controller *ctlr = NULL;
2960 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2961 __spi_controller_match);
2962 if (dev)
2963 ctlr = container_of(dev, struct spi_controller, dev);
2964 /* reference got in class_find_device */
2965 return ctlr;
2967 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2969 /*-------------------------------------------------------------------------*/
2971 /* Core methods for SPI resource management */
2974 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2975 * during the processing of a spi_message while using
2976 * spi_transfer_one
2977 * @spi: the spi device for which we allocate memory
2978 * @release: the release code to execute for this resource
2979 * @size: size to alloc and return
2980 * @gfp: GFP allocation flags
2982 * Return: the pointer to the allocated data
2984 * This may get enhanced in the future to allocate from a memory pool
2985 * of the @spi_device or @spi_controller to avoid repeated allocations.
2987 void *spi_res_alloc(struct spi_device *spi,
2988 spi_res_release_t release,
2989 size_t size, gfp_t gfp)
2991 struct spi_res *sres;
2993 sres = kzalloc(sizeof(*sres) + size, gfp);
2994 if (!sres)
2995 return NULL;
2997 INIT_LIST_HEAD(&sres->entry);
2998 sres->release = release;
3000 return sres->data;
3002 EXPORT_SYMBOL_GPL(spi_res_alloc);
3005 * spi_res_free - free an spi resource
3006 * @res: pointer to the custom data of a resource
3009 void spi_res_free(void *res)
3011 struct spi_res *sres = container_of(res, struct spi_res, data);
3013 if (!res)
3014 return;
3016 WARN_ON(!list_empty(&sres->entry));
3017 kfree(sres);
3019 EXPORT_SYMBOL_GPL(spi_res_free);
3022 * spi_res_add - add a spi_res to the spi_message
3023 * @message: the spi message
3024 * @res: the spi_resource
3026 void spi_res_add(struct spi_message *message, void *res)
3028 struct spi_res *sres = container_of(res, struct spi_res, data);
3030 WARN_ON(!list_empty(&sres->entry));
3031 list_add_tail(&sres->entry, &message->resources);
3033 EXPORT_SYMBOL_GPL(spi_res_add);
3036 * spi_res_release - release all spi resources for this message
3037 * @ctlr: the @spi_controller
3038 * @message: the @spi_message
3040 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3042 struct spi_res *res, *tmp;
3044 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3045 if (res->release)
3046 res->release(ctlr, message, res->data);
3048 list_del(&res->entry);
3050 kfree(res);
3053 EXPORT_SYMBOL_GPL(spi_res_release);
3055 /*-------------------------------------------------------------------------*/
3057 /* Core methods for spi_message alterations */
3059 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3060 struct spi_message *msg,
3061 void *res)
3063 struct spi_replaced_transfers *rxfer = res;
3064 size_t i;
3066 /* call extra callback if requested */
3067 if (rxfer->release)
3068 rxfer->release(ctlr, msg, res);
3070 /* insert replaced transfers back into the message */
3071 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3073 /* remove the formerly inserted entries */
3074 for (i = 0; i < rxfer->inserted; i++)
3075 list_del(&rxfer->inserted_transfers[i].transfer_list);
3079 * spi_replace_transfers - replace transfers with several transfers
3080 * and register change with spi_message.resources
3081 * @msg: the spi_message we work upon
3082 * @xfer_first: the first spi_transfer we want to replace
3083 * @remove: number of transfers to remove
3084 * @insert: the number of transfers we want to insert instead
3085 * @release: extra release code necessary in some circumstances
3086 * @extradatasize: extra data to allocate (with alignment guarantees
3087 * of struct @spi_transfer)
3088 * @gfp: gfp flags
3090 * Returns: pointer to @spi_replaced_transfers,
3091 * PTR_ERR(...) in case of errors.
3093 struct spi_replaced_transfers *spi_replace_transfers(
3094 struct spi_message *msg,
3095 struct spi_transfer *xfer_first,
3096 size_t remove,
3097 size_t insert,
3098 spi_replaced_release_t release,
3099 size_t extradatasize,
3100 gfp_t gfp)
3102 struct spi_replaced_transfers *rxfer;
3103 struct spi_transfer *xfer;
3104 size_t i;
3106 /* allocate the structure using spi_res */
3107 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3108 struct_size(rxfer, inserted_transfers, insert)
3109 + extradatasize,
3110 gfp);
3111 if (!rxfer)
3112 return ERR_PTR(-ENOMEM);
3114 /* the release code to invoke before running the generic release */
3115 rxfer->release = release;
3117 /* assign extradata */
3118 if (extradatasize)
3119 rxfer->extradata =
3120 &rxfer->inserted_transfers[insert];
3122 /* init the replaced_transfers list */
3123 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3125 /* assign the list_entry after which we should reinsert
3126 * the @replaced_transfers - it may be spi_message.messages!
3128 rxfer->replaced_after = xfer_first->transfer_list.prev;
3130 /* remove the requested number of transfers */
3131 for (i = 0; i < remove; i++) {
3132 /* if the entry after replaced_after it is msg->transfers
3133 * then we have been requested to remove more transfers
3134 * than are in the list
3136 if (rxfer->replaced_after->next == &msg->transfers) {
3137 dev_err(&msg->spi->dev,
3138 "requested to remove more spi_transfers than are available\n");
3139 /* insert replaced transfers back into the message */
3140 list_splice(&rxfer->replaced_transfers,
3141 rxfer->replaced_after);
3143 /* free the spi_replace_transfer structure */
3144 spi_res_free(rxfer);
3146 /* and return with an error */
3147 return ERR_PTR(-EINVAL);
3150 /* remove the entry after replaced_after from list of
3151 * transfers and add it to list of replaced_transfers
3153 list_move_tail(rxfer->replaced_after->next,
3154 &rxfer->replaced_transfers);
3157 /* create copy of the given xfer with identical settings
3158 * based on the first transfer to get removed
3160 for (i = 0; i < insert; i++) {
3161 /* we need to run in reverse order */
3162 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3164 /* copy all spi_transfer data */
3165 memcpy(xfer, xfer_first, sizeof(*xfer));
3167 /* add to list */
3168 list_add(&xfer->transfer_list, rxfer->replaced_after);
3170 /* clear cs_change and delay for all but the last */
3171 if (i) {
3172 xfer->cs_change = false;
3173 xfer->delay_usecs = 0;
3174 xfer->delay.value = 0;
3178 /* set up inserted */
3179 rxfer->inserted = insert;
3181 /* and register it with spi_res/spi_message */
3182 spi_res_add(msg, rxfer);
3184 return rxfer;
3186 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3188 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3189 struct spi_message *msg,
3190 struct spi_transfer **xferp,
3191 size_t maxsize,
3192 gfp_t gfp)
3194 struct spi_transfer *xfer = *xferp, *xfers;
3195 struct spi_replaced_transfers *srt;
3196 size_t offset;
3197 size_t count, i;
3199 /* calculate how many we have to replace */
3200 count = DIV_ROUND_UP(xfer->len, maxsize);
3202 /* create replacement */
3203 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3204 if (IS_ERR(srt))
3205 return PTR_ERR(srt);
3206 xfers = srt->inserted_transfers;
3208 /* now handle each of those newly inserted spi_transfers
3209 * note that the replacements spi_transfers all are preset
3210 * to the same values as *xferp, so tx_buf, rx_buf and len
3211 * are all identical (as well as most others)
3212 * so we just have to fix up len and the pointers.
3214 * this also includes support for the depreciated
3215 * spi_message.is_dma_mapped interface
3218 /* the first transfer just needs the length modified, so we
3219 * run it outside the loop
3221 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3223 /* all the others need rx_buf/tx_buf also set */
3224 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3225 /* update rx_buf, tx_buf and dma */
3226 if (xfers[i].rx_buf)
3227 xfers[i].rx_buf += offset;
3228 if (xfers[i].rx_dma)
3229 xfers[i].rx_dma += offset;
3230 if (xfers[i].tx_buf)
3231 xfers[i].tx_buf += offset;
3232 if (xfers[i].tx_dma)
3233 xfers[i].tx_dma += offset;
3235 /* update length */
3236 xfers[i].len = min(maxsize, xfers[i].len - offset);
3239 /* we set up xferp to the last entry we have inserted,
3240 * so that we skip those already split transfers
3242 *xferp = &xfers[count - 1];
3244 /* increment statistics counters */
3245 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3246 transfers_split_maxsize);
3247 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3248 transfers_split_maxsize);
3250 return 0;
3254 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3255 * when an individual transfer exceeds a
3256 * certain size
3257 * @ctlr: the @spi_controller for this transfer
3258 * @msg: the @spi_message to transform
3259 * @maxsize: the maximum when to apply this
3260 * @gfp: GFP allocation flags
3262 * Return: status of transformation
3264 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3265 struct spi_message *msg,
3266 size_t maxsize,
3267 gfp_t gfp)
3269 struct spi_transfer *xfer;
3270 int ret;
3272 /* iterate over the transfer_list,
3273 * but note that xfer is advanced to the last transfer inserted
3274 * to avoid checking sizes again unnecessarily (also xfer does
3275 * potentiall belong to a different list by the time the
3276 * replacement has happened
3278 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3279 if (xfer->len > maxsize) {
3280 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3281 maxsize, gfp);
3282 if (ret)
3283 return ret;
3287 return 0;
3289 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3291 /*-------------------------------------------------------------------------*/
3293 /* Core methods for SPI controller protocol drivers. Some of the
3294 * other core methods are currently defined as inline functions.
3297 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3298 u8 bits_per_word)
3300 if (ctlr->bits_per_word_mask) {
3301 /* Only 32 bits fit in the mask */
3302 if (bits_per_word > 32)
3303 return -EINVAL;
3304 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3305 return -EINVAL;
3308 return 0;
3312 * spi_setup - setup SPI mode and clock rate
3313 * @spi: the device whose settings are being modified
3314 * Context: can sleep, and no requests are queued to the device
3316 * SPI protocol drivers may need to update the transfer mode if the
3317 * device doesn't work with its default. They may likewise need
3318 * to update clock rates or word sizes from initial values. This function
3319 * changes those settings, and must be called from a context that can sleep.
3320 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3321 * effect the next time the device is selected and data is transferred to
3322 * or from it. When this function returns, the spi device is deselected.
3324 * Note that this call will fail if the protocol driver specifies an option
3325 * that the underlying controller or its driver does not support. For
3326 * example, not all hardware supports wire transfers using nine bit words,
3327 * LSB-first wire encoding, or active-high chipselects.
3329 * Return: zero on success, else a negative error code.
3331 int spi_setup(struct spi_device *spi)
3333 unsigned bad_bits, ugly_bits;
3334 int status;
3336 /* check mode to prevent that DUAL and QUAD set at the same time
3338 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3339 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3340 dev_err(&spi->dev,
3341 "setup: can not select dual and quad at the same time\n");
3342 return -EINVAL;
3344 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3346 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3347 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3348 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3349 return -EINVAL;
3350 /* help drivers fail *cleanly* when they need options
3351 * that aren't supported with their current controller
3352 * SPI_CS_WORD has a fallback software implementation,
3353 * so it is ignored here.
3355 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3356 /* nothing prevents from working with active-high CS in case if it
3357 * is driven by GPIO.
3359 if (gpio_is_valid(spi->cs_gpio))
3360 bad_bits &= ~SPI_CS_HIGH;
3361 ugly_bits = bad_bits &
3362 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3363 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3364 if (ugly_bits) {
3365 dev_warn(&spi->dev,
3366 "setup: ignoring unsupported mode bits %x\n",
3367 ugly_bits);
3368 spi->mode &= ~ugly_bits;
3369 bad_bits &= ~ugly_bits;
3371 if (bad_bits) {
3372 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3373 bad_bits);
3374 return -EINVAL;
3377 if (!spi->bits_per_word)
3378 spi->bits_per_word = 8;
3380 status = __spi_validate_bits_per_word(spi->controller,
3381 spi->bits_per_word);
3382 if (status)
3383 return status;
3385 if (spi->controller->max_speed_hz &&
3386 (!spi->max_speed_hz ||
3387 spi->max_speed_hz > spi->controller->max_speed_hz))
3388 spi->max_speed_hz = spi->controller->max_speed_hz;
3390 mutex_lock(&spi->controller->io_mutex);
3392 if (spi->controller->setup)
3393 status = spi->controller->setup(spi);
3395 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3396 status = pm_runtime_get_sync(spi->controller->dev.parent);
3397 if (status < 0) {
3398 mutex_unlock(&spi->controller->io_mutex);
3399 pm_runtime_put_noidle(spi->controller->dev.parent);
3400 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3401 status);
3402 return status;
3406 * We do not want to return positive value from pm_runtime_get,
3407 * there are many instances of devices calling spi_setup() and
3408 * checking for a non-zero return value instead of a negative
3409 * return value.
3411 status = 0;
3413 spi_set_cs(spi, false);
3414 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3415 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3416 } else {
3417 spi_set_cs(spi, false);
3420 mutex_unlock(&spi->controller->io_mutex);
3422 if (spi->rt && !spi->controller->rt) {
3423 spi->controller->rt = true;
3424 spi_set_thread_rt(spi->controller);
3427 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3428 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3429 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3430 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3431 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3432 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3433 spi->bits_per_word, spi->max_speed_hz,
3434 status);
3436 return status;
3438 EXPORT_SYMBOL_GPL(spi_setup);
3441 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3442 * @spi: the device that requires specific CS timing configuration
3443 * @setup: CS setup time specified via @spi_delay
3444 * @hold: CS hold time specified via @spi_delay
3445 * @inactive: CS inactive delay between transfers specified via @spi_delay
3447 * Return: zero on success, else a negative error code.
3449 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3450 struct spi_delay *hold, struct spi_delay *inactive)
3452 size_t len;
3454 if (spi->controller->set_cs_timing)
3455 return spi->controller->set_cs_timing(spi, setup, hold,
3456 inactive);
3458 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3459 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3460 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3461 dev_err(&spi->dev,
3462 "Clock-cycle delays for CS not supported in SW mode\n");
3463 return -ENOTSUPP;
3466 len = sizeof(struct spi_delay);
3468 /* copy delays to controller */
3469 if (setup)
3470 memcpy(&spi->controller->cs_setup, setup, len);
3471 else
3472 memset(&spi->controller->cs_setup, 0, len);
3474 if (hold)
3475 memcpy(&spi->controller->cs_hold, hold, len);
3476 else
3477 memset(&spi->controller->cs_hold, 0, len);
3479 if (inactive)
3480 memcpy(&spi->controller->cs_inactive, inactive, len);
3481 else
3482 memset(&spi->controller->cs_inactive, 0, len);
3484 return 0;
3486 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3488 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3489 struct spi_device *spi)
3491 int delay1, delay2;
3493 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3494 if (delay1 < 0)
3495 return delay1;
3497 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3498 if (delay2 < 0)
3499 return delay2;
3501 if (delay1 < delay2)
3502 memcpy(&xfer->word_delay, &spi->word_delay,
3503 sizeof(xfer->word_delay));
3505 return 0;
3508 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3510 struct spi_controller *ctlr = spi->controller;
3511 struct spi_transfer *xfer;
3512 int w_size;
3514 if (list_empty(&message->transfers))
3515 return -EINVAL;
3517 /* If an SPI controller does not support toggling the CS line on each
3518 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3519 * for the CS line, we can emulate the CS-per-word hardware function by
3520 * splitting transfers into one-word transfers and ensuring that
3521 * cs_change is set for each transfer.
3523 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3524 spi->cs_gpiod ||
3525 gpio_is_valid(spi->cs_gpio))) {
3526 size_t maxsize;
3527 int ret;
3529 maxsize = (spi->bits_per_word + 7) / 8;
3531 /* spi_split_transfers_maxsize() requires message->spi */
3532 message->spi = spi;
3534 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3535 GFP_KERNEL);
3536 if (ret)
3537 return ret;
3539 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3540 /* don't change cs_change on the last entry in the list */
3541 if (list_is_last(&xfer->transfer_list, &message->transfers))
3542 break;
3543 xfer->cs_change = 1;
3547 /* Half-duplex links include original MicroWire, and ones with
3548 * only one data pin like SPI_3WIRE (switches direction) or where
3549 * either MOSI or MISO is missing. They can also be caused by
3550 * software limitations.
3552 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3553 (spi->mode & SPI_3WIRE)) {
3554 unsigned flags = ctlr->flags;
3556 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3557 if (xfer->rx_buf && xfer->tx_buf)
3558 return -EINVAL;
3559 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3560 return -EINVAL;
3561 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3562 return -EINVAL;
3567 * Set transfer bits_per_word and max speed as spi device default if
3568 * it is not set for this transfer.
3569 * Set transfer tx_nbits and rx_nbits as single transfer default
3570 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3571 * Ensure transfer word_delay is at least as long as that required by
3572 * device itself.
3574 message->frame_length = 0;
3575 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3576 xfer->effective_speed_hz = 0;
3577 message->frame_length += xfer->len;
3578 if (!xfer->bits_per_word)
3579 xfer->bits_per_word = spi->bits_per_word;
3581 if (!xfer->speed_hz)
3582 xfer->speed_hz = spi->max_speed_hz;
3584 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3585 xfer->speed_hz = ctlr->max_speed_hz;
3587 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3588 return -EINVAL;
3591 * SPI transfer length should be multiple of SPI word size
3592 * where SPI word size should be power-of-two multiple
3594 if (xfer->bits_per_word <= 8)
3595 w_size = 1;
3596 else if (xfer->bits_per_word <= 16)
3597 w_size = 2;
3598 else
3599 w_size = 4;
3601 /* No partial transfers accepted */
3602 if (xfer->len % w_size)
3603 return -EINVAL;
3605 if (xfer->speed_hz && ctlr->min_speed_hz &&
3606 xfer->speed_hz < ctlr->min_speed_hz)
3607 return -EINVAL;
3609 if (xfer->tx_buf && !xfer->tx_nbits)
3610 xfer->tx_nbits = SPI_NBITS_SINGLE;
3611 if (xfer->rx_buf && !xfer->rx_nbits)
3612 xfer->rx_nbits = SPI_NBITS_SINGLE;
3613 /* check transfer tx/rx_nbits:
3614 * 1. check the value matches one of single, dual and quad
3615 * 2. check tx/rx_nbits match the mode in spi_device
3617 if (xfer->tx_buf) {
3618 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3619 xfer->tx_nbits != SPI_NBITS_DUAL &&
3620 xfer->tx_nbits != SPI_NBITS_QUAD)
3621 return -EINVAL;
3622 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3623 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3624 return -EINVAL;
3625 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3626 !(spi->mode & SPI_TX_QUAD))
3627 return -EINVAL;
3629 /* check transfer rx_nbits */
3630 if (xfer->rx_buf) {
3631 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3632 xfer->rx_nbits != SPI_NBITS_DUAL &&
3633 xfer->rx_nbits != SPI_NBITS_QUAD)
3634 return -EINVAL;
3635 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3636 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3637 return -EINVAL;
3638 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3639 !(spi->mode & SPI_RX_QUAD))
3640 return -EINVAL;
3643 if (_spi_xfer_word_delay_update(xfer, spi))
3644 return -EINVAL;
3647 message->status = -EINPROGRESS;
3649 return 0;
3652 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3654 struct spi_controller *ctlr = spi->controller;
3655 struct spi_transfer *xfer;
3658 * Some controllers do not support doing regular SPI transfers. Return
3659 * ENOTSUPP when this is the case.
3661 if (!ctlr->transfer)
3662 return -ENOTSUPP;
3664 message->spi = spi;
3666 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3667 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3669 trace_spi_message_submit(message);
3671 if (!ctlr->ptp_sts_supported) {
3672 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3673 xfer->ptp_sts_word_pre = 0;
3674 ptp_read_system_prets(xfer->ptp_sts);
3678 return ctlr->transfer(spi, message);
3682 * spi_async - asynchronous SPI transfer
3683 * @spi: device with which data will be exchanged
3684 * @message: describes the data transfers, including completion callback
3685 * Context: any (irqs may be blocked, etc)
3687 * This call may be used in_irq and other contexts which can't sleep,
3688 * as well as from task contexts which can sleep.
3690 * The completion callback is invoked in a context which can't sleep.
3691 * Before that invocation, the value of message->status is undefined.
3692 * When the callback is issued, message->status holds either zero (to
3693 * indicate complete success) or a negative error code. After that
3694 * callback returns, the driver which issued the transfer request may
3695 * deallocate the associated memory; it's no longer in use by any SPI
3696 * core or controller driver code.
3698 * Note that although all messages to a spi_device are handled in
3699 * FIFO order, messages may go to different devices in other orders.
3700 * Some device might be higher priority, or have various "hard" access
3701 * time requirements, for example.
3703 * On detection of any fault during the transfer, processing of
3704 * the entire message is aborted, and the device is deselected.
3705 * Until returning from the associated message completion callback,
3706 * no other spi_message queued to that device will be processed.
3707 * (This rule applies equally to all the synchronous transfer calls,
3708 * which are wrappers around this core asynchronous primitive.)
3710 * Return: zero on success, else a negative error code.
3712 int spi_async(struct spi_device *spi, struct spi_message *message)
3714 struct spi_controller *ctlr = spi->controller;
3715 int ret;
3716 unsigned long flags;
3718 ret = __spi_validate(spi, message);
3719 if (ret != 0)
3720 return ret;
3722 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3724 if (ctlr->bus_lock_flag)
3725 ret = -EBUSY;
3726 else
3727 ret = __spi_async(spi, message);
3729 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3731 return ret;
3733 EXPORT_SYMBOL_GPL(spi_async);
3736 * spi_async_locked - version of spi_async with exclusive bus usage
3737 * @spi: device with which data will be exchanged
3738 * @message: describes the data transfers, including completion callback
3739 * Context: any (irqs may be blocked, etc)
3741 * This call may be used in_irq and other contexts which can't sleep,
3742 * as well as from task contexts which can sleep.
3744 * The completion callback is invoked in a context which can't sleep.
3745 * Before that invocation, the value of message->status is undefined.
3746 * When the callback is issued, message->status holds either zero (to
3747 * indicate complete success) or a negative error code. After that
3748 * callback returns, the driver which issued the transfer request may
3749 * deallocate the associated memory; it's no longer in use by any SPI
3750 * core or controller driver code.
3752 * Note that although all messages to a spi_device are handled in
3753 * FIFO order, messages may go to different devices in other orders.
3754 * Some device might be higher priority, or have various "hard" access
3755 * time requirements, for example.
3757 * On detection of any fault during the transfer, processing of
3758 * the entire message is aborted, and the device is deselected.
3759 * Until returning from the associated message completion callback,
3760 * no other spi_message queued to that device will be processed.
3761 * (This rule applies equally to all the synchronous transfer calls,
3762 * which are wrappers around this core asynchronous primitive.)
3764 * Return: zero on success, else a negative error code.
3766 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3768 struct spi_controller *ctlr = spi->controller;
3769 int ret;
3770 unsigned long flags;
3772 ret = __spi_validate(spi, message);
3773 if (ret != 0)
3774 return ret;
3776 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3778 ret = __spi_async(spi, message);
3780 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3782 return ret;
3785 EXPORT_SYMBOL_GPL(spi_async_locked);
3787 /*-------------------------------------------------------------------------*/
3789 /* Utility methods for SPI protocol drivers, layered on
3790 * top of the core. Some other utility methods are defined as
3791 * inline functions.
3794 static void spi_complete(void *arg)
3796 complete(arg);
3799 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3801 DECLARE_COMPLETION_ONSTACK(done);
3802 int status;
3803 struct spi_controller *ctlr = spi->controller;
3804 unsigned long flags;
3806 status = __spi_validate(spi, message);
3807 if (status != 0)
3808 return status;
3810 message->complete = spi_complete;
3811 message->context = &done;
3812 message->spi = spi;
3814 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3815 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3817 /* If we're not using the legacy transfer method then we will
3818 * try to transfer in the calling context so special case.
3819 * This code would be less tricky if we could remove the
3820 * support for driver implemented message queues.
3822 if (ctlr->transfer == spi_queued_transfer) {
3823 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3825 trace_spi_message_submit(message);
3827 status = __spi_queued_transfer(spi, message, false);
3829 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3830 } else {
3831 status = spi_async_locked(spi, message);
3834 if (status == 0) {
3835 /* Push out the messages in the calling context if we
3836 * can.
3838 if (ctlr->transfer == spi_queued_transfer) {
3839 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3840 spi_sync_immediate);
3841 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3842 spi_sync_immediate);
3843 __spi_pump_messages(ctlr, false);
3846 wait_for_completion(&done);
3847 status = message->status;
3849 message->context = NULL;
3850 return status;
3854 * spi_sync - blocking/synchronous SPI data transfers
3855 * @spi: device with which data will be exchanged
3856 * @message: describes the data transfers
3857 * Context: can sleep
3859 * This call may only be used from a context that may sleep. The sleep
3860 * is non-interruptible, and has no timeout. Low-overhead controller
3861 * drivers may DMA directly into and out of the message buffers.
3863 * Note that the SPI device's chip select is active during the message,
3864 * and then is normally disabled between messages. Drivers for some
3865 * frequently-used devices may want to minimize costs of selecting a chip,
3866 * by leaving it selected in anticipation that the next message will go
3867 * to the same chip. (That may increase power usage.)
3869 * Also, the caller is guaranteeing that the memory associated with the
3870 * message will not be freed before this call returns.
3872 * Return: zero on success, else a negative error code.
3874 int spi_sync(struct spi_device *spi, struct spi_message *message)
3876 int ret;
3878 mutex_lock(&spi->controller->bus_lock_mutex);
3879 ret = __spi_sync(spi, message);
3880 mutex_unlock(&spi->controller->bus_lock_mutex);
3882 return ret;
3884 EXPORT_SYMBOL_GPL(spi_sync);
3887 * spi_sync_locked - version of spi_sync with exclusive bus usage
3888 * @spi: device with which data will be exchanged
3889 * @message: describes the data transfers
3890 * Context: can sleep
3892 * This call may only be used from a context that may sleep. The sleep
3893 * is non-interruptible, and has no timeout. Low-overhead controller
3894 * drivers may DMA directly into and out of the message buffers.
3896 * This call should be used by drivers that require exclusive access to the
3897 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3898 * be released by a spi_bus_unlock call when the exclusive access is over.
3900 * Return: zero on success, else a negative error code.
3902 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3904 return __spi_sync(spi, message);
3906 EXPORT_SYMBOL_GPL(spi_sync_locked);
3909 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3910 * @ctlr: SPI bus master that should be locked for exclusive bus access
3911 * Context: can sleep
3913 * This call may only be used from a context that may sleep. The sleep
3914 * is non-interruptible, and has no timeout.
3916 * This call should be used by drivers that require exclusive access to the
3917 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3918 * exclusive access is over. Data transfer must be done by spi_sync_locked
3919 * and spi_async_locked calls when the SPI bus lock is held.
3921 * Return: always zero.
3923 int spi_bus_lock(struct spi_controller *ctlr)
3925 unsigned long flags;
3927 mutex_lock(&ctlr->bus_lock_mutex);
3929 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3930 ctlr->bus_lock_flag = 1;
3931 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3933 /* mutex remains locked until spi_bus_unlock is called */
3935 return 0;
3937 EXPORT_SYMBOL_GPL(spi_bus_lock);
3940 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3941 * @ctlr: SPI bus master that was locked for exclusive bus access
3942 * Context: can sleep
3944 * This call may only be used from a context that may sleep. The sleep
3945 * is non-interruptible, and has no timeout.
3947 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3948 * call.
3950 * Return: always zero.
3952 int spi_bus_unlock(struct spi_controller *ctlr)
3954 ctlr->bus_lock_flag = 0;
3956 mutex_unlock(&ctlr->bus_lock_mutex);
3958 return 0;
3960 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3962 /* portable code must never pass more than 32 bytes */
3963 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3965 static u8 *buf;
3968 * spi_write_then_read - SPI synchronous write followed by read
3969 * @spi: device with which data will be exchanged
3970 * @txbuf: data to be written (need not be dma-safe)
3971 * @n_tx: size of txbuf, in bytes
3972 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3973 * @n_rx: size of rxbuf, in bytes
3974 * Context: can sleep
3976 * This performs a half duplex MicroWire style transaction with the
3977 * device, sending txbuf and then reading rxbuf. The return value
3978 * is zero for success, else a negative errno status code.
3979 * This call may only be used from a context that may sleep.
3981 * Parameters to this routine are always copied using a small buffer.
3982 * Performance-sensitive or bulk transfer code should instead use
3983 * spi_{async,sync}() calls with dma-safe buffers.
3985 * Return: zero on success, else a negative error code.
3987 int spi_write_then_read(struct spi_device *spi,
3988 const void *txbuf, unsigned n_tx,
3989 void *rxbuf, unsigned n_rx)
3991 static DEFINE_MUTEX(lock);
3993 int status;
3994 struct spi_message message;
3995 struct spi_transfer x[2];
3996 u8 *local_buf;
3998 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3999 * copying here, (as a pure convenience thing), but we can
4000 * keep heap costs out of the hot path unless someone else is
4001 * using the pre-allocated buffer or the transfer is too large.
4003 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4004 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4005 GFP_KERNEL | GFP_DMA);
4006 if (!local_buf)
4007 return -ENOMEM;
4008 } else {
4009 local_buf = buf;
4012 spi_message_init(&message);
4013 memset(x, 0, sizeof(x));
4014 if (n_tx) {
4015 x[0].len = n_tx;
4016 spi_message_add_tail(&x[0], &message);
4018 if (n_rx) {
4019 x[1].len = n_rx;
4020 spi_message_add_tail(&x[1], &message);
4023 memcpy(local_buf, txbuf, n_tx);
4024 x[0].tx_buf = local_buf;
4025 x[1].rx_buf = local_buf + n_tx;
4027 /* do the i/o */
4028 status = spi_sync(spi, &message);
4029 if (status == 0)
4030 memcpy(rxbuf, x[1].rx_buf, n_rx);
4032 if (x[0].tx_buf == buf)
4033 mutex_unlock(&lock);
4034 else
4035 kfree(local_buf);
4037 return status;
4039 EXPORT_SYMBOL_GPL(spi_write_then_read);
4041 /*-------------------------------------------------------------------------*/
4043 #if IS_ENABLED(CONFIG_OF)
4044 /* must call put_device() when done with returned spi_device device */
4045 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4047 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4049 return dev ? to_spi_device(dev) : NULL;
4051 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4052 #endif /* IS_ENABLED(CONFIG_OF) */
4054 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4055 /* the spi controllers are not using spi_bus, so we find it with another way */
4056 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4058 struct device *dev;
4060 dev = class_find_device_by_of_node(&spi_master_class, node);
4061 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4062 dev = class_find_device_by_of_node(&spi_slave_class, node);
4063 if (!dev)
4064 return NULL;
4066 /* reference got in class_find_device */
4067 return container_of(dev, struct spi_controller, dev);
4070 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4071 void *arg)
4073 struct of_reconfig_data *rd = arg;
4074 struct spi_controller *ctlr;
4075 struct spi_device *spi;
4077 switch (of_reconfig_get_state_change(action, arg)) {
4078 case OF_RECONFIG_CHANGE_ADD:
4079 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4080 if (ctlr == NULL)
4081 return NOTIFY_OK; /* not for us */
4083 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4084 put_device(&ctlr->dev);
4085 return NOTIFY_OK;
4088 spi = of_register_spi_device(ctlr, rd->dn);
4089 put_device(&ctlr->dev);
4091 if (IS_ERR(spi)) {
4092 pr_err("%s: failed to create for '%pOF'\n",
4093 __func__, rd->dn);
4094 of_node_clear_flag(rd->dn, OF_POPULATED);
4095 return notifier_from_errno(PTR_ERR(spi));
4097 break;
4099 case OF_RECONFIG_CHANGE_REMOVE:
4100 /* already depopulated? */
4101 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4102 return NOTIFY_OK;
4104 /* find our device by node */
4105 spi = of_find_spi_device_by_node(rd->dn);
4106 if (spi == NULL)
4107 return NOTIFY_OK; /* no? not meant for us */
4109 /* unregister takes one ref away */
4110 spi_unregister_device(spi);
4112 /* and put the reference of the find */
4113 put_device(&spi->dev);
4114 break;
4117 return NOTIFY_OK;
4120 static struct notifier_block spi_of_notifier = {
4121 .notifier_call = of_spi_notify,
4123 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4124 extern struct notifier_block spi_of_notifier;
4125 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4127 #if IS_ENABLED(CONFIG_ACPI)
4128 static int spi_acpi_controller_match(struct device *dev, const void *data)
4130 return ACPI_COMPANION(dev->parent) == data;
4133 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4135 struct device *dev;
4137 dev = class_find_device(&spi_master_class, NULL, adev,
4138 spi_acpi_controller_match);
4139 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4140 dev = class_find_device(&spi_slave_class, NULL, adev,
4141 spi_acpi_controller_match);
4142 if (!dev)
4143 return NULL;
4145 return container_of(dev, struct spi_controller, dev);
4148 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4150 struct device *dev;
4152 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4153 return to_spi_device(dev);
4156 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4157 void *arg)
4159 struct acpi_device *adev = arg;
4160 struct spi_controller *ctlr;
4161 struct spi_device *spi;
4163 switch (value) {
4164 case ACPI_RECONFIG_DEVICE_ADD:
4165 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4166 if (!ctlr)
4167 break;
4169 acpi_register_spi_device(ctlr, adev);
4170 put_device(&ctlr->dev);
4171 break;
4172 case ACPI_RECONFIG_DEVICE_REMOVE:
4173 if (!acpi_device_enumerated(adev))
4174 break;
4176 spi = acpi_spi_find_device_by_adev(adev);
4177 if (!spi)
4178 break;
4180 spi_unregister_device(spi);
4181 put_device(&spi->dev);
4182 break;
4185 return NOTIFY_OK;
4188 static struct notifier_block spi_acpi_notifier = {
4189 .notifier_call = acpi_spi_notify,
4191 #else
4192 extern struct notifier_block spi_acpi_notifier;
4193 #endif
4195 static int __init spi_init(void)
4197 int status;
4199 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4200 if (!buf) {
4201 status = -ENOMEM;
4202 goto err0;
4205 status = bus_register(&spi_bus_type);
4206 if (status < 0)
4207 goto err1;
4209 status = class_register(&spi_master_class);
4210 if (status < 0)
4211 goto err2;
4213 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4214 status = class_register(&spi_slave_class);
4215 if (status < 0)
4216 goto err3;
4219 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4220 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4221 if (IS_ENABLED(CONFIG_ACPI))
4222 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4224 return 0;
4226 err3:
4227 class_unregister(&spi_master_class);
4228 err2:
4229 bus_unregister(&spi_bus_type);
4230 err1:
4231 kfree(buf);
4232 buf = NULL;
4233 err0:
4234 return status;
4237 /* board_info is normally registered in arch_initcall(),
4238 * but even essential drivers wait till later
4240 * REVISIT only boardinfo really needs static linking. the rest (device and
4241 * driver registration) _could_ be dynamically linked (modular) ... costs
4242 * include needing to have boardinfo data structures be much more public.
4244 postcore_initcall(spi_init);