1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
5 * This file contains the Generic Target Engine Core.
7 * (c) Copyright 2002-2013 Datera, Inc.
9 * Nicholas A. Bellinger <nab@kernel.org>
11 ******************************************************************************/
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
43 static struct workqueue_struct
*target_completion_wq
;
44 static struct kmem_cache
*se_sess_cache
;
45 struct kmem_cache
*se_ua_cache
;
46 struct kmem_cache
*t10_pr_reg_cache
;
47 struct kmem_cache
*t10_alua_lu_gp_cache
;
48 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
49 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
50 struct kmem_cache
*t10_alua_lba_map_cache
;
51 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
53 static void transport_complete_task_attr(struct se_cmd
*cmd
);
54 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
55 static void transport_handle_queue_full(struct se_cmd
*cmd
,
56 struct se_device
*dev
, int err
, bool write_pending
);
57 static void target_complete_ok_work(struct work_struct
*work
);
59 int init_se_kmem_caches(void)
61 se_sess_cache
= kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session
), __alignof__(struct se_session
),
65 pr_err("kmem_cache_create() for struct se_session"
69 se_ua_cache
= kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua
), __alignof__(struct se_ua
),
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache
;
76 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration
),
78 __alignof__(struct t10_pr_registration
), 0, NULL
);
79 if (!t10_pr_reg_cache
) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 goto out_free_ua_cache
;
84 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
87 if (!t10_alua_lu_gp_cache
) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 goto out_free_pr_reg_cache
;
92 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member
),
94 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
95 if (!t10_alua_lu_gp_mem_cache
) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 goto out_free_lu_gp_cache
;
100 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp
),
102 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
103 if (!t10_alua_tg_pt_gp_cache
) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 goto out_free_lu_gp_mem_cache
;
108 t10_alua_lba_map_cache
= kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map
),
111 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
112 if (!t10_alua_lba_map_cache
) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 goto out_free_tg_pt_gp_cache
;
117 t10_alua_lba_map_mem_cache
= kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member
),
120 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
121 if (!t10_alua_lba_map_mem_cache
) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 goto out_free_lba_map_cache
;
127 target_completion_wq
= alloc_workqueue("target_completion",
129 if (!target_completion_wq
)
130 goto out_free_lba_map_mem_cache
;
134 out_free_lba_map_mem_cache
:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
136 out_free_lba_map_cache
:
137 kmem_cache_destroy(t10_alua_lba_map_cache
);
138 out_free_tg_pt_gp_cache
:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
140 out_free_lu_gp_mem_cache
:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
142 out_free_lu_gp_cache
:
143 kmem_cache_destroy(t10_alua_lu_gp_cache
);
144 out_free_pr_reg_cache
:
145 kmem_cache_destroy(t10_pr_reg_cache
);
147 kmem_cache_destroy(se_ua_cache
);
149 kmem_cache_destroy(se_sess_cache
);
154 void release_se_kmem_caches(void)
156 destroy_workqueue(target_completion_wq
);
157 kmem_cache_destroy(se_sess_cache
);
158 kmem_cache_destroy(se_ua_cache
);
159 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(t10_alua_lu_gp_cache
);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
163 kmem_cache_destroy(t10_alua_lba_map_cache
);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
169 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
172 * Allocate a new row index for the entry type specified
174 u32
scsi_get_new_index(scsi_index_t type
)
178 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
180 spin_lock(&scsi_mib_index_lock
);
181 new_index
= ++scsi_mib_index
[type
];
182 spin_unlock(&scsi_mib_index_lock
);
187 void transport_subsystem_check_init(void)
190 static int sub_api_initialized
;
192 if (sub_api_initialized
)
195 ret
= IS_ENABLED(CONFIG_TCM_IBLOCK
) && request_module("target_core_iblock");
197 pr_err("Unable to load target_core_iblock\n");
199 ret
= IS_ENABLED(CONFIG_TCM_FILEIO
) && request_module("target_core_file");
201 pr_err("Unable to load target_core_file\n");
203 ret
= IS_ENABLED(CONFIG_TCM_PSCSI
) && request_module("target_core_pscsi");
205 pr_err("Unable to load target_core_pscsi\n");
207 ret
= IS_ENABLED(CONFIG_TCM_USER2
) && request_module("target_core_user");
209 pr_err("Unable to load target_core_user\n");
211 sub_api_initialized
= 1;
214 static void target_release_sess_cmd_refcnt(struct percpu_ref
*ref
)
216 struct se_session
*sess
= container_of(ref
, typeof(*sess
), cmd_count
);
218 wake_up(&sess
->cmd_count_wq
);
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
225 * The caller must have zero-initialized @se_sess before calling this function.
227 int transport_init_session(struct se_session
*se_sess
)
229 INIT_LIST_HEAD(&se_sess
->sess_list
);
230 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
231 spin_lock_init(&se_sess
->sess_cmd_lock
);
232 init_waitqueue_head(&se_sess
->cmd_count_wq
);
233 init_completion(&se_sess
->stop_done
);
234 atomic_set(&se_sess
->stopped
, 0);
235 return percpu_ref_init(&se_sess
->cmd_count
,
236 target_release_sess_cmd_refcnt
, 0, GFP_KERNEL
);
238 EXPORT_SYMBOL(transport_init_session
);
240 void transport_uninit_session(struct se_session
*se_sess
)
243 * Drivers like iscsi and loop do not call target_stop_session
244 * during session shutdown so we have to drop the ref taken at init
247 if (!atomic_read(&se_sess
->stopped
))
248 percpu_ref_put(&se_sess
->cmd_count
);
250 percpu_ref_exit(&se_sess
->cmd_count
);
254 * transport_alloc_session - allocate a session object and initialize it
255 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
257 struct se_session
*transport_alloc_session(enum target_prot_op sup_prot_ops
)
259 struct se_session
*se_sess
;
262 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
264 pr_err("Unable to allocate struct se_session from"
266 return ERR_PTR(-ENOMEM
);
268 ret
= transport_init_session(se_sess
);
270 kmem_cache_free(se_sess_cache
, se_sess
);
273 se_sess
->sup_prot_ops
= sup_prot_ops
;
277 EXPORT_SYMBOL(transport_alloc_session
);
280 * transport_alloc_session_tags - allocate target driver private data
281 * @se_sess: Session pointer.
282 * @tag_num: Maximum number of in-flight commands between initiator and target.
283 * @tag_size: Size in bytes of the private data a target driver associates with
286 int transport_alloc_session_tags(struct se_session
*se_sess
,
287 unsigned int tag_num
, unsigned int tag_size
)
291 se_sess
->sess_cmd_map
= kvcalloc(tag_size
, tag_num
,
292 GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
293 if (!se_sess
->sess_cmd_map
) {
294 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
298 rc
= sbitmap_queue_init_node(&se_sess
->sess_tag_pool
, tag_num
, -1,
299 false, GFP_KERNEL
, NUMA_NO_NODE
);
301 pr_err("Unable to init se_sess->sess_tag_pool,"
302 " tag_num: %u\n", tag_num
);
303 kvfree(se_sess
->sess_cmd_map
);
304 se_sess
->sess_cmd_map
= NULL
;
310 EXPORT_SYMBOL(transport_alloc_session_tags
);
313 * transport_init_session_tags - allocate a session and target driver private data
314 * @tag_num: Maximum number of in-flight commands between initiator and target.
315 * @tag_size: Size in bytes of the private data a target driver associates with
317 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
319 static struct se_session
*
320 transport_init_session_tags(unsigned int tag_num
, unsigned int tag_size
,
321 enum target_prot_op sup_prot_ops
)
323 struct se_session
*se_sess
;
326 if (tag_num
!= 0 && !tag_size
) {
327 pr_err("init_session_tags called with percpu-ida tag_num:"
328 " %u, but zero tag_size\n", tag_num
);
329 return ERR_PTR(-EINVAL
);
331 if (!tag_num
&& tag_size
) {
332 pr_err("init_session_tags called with percpu-ida tag_size:"
333 " %u, but zero tag_num\n", tag_size
);
334 return ERR_PTR(-EINVAL
);
337 se_sess
= transport_alloc_session(sup_prot_ops
);
341 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
343 transport_free_session(se_sess
);
344 return ERR_PTR(-ENOMEM
);
351 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
353 void __transport_register_session(
354 struct se_portal_group
*se_tpg
,
355 struct se_node_acl
*se_nacl
,
356 struct se_session
*se_sess
,
357 void *fabric_sess_ptr
)
359 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
360 unsigned char buf
[PR_REG_ISID_LEN
];
363 se_sess
->se_tpg
= se_tpg
;
364 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
366 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
368 * Only set for struct se_session's that will actually be moving I/O.
369 * eg: *NOT* discovery sessions.
374 * Determine if fabric allows for T10-PI feature bits exposed to
375 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
377 * If so, then always save prot_type on a per se_node_acl node
378 * basis and re-instate the previous sess_prot_type to avoid
379 * disabling PI from below any previously initiator side
382 if (se_nacl
->saved_prot_type
)
383 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
384 else if (tfo
->tpg_check_prot_fabric_only
)
385 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
386 tfo
->tpg_check_prot_fabric_only(se_tpg
);
388 * If the fabric module supports an ISID based TransportID,
389 * save this value in binary from the fabric I_T Nexus now.
391 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
392 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
393 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
394 &buf
[0], PR_REG_ISID_LEN
);
395 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
398 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
400 * The se_nacl->nacl_sess pointer will be set to the
401 * last active I_T Nexus for each struct se_node_acl.
403 se_nacl
->nacl_sess
= se_sess
;
405 list_add_tail(&se_sess
->sess_acl_list
,
406 &se_nacl
->acl_sess_list
);
407 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
409 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
411 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
412 se_tpg
->se_tpg_tfo
->fabric_name
, se_sess
->fabric_sess_ptr
);
414 EXPORT_SYMBOL(__transport_register_session
);
416 void transport_register_session(
417 struct se_portal_group
*se_tpg
,
418 struct se_node_acl
*se_nacl
,
419 struct se_session
*se_sess
,
420 void *fabric_sess_ptr
)
424 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
425 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
426 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
428 EXPORT_SYMBOL(transport_register_session
);
431 target_setup_session(struct se_portal_group
*tpg
,
432 unsigned int tag_num
, unsigned int tag_size
,
433 enum target_prot_op prot_op
,
434 const char *initiatorname
, void *private,
435 int (*callback
)(struct se_portal_group
*,
436 struct se_session
*, void *))
438 struct se_session
*sess
;
441 * If the fabric driver is using percpu-ida based pre allocation
442 * of I/O descriptor tags, go ahead and perform that setup now..
445 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
447 sess
= transport_alloc_session(prot_op
);
452 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
453 (unsigned char *)initiatorname
);
454 if (!sess
->se_node_acl
) {
455 transport_free_session(sess
);
456 return ERR_PTR(-EACCES
);
459 * Go ahead and perform any remaining fabric setup that is
460 * required before transport_register_session().
462 if (callback
!= NULL
) {
463 int rc
= callback(tpg
, sess
, private);
465 transport_free_session(sess
);
470 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
473 EXPORT_SYMBOL(target_setup_session
);
475 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
477 struct se_session
*se_sess
;
480 spin_lock_bh(&se_tpg
->session_lock
);
481 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
482 if (!se_sess
->se_node_acl
)
484 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
486 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
489 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
490 se_sess
->se_node_acl
->initiatorname
);
491 len
+= 1; /* Include NULL terminator */
493 spin_unlock_bh(&se_tpg
->session_lock
);
497 EXPORT_SYMBOL(target_show_dynamic_sessions
);
499 static void target_complete_nacl(struct kref
*kref
)
501 struct se_node_acl
*nacl
= container_of(kref
,
502 struct se_node_acl
, acl_kref
);
503 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
505 if (!nacl
->dynamic_stop
) {
506 complete(&nacl
->acl_free_comp
);
510 mutex_lock(&se_tpg
->acl_node_mutex
);
511 list_del_init(&nacl
->acl_list
);
512 mutex_unlock(&se_tpg
->acl_node_mutex
);
514 core_tpg_wait_for_nacl_pr_ref(nacl
);
515 core_free_device_list_for_node(nacl
, se_tpg
);
519 void target_put_nacl(struct se_node_acl
*nacl
)
521 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
523 EXPORT_SYMBOL(target_put_nacl
);
525 void transport_deregister_session_configfs(struct se_session
*se_sess
)
527 struct se_node_acl
*se_nacl
;
530 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
532 se_nacl
= se_sess
->se_node_acl
;
534 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
535 if (!list_empty(&se_sess
->sess_acl_list
))
536 list_del_init(&se_sess
->sess_acl_list
);
538 * If the session list is empty, then clear the pointer.
539 * Otherwise, set the struct se_session pointer from the tail
540 * element of the per struct se_node_acl active session list.
542 if (list_empty(&se_nacl
->acl_sess_list
))
543 se_nacl
->nacl_sess
= NULL
;
545 se_nacl
->nacl_sess
= container_of(
546 se_nacl
->acl_sess_list
.prev
,
547 struct se_session
, sess_acl_list
);
549 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
552 EXPORT_SYMBOL(transport_deregister_session_configfs
);
554 void transport_free_session(struct se_session
*se_sess
)
556 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
559 * Drop the se_node_acl->nacl_kref obtained from within
560 * core_tpg_get_initiator_node_acl().
563 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
564 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
567 se_sess
->se_node_acl
= NULL
;
570 * Also determine if we need to drop the extra ->cmd_kref if
571 * it had been previously dynamically generated, and
572 * the endpoint is not caching dynamic ACLs.
574 mutex_lock(&se_tpg
->acl_node_mutex
);
575 if (se_nacl
->dynamic_node_acl
&&
576 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
577 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
578 if (list_empty(&se_nacl
->acl_sess_list
))
579 se_nacl
->dynamic_stop
= true;
580 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
582 if (se_nacl
->dynamic_stop
)
583 list_del_init(&se_nacl
->acl_list
);
585 mutex_unlock(&se_tpg
->acl_node_mutex
);
587 if (se_nacl
->dynamic_stop
)
588 target_put_nacl(se_nacl
);
590 target_put_nacl(se_nacl
);
592 if (se_sess
->sess_cmd_map
) {
593 sbitmap_queue_free(&se_sess
->sess_tag_pool
);
594 kvfree(se_sess
->sess_cmd_map
);
596 transport_uninit_session(se_sess
);
597 kmem_cache_free(se_sess_cache
, se_sess
);
599 EXPORT_SYMBOL(transport_free_session
);
601 static int target_release_res(struct se_device
*dev
, void *data
)
603 struct se_session
*sess
= data
;
605 if (dev
->reservation_holder
== sess
)
606 target_release_reservation(dev
);
610 void transport_deregister_session(struct se_session
*se_sess
)
612 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
616 transport_free_session(se_sess
);
620 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
621 list_del(&se_sess
->sess_list
);
622 se_sess
->se_tpg
= NULL
;
623 se_sess
->fabric_sess_ptr
= NULL
;
624 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
627 * Since the session is being removed, release SPC-2
628 * reservations held by the session that is disappearing.
630 target_for_each_device(target_release_res
, se_sess
);
632 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
633 se_tpg
->se_tpg_tfo
->fabric_name
);
635 * If last kref is dropping now for an explicit NodeACL, awake sleeping
636 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
637 * removal context from within transport_free_session() code.
639 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
640 * to release all remaining generate_node_acl=1 created ACL resources.
643 transport_free_session(se_sess
);
645 EXPORT_SYMBOL(transport_deregister_session
);
647 void target_remove_session(struct se_session
*se_sess
)
649 transport_deregister_session_configfs(se_sess
);
650 transport_deregister_session(se_sess
);
652 EXPORT_SYMBOL(target_remove_session
);
654 static void target_remove_from_state_list(struct se_cmd
*cmd
)
656 struct se_device
*dev
= cmd
->se_dev
;
662 spin_lock_irqsave(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
663 if (cmd
->state_active
) {
664 list_del(&cmd
->state_list
);
665 cmd
->state_active
= false;
667 spin_unlock_irqrestore(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
671 * This function is called by the target core after the target core has
672 * finished processing a SCSI command or SCSI TMF. Both the regular command
673 * processing code and the code for aborting commands can call this
674 * function. CMD_T_STOP is set if and only if another thread is waiting
675 * inside transport_wait_for_tasks() for t_transport_stop_comp.
677 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
681 target_remove_from_state_list(cmd
);
684 * Clear struct se_cmd->se_lun before the handoff to FE.
688 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
690 * Determine if frontend context caller is requesting the stopping of
691 * this command for frontend exceptions.
693 if (cmd
->transport_state
& CMD_T_STOP
) {
694 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
695 __func__
, __LINE__
, cmd
->tag
);
697 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
699 complete_all(&cmd
->t_transport_stop_comp
);
702 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
703 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
706 * Some fabric modules like tcm_loop can release their internally
707 * allocated I/O reference and struct se_cmd now.
709 * Fabric modules are expected to return '1' here if the se_cmd being
710 * passed is released at this point, or zero if not being released.
712 return cmd
->se_tfo
->check_stop_free(cmd
);
715 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
717 struct se_lun
*lun
= cmd
->se_lun
;
722 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
723 percpu_ref_put(&lun
->lun_ref
);
726 static void target_complete_failure_work(struct work_struct
*work
)
728 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
730 transport_generic_request_failure(cmd
,
731 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
735 * Used when asking transport to copy Sense Data from the underlying
736 * Linux/SCSI struct scsi_cmnd
738 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
740 struct se_device
*dev
= cmd
->se_dev
;
742 WARN_ON(!cmd
->se_lun
);
747 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
750 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
752 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
753 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
754 return cmd
->sense_buffer
;
757 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
759 unsigned char *cmd_sense_buf
;
762 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
763 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
764 if (!cmd_sense_buf
) {
765 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
769 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
770 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
771 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
773 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
775 static void target_handle_abort(struct se_cmd
*cmd
)
777 bool tas
= cmd
->transport_state
& CMD_T_TAS
;
778 bool ack_kref
= cmd
->se_cmd_flags
& SCF_ACK_KREF
;
781 pr_debug("tag %#llx: send_abort_response = %d\n", cmd
->tag
, tas
);
784 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
785 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
786 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
787 cmd
->t_task_cdb
[0], cmd
->tag
);
788 trace_target_cmd_complete(cmd
);
789 ret
= cmd
->se_tfo
->queue_status(cmd
);
791 transport_handle_queue_full(cmd
, cmd
->se_dev
,
796 cmd
->se_tmr_req
->response
= TMR_FUNCTION_REJECTED
;
797 cmd
->se_tfo
->queue_tm_rsp(cmd
);
801 * Allow the fabric driver to unmap any resources before
802 * releasing the descriptor via TFO->release_cmd().
804 cmd
->se_tfo
->aborted_task(cmd
);
806 WARN_ON_ONCE(target_put_sess_cmd(cmd
) != 0);
808 * To do: establish a unit attention condition on the I_T
809 * nexus associated with cmd. See also the paragraph "Aborting
814 WARN_ON_ONCE(kref_read(&cmd
->cmd_kref
) == 0);
816 transport_lun_remove_cmd(cmd
);
818 transport_cmd_check_stop_to_fabric(cmd
);
821 static void target_abort_work(struct work_struct
*work
)
823 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
825 target_handle_abort(cmd
);
828 static bool target_cmd_interrupted(struct se_cmd
*cmd
)
832 if (cmd
->transport_state
& CMD_T_ABORTED
) {
833 if (cmd
->transport_complete_callback
)
834 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
835 INIT_WORK(&cmd
->work
, target_abort_work
);
836 queue_work(target_completion_wq
, &cmd
->work
);
838 } else if (cmd
->transport_state
& CMD_T_STOP
) {
839 if (cmd
->transport_complete_callback
)
840 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
841 complete_all(&cmd
->t_transport_stop_comp
);
848 /* May be called from interrupt context so must not sleep. */
849 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
854 if (target_cmd_interrupted(cmd
))
857 cmd
->scsi_status
= scsi_status
;
859 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
860 switch (cmd
->scsi_status
) {
861 case SAM_STAT_CHECK_CONDITION
:
862 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
872 cmd
->t_state
= TRANSPORT_COMPLETE
;
873 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
874 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
876 INIT_WORK(&cmd
->work
, success
? target_complete_ok_work
:
877 target_complete_failure_work
);
878 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
880 EXPORT_SYMBOL(target_complete_cmd
);
882 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
884 if ((scsi_status
== SAM_STAT_GOOD
||
885 cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
886 length
< cmd
->data_length
) {
887 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
888 cmd
->residual_count
+= cmd
->data_length
- length
;
890 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
891 cmd
->residual_count
= cmd
->data_length
- length
;
894 cmd
->data_length
= length
;
897 target_complete_cmd(cmd
, scsi_status
);
899 EXPORT_SYMBOL(target_complete_cmd_with_length
);
901 static void target_add_to_state_list(struct se_cmd
*cmd
)
903 struct se_device
*dev
= cmd
->se_dev
;
906 spin_lock_irqsave(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
907 if (!cmd
->state_active
) {
908 list_add_tail(&cmd
->state_list
,
909 &dev
->queues
[cmd
->cpuid
].state_list
);
910 cmd
->state_active
= true;
912 spin_unlock_irqrestore(&dev
->queues
[cmd
->cpuid
].lock
, flags
);
916 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
918 static void transport_write_pending_qf(struct se_cmd
*cmd
);
919 static void transport_complete_qf(struct se_cmd
*cmd
);
921 void target_qf_do_work(struct work_struct
*work
)
923 struct se_device
*dev
= container_of(work
, struct se_device
,
925 LIST_HEAD(qf_cmd_list
);
926 struct se_cmd
*cmd
, *cmd_tmp
;
928 spin_lock_irq(&dev
->qf_cmd_lock
);
929 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
930 spin_unlock_irq(&dev
->qf_cmd_lock
);
932 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
933 list_del(&cmd
->se_qf_node
);
934 atomic_dec_mb(&dev
->dev_qf_count
);
936 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
937 " context: %s\n", cmd
->se_tfo
->fabric_name
, cmd
,
938 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
939 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
942 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
943 transport_write_pending_qf(cmd
);
944 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
945 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
946 transport_complete_qf(cmd
);
950 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
952 switch (cmd
->data_direction
) {
955 case DMA_FROM_DEVICE
:
959 case DMA_BIDIRECTIONAL
:
968 void transport_dump_dev_state(
969 struct se_device
*dev
,
973 *bl
+= sprintf(b
+ *bl
, "Status: ");
974 if (dev
->export_count
)
975 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
977 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
979 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
980 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
981 dev
->dev_attrib
.block_size
,
982 dev
->dev_attrib
.hw_max_sectors
);
983 *bl
+= sprintf(b
+ *bl
, " ");
986 void transport_dump_vpd_proto_id(
988 unsigned char *p_buf
,
991 unsigned char buf
[VPD_TMP_BUF_SIZE
];
994 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
995 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
997 switch (vpd
->protocol_identifier
) {
999 sprintf(buf
+len
, "Fibre Channel\n");
1002 sprintf(buf
+len
, "Parallel SCSI\n");
1005 sprintf(buf
+len
, "SSA\n");
1008 sprintf(buf
+len
, "IEEE 1394\n");
1011 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1015 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1018 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1021 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1025 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1028 sprintf(buf
+len
, "Unknown 0x%02x\n",
1029 vpd
->protocol_identifier
);
1034 strncpy(p_buf
, buf
, p_buf_len
);
1036 pr_debug("%s", buf
);
1040 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1043 * Check if the Protocol Identifier Valid (PIV) bit is set..
1045 * from spc3r23.pdf section 7.5.1
1047 if (page_83
[1] & 0x80) {
1048 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1049 vpd
->protocol_identifier_set
= 1;
1050 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1053 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1055 int transport_dump_vpd_assoc(
1056 struct t10_vpd
*vpd
,
1057 unsigned char *p_buf
,
1060 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1064 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1065 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1067 switch (vpd
->association
) {
1069 sprintf(buf
+len
, "addressed logical unit\n");
1072 sprintf(buf
+len
, "target port\n");
1075 sprintf(buf
+len
, "SCSI target device\n");
1078 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1084 strncpy(p_buf
, buf
, p_buf_len
);
1086 pr_debug("%s", buf
);
1091 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1094 * The VPD identification association..
1096 * from spc3r23.pdf Section 7.6.3.1 Table 297
1098 vpd
->association
= (page_83
[1] & 0x30);
1099 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1101 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1103 int transport_dump_vpd_ident_type(
1104 struct t10_vpd
*vpd
,
1105 unsigned char *p_buf
,
1108 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1112 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1113 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1115 switch (vpd
->device_identifier_type
) {
1117 sprintf(buf
+len
, "Vendor specific\n");
1120 sprintf(buf
+len
, "T10 Vendor ID based\n");
1123 sprintf(buf
+len
, "EUI-64 based\n");
1126 sprintf(buf
+len
, "NAA\n");
1129 sprintf(buf
+len
, "Relative target port identifier\n");
1132 sprintf(buf
+len
, "SCSI name string\n");
1135 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1136 vpd
->device_identifier_type
);
1142 if (p_buf_len
< strlen(buf
)+1)
1144 strncpy(p_buf
, buf
, p_buf_len
);
1146 pr_debug("%s", buf
);
1152 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1155 * The VPD identifier type..
1157 * from spc3r23.pdf Section 7.6.3.1 Table 298
1159 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1160 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1162 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1164 int transport_dump_vpd_ident(
1165 struct t10_vpd
*vpd
,
1166 unsigned char *p_buf
,
1169 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1172 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1174 switch (vpd
->device_identifier_code_set
) {
1175 case 0x01: /* Binary */
1176 snprintf(buf
, sizeof(buf
),
1177 "T10 VPD Binary Device Identifier: %s\n",
1178 &vpd
->device_identifier
[0]);
1180 case 0x02: /* ASCII */
1181 snprintf(buf
, sizeof(buf
),
1182 "T10 VPD ASCII Device Identifier: %s\n",
1183 &vpd
->device_identifier
[0]);
1185 case 0x03: /* UTF-8 */
1186 snprintf(buf
, sizeof(buf
),
1187 "T10 VPD UTF-8 Device Identifier: %s\n",
1188 &vpd
->device_identifier
[0]);
1191 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1192 " 0x%02x", vpd
->device_identifier_code_set
);
1198 strncpy(p_buf
, buf
, p_buf_len
);
1200 pr_debug("%s", buf
);
1206 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1208 static const char hex_str
[] = "0123456789abcdef";
1209 int j
= 0, i
= 4; /* offset to start of the identifier */
1212 * The VPD Code Set (encoding)
1214 * from spc3r23.pdf Section 7.6.3.1 Table 296
1216 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1217 switch (vpd
->device_identifier_code_set
) {
1218 case 0x01: /* Binary */
1219 vpd
->device_identifier
[j
++] =
1220 hex_str
[vpd
->device_identifier_type
];
1221 while (i
< (4 + page_83
[3])) {
1222 vpd
->device_identifier
[j
++] =
1223 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1224 vpd
->device_identifier
[j
++] =
1225 hex_str
[page_83
[i
] & 0x0f];
1229 case 0x02: /* ASCII */
1230 case 0x03: /* UTF-8 */
1231 while (i
< (4 + page_83
[3]))
1232 vpd
->device_identifier
[j
++] = page_83
[i
++];
1238 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1240 EXPORT_SYMBOL(transport_set_vpd_ident
);
1242 static sense_reason_t
1243 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1248 if (!cmd
->se_tfo
->max_data_sg_nents
)
1249 return TCM_NO_SENSE
;
1251 * Check if fabric enforced maximum SGL entries per I/O descriptor
1252 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1253 * residual_count and reduce original cmd->data_length to maximum
1254 * length based on single PAGE_SIZE entry scatter-lists.
1256 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1257 if (cmd
->data_length
> mtl
) {
1259 * If an existing CDB overflow is present, calculate new residual
1260 * based on CDB size minus fabric maximum transfer length.
1262 * If an existing CDB underflow is present, calculate new residual
1263 * based on original cmd->data_length minus fabric maximum transfer
1266 * Otherwise, set the underflow residual based on cmd->data_length
1267 * minus fabric maximum transfer length.
1269 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1270 cmd
->residual_count
= (size
- mtl
);
1271 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1272 u32 orig_dl
= size
+ cmd
->residual_count
;
1273 cmd
->residual_count
= (orig_dl
- mtl
);
1275 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1276 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1278 cmd
->data_length
= mtl
;
1280 * Reset sbc_check_prot() calculated protection payload
1281 * length based upon the new smaller MTL.
1283 if (cmd
->prot_length
) {
1284 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1285 cmd
->prot_length
= dev
->prot_length
* sectors
;
1288 return TCM_NO_SENSE
;
1292 * target_cmd_size_check - Check whether there will be a residual.
1293 * @cmd: SCSI command.
1294 * @size: Data buffer size derived from CDB. The data buffer size provided by
1295 * the SCSI transport driver is available in @cmd->data_length.
1297 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1298 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1300 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1302 * Return: TCM_NO_SENSE
1305 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1307 struct se_device
*dev
= cmd
->se_dev
;
1309 if (cmd
->unknown_data_length
) {
1310 cmd
->data_length
= size
;
1311 } else if (size
!= cmd
->data_length
) {
1312 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1313 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1314 " 0x%02x\n", cmd
->se_tfo
->fabric_name
,
1315 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1317 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1318 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1319 pr_err_ratelimited("Rejecting underflow/overflow"
1320 " for WRITE data CDB\n");
1321 return TCM_INVALID_CDB_FIELD
;
1324 * Some fabric drivers like iscsi-target still expect to
1325 * always reject overflow writes. Reject this case until
1326 * full fabric driver level support for overflow writes
1327 * is introduced tree-wide.
1329 if (size
> cmd
->data_length
) {
1330 pr_err_ratelimited("Rejecting overflow for"
1331 " WRITE control CDB\n");
1332 return TCM_INVALID_CDB_FIELD
;
1336 * Reject READ_* or WRITE_* with overflow/underflow for
1337 * type SCF_SCSI_DATA_CDB.
1339 if (dev
->dev_attrib
.block_size
!= 512) {
1340 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1341 " CDB on non 512-byte sector setup subsystem"
1342 " plugin: %s\n", dev
->transport
->name
);
1343 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1344 return TCM_INVALID_CDB_FIELD
;
1347 * For the overflow case keep the existing fabric provided
1348 * ->data_length. Otherwise for the underflow case, reset
1349 * ->data_length to the smaller SCSI expected data transfer
1352 if (size
> cmd
->data_length
) {
1353 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1354 cmd
->residual_count
= (size
- cmd
->data_length
);
1356 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1357 cmd
->residual_count
= (cmd
->data_length
- size
);
1358 cmd
->data_length
= size
;
1362 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1367 * Used by fabric modules containing a local struct se_cmd within their
1368 * fabric dependent per I/O descriptor.
1370 * Preserves the value of @cmd->tag.
1372 void transport_init_se_cmd(
1374 const struct target_core_fabric_ops
*tfo
,
1375 struct se_session
*se_sess
,
1379 unsigned char *sense_buffer
, u64 unpacked_lun
)
1381 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1382 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1383 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1384 INIT_LIST_HEAD(&cmd
->state_list
);
1385 init_completion(&cmd
->t_transport_stop_comp
);
1386 cmd
->free_compl
= NULL
;
1387 cmd
->abrt_compl
= NULL
;
1388 spin_lock_init(&cmd
->t_state_lock
);
1389 INIT_WORK(&cmd
->work
, NULL
);
1390 kref_init(&cmd
->cmd_kref
);
1393 cmd
->se_sess
= se_sess
;
1394 cmd
->data_length
= data_length
;
1395 cmd
->data_direction
= data_direction
;
1396 cmd
->sam_task_attr
= task_attr
;
1397 cmd
->sense_buffer
= sense_buffer
;
1398 cmd
->orig_fe_lun
= unpacked_lun
;
1400 if (!(cmd
->se_cmd_flags
& SCF_USE_CPUID
))
1401 cmd
->cpuid
= smp_processor_id();
1403 cmd
->state_active
= false;
1405 EXPORT_SYMBOL(transport_init_se_cmd
);
1407 static sense_reason_t
1408 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1410 struct se_device
*dev
= cmd
->se_dev
;
1413 * Check if SAM Task Attribute emulation is enabled for this
1414 * struct se_device storage object
1416 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1419 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1420 pr_debug("SAM Task Attribute ACA"
1421 " emulation is not supported\n");
1422 return TCM_INVALID_CDB_FIELD
;
1429 target_cmd_init_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1433 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1435 * Ensure that the received CDB is less than the max (252 + 8) bytes
1436 * for VARIABLE_LENGTH_CMD
1438 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1439 pr_err("Received SCSI CDB with command_size: %d that"
1440 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1441 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1442 ret
= TCM_INVALID_CDB_FIELD
;
1446 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1447 * allocate the additional extended CDB buffer now.. Otherwise
1448 * setup the pointer from __t_task_cdb to t_task_cdb.
1450 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1451 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1453 if (!cmd
->t_task_cdb
) {
1454 pr_err("Unable to allocate cmd->t_task_cdb"
1455 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1456 scsi_command_size(cdb
),
1457 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1458 ret
= TCM_OUT_OF_RESOURCES
;
1463 * Copy the original CDB into cmd->
1465 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1467 trace_target_sequencer_start(cmd
);
1472 * Copy the CDB here to allow trace_target_cmd_complete() to
1473 * print the cdb to the trace buffers.
1475 memcpy(cmd
->t_task_cdb
, cdb
, min(scsi_command_size(cdb
),
1476 (unsigned int)TCM_MAX_COMMAND_SIZE
));
1479 EXPORT_SYMBOL(target_cmd_init_cdb
);
1482 target_cmd_parse_cdb(struct se_cmd
*cmd
)
1484 struct se_device
*dev
= cmd
->se_dev
;
1487 ret
= dev
->transport
->parse_cdb(cmd
);
1488 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1489 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1490 cmd
->se_tfo
->fabric_name
,
1491 cmd
->se_sess
->se_node_acl
->initiatorname
,
1492 cmd
->t_task_cdb
[0]);
1496 ret
= transport_check_alloc_task_attr(cmd
);
1500 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1501 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1504 EXPORT_SYMBOL(target_cmd_parse_cdb
);
1507 * Used by fabric module frontends to queue tasks directly.
1508 * May only be used from process context.
1510 int transport_handle_cdb_direct(
1517 pr_err("cmd->se_lun is NULL\n");
1520 if (in_interrupt()) {
1522 pr_err("transport_generic_handle_cdb cannot be called"
1523 " from interrupt context\n");
1527 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1528 * outstanding descriptors are handled correctly during shutdown via
1529 * transport_wait_for_tasks()
1531 * Also, we don't take cmd->t_state_lock here as we only expect
1532 * this to be called for initial descriptor submission.
1534 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1535 cmd
->transport_state
|= CMD_T_ACTIVE
;
1538 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1539 * so follow TRANSPORT_NEW_CMD processing thread context usage
1540 * and call transport_generic_request_failure() if necessary..
1542 ret
= transport_generic_new_cmd(cmd
);
1544 transport_generic_request_failure(cmd
, ret
);
1547 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1550 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1551 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1553 if (!sgl
|| !sgl_count
)
1557 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1558 * scatterlists already have been set to follow what the fabric
1559 * passes for the original expected data transfer length.
1561 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1562 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1563 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1564 return TCM_INVALID_CDB_FIELD
;
1567 cmd
->t_data_sg
= sgl
;
1568 cmd
->t_data_nents
= sgl_count
;
1569 cmd
->t_bidi_data_sg
= sgl_bidi
;
1570 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1572 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1577 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1578 * se_cmd + use pre-allocated SGL memory.
1580 * @se_cmd: command descriptor to submit
1581 * @se_sess: associated se_sess for endpoint
1582 * @cdb: pointer to SCSI CDB
1583 * @sense: pointer to SCSI sense buffer
1584 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1585 * @data_length: fabric expected data transfer length
1586 * @task_attr: SAM task attribute
1587 * @data_dir: DMA data direction
1588 * @flags: flags for command submission from target_sc_flags_tables
1589 * @sgl: struct scatterlist memory for unidirectional mapping
1590 * @sgl_count: scatterlist count for unidirectional mapping
1591 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1592 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1593 * @sgl_prot: struct scatterlist memory protection information
1594 * @sgl_prot_count: scatterlist count for protection information
1596 * Task tags are supported if the caller has set @se_cmd->tag.
1598 * Returns non zero to signal active I/O shutdown failure. All other
1599 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600 * but still return zero here.
1602 * This may only be called from process context, and also currently
1603 * assumes internal allocation of fabric payload buffer by target-core.
1605 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1606 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1607 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1608 struct scatterlist
*sgl
, u32 sgl_count
,
1609 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1610 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1612 struct se_portal_group
*se_tpg
;
1616 se_tpg
= se_sess
->se_tpg
;
1618 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1619 BUG_ON(in_interrupt());
1621 if (flags
& TARGET_SCF_USE_CPUID
)
1622 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1624 * Initialize se_cmd for target operation. From this point
1625 * exceptions are handled by sending exception status via
1626 * target_core_fabric_ops->queue_status() callback
1628 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1629 data_length
, data_dir
, task_attr
, sense
,
1632 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1633 se_cmd
->unknown_data_length
= 1;
1635 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1636 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1637 * kref_put() to happen during fabric packet acknowledgement.
1639 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1643 * Signal bidirectional data payloads to target-core
1645 if (flags
& TARGET_SCF_BIDI_OP
)
1646 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1648 rc
= target_cmd_init_cdb(se_cmd
, cdb
);
1650 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1651 target_put_sess_cmd(se_cmd
);
1656 * Locate se_lun pointer and attach it to struct se_cmd
1658 rc
= transport_lookup_cmd_lun(se_cmd
);
1660 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1661 target_put_sess_cmd(se_cmd
);
1665 rc
= target_cmd_parse_cdb(se_cmd
);
1667 transport_generic_request_failure(se_cmd
, rc
);
1672 * Save pointers for SGLs containing protection information,
1675 if (sgl_prot_count
) {
1676 se_cmd
->t_prot_sg
= sgl_prot
;
1677 se_cmd
->t_prot_nents
= sgl_prot_count
;
1678 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1682 * When a non zero sgl_count has been passed perform SGL passthrough
1683 * mapping for pre-allocated fabric memory instead of having target
1684 * core perform an internal SGL allocation..
1686 if (sgl_count
!= 0) {
1690 * A work-around for tcm_loop as some userspace code via
1691 * scsi-generic do not memset their associated read buffers,
1692 * so go ahead and do that here for type non-data CDBs. Also
1693 * note that this is currently guaranteed to be a single SGL
1694 * for this case by target core in target_setup_cmd_from_cdb()
1695 * -> transport_generic_cmd_sequencer().
1697 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1698 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1699 unsigned char *buf
= NULL
;
1702 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1705 memset(buf
, 0, sgl
->length
);
1706 kunmap(sg_page(sgl
));
1710 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1711 sgl_bidi
, sgl_bidi_count
);
1713 transport_generic_request_failure(se_cmd
, rc
);
1719 * Check if we need to delay processing because of ALUA
1720 * Active/NonOptimized primary access state..
1722 core_alua_check_nonop_delay(se_cmd
);
1724 transport_handle_cdb_direct(se_cmd
);
1727 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1730 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1732 * @se_cmd: command descriptor to submit
1733 * @se_sess: associated se_sess for endpoint
1734 * @cdb: pointer to SCSI CDB
1735 * @sense: pointer to SCSI sense buffer
1736 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1737 * @data_length: fabric expected data transfer length
1738 * @task_attr: SAM task attribute
1739 * @data_dir: DMA data direction
1740 * @flags: flags for command submission from target_sc_flags_tables
1742 * Task tags are supported if the caller has set @se_cmd->tag.
1744 * Returns non zero to signal active I/O shutdown failure. All other
1745 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1746 * but still return zero here.
1748 * This may only be called from process context, and also currently
1749 * assumes internal allocation of fabric payload buffer by target-core.
1751 * It also assumes interal target core SGL memory allocation.
1753 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1754 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1755 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1757 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1758 unpacked_lun
, data_length
, task_attr
, data_dir
,
1759 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1761 EXPORT_SYMBOL(target_submit_cmd
);
1763 static void target_complete_tmr_failure(struct work_struct
*work
)
1765 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1767 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1768 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1770 transport_lun_remove_cmd(se_cmd
);
1771 transport_cmd_check_stop_to_fabric(se_cmd
);
1775 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1778 * @se_cmd: command descriptor to submit
1779 * @se_sess: associated se_sess for endpoint
1780 * @sense: pointer to SCSI sense buffer
1781 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1782 * @fabric_tmr_ptr: fabric context for TMR req
1783 * @tm_type: Type of TM request
1784 * @gfp: gfp type for caller
1785 * @tag: referenced task tag for TMR_ABORT_TASK
1786 * @flags: submit cmd flags
1788 * Callable from all contexts.
1791 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1792 unsigned char *sense
, u64 unpacked_lun
,
1793 void *fabric_tmr_ptr
, unsigned char tm_type
,
1794 gfp_t gfp
, u64 tag
, int flags
)
1796 struct se_portal_group
*se_tpg
;
1799 se_tpg
= se_sess
->se_tpg
;
1802 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1803 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
, unpacked_lun
);
1805 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1806 * allocation failure.
1808 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1812 if (tm_type
== TMR_ABORT_TASK
)
1813 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1815 /* See target_submit_cmd for commentary */
1816 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1818 core_tmr_release_req(se_cmd
->se_tmr_req
);
1822 ret
= transport_lookup_tmr_lun(se_cmd
);
1826 transport_generic_handle_tmr(se_cmd
);
1830 * For callback during failure handling, push this work off
1831 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1834 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1835 schedule_work(&se_cmd
->work
);
1838 EXPORT_SYMBOL(target_submit_tmr
);
1841 * Handle SAM-esque emulation for generic transport request failures.
1843 void transport_generic_request_failure(struct se_cmd
*cmd
,
1844 sense_reason_t sense_reason
)
1846 int ret
= 0, post_ret
;
1848 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1850 target_show_cmd("-----[ ", cmd
);
1853 * For SAM Task Attribute emulation for failed struct se_cmd
1855 transport_complete_task_attr(cmd
);
1857 if (cmd
->transport_complete_callback
)
1858 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1860 if (cmd
->transport_state
& CMD_T_ABORTED
) {
1861 INIT_WORK(&cmd
->work
, target_abort_work
);
1862 queue_work(target_completion_wq
, &cmd
->work
);
1866 switch (sense_reason
) {
1867 case TCM_NON_EXISTENT_LUN
:
1868 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1869 case TCM_INVALID_CDB_FIELD
:
1870 case TCM_INVALID_PARAMETER_LIST
:
1871 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1872 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1873 case TCM_UNKNOWN_MODE_PAGE
:
1874 case TCM_WRITE_PROTECTED
:
1875 case TCM_ADDRESS_OUT_OF_RANGE
:
1876 case TCM_CHECK_CONDITION_ABORT_CMD
:
1877 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1878 case TCM_CHECK_CONDITION_NOT_READY
:
1879 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1880 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1881 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1882 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1883 case TCM_TOO_MANY_TARGET_DESCS
:
1884 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1885 case TCM_TOO_MANY_SEGMENT_DESCS
:
1886 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1888 case TCM_OUT_OF_RESOURCES
:
1889 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
1892 cmd
->scsi_status
= SAM_STAT_BUSY
;
1894 case TCM_RESERVATION_CONFLICT
:
1896 * No SENSE Data payload for this case, set SCSI Status
1897 * and queue the response to $FABRIC_MOD.
1899 * Uses linux/include/scsi/scsi.h SAM status codes defs
1901 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1903 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1904 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1907 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1910 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
1911 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA
) {
1912 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1913 cmd
->orig_fe_lun
, 0x2C,
1914 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1919 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1920 cmd
->t_task_cdb
[0], sense_reason
);
1921 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1925 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1930 transport_lun_remove_cmd(cmd
);
1931 transport_cmd_check_stop_to_fabric(cmd
);
1935 trace_target_cmd_complete(cmd
);
1936 ret
= cmd
->se_tfo
->queue_status(cmd
);
1940 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1942 EXPORT_SYMBOL(transport_generic_request_failure
);
1944 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1948 if (!cmd
->execute_cmd
) {
1949 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1954 * Check for an existing UNIT ATTENTION condition after
1955 * target_handle_task_attr() has done SAM task attr
1956 * checking, and possibly have already defered execution
1957 * out to target_restart_delayed_cmds() context.
1959 ret
= target_scsi3_ua_check(cmd
);
1963 ret
= target_alua_state_check(cmd
);
1967 ret
= target_check_reservation(cmd
);
1969 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1974 ret
= cmd
->execute_cmd(cmd
);
1978 spin_lock_irq(&cmd
->t_state_lock
);
1979 cmd
->transport_state
&= ~CMD_T_SENT
;
1980 spin_unlock_irq(&cmd
->t_state_lock
);
1982 transport_generic_request_failure(cmd
, ret
);
1985 static int target_write_prot_action(struct se_cmd
*cmd
)
1989 * Perform WRITE_INSERT of PI using software emulation when backend
1990 * device has PI enabled, if the transport has not already generated
1991 * PI using hardware WRITE_INSERT offload.
1993 switch (cmd
->prot_op
) {
1994 case TARGET_PROT_DOUT_INSERT
:
1995 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1996 sbc_dif_generate(cmd
);
1998 case TARGET_PROT_DOUT_STRIP
:
1999 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
2002 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2003 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2004 sectors
, 0, cmd
->t_prot_sg
, 0);
2005 if (unlikely(cmd
->pi_err
)) {
2006 spin_lock_irq(&cmd
->t_state_lock
);
2007 cmd
->transport_state
&= ~CMD_T_SENT
;
2008 spin_unlock_irq(&cmd
->t_state_lock
);
2009 transport_generic_request_failure(cmd
, cmd
->pi_err
);
2020 static bool target_handle_task_attr(struct se_cmd
*cmd
)
2022 struct se_device
*dev
= cmd
->se_dev
;
2024 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2027 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
2030 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2031 * to allow the passed struct se_cmd list of tasks to the front of the list.
2033 switch (cmd
->sam_task_attr
) {
2035 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2036 cmd
->t_task_cdb
[0]);
2038 case TCM_ORDERED_TAG
:
2039 atomic_inc_mb(&dev
->dev_ordered_sync
);
2041 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2042 cmd
->t_task_cdb
[0]);
2045 * Execute an ORDERED command if no other older commands
2046 * exist that need to be completed first.
2048 if (!atomic_read(&dev
->simple_cmds
))
2053 * For SIMPLE and UNTAGGED Task Attribute commands
2055 atomic_inc_mb(&dev
->simple_cmds
);
2059 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
2062 spin_lock(&dev
->delayed_cmd_lock
);
2063 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
2064 spin_unlock(&dev
->delayed_cmd_lock
);
2066 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2067 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
2071 void target_execute_cmd(struct se_cmd
*cmd
)
2074 * Determine if frontend context caller is requesting the stopping of
2075 * this command for frontend exceptions.
2077 * If the received CDB has already been aborted stop processing it here.
2079 if (target_cmd_interrupted(cmd
))
2082 spin_lock_irq(&cmd
->t_state_lock
);
2083 cmd
->t_state
= TRANSPORT_PROCESSING
;
2084 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
2085 spin_unlock_irq(&cmd
->t_state_lock
);
2087 if (target_write_prot_action(cmd
))
2090 if (target_handle_task_attr(cmd
)) {
2091 spin_lock_irq(&cmd
->t_state_lock
);
2092 cmd
->transport_state
&= ~CMD_T_SENT
;
2093 spin_unlock_irq(&cmd
->t_state_lock
);
2097 __target_execute_cmd(cmd
, true);
2099 EXPORT_SYMBOL(target_execute_cmd
);
2102 * Process all commands up to the last received ORDERED task attribute which
2103 * requires another blocking boundary
2105 static void target_restart_delayed_cmds(struct se_device
*dev
)
2110 spin_lock(&dev
->delayed_cmd_lock
);
2111 if (list_empty(&dev
->delayed_cmd_list
)) {
2112 spin_unlock(&dev
->delayed_cmd_lock
);
2116 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2117 struct se_cmd
, se_delayed_node
);
2118 list_del(&cmd
->se_delayed_node
);
2119 spin_unlock(&dev
->delayed_cmd_lock
);
2121 cmd
->transport_state
|= CMD_T_SENT
;
2123 __target_execute_cmd(cmd
, true);
2125 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2131 * Called from I/O completion to determine which dormant/delayed
2132 * and ordered cmds need to have their tasks added to the execution queue.
2134 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2136 struct se_device
*dev
= cmd
->se_dev
;
2138 if (dev
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2141 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2144 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2145 atomic_dec_mb(&dev
->simple_cmds
);
2146 dev
->dev_cur_ordered_id
++;
2147 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2148 dev
->dev_cur_ordered_id
++;
2149 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2150 dev
->dev_cur_ordered_id
);
2151 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2152 atomic_dec_mb(&dev
->dev_ordered_sync
);
2154 dev
->dev_cur_ordered_id
++;
2155 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2156 dev
->dev_cur_ordered_id
);
2158 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2161 target_restart_delayed_cmds(dev
);
2164 static void transport_complete_qf(struct se_cmd
*cmd
)
2168 transport_complete_task_attr(cmd
);
2170 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2171 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2172 * the same callbacks should not be retried. Return CHECK_CONDITION
2173 * if a scsi_status is not already set.
2175 * If a fabric driver ->queue_status() has returned non zero, always
2176 * keep retrying no matter what..
2178 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2179 if (cmd
->scsi_status
)
2182 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2187 * Check if we need to send a sense buffer from
2188 * the struct se_cmd in question. We do NOT want
2189 * to take this path of the IO has been marked as
2190 * needing to be treated like a "normal read". This
2191 * is the case if it's a tape read, and either the
2192 * FM, EOM, or ILI bits are set, but there is no
2195 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2196 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2199 switch (cmd
->data_direction
) {
2200 case DMA_FROM_DEVICE
:
2201 /* queue status if not treating this as a normal read */
2202 if (cmd
->scsi_status
&&
2203 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2206 trace_target_cmd_complete(cmd
);
2207 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2210 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2211 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2217 trace_target_cmd_complete(cmd
);
2218 ret
= cmd
->se_tfo
->queue_status(cmd
);
2225 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2228 transport_lun_remove_cmd(cmd
);
2229 transport_cmd_check_stop_to_fabric(cmd
);
2232 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2233 int err
, bool write_pending
)
2236 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2237 * ->queue_data_in() callbacks from new process context.
2239 * Otherwise for other errors, transport_complete_qf() will send
2240 * CHECK_CONDITION via ->queue_status() instead of attempting to
2241 * retry associated fabric driver data-transfer callbacks.
2243 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2244 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2245 TRANSPORT_COMPLETE_QF_OK
;
2247 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2248 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2251 spin_lock_irq(&dev
->qf_cmd_lock
);
2252 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2253 atomic_inc_mb(&dev
->dev_qf_count
);
2254 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2256 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2259 static bool target_read_prot_action(struct se_cmd
*cmd
)
2261 switch (cmd
->prot_op
) {
2262 case TARGET_PROT_DIN_STRIP
:
2263 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2264 u32 sectors
= cmd
->data_length
>>
2265 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2267 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2268 sectors
, 0, cmd
->t_prot_sg
,
2274 case TARGET_PROT_DIN_INSERT
:
2275 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2278 sbc_dif_generate(cmd
);
2287 static void target_complete_ok_work(struct work_struct
*work
)
2289 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2293 * Check if we need to move delayed/dormant tasks from cmds on the
2294 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2297 transport_complete_task_attr(cmd
);
2300 * Check to schedule QUEUE_FULL work, or execute an existing
2301 * cmd->transport_qf_callback()
2303 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2304 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2307 * Check if we need to send a sense buffer from
2308 * the struct se_cmd in question. We do NOT want
2309 * to take this path of the IO has been marked as
2310 * needing to be treated like a "normal read". This
2311 * is the case if it's a tape read, and either the
2312 * FM, EOM, or ILI bits are set, but there is no
2315 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2316 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2317 WARN_ON(!cmd
->scsi_status
);
2318 ret
= transport_send_check_condition_and_sense(
2323 transport_lun_remove_cmd(cmd
);
2324 transport_cmd_check_stop_to_fabric(cmd
);
2328 * Check for a callback, used by amongst other things
2329 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2331 if (cmd
->transport_complete_callback
) {
2333 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2334 bool zero_dl
= !(cmd
->data_length
);
2337 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2338 if (!rc
&& !post_ret
) {
2344 ret
= transport_send_check_condition_and_sense(cmd
,
2349 transport_lun_remove_cmd(cmd
);
2350 transport_cmd_check_stop_to_fabric(cmd
);
2356 switch (cmd
->data_direction
) {
2357 case DMA_FROM_DEVICE
:
2359 * if this is a READ-type IO, but SCSI status
2360 * is set, then skip returning data and just
2361 * return the status -- unless this IO is marked
2362 * as needing to be treated as a normal read,
2363 * in which case we want to go ahead and return
2364 * the data. This happens, for example, for tape
2365 * reads with the FM, EOM, or ILI bits set, with
2368 if (cmd
->scsi_status
&&
2369 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2372 atomic_long_add(cmd
->data_length
,
2373 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2375 * Perform READ_STRIP of PI using software emulation when
2376 * backend had PI enabled, if the transport will not be
2377 * performing hardware READ_STRIP offload.
2379 if (target_read_prot_action(cmd
)) {
2380 ret
= transport_send_check_condition_and_sense(cmd
,
2385 transport_lun_remove_cmd(cmd
);
2386 transport_cmd_check_stop_to_fabric(cmd
);
2390 trace_target_cmd_complete(cmd
);
2391 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2396 atomic_long_add(cmd
->data_length
,
2397 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2399 * Check if we need to send READ payload for BIDI-COMMAND
2401 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2402 atomic_long_add(cmd
->data_length
,
2403 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2404 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2412 trace_target_cmd_complete(cmd
);
2413 ret
= cmd
->se_tfo
->queue_status(cmd
);
2421 transport_lun_remove_cmd(cmd
);
2422 transport_cmd_check_stop_to_fabric(cmd
);
2426 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2427 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2429 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2432 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2434 sgl_free_n_order(sgl
, nents
, 0);
2436 EXPORT_SYMBOL(target_free_sgl
);
2438 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2441 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2442 * emulation, and free + reset pointers if necessary..
2444 if (!cmd
->t_data_sg_orig
)
2447 kfree(cmd
->t_data_sg
);
2448 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2449 cmd
->t_data_sg_orig
= NULL
;
2450 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2451 cmd
->t_data_nents_orig
= 0;
2454 static inline void transport_free_pages(struct se_cmd
*cmd
)
2456 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2457 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2458 cmd
->t_prot_sg
= NULL
;
2459 cmd
->t_prot_nents
= 0;
2462 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2464 * Release special case READ buffer payload required for
2465 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2467 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2468 target_free_sgl(cmd
->t_bidi_data_sg
,
2469 cmd
->t_bidi_data_nents
);
2470 cmd
->t_bidi_data_sg
= NULL
;
2471 cmd
->t_bidi_data_nents
= 0;
2473 transport_reset_sgl_orig(cmd
);
2476 transport_reset_sgl_orig(cmd
);
2478 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2479 cmd
->t_data_sg
= NULL
;
2480 cmd
->t_data_nents
= 0;
2482 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2483 cmd
->t_bidi_data_sg
= NULL
;
2484 cmd
->t_bidi_data_nents
= 0;
2487 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2489 struct scatterlist
*sg
= cmd
->t_data_sg
;
2490 struct page
**pages
;
2494 * We need to take into account a possible offset here for fabrics like
2495 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2496 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2498 if (!cmd
->t_data_nents
)
2502 if (cmd
->t_data_nents
== 1)
2503 return kmap(sg_page(sg
)) + sg
->offset
;
2505 /* >1 page. use vmap */
2506 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2510 /* convert sg[] to pages[] */
2511 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2512 pages
[i
] = sg_page(sg
);
2515 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2517 if (!cmd
->t_data_vmap
)
2520 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2522 EXPORT_SYMBOL(transport_kmap_data_sg
);
2524 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2526 if (!cmd
->t_data_nents
) {
2528 } else if (cmd
->t_data_nents
== 1) {
2529 kunmap(sg_page(cmd
->t_data_sg
));
2533 vunmap(cmd
->t_data_vmap
);
2534 cmd
->t_data_vmap
= NULL
;
2536 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2539 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2540 bool zero_page
, bool chainable
)
2542 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2544 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2545 return *sgl
? 0 : -ENOMEM
;
2547 EXPORT_SYMBOL(target_alloc_sgl
);
2550 * Allocate any required resources to execute the command. For writes we
2551 * might not have the payload yet, so notify the fabric via a call to
2552 * ->write_pending instead. Otherwise place it on the execution queue.
2555 transport_generic_new_cmd(struct se_cmd
*cmd
)
2557 unsigned long flags
;
2559 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2561 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2562 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2563 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2564 cmd
->prot_length
, true, false);
2566 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2570 * Determine if the TCM fabric module has already allocated physical
2571 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2574 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2577 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2578 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2581 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2582 bidi_length
= cmd
->t_task_nolb
*
2583 cmd
->se_dev
->dev_attrib
.block_size
;
2585 bidi_length
= cmd
->data_length
;
2587 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2588 &cmd
->t_bidi_data_nents
,
2589 bidi_length
, zero_flag
, false);
2591 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2594 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2595 cmd
->data_length
, zero_flag
, false);
2597 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2598 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2601 * Special case for COMPARE_AND_WRITE with fabrics
2602 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2604 u32 caw_length
= cmd
->t_task_nolb
*
2605 cmd
->se_dev
->dev_attrib
.block_size
;
2607 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2608 &cmd
->t_bidi_data_nents
,
2609 caw_length
, zero_flag
, false);
2611 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2614 * If this command is not a write we can execute it right here,
2615 * for write buffers we need to notify the fabric driver first
2616 * and let it call back once the write buffers are ready.
2618 target_add_to_state_list(cmd
);
2619 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2620 target_execute_cmd(cmd
);
2624 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2625 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2627 * Determine if frontend context caller is requesting the stopping of
2628 * this command for frontend exceptions.
2630 if (cmd
->transport_state
& CMD_T_STOP
&&
2631 !cmd
->se_tfo
->write_pending_must_be_called
) {
2632 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2633 __func__
, __LINE__
, cmd
->tag
);
2635 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2637 complete_all(&cmd
->t_transport_stop_comp
);
2640 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2641 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2643 ret
= cmd
->se_tfo
->write_pending(cmd
);
2650 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2651 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2654 EXPORT_SYMBOL(transport_generic_new_cmd
);
2656 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2658 unsigned long flags
;
2662 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2663 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2664 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2667 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2668 __func__
, __LINE__
, cmd
->tag
);
2669 complete_all(&cmd
->t_transport_stop_comp
);
2673 ret
= cmd
->se_tfo
->write_pending(cmd
);
2675 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2677 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2682 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2683 unsigned long *flags
);
2685 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2687 unsigned long flags
;
2689 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2690 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2691 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2695 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2698 void target_put_cmd_and_wait(struct se_cmd
*cmd
)
2700 DECLARE_COMPLETION_ONSTACK(compl);
2702 WARN_ON_ONCE(cmd
->abrt_compl
);
2703 cmd
->abrt_compl
= &compl;
2704 target_put_sess_cmd(cmd
);
2705 wait_for_completion(&compl);
2709 * This function is called by frontend drivers after processing of a command
2712 * The protocol for ensuring that either the regular frontend command
2713 * processing flow or target_handle_abort() code drops one reference is as
2715 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2716 * the frontend driver to call this function synchronously or asynchronously.
2717 * That will cause one reference to be dropped.
2718 * - During regular command processing the target core sets CMD_T_COMPLETE
2719 * before invoking one of the .queue_*() functions.
2720 * - The code that aborts commands skips commands and TMFs for which
2721 * CMD_T_COMPLETE has been set.
2722 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2723 * commands that will be aborted.
2724 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2725 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2726 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2727 * be called and will drop a reference.
2728 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2729 * will be called. target_handle_abort() will drop the final reference.
2731 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2733 DECLARE_COMPLETION_ONSTACK(compl);
2735 bool aborted
= false, tas
= false;
2738 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2740 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) {
2742 * Handle WRITE failure case where transport_generic_new_cmd()
2743 * has already added se_cmd to state_list, but fabric has
2744 * failed command before I/O submission.
2746 if (cmd
->state_active
)
2747 target_remove_from_state_list(cmd
);
2750 transport_lun_remove_cmd(cmd
);
2753 cmd
->free_compl
= &compl;
2754 ret
= target_put_sess_cmd(cmd
);
2756 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2757 wait_for_completion(&compl);
2762 EXPORT_SYMBOL(transport_generic_free_cmd
);
2765 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2766 * @se_cmd: command descriptor to add
2767 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2769 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2771 struct se_session
*se_sess
= se_cmd
->se_sess
;
2775 * Add a second kref if the fabric caller is expecting to handle
2776 * fabric acknowledgement that requires two target_put_sess_cmd()
2777 * invocations before se_cmd descriptor release.
2780 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2783 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2786 if (!percpu_ref_tryget_live(&se_sess
->cmd_count
))
2789 if (ret
&& ack_kref
)
2790 target_put_sess_cmd(se_cmd
);
2794 EXPORT_SYMBOL(target_get_sess_cmd
);
2796 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2798 transport_free_pages(cmd
);
2800 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2801 core_tmr_release_req(cmd
->se_tmr_req
);
2802 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2803 kfree(cmd
->t_task_cdb
);
2806 static void target_release_cmd_kref(struct kref
*kref
)
2808 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2809 struct se_session
*se_sess
= se_cmd
->se_sess
;
2810 struct completion
*free_compl
= se_cmd
->free_compl
;
2811 struct completion
*abrt_compl
= se_cmd
->abrt_compl
;
2813 target_free_cmd_mem(se_cmd
);
2814 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2816 complete(free_compl
);
2818 complete(abrt_compl
);
2820 percpu_ref_put(&se_sess
->cmd_count
);
2824 * target_put_sess_cmd - decrease the command reference count
2825 * @se_cmd: command to drop a reference from
2827 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2828 * refcount to drop to zero. Returns zero otherwise.
2830 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2832 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2834 EXPORT_SYMBOL(target_put_sess_cmd
);
2836 static const char *data_dir_name(enum dma_data_direction d
)
2839 case DMA_BIDIRECTIONAL
: return "BIDI";
2840 case DMA_TO_DEVICE
: return "WRITE";
2841 case DMA_FROM_DEVICE
: return "READ";
2842 case DMA_NONE
: return "NONE";
2848 static const char *cmd_state_name(enum transport_state_table t
)
2851 case TRANSPORT_NO_STATE
: return "NO_STATE";
2852 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2853 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2854 case TRANSPORT_PROCESSING
: return "PROCESSING";
2855 case TRANSPORT_COMPLETE
: return "COMPLETE";
2856 case TRANSPORT_ISTATE_PROCESSING
:
2857 return "ISTATE_PROCESSING";
2858 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2859 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2860 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2866 static void target_append_str(char **str
, const char *txt
)
2870 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2871 kstrdup(txt
, GFP_ATOMIC
);
2876 * Convert a transport state bitmask into a string. The caller is
2877 * responsible for freeing the returned pointer.
2879 static char *target_ts_to_str(u32 ts
)
2883 if (ts
& CMD_T_ABORTED
)
2884 target_append_str(&str
, "aborted");
2885 if (ts
& CMD_T_ACTIVE
)
2886 target_append_str(&str
, "active");
2887 if (ts
& CMD_T_COMPLETE
)
2888 target_append_str(&str
, "complete");
2889 if (ts
& CMD_T_SENT
)
2890 target_append_str(&str
, "sent");
2891 if (ts
& CMD_T_STOP
)
2892 target_append_str(&str
, "stop");
2893 if (ts
& CMD_T_FABRIC_STOP
)
2894 target_append_str(&str
, "fabric_stop");
2899 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2902 case TMR_ABORT_TASK
: return "ABORT_TASK";
2903 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2904 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2905 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2906 case TMR_LUN_RESET
: return "LUN_RESET";
2907 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2908 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2909 case TMR_LUN_RESET_PRO
: return "LUN_RESET_PRO";
2910 case TMR_UNKNOWN
: break;
2915 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2917 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2918 const u8
*cdb
= cmd
->t_task_cdb
;
2919 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2921 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2922 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2923 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2924 data_dir_name(cmd
->data_direction
),
2925 cmd
->se_tfo
->get_cmd_state(cmd
),
2926 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2927 kref_read(&cmd
->cmd_kref
), ts_str
);
2929 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2930 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2931 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2932 cmd_state_name(cmd
->t_state
),
2933 kref_read(&cmd
->cmd_kref
), ts_str
);
2937 EXPORT_SYMBOL(target_show_cmd
);
2939 static void target_stop_session_confirm(struct percpu_ref
*ref
)
2941 struct se_session
*se_sess
= container_of(ref
, struct se_session
,
2943 complete_all(&se_sess
->stop_done
);
2947 * target_stop_session - Stop new IO from being queued on the session.
2948 * @se_sess: session to stop
2950 void target_stop_session(struct se_session
*se_sess
)
2952 pr_debug("Stopping session queue.\n");
2953 if (atomic_cmpxchg(&se_sess
->stopped
, 0, 1) == 0)
2954 percpu_ref_kill_and_confirm(&se_sess
->cmd_count
,
2955 target_stop_session_confirm
);
2957 EXPORT_SYMBOL(target_stop_session
);
2960 * target_wait_for_sess_cmds - Wait for outstanding commands
2961 * @se_sess: session to wait for active I/O
2963 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2967 WARN_ON_ONCE(!atomic_read(&se_sess
->stopped
));
2970 pr_debug("Waiting for running cmds to complete.\n");
2971 ret
= wait_event_timeout(se_sess
->cmd_count_wq
,
2972 percpu_ref_is_zero(&se_sess
->cmd_count
),
2976 wait_for_completion(&se_sess
->stop_done
);
2977 pr_debug("Waiting for cmds done.\n");
2979 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2982 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2983 * all references to the LUN have been released. Called during LUN shutdown.
2985 void transport_clear_lun_ref(struct se_lun
*lun
)
2987 percpu_ref_kill(&lun
->lun_ref
);
2988 wait_for_completion(&lun
->lun_shutdown_comp
);
2992 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2993 bool *aborted
, bool *tas
, unsigned long *flags
)
2994 __releases(&cmd
->t_state_lock
)
2995 __acquires(&cmd
->t_state_lock
)
2998 assert_spin_locked(&cmd
->t_state_lock
);
2999 WARN_ON_ONCE(!irqs_disabled());
3002 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
3004 if (cmd
->transport_state
& CMD_T_ABORTED
)
3007 if (cmd
->transport_state
& CMD_T_TAS
)
3010 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
3011 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
3014 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
3015 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
3018 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
3021 if (fabric_stop
&& *aborted
)
3024 cmd
->transport_state
|= CMD_T_STOP
;
3026 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
3028 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
3030 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
3032 target_show_cmd("wait for tasks: ", cmd
);
3034 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
3035 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
3037 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3038 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3044 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3045 * @cmd: command to wait on
3047 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3049 unsigned long flags
;
3050 bool ret
, aborted
= false, tas
= false;
3052 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3053 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3054 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3058 EXPORT_SYMBOL(transport_wait_for_tasks
);
3060 struct sense_detail
{
3064 bool add_sense_info
;
3067 static const struct sense_detail sense_detail_table
[] = {
3071 [TCM_NON_EXISTENT_LUN
] = {
3072 .key
= ILLEGAL_REQUEST
,
3073 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3075 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3076 .key
= ILLEGAL_REQUEST
,
3077 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3079 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3080 .key
= ILLEGAL_REQUEST
,
3081 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3083 [TCM_UNKNOWN_MODE_PAGE
] = {
3084 .key
= ILLEGAL_REQUEST
,
3085 .asc
= 0x24, /* INVALID FIELD IN CDB */
3087 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3088 .key
= ABORTED_COMMAND
,
3089 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3092 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3093 .key
= ABORTED_COMMAND
,
3094 .asc
= 0x0c, /* WRITE ERROR */
3095 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3097 [TCM_INVALID_CDB_FIELD
] = {
3098 .key
= ILLEGAL_REQUEST
,
3099 .asc
= 0x24, /* INVALID FIELD IN CDB */
3101 [TCM_INVALID_PARAMETER_LIST
] = {
3102 .key
= ILLEGAL_REQUEST
,
3103 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3105 [TCM_TOO_MANY_TARGET_DESCS
] = {
3106 .key
= ILLEGAL_REQUEST
,
3108 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3110 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3111 .key
= ILLEGAL_REQUEST
,
3113 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3115 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3116 .key
= ILLEGAL_REQUEST
,
3118 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3120 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3121 .key
= ILLEGAL_REQUEST
,
3123 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3125 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3126 .key
= ILLEGAL_REQUEST
,
3127 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3129 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3130 .key
= ILLEGAL_REQUEST
,
3131 .asc
= 0x0c, /* WRITE ERROR */
3132 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3134 [TCM_SERVICE_CRC_ERROR
] = {
3135 .key
= ABORTED_COMMAND
,
3136 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3137 .ascq
= 0x05, /* N/A */
3139 [TCM_SNACK_REJECTED
] = {
3140 .key
= ABORTED_COMMAND
,
3141 .asc
= 0x11, /* READ ERROR */
3142 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3144 [TCM_WRITE_PROTECTED
] = {
3145 .key
= DATA_PROTECT
,
3146 .asc
= 0x27, /* WRITE PROTECTED */
3148 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3149 .key
= ILLEGAL_REQUEST
,
3150 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3152 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3153 .key
= UNIT_ATTENTION
,
3155 [TCM_CHECK_CONDITION_NOT_READY
] = {
3158 [TCM_MISCOMPARE_VERIFY
] = {
3160 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3162 .add_sense_info
= true,
3164 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3165 .key
= ABORTED_COMMAND
,
3167 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3168 .add_sense_info
= true,
3170 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3171 .key
= ABORTED_COMMAND
,
3173 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3174 .add_sense_info
= true,
3176 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3177 .key
= ABORTED_COMMAND
,
3179 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3180 .add_sense_info
= true,
3182 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3183 .key
= COPY_ABORTED
,
3185 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3188 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3190 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3191 * Solaris initiators. Returning NOT READY instead means the
3192 * operations will be retried a finite number of times and we
3193 * can survive intermittent errors.
3196 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3198 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3200 * From spc4r22 section5.7.7,5.7.8
3201 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3202 * or a REGISTER AND IGNORE EXISTING KEY service action or
3203 * REGISTER AND MOVE service actionis attempted,
3204 * but there are insufficient device server resources to complete the
3205 * operation, then the command shall be terminated with CHECK CONDITION
3206 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3207 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3209 .key
= ILLEGAL_REQUEST
,
3211 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3216 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3217 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3219 * @reason: LIO sense reason code. If this argument has the value
3220 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3221 * dequeuing a unit attention fails due to multiple commands being processed
3222 * concurrently, set the command status to BUSY.
3224 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3226 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3228 const struct sense_detail
*sd
;
3229 u8
*buffer
= cmd
->sense_buffer
;
3230 int r
= (__force
int)reason
;
3232 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3234 if (r
< ARRAY_SIZE(sense_detail_table
) && sense_detail_table
[r
].key
)
3235 sd
= &sense_detail_table
[r
];
3237 sd
= &sense_detail_table
[(__force
int)
3238 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3241 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3242 if (!core_scsi3_ua_for_check_condition(cmd
, &key
, &asc
,
3244 cmd
->scsi_status
= SAM_STAT_BUSY
;
3247 } else if (sd
->asc
== 0) {
3248 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3249 asc
= cmd
->scsi_asc
;
3250 ascq
= cmd
->scsi_ascq
;
3256 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3257 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3258 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3259 scsi_build_sense_buffer(desc_format
, buffer
, key
, asc
, ascq
);
3260 if (sd
->add_sense_info
)
3261 WARN_ON_ONCE(scsi_set_sense_information(buffer
,
3262 cmd
->scsi_sense_length
,
3263 cmd
->sense_info
) < 0);
3267 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3268 sense_reason_t reason
, int from_transport
)
3270 unsigned long flags
;
3272 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3274 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3275 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3276 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3279 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3280 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3282 if (!from_transport
)
3283 translate_sense_reason(cmd
, reason
);
3285 trace_target_cmd_complete(cmd
);
3286 return cmd
->se_tfo
->queue_status(cmd
);
3288 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3291 * target_send_busy - Send SCSI BUSY status back to the initiator
3292 * @cmd: SCSI command for which to send a BUSY reply.
3294 * Note: Only call this function if target_submit_cmd*() failed.
3296 int target_send_busy(struct se_cmd
*cmd
)
3298 WARN_ON_ONCE(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
);
3300 cmd
->scsi_status
= SAM_STAT_BUSY
;
3301 trace_target_cmd_complete(cmd
);
3302 return cmd
->se_tfo
->queue_status(cmd
);
3304 EXPORT_SYMBOL(target_send_busy
);
3306 static void target_tmr_work(struct work_struct
*work
)
3308 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3309 struct se_device
*dev
= cmd
->se_dev
;
3310 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3313 if (cmd
->transport_state
& CMD_T_ABORTED
)
3316 switch (tmr
->function
) {
3317 case TMR_ABORT_TASK
:
3318 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3320 case TMR_ABORT_TASK_SET
:
3322 case TMR_CLEAR_TASK_SET
:
3323 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3326 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3327 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3328 TMR_FUNCTION_REJECTED
;
3329 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3330 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3331 cmd
->orig_fe_lun
, 0x29,
3332 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3335 case TMR_TARGET_WARM_RESET
:
3336 tmr
->response
= TMR_FUNCTION_REJECTED
;
3338 case TMR_TARGET_COLD_RESET
:
3339 tmr
->response
= TMR_FUNCTION_REJECTED
;
3342 pr_err("Unknown TMR function: 0x%02x.\n",
3344 tmr
->response
= TMR_FUNCTION_REJECTED
;
3348 if (cmd
->transport_state
& CMD_T_ABORTED
)
3351 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3353 transport_lun_remove_cmd(cmd
);
3354 transport_cmd_check_stop_to_fabric(cmd
);
3358 target_handle_abort(cmd
);
3361 int transport_generic_handle_tmr(
3364 unsigned long flags
;
3365 bool aborted
= false;
3367 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3368 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3371 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3372 cmd
->transport_state
|= CMD_T_ACTIVE
;
3374 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3377 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3378 cmd
->se_tmr_req
->function
,
3379 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3380 target_handle_abort(cmd
);
3384 INIT_WORK(&cmd
->work
, target_tmr_work
);
3385 schedule_work(&cmd
->work
);
3388 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3391 target_check_wce(struct se_device
*dev
)
3395 if (dev
->transport
->get_write_cache
)
3396 wce
= dev
->transport
->get_write_cache(dev
);
3397 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3404 target_check_fua(struct se_device
*dev
)
3406 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;