1 // SPDX-License-Identifier: GPL-2.0+
3 * Driver for AMBA serial ports
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
43 #include <linux/acpi.h>
45 #include "amba-pl011.h"
49 #define SERIAL_AMBA_MAJOR 204
50 #define SERIAL_AMBA_MINOR 64
51 #define SERIAL_AMBA_NR UART_NR
53 #define AMBA_ISR_PASS_LIMIT 256
55 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX (1 << 16)
58 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
59 [REG_DR
] = UART01x_DR
,
60 [REG_FR
] = UART01x_FR
,
61 [REG_LCRH_RX
] = UART011_LCRH
,
62 [REG_LCRH_TX
] = UART011_LCRH
,
63 [REG_IBRD
] = UART011_IBRD
,
64 [REG_FBRD
] = UART011_FBRD
,
65 [REG_CR
] = UART011_CR
,
66 [REG_IFLS
] = UART011_IFLS
,
67 [REG_IMSC
] = UART011_IMSC
,
68 [REG_RIS
] = UART011_RIS
,
69 [REG_MIS
] = UART011_MIS
,
70 [REG_ICR
] = UART011_ICR
,
71 [REG_DMACR
] = UART011_DMACR
,
74 /* There is by now at least one vendor with differing details, so handle it */
76 const u16
*reg_offset
;
86 bool cts_event_workaround
;
90 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
93 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
95 return amba_rev(dev
) < 3 ? 16 : 32;
98 static struct vendor_data vendor_arm
= {
99 .reg_offset
= pl011_std_offsets
,
100 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
101 .fr_busy
= UART01x_FR_BUSY
,
102 .fr_dsr
= UART01x_FR_DSR
,
103 .fr_cts
= UART01x_FR_CTS
,
104 .fr_ri
= UART011_FR_RI
,
105 .oversampling
= false,
106 .dma_threshold
= false,
107 .cts_event_workaround
= false,
108 .always_enabled
= false,
109 .fixed_options
= false,
110 .get_fifosize
= get_fifosize_arm
,
113 static const struct vendor_data vendor_sbsa
= {
114 .reg_offset
= pl011_std_offsets
,
115 .fr_busy
= UART01x_FR_BUSY
,
116 .fr_dsr
= UART01x_FR_DSR
,
117 .fr_cts
= UART01x_FR_CTS
,
118 .fr_ri
= UART011_FR_RI
,
120 .oversampling
= false,
121 .dma_threshold
= false,
122 .cts_event_workaround
= false,
123 .always_enabled
= true,
124 .fixed_options
= true,
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44
= {
129 .reg_offset
= pl011_std_offsets
,
130 .fr_busy
= UART011_FR_TXFE
,
131 .fr_dsr
= UART01x_FR_DSR
,
132 .fr_cts
= UART01x_FR_CTS
,
133 .fr_ri
= UART011_FR_RI
,
134 .inv_fr
= UART011_FR_TXFE
,
136 .oversampling
= false,
137 .dma_threshold
= false,
138 .cts_event_workaround
= false,
139 .always_enabled
= true,
140 .fixed_options
= true,
144 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
145 [REG_DR
] = UART01x_DR
,
146 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
147 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
148 [REG_FR
] = UART01x_FR
,
149 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
150 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
151 [REG_IBRD
] = UART011_IBRD
,
152 [REG_FBRD
] = UART011_FBRD
,
153 [REG_CR
] = UART011_CR
,
154 [REG_IFLS
] = UART011_IFLS
,
155 [REG_IMSC
] = UART011_IMSC
,
156 [REG_RIS
] = UART011_RIS
,
157 [REG_MIS
] = UART011_MIS
,
158 [REG_ICR
] = UART011_ICR
,
159 [REG_DMACR
] = UART011_DMACR
,
160 [REG_ST_XFCR
] = ST_UART011_XFCR
,
161 [REG_ST_XON1
] = ST_UART011_XON1
,
162 [REG_ST_XON2
] = ST_UART011_XON2
,
163 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
164 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
165 [REG_ST_ITCR
] = ST_UART011_ITCR
,
166 [REG_ST_ITIP
] = ST_UART011_ITIP
,
167 [REG_ST_ABCR
] = ST_UART011_ABCR
,
168 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
171 static unsigned int get_fifosize_st(struct amba_device
*dev
)
176 static struct vendor_data vendor_st
= {
177 .reg_offset
= pl011_st_offsets
,
178 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
179 .fr_busy
= UART01x_FR_BUSY
,
180 .fr_dsr
= UART01x_FR_DSR
,
181 .fr_cts
= UART01x_FR_CTS
,
182 .fr_ri
= UART011_FR_RI
,
183 .oversampling
= true,
184 .dma_threshold
= true,
185 .cts_event_workaround
= true,
186 .always_enabled
= false,
187 .fixed_options
= false,
188 .get_fifosize
= get_fifosize_st
,
191 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
192 [REG_DR
] = ZX_UART011_DR
,
193 [REG_FR
] = ZX_UART011_FR
,
194 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
195 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
196 [REG_IBRD
] = ZX_UART011_IBRD
,
197 [REG_FBRD
] = ZX_UART011_FBRD
,
198 [REG_CR
] = ZX_UART011_CR
,
199 [REG_IFLS
] = ZX_UART011_IFLS
,
200 [REG_IMSC
] = ZX_UART011_IMSC
,
201 [REG_RIS
] = ZX_UART011_RIS
,
202 [REG_MIS
] = ZX_UART011_MIS
,
203 [REG_ICR
] = ZX_UART011_ICR
,
204 [REG_DMACR
] = ZX_UART011_DMACR
,
207 static unsigned int get_fifosize_zte(struct amba_device
*dev
)
212 static struct vendor_data vendor_zte
= {
213 .reg_offset
= pl011_zte_offsets
,
215 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
216 .fr_busy
= ZX_UART01x_FR_BUSY
,
217 .fr_dsr
= ZX_UART01x_FR_DSR
,
218 .fr_cts
= ZX_UART01x_FR_CTS
,
219 .fr_ri
= ZX_UART011_FR_RI
,
220 .get_fifosize
= get_fifosize_zte
,
223 /* Deals with DMA transactions */
226 struct scatterlist sg
;
230 struct pl011_dmarx_data
{
231 struct dma_chan
*chan
;
232 struct completion complete
;
234 struct pl011_sgbuf sgbuf_a
;
235 struct pl011_sgbuf sgbuf_b
;
238 struct timer_list timer
;
239 unsigned int last_residue
;
240 unsigned long last_jiffies
;
242 unsigned int poll_rate
;
243 unsigned int poll_timeout
;
246 struct pl011_dmatx_data
{
247 struct dma_chan
*chan
;
248 struct scatterlist sg
;
254 * We wrap our port structure around the generic uart_port.
256 struct uart_amba_port
{
257 struct uart_port port
;
258 const u16
*reg_offset
;
260 const struct vendor_data
*vendor
;
261 unsigned int dmacr
; /* dma control reg */
262 unsigned int im
; /* interrupt mask */
263 unsigned int old_status
;
264 unsigned int fifosize
; /* vendor-specific */
265 unsigned int old_cr
; /* state during shutdown */
266 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
268 #ifdef CONFIG_DMA_ENGINE
272 struct pl011_dmarx_data dmarx
;
273 struct pl011_dmatx_data dmatx
;
278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
281 return uap
->reg_offset
[reg
];
284 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
287 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
289 return (uap
->port
.iotype
== UPIO_MEM32
) ?
290 readl_relaxed(addr
) : readw_relaxed(addr
);
293 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
296 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
298 if (uap
->port
.iotype
== UPIO_MEM32
)
299 writel_relaxed(val
, addr
);
301 writew_relaxed(val
, addr
);
305 * Reads up to 256 characters from the FIFO or until it's empty and
306 * inserts them into the TTY layer. Returns the number of characters
307 * read from the FIFO.
309 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
311 unsigned int ch
, flag
, fifotaken
;
315 for (fifotaken
= 0; fifotaken
!= 256; fifotaken
++) {
316 status
= pl011_read(uap
, REG_FR
);
317 if (status
& UART01x_FR_RXFE
)
320 /* Take chars from the FIFO and update status */
321 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
323 uap
->port
.icount
.rx
++;
325 if (unlikely(ch
& UART_DR_ERROR
)) {
326 if (ch
& UART011_DR_BE
) {
327 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
328 uap
->port
.icount
.brk
++;
329 if (uart_handle_break(&uap
->port
))
331 } else if (ch
& UART011_DR_PE
)
332 uap
->port
.icount
.parity
++;
333 else if (ch
& UART011_DR_FE
)
334 uap
->port
.icount
.frame
++;
335 if (ch
& UART011_DR_OE
)
336 uap
->port
.icount
.overrun
++;
338 ch
&= uap
->port
.read_status_mask
;
340 if (ch
& UART011_DR_BE
)
342 else if (ch
& UART011_DR_PE
)
344 else if (ch
& UART011_DR_FE
)
348 spin_unlock(&uap
->port
.lock
);
349 sysrq
= uart_handle_sysrq_char(&uap
->port
, ch
& 255);
350 spin_lock(&uap
->port
.lock
);
353 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
361 * All the DMA operation mode stuff goes inside this ifdef.
362 * This assumes that you have a generic DMA device interface,
363 * no custom DMA interfaces are supported.
365 #ifdef CONFIG_DMA_ENGINE
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
369 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
370 enum dma_data_direction dir
)
374 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
375 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
379 sg_init_table(&sg
->sg
, 1);
380 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
381 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
382 sg_dma_address(&sg
->sg
) = dma_addr
;
383 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
388 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
389 enum dma_data_direction dir
)
392 dma_free_coherent(chan
->device
->dev
,
393 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
394 sg_dma_address(&sg
->sg
));
398 static void pl011_dma_probe(struct uart_amba_port
*uap
)
400 /* DMA is the sole user of the platform data right now */
401 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
402 struct device
*dev
= uap
->port
.dev
;
403 struct dma_slave_config tx_conf
= {
404 .dst_addr
= uap
->port
.mapbase
+
405 pl011_reg_to_offset(uap
, REG_DR
),
406 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
407 .direction
= DMA_MEM_TO_DEV
,
408 .dst_maxburst
= uap
->fifosize
>> 1,
411 struct dma_chan
*chan
;
414 uap
->dma_probed
= true;
415 chan
= dma_request_chan(dev
, "tx");
417 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
418 uap
->dma_probed
= false;
422 /* We need platform data */
423 if (!plat
|| !plat
->dma_filter
) {
424 dev_info(uap
->port
.dev
, "no DMA platform data\n");
428 /* Try to acquire a generic DMA engine slave TX channel */
430 dma_cap_set(DMA_SLAVE
, mask
);
432 chan
= dma_request_channel(mask
, plat
->dma_filter
,
435 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
440 dmaengine_slave_config(chan
, &tx_conf
);
441 uap
->dmatx
.chan
= chan
;
443 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
444 dma_chan_name(uap
->dmatx
.chan
));
446 /* Optionally make use of an RX channel as well */
447 chan
= dma_request_slave_channel(dev
, "rx");
449 if (!chan
&& plat
&& plat
->dma_rx_param
) {
450 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
453 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
459 struct dma_slave_config rx_conf
= {
460 .src_addr
= uap
->port
.mapbase
+
461 pl011_reg_to_offset(uap
, REG_DR
),
462 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
463 .direction
= DMA_DEV_TO_MEM
,
464 .src_maxburst
= uap
->fifosize
>> 2,
467 struct dma_slave_caps caps
;
470 * Some DMA controllers provide information on their capabilities.
471 * If the controller does, check for suitable residue processing
472 * otherwise assime all is well.
474 if (0 == dma_get_slave_caps(chan
, &caps
)) {
475 if (caps
.residue_granularity
==
476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
477 dma_release_channel(chan
);
478 dev_info(uap
->port
.dev
,
479 "RX DMA disabled - no residue processing\n");
483 dmaengine_slave_config(chan
, &rx_conf
);
484 uap
->dmarx
.chan
= chan
;
486 uap
->dmarx
.auto_poll_rate
= false;
487 if (plat
&& plat
->dma_rx_poll_enable
) {
488 /* Set poll rate if specified. */
489 if (plat
->dma_rx_poll_rate
) {
490 uap
->dmarx
.auto_poll_rate
= false;
491 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
494 * 100 ms defaults to poll rate if not
495 * specified. This will be adjusted with
496 * the baud rate at set_termios.
498 uap
->dmarx
.auto_poll_rate
= true;
499 uap
->dmarx
.poll_rate
= 100;
501 /* 3 secs defaults poll_timeout if not specified. */
502 if (plat
->dma_rx_poll_timeout
)
503 uap
->dmarx
.poll_timeout
=
504 plat
->dma_rx_poll_timeout
;
506 uap
->dmarx
.poll_timeout
= 3000;
507 } else if (!plat
&& dev
->of_node
) {
508 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
509 dev
->of_node
, "auto-poll");
510 if (uap
->dmarx
.auto_poll_rate
) {
513 if (0 == of_property_read_u32(dev
->of_node
,
515 uap
->dmarx
.poll_rate
= x
;
517 uap
->dmarx
.poll_rate
= 100;
518 if (0 == of_property_read_u32(dev
->of_node
,
519 "poll-timeout-ms", &x
))
520 uap
->dmarx
.poll_timeout
= x
;
522 uap
->dmarx
.poll_timeout
= 3000;
525 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
526 dma_chan_name(uap
->dmarx
.chan
));
530 static void pl011_dma_remove(struct uart_amba_port
*uap
)
533 dma_release_channel(uap
->dmatx
.chan
);
535 dma_release_channel(uap
->dmarx
.chan
);
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
540 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
543 * The current DMA TX buffer has been sent.
544 * Try to queue up another DMA buffer.
546 static void pl011_dma_tx_callback(void *data
)
548 struct uart_amba_port
*uap
= data
;
549 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
553 spin_lock_irqsave(&uap
->port
.lock
, flags
);
554 if (uap
->dmatx
.queued
)
555 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
559 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
560 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
563 * If TX DMA was disabled, it means that we've stopped the DMA for
564 * some reason (eg, XOFF received, or we want to send an X-char.)
566 * Note: we need to be careful here of a potential race between DMA
567 * and the rest of the driver - if the driver disables TX DMA while
568 * a TX buffer completing, we must update the tx queued status to
569 * get further refills (hence we check dmacr).
571 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
572 uart_circ_empty(&uap
->port
.state
->xmit
)) {
573 uap
->dmatx
.queued
= false;
574 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
578 if (pl011_dma_tx_refill(uap
) <= 0)
580 * We didn't queue a DMA buffer for some reason, but we
581 * have data pending to be sent. Re-enable the TX IRQ.
583 pl011_start_tx_pio(uap
);
585 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
589 * Try to refill the TX DMA buffer.
590 * Locking: called with port lock held and IRQs disabled.
592 * 1 if we queued up a TX DMA buffer.
593 * 0 if we didn't want to handle this by DMA
596 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
598 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
599 struct dma_chan
*chan
= dmatx
->chan
;
600 struct dma_device
*dma_dev
= chan
->device
;
601 struct dma_async_tx_descriptor
*desc
;
602 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
606 * Try to avoid the overhead involved in using DMA if the
607 * transaction fits in the first half of the FIFO, by using
608 * the standard interrupt handling. This ensures that we
609 * issue a uart_write_wakeup() at the appropriate time.
611 count
= uart_circ_chars_pending(xmit
);
612 if (count
< (uap
->fifosize
>> 1)) {
613 uap
->dmatx
.queued
= false;
618 * Bodge: don't send the last character by DMA, as this
619 * will prevent XON from notifying us to restart DMA.
623 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 if (count
> PL011_DMA_BUFFER_SIZE
)
625 count
= PL011_DMA_BUFFER_SIZE
;
627 if (xmit
->tail
< xmit
->head
)
628 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
630 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
635 second
= count
- first
;
637 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
639 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
642 dmatx
->sg
.length
= count
;
644 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
645 uap
->dmatx
.queued
= false;
646 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
650 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
651 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
653 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
654 uap
->dmatx
.queued
= false;
656 * If DMA cannot be used right now, we complete this
657 * transaction via IRQ and let the TTY layer retry.
659 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
663 /* Some data to go along to the callback */
664 desc
->callback
= pl011_dma_tx_callback
;
665 desc
->callback_param
= uap
;
667 /* All errors should happen at prepare time */
668 dmaengine_submit(desc
);
670 /* Fire the DMA transaction */
671 dma_dev
->device_issue_pending(chan
);
673 uap
->dmacr
|= UART011_TXDMAE
;
674 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
675 uap
->dmatx
.queued
= true;
678 * Now we know that DMA will fire, so advance the ring buffer
679 * with the stuff we just dispatched.
681 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
682 uap
->port
.icount
.tx
+= count
;
684 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
685 uart_write_wakeup(&uap
->port
);
691 * We received a transmit interrupt without a pending X-char but with
692 * pending characters.
693 * Locking: called with port lock held and IRQs disabled.
695 * false if we want to use PIO to transmit
696 * true if we queued a DMA buffer
698 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
700 if (!uap
->using_tx_dma
)
704 * If we already have a TX buffer queued, but received a
705 * TX interrupt, it will be because we've just sent an X-char.
706 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
708 if (uap
->dmatx
.queued
) {
709 uap
->dmacr
|= UART011_TXDMAE
;
710 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
711 uap
->im
&= ~UART011_TXIM
;
712 pl011_write(uap
->im
, uap
, REG_IMSC
);
717 * We don't have a TX buffer queued, so try to queue one.
718 * If we successfully queued a buffer, mask the TX IRQ.
720 if (pl011_dma_tx_refill(uap
) > 0) {
721 uap
->im
&= ~UART011_TXIM
;
722 pl011_write(uap
->im
, uap
, REG_IMSC
);
729 * Stop the DMA transmit (eg, due to received XOFF).
730 * Locking: called with port lock held and IRQs disabled.
732 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
734 if (uap
->dmatx
.queued
) {
735 uap
->dmacr
&= ~UART011_TXDMAE
;
736 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
741 * Try to start a DMA transmit, or in the case of an XON/OFF
742 * character queued for send, try to get that character out ASAP.
743 * Locking: called with port lock held and IRQs disabled.
745 * false if we want the TX IRQ to be enabled
746 * true if we have a buffer queued
748 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
752 if (!uap
->using_tx_dma
)
755 if (!uap
->port
.x_char
) {
756 /* no X-char, try to push chars out in DMA mode */
759 if (!uap
->dmatx
.queued
) {
760 if (pl011_dma_tx_refill(uap
) > 0) {
761 uap
->im
&= ~UART011_TXIM
;
762 pl011_write(uap
->im
, uap
, REG_IMSC
);
765 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
766 uap
->dmacr
|= UART011_TXDMAE
;
767 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
773 * We have an X-char to send. Disable DMA to prevent it loading
774 * the TX fifo, and then see if we can stuff it into the FIFO.
777 uap
->dmacr
&= ~UART011_TXDMAE
;
778 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
780 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
782 * No space in the FIFO, so enable the transmit interrupt
783 * so we know when there is space. Note that once we've
784 * loaded the character, we should just re-enable DMA.
789 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
790 uap
->port
.icount
.tx
++;
791 uap
->port
.x_char
= 0;
793 /* Success - restore the DMA state */
795 pl011_write(dmacr
, uap
, REG_DMACR
);
801 * Flush the transmit buffer.
802 * Locking: called with port lock held and IRQs disabled.
804 static void pl011_dma_flush_buffer(struct uart_port
*port
)
805 __releases(&uap
->port
.lock
)
806 __acquires(&uap
->port
.lock
)
808 struct uart_amba_port
*uap
=
809 container_of(port
, struct uart_amba_port
, port
);
811 if (!uap
->using_tx_dma
)
814 dmaengine_terminate_async(uap
->dmatx
.chan
);
816 if (uap
->dmatx
.queued
) {
817 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
819 uap
->dmatx
.queued
= false;
820 uap
->dmacr
&= ~UART011_TXDMAE
;
821 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
825 static void pl011_dma_rx_callback(void *data
);
827 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
829 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
830 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
831 struct dma_async_tx_descriptor
*desc
;
832 struct pl011_sgbuf
*sgbuf
;
837 /* Start the RX DMA job */
838 sgbuf
= uap
->dmarx
.use_buf_b
?
839 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
840 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
842 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
844 * If the DMA engine is busy and cannot prepare a
845 * channel, no big deal, the driver will fall back
846 * to interrupt mode as a result of this error code.
849 uap
->dmarx
.running
= false;
850 dmaengine_terminate_all(rxchan
);
854 /* Some data to go along to the callback */
855 desc
->callback
= pl011_dma_rx_callback
;
856 desc
->callback_param
= uap
;
857 dmarx
->cookie
= dmaengine_submit(desc
);
858 dma_async_issue_pending(rxchan
);
860 uap
->dmacr
|= UART011_RXDMAE
;
861 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
862 uap
->dmarx
.running
= true;
864 uap
->im
&= ~UART011_RXIM
;
865 pl011_write(uap
->im
, uap
, REG_IMSC
);
871 * This is called when either the DMA job is complete, or
872 * the FIFO timeout interrupt occurred. This must be called
873 * with the port spinlock uap->port.lock held.
875 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
876 u32 pending
, bool use_buf_b
,
879 struct tty_port
*port
= &uap
->port
.state
->port
;
880 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
881 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
883 u32 fifotaken
= 0; /* only used for vdbg() */
885 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
888 if (uap
->dmarx
.poll_rate
) {
889 /* The data can be taken by polling */
890 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
891 /* Recalculate the pending size */
892 if (pending
>= dmataken
)
896 /* Pick the remain data from the DMA */
900 * First take all chars in the DMA pipe, then look in the FIFO.
901 * Note that tty_insert_flip_buf() tries to take as many chars
904 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
907 uap
->port
.icount
.rx
+= dma_count
;
908 if (dma_count
< pending
)
909 dev_warn(uap
->port
.dev
,
910 "couldn't insert all characters (TTY is full?)\n");
913 /* Reset the last_residue for Rx DMA poll */
914 if (uap
->dmarx
.poll_rate
)
915 dmarx
->last_residue
= sgbuf
->sg
.length
;
918 * Only continue with trying to read the FIFO if all DMA chars have
921 if (dma_count
== pending
&& readfifo
) {
922 /* Clear any error flags */
923 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
924 UART011_FEIS
, uap
, REG_ICR
);
927 * If we read all the DMA'd characters, and we had an
928 * incomplete buffer, that could be due to an rx error, or
929 * maybe we just timed out. Read any pending chars and check
932 * Error conditions will only occur in the FIFO, these will
933 * trigger an immediate interrupt and stop the DMA job, so we
934 * will always find the error in the FIFO, never in the DMA
937 fifotaken
= pl011_fifo_to_tty(uap
);
940 spin_unlock(&uap
->port
.lock
);
941 dev_vdbg(uap
->port
.dev
,
942 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
943 dma_count
, fifotaken
);
944 tty_flip_buffer_push(port
);
945 spin_lock(&uap
->port
.lock
);
948 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
950 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
951 struct dma_chan
*rxchan
= dmarx
->chan
;
952 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
953 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
955 struct dma_tx_state state
;
956 enum dma_status dmastat
;
959 * Pause the transfer so we can trust the current counter,
960 * do this before we pause the PL011 block, else we may
963 if (dmaengine_pause(rxchan
))
964 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
965 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
966 dmarx
->cookie
, &state
);
967 if (dmastat
!= DMA_PAUSED
)
968 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
970 /* Disable RX DMA - incoming data will wait in the FIFO */
971 uap
->dmacr
&= ~UART011_RXDMAE
;
972 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
973 uap
->dmarx
.running
= false;
975 pending
= sgbuf
->sg
.length
- state
.residue
;
976 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
977 /* Then we terminate the transfer - we now know our residue */
978 dmaengine_terminate_all(rxchan
);
981 * This will take the chars we have so far and insert
982 * into the framework.
984 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
986 /* Switch buffer & re-trigger DMA job */
987 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
988 if (pl011_dma_rx_trigger_dma(uap
)) {
989 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
990 "fall back to interrupt mode\n");
991 uap
->im
|= UART011_RXIM
;
992 pl011_write(uap
->im
, uap
, REG_IMSC
);
996 static void pl011_dma_rx_callback(void *data
)
998 struct uart_amba_port
*uap
= data
;
999 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1000 struct dma_chan
*rxchan
= dmarx
->chan
;
1001 bool lastbuf
= dmarx
->use_buf_b
;
1002 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
1003 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
1005 struct dma_tx_state state
;
1009 * This completion interrupt occurs typically when the
1010 * RX buffer is totally stuffed but no timeout has yet
1011 * occurred. When that happens, we just want the RX
1012 * routine to flush out the secondary DMA buffer while
1013 * we immediately trigger the next DMA job.
1015 spin_lock_irq(&uap
->port
.lock
);
1017 * Rx data can be taken by the UART interrupts during
1018 * the DMA irq handler. So we check the residue here.
1020 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1021 pending
= sgbuf
->sg
.length
- state
.residue
;
1022 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
1023 /* Then we terminate the transfer - we now know our residue */
1024 dmaengine_terminate_all(rxchan
);
1026 uap
->dmarx
.running
= false;
1027 dmarx
->use_buf_b
= !lastbuf
;
1028 ret
= pl011_dma_rx_trigger_dma(uap
);
1030 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1031 spin_unlock_irq(&uap
->port
.lock
);
1033 * Do this check after we picked the DMA chars so we don't
1034 * get some IRQ immediately from RX.
1037 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1038 "fall back to interrupt mode\n");
1039 uap
->im
|= UART011_RXIM
;
1040 pl011_write(uap
->im
, uap
, REG_IMSC
);
1045 * Stop accepting received characters, when we're shutting down or
1046 * suspending this port.
1047 * Locking: called with port lock held and IRQs disabled.
1049 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1051 /* FIXME. Just disable the DMA enable */
1052 uap
->dmacr
&= ~UART011_RXDMAE
;
1053 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1057 * Timer handler for Rx DMA polling.
1058 * Every polling, It checks the residue in the dma buffer and transfer
1059 * data to the tty. Also, last_residue is updated for the next polling.
1061 static void pl011_dma_rx_poll(struct timer_list
*t
)
1063 struct uart_amba_port
*uap
= from_timer(uap
, t
, dmarx
.timer
);
1064 struct tty_port
*port
= &uap
->port
.state
->port
;
1065 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1066 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1067 unsigned long flags
= 0;
1068 unsigned int dmataken
= 0;
1069 unsigned int size
= 0;
1070 struct pl011_sgbuf
*sgbuf
;
1072 struct dma_tx_state state
;
1074 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1075 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1076 if (likely(state
.residue
< dmarx
->last_residue
)) {
1077 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1078 size
= dmarx
->last_residue
- state
.residue
;
1079 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1081 if (dma_count
== size
)
1082 dmarx
->last_residue
= state
.residue
;
1083 dmarx
->last_jiffies
= jiffies
;
1085 tty_flip_buffer_push(port
);
1088 * If no data is received in poll_timeout, the driver will fall back
1089 * to interrupt mode. We will retrigger DMA at the first interrupt.
1091 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1092 > uap
->dmarx
.poll_timeout
) {
1094 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1095 pl011_dma_rx_stop(uap
);
1096 uap
->im
|= UART011_RXIM
;
1097 pl011_write(uap
->im
, uap
, REG_IMSC
);
1098 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1100 uap
->dmarx
.running
= false;
1101 dmaengine_terminate_all(rxchan
);
1102 del_timer(&uap
->dmarx
.timer
);
1104 mod_timer(&uap
->dmarx
.timer
,
1105 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1109 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1113 if (!uap
->dma_probed
)
1114 pl011_dma_probe(uap
);
1116 if (!uap
->dmatx
.chan
)
1119 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1120 if (!uap
->dmatx
.buf
) {
1121 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1122 uap
->port
.fifosize
= uap
->fifosize
;
1126 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1128 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1129 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1130 uap
->using_tx_dma
= true;
1132 if (!uap
->dmarx
.chan
)
1135 /* Allocate and map DMA RX buffers */
1136 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1139 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1140 "RX buffer A", ret
);
1144 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1147 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1148 "RX buffer B", ret
);
1149 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1154 uap
->using_rx_dma
= true;
1157 /* Turn on DMA error (RX/TX will be enabled on demand) */
1158 uap
->dmacr
|= UART011_DMAONERR
;
1159 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1162 * ST Micro variants has some specific dma burst threshold
1163 * compensation. Set this to 16 bytes, so burst will only
1164 * be issued above/below 16 bytes.
1166 if (uap
->vendor
->dma_threshold
)
1167 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1170 if (uap
->using_rx_dma
) {
1171 if (pl011_dma_rx_trigger_dma(uap
))
1172 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1173 "RX DMA job, fall back to interrupt mode\n");
1174 if (uap
->dmarx
.poll_rate
) {
1175 timer_setup(&uap
->dmarx
.timer
, pl011_dma_rx_poll
, 0);
1176 mod_timer(&uap
->dmarx
.timer
,
1178 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1179 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1180 uap
->dmarx
.last_jiffies
= jiffies
;
1185 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1187 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1190 /* Disable RX and TX DMA */
1191 while (pl011_read(uap
, REG_FR
) & uap
->vendor
->fr_busy
)
1194 spin_lock_irq(&uap
->port
.lock
);
1195 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1196 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1197 spin_unlock_irq(&uap
->port
.lock
);
1199 if (uap
->using_tx_dma
) {
1200 /* In theory, this should already be done by pl011_dma_flush_buffer */
1201 dmaengine_terminate_all(uap
->dmatx
.chan
);
1202 if (uap
->dmatx
.queued
) {
1203 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1205 uap
->dmatx
.queued
= false;
1208 kfree(uap
->dmatx
.buf
);
1209 uap
->using_tx_dma
= false;
1212 if (uap
->using_rx_dma
) {
1213 dmaengine_terminate_all(uap
->dmarx
.chan
);
1214 /* Clean up the RX DMA */
1215 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1216 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1217 if (uap
->dmarx
.poll_rate
)
1218 del_timer_sync(&uap
->dmarx
.timer
);
1219 uap
->using_rx_dma
= false;
1223 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1225 return uap
->using_rx_dma
;
1228 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1230 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1234 /* Blank functions if the DMA engine is not available */
1235 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1239 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1243 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1247 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1252 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1256 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1261 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1265 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1269 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1274 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1279 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1284 #define pl011_dma_flush_buffer NULL
1287 static void pl011_stop_tx(struct uart_port
*port
)
1289 struct uart_amba_port
*uap
=
1290 container_of(port
, struct uart_amba_port
, port
);
1292 uap
->im
&= ~UART011_TXIM
;
1293 pl011_write(uap
->im
, uap
, REG_IMSC
);
1294 pl011_dma_tx_stop(uap
);
1297 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1299 /* Start TX with programmed I/O only (no DMA) */
1300 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1302 if (pl011_tx_chars(uap
, false)) {
1303 uap
->im
|= UART011_TXIM
;
1304 pl011_write(uap
->im
, uap
, REG_IMSC
);
1308 static void pl011_start_tx(struct uart_port
*port
)
1310 struct uart_amba_port
*uap
=
1311 container_of(port
, struct uart_amba_port
, port
);
1313 if (!pl011_dma_tx_start(uap
))
1314 pl011_start_tx_pio(uap
);
1317 static void pl011_stop_rx(struct uart_port
*port
)
1319 struct uart_amba_port
*uap
=
1320 container_of(port
, struct uart_amba_port
, port
);
1322 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1323 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1324 pl011_write(uap
->im
, uap
, REG_IMSC
);
1326 pl011_dma_rx_stop(uap
);
1329 static void pl011_enable_ms(struct uart_port
*port
)
1331 struct uart_amba_port
*uap
=
1332 container_of(port
, struct uart_amba_port
, port
);
1334 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1335 pl011_write(uap
->im
, uap
, REG_IMSC
);
1338 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1339 __releases(&uap
->port
.lock
)
1340 __acquires(&uap
->port
.lock
)
1342 pl011_fifo_to_tty(uap
);
1344 spin_unlock(&uap
->port
.lock
);
1345 tty_flip_buffer_push(&uap
->port
.state
->port
);
1347 * If we were temporarily out of DMA mode for a while,
1348 * attempt to switch back to DMA mode again.
1350 if (pl011_dma_rx_available(uap
)) {
1351 if (pl011_dma_rx_trigger_dma(uap
)) {
1352 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1353 "fall back to interrupt mode again\n");
1354 uap
->im
|= UART011_RXIM
;
1355 pl011_write(uap
->im
, uap
, REG_IMSC
);
1357 #ifdef CONFIG_DMA_ENGINE
1358 /* Start Rx DMA poll */
1359 if (uap
->dmarx
.poll_rate
) {
1360 uap
->dmarx
.last_jiffies
= jiffies
;
1361 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1362 mod_timer(&uap
->dmarx
.timer
,
1364 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1369 spin_lock(&uap
->port
.lock
);
1372 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1375 if (unlikely(!from_irq
) &&
1376 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1377 return false; /* unable to transmit character */
1379 pl011_write(c
, uap
, REG_DR
);
1380 uap
->port
.icount
.tx
++;
1385 /* Returns true if tx interrupts have to be (kept) enabled */
1386 static bool pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1388 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1389 int count
= uap
->fifosize
>> 1;
1391 if (uap
->port
.x_char
) {
1392 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1394 uap
->port
.x_char
= 0;
1397 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1398 pl011_stop_tx(&uap
->port
);
1402 /* If we are using DMA mode, try to send some characters. */
1403 if (pl011_dma_tx_irq(uap
))
1407 if (likely(from_irq
) && count
-- == 0)
1410 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1413 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1414 } while (!uart_circ_empty(xmit
));
1416 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1417 uart_write_wakeup(&uap
->port
);
1419 if (uart_circ_empty(xmit
)) {
1420 pl011_stop_tx(&uap
->port
);
1426 static void pl011_modem_status(struct uart_amba_port
*uap
)
1428 unsigned int status
, delta
;
1430 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1432 delta
= status
^ uap
->old_status
;
1433 uap
->old_status
= status
;
1438 if (delta
& UART01x_FR_DCD
)
1439 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1441 if (delta
& uap
->vendor
->fr_dsr
)
1442 uap
->port
.icount
.dsr
++;
1444 if (delta
& uap
->vendor
->fr_cts
)
1445 uart_handle_cts_change(&uap
->port
,
1446 status
& uap
->vendor
->fr_cts
);
1448 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1451 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1453 if (!uap
->vendor
->cts_event_workaround
)
1456 /* workaround to make sure that all bits are unlocked.. */
1457 pl011_write(0x00, uap
, REG_ICR
);
1460 * WA: introduce 26ns(1 uart clk) delay before W1C;
1461 * single apb access will incur 2 pclk(133.12Mhz) delay,
1462 * so add 2 dummy reads
1464 pl011_read(uap
, REG_ICR
);
1465 pl011_read(uap
, REG_ICR
);
1468 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1470 struct uart_amba_port
*uap
= dev_id
;
1471 unsigned long flags
;
1472 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1475 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1476 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1479 check_apply_cts_event_workaround(uap
);
1481 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1485 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1486 if (pl011_dma_rx_running(uap
))
1487 pl011_dma_rx_irq(uap
);
1489 pl011_rx_chars(uap
);
1491 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1492 UART011_CTSMIS
|UART011_RIMIS
))
1493 pl011_modem_status(uap
);
1494 if (status
& UART011_TXIS
)
1495 pl011_tx_chars(uap
, true);
1497 if (pass_counter
-- == 0)
1500 status
= pl011_read(uap
, REG_RIS
) & uap
->im
;
1501 } while (status
!= 0);
1505 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1507 return IRQ_RETVAL(handled
);
1510 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1512 struct uart_amba_port
*uap
=
1513 container_of(port
, struct uart_amba_port
, port
);
1515 /* Allow feature register bits to be inverted to work around errata */
1516 unsigned int status
= pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
;
1518 return status
& (uap
->vendor
->fr_busy
| UART01x_FR_TXFF
) ?
1522 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1524 struct uart_amba_port
*uap
=
1525 container_of(port
, struct uart_amba_port
, port
);
1526 unsigned int result
= 0;
1527 unsigned int status
= pl011_read(uap
, REG_FR
);
1529 #define TIOCMBIT(uartbit, tiocmbit) \
1530 if (status & uartbit) \
1533 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1534 TIOCMBIT(uap
->vendor
->fr_dsr
, TIOCM_DSR
);
1535 TIOCMBIT(uap
->vendor
->fr_cts
, TIOCM_CTS
);
1536 TIOCMBIT(uap
->vendor
->fr_ri
, TIOCM_RNG
);
1541 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1543 struct uart_amba_port
*uap
=
1544 container_of(port
, struct uart_amba_port
, port
);
1547 cr
= pl011_read(uap
, REG_CR
);
1549 #define TIOCMBIT(tiocmbit, uartbit) \
1550 if (mctrl & tiocmbit) \
1555 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1556 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1557 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1558 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1559 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1561 if (port
->status
& UPSTAT_AUTORTS
) {
1562 /* We need to disable auto-RTS if we want to turn RTS off */
1563 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1567 pl011_write(cr
, uap
, REG_CR
);
1570 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1572 struct uart_amba_port
*uap
=
1573 container_of(port
, struct uart_amba_port
, port
);
1574 unsigned long flags
;
1577 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1578 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1579 if (break_state
== -1)
1580 lcr_h
|= UART01x_LCRH_BRK
;
1582 lcr_h
&= ~UART01x_LCRH_BRK
;
1583 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1584 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1587 #ifdef CONFIG_CONSOLE_POLL
1589 static void pl011_quiesce_irqs(struct uart_port
*port
)
1591 struct uart_amba_port
*uap
=
1592 container_of(port
, struct uart_amba_port
, port
);
1594 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1596 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1597 * we simply mask it. start_tx() will unmask it.
1599 * Note we can race with start_tx(), and if the race happens, the
1600 * polling user might get another interrupt just after we clear it.
1601 * But it should be OK and can happen even w/o the race, e.g.
1602 * controller immediately got some new data and raised the IRQ.
1604 * And whoever uses polling routines assumes that it manages the device
1605 * (including tx queue), so we're also fine with start_tx()'s caller
1608 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1612 static int pl011_get_poll_char(struct uart_port
*port
)
1614 struct uart_amba_port
*uap
=
1615 container_of(port
, struct uart_amba_port
, port
);
1616 unsigned int status
;
1619 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1622 pl011_quiesce_irqs(port
);
1624 status
= pl011_read(uap
, REG_FR
);
1625 if (status
& UART01x_FR_RXFE
)
1626 return NO_POLL_CHAR
;
1628 return pl011_read(uap
, REG_DR
);
1631 static void pl011_put_poll_char(struct uart_port
*port
,
1634 struct uart_amba_port
*uap
=
1635 container_of(port
, struct uart_amba_port
, port
);
1637 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1640 pl011_write(ch
, uap
, REG_DR
);
1643 #endif /* CONFIG_CONSOLE_POLL */
1645 static int pl011_hwinit(struct uart_port
*port
)
1647 struct uart_amba_port
*uap
=
1648 container_of(port
, struct uart_amba_port
, port
);
1651 /* Optionaly enable pins to be muxed in and configured */
1652 pinctrl_pm_select_default_state(port
->dev
);
1655 * Try to enable the clock producer.
1657 retval
= clk_prepare_enable(uap
->clk
);
1661 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1663 /* Clear pending error and receive interrupts */
1664 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1665 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1669 * Save interrupts enable mask, and enable RX interrupts in case if
1670 * the interrupt is used for NMI entry.
1672 uap
->im
= pl011_read(uap
, REG_IMSC
);
1673 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1675 if (dev_get_platdata(uap
->port
.dev
)) {
1676 struct amba_pl011_data
*plat
;
1678 plat
= dev_get_platdata(uap
->port
.dev
);
1685 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1687 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1688 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1691 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1693 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1694 if (pl011_split_lcrh(uap
)) {
1697 * Wait 10 PCLKs before writing LCRH_TX register,
1698 * to get this delay write read only register 10 times
1700 for (i
= 0; i
< 10; ++i
)
1701 pl011_write(0xff, uap
, REG_MIS
);
1702 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1706 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1708 pl011_write(uap
->im
, uap
, REG_IMSC
);
1710 return request_irq(uap
->port
.irq
, pl011_int
, IRQF_SHARED
, "uart-pl011", uap
);
1714 * Enable interrupts, only timeouts when using DMA
1715 * if initial RX DMA job failed, start in interrupt mode
1718 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1722 spin_lock_irq(&uap
->port
.lock
);
1724 /* Clear out any spuriously appearing RX interrupts */
1725 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1728 * RXIS is asserted only when the RX FIFO transitions from below
1729 * to above the trigger threshold. If the RX FIFO is already
1730 * full to the threshold this can't happen and RXIS will now be
1731 * stuck off. Drain the RX FIFO explicitly to fix this:
1733 for (i
= 0; i
< uap
->fifosize
* 2; ++i
) {
1734 if (pl011_read(uap
, REG_FR
) & UART01x_FR_RXFE
)
1737 pl011_read(uap
, REG_DR
);
1740 uap
->im
= UART011_RTIM
;
1741 if (!pl011_dma_rx_running(uap
))
1742 uap
->im
|= UART011_RXIM
;
1743 pl011_write(uap
->im
, uap
, REG_IMSC
);
1744 spin_unlock_irq(&uap
->port
.lock
);
1747 static int pl011_startup(struct uart_port
*port
)
1749 struct uart_amba_port
*uap
=
1750 container_of(port
, struct uart_amba_port
, port
);
1754 retval
= pl011_hwinit(port
);
1758 retval
= pl011_allocate_irq(uap
);
1762 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1764 spin_lock_irq(&uap
->port
.lock
);
1766 /* restore RTS and DTR */
1767 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1768 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1769 pl011_write(cr
, uap
, REG_CR
);
1771 spin_unlock_irq(&uap
->port
.lock
);
1774 * initialise the old status of the modem signals
1776 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1779 pl011_dma_startup(uap
);
1781 pl011_enable_interrupts(uap
);
1786 clk_disable_unprepare(uap
->clk
);
1790 static int sbsa_uart_startup(struct uart_port
*port
)
1792 struct uart_amba_port
*uap
=
1793 container_of(port
, struct uart_amba_port
, port
);
1796 retval
= pl011_hwinit(port
);
1800 retval
= pl011_allocate_irq(uap
);
1804 /* The SBSA UART does not support any modem status lines. */
1805 uap
->old_status
= 0;
1807 pl011_enable_interrupts(uap
);
1812 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1817 val
= pl011_read(uap
, lcrh
);
1818 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1819 pl011_write(val
, uap
, lcrh
);
1823 * disable the port. It should not disable RTS and DTR.
1824 * Also RTS and DTR state should be preserved to restore
1825 * it during startup().
1827 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1831 uap
->port
.status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
1832 spin_lock_irq(&uap
->port
.lock
);
1833 cr
= pl011_read(uap
, REG_CR
);
1835 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1836 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1837 pl011_write(cr
, uap
, REG_CR
);
1838 spin_unlock_irq(&uap
->port
.lock
);
1841 * disable break condition and fifos
1843 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1844 if (pl011_split_lcrh(uap
))
1845 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1848 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1850 spin_lock_irq(&uap
->port
.lock
);
1852 /* mask all interrupts and clear all pending ones */
1854 pl011_write(uap
->im
, uap
, REG_IMSC
);
1855 pl011_write(0xffff, uap
, REG_ICR
);
1857 spin_unlock_irq(&uap
->port
.lock
);
1860 static void pl011_shutdown(struct uart_port
*port
)
1862 struct uart_amba_port
*uap
=
1863 container_of(port
, struct uart_amba_port
, port
);
1865 pl011_disable_interrupts(uap
);
1867 pl011_dma_shutdown(uap
);
1869 free_irq(uap
->port
.irq
, uap
);
1871 pl011_disable_uart(uap
);
1874 * Shut down the clock producer
1876 clk_disable_unprepare(uap
->clk
);
1877 /* Optionally let pins go into sleep states */
1878 pinctrl_pm_select_sleep_state(port
->dev
);
1880 if (dev_get_platdata(uap
->port
.dev
)) {
1881 struct amba_pl011_data
*plat
;
1883 plat
= dev_get_platdata(uap
->port
.dev
);
1888 if (uap
->port
.ops
->flush_buffer
)
1889 uap
->port
.ops
->flush_buffer(port
);
1892 static void sbsa_uart_shutdown(struct uart_port
*port
)
1894 struct uart_amba_port
*uap
=
1895 container_of(port
, struct uart_amba_port
, port
);
1897 pl011_disable_interrupts(uap
);
1899 free_irq(uap
->port
.irq
, uap
);
1901 if (uap
->port
.ops
->flush_buffer
)
1902 uap
->port
.ops
->flush_buffer(port
);
1906 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1908 port
->read_status_mask
= UART011_DR_OE
| 255;
1909 if (termios
->c_iflag
& INPCK
)
1910 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1911 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1912 port
->read_status_mask
|= UART011_DR_BE
;
1915 * Characters to ignore
1917 port
->ignore_status_mask
= 0;
1918 if (termios
->c_iflag
& IGNPAR
)
1919 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1920 if (termios
->c_iflag
& IGNBRK
) {
1921 port
->ignore_status_mask
|= UART011_DR_BE
;
1923 * If we're ignoring parity and break indicators,
1924 * ignore overruns too (for real raw support).
1926 if (termios
->c_iflag
& IGNPAR
)
1927 port
->ignore_status_mask
|= UART011_DR_OE
;
1931 * Ignore all characters if CREAD is not set.
1933 if ((termios
->c_cflag
& CREAD
) == 0)
1934 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1938 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1939 struct ktermios
*old
)
1941 struct uart_amba_port
*uap
=
1942 container_of(port
, struct uart_amba_port
, port
);
1943 unsigned int lcr_h
, old_cr
;
1944 unsigned long flags
;
1945 unsigned int baud
, quot
, clkdiv
;
1947 if (uap
->vendor
->oversampling
)
1953 * Ask the core to calculate the divisor for us.
1955 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1956 port
->uartclk
/ clkdiv
);
1957 #ifdef CONFIG_DMA_ENGINE
1959 * Adjust RX DMA polling rate with baud rate if not specified.
1961 if (uap
->dmarx
.auto_poll_rate
)
1962 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1965 if (baud
> port
->uartclk
/16)
1966 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1968 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1970 switch (termios
->c_cflag
& CSIZE
) {
1972 lcr_h
= UART01x_LCRH_WLEN_5
;
1975 lcr_h
= UART01x_LCRH_WLEN_6
;
1978 lcr_h
= UART01x_LCRH_WLEN_7
;
1981 lcr_h
= UART01x_LCRH_WLEN_8
;
1984 if (termios
->c_cflag
& CSTOPB
)
1985 lcr_h
|= UART01x_LCRH_STP2
;
1986 if (termios
->c_cflag
& PARENB
) {
1987 lcr_h
|= UART01x_LCRH_PEN
;
1988 if (!(termios
->c_cflag
& PARODD
))
1989 lcr_h
|= UART01x_LCRH_EPS
;
1990 if (termios
->c_cflag
& CMSPAR
)
1991 lcr_h
|= UART011_LCRH_SPS
;
1993 if (uap
->fifosize
> 1)
1994 lcr_h
|= UART01x_LCRH_FEN
;
1996 spin_lock_irqsave(&port
->lock
, flags
);
1999 * Update the per-port timeout.
2001 uart_update_timeout(port
, termios
->c_cflag
, baud
);
2003 pl011_setup_status_masks(port
, termios
);
2005 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
2006 pl011_enable_ms(port
);
2008 /* first, disable everything */
2009 old_cr
= pl011_read(uap
, REG_CR
);
2010 pl011_write(0, uap
, REG_CR
);
2012 if (termios
->c_cflag
& CRTSCTS
) {
2013 if (old_cr
& UART011_CR_RTS
)
2014 old_cr
|= UART011_CR_RTSEN
;
2016 old_cr
|= UART011_CR_CTSEN
;
2017 port
->status
|= UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
;
2019 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
2020 port
->status
&= ~(UPSTAT_AUTOCTS
| UPSTAT_AUTORTS
);
2023 if (uap
->vendor
->oversampling
) {
2024 if (baud
> port
->uartclk
/ 16)
2025 old_cr
|= ST_UART011_CR_OVSFACT
;
2027 old_cr
&= ~ST_UART011_CR_OVSFACT
;
2031 * Workaround for the ST Micro oversampling variants to
2032 * increase the bitrate slightly, by lowering the divisor,
2033 * to avoid delayed sampling of start bit at high speeds,
2034 * else we see data corruption.
2036 if (uap
->vendor
->oversampling
) {
2037 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
2039 else if ((baud
> 3250000) && (quot
> 2))
2043 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2044 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2047 * ----------v----------v----------v----------v-----
2048 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2049 * REG_FBRD & REG_IBRD.
2050 * ----------^----------^----------^----------^-----
2052 pl011_write_lcr_h(uap
, lcr_h
);
2053 pl011_write(old_cr
, uap
, REG_CR
);
2055 spin_unlock_irqrestore(&port
->lock
, flags
);
2059 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2060 struct ktermios
*old
)
2062 struct uart_amba_port
*uap
=
2063 container_of(port
, struct uart_amba_port
, port
);
2064 unsigned long flags
;
2066 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2068 /* The SBSA UART only supports 8n1 without hardware flow control. */
2069 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2070 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2071 termios
->c_cflag
|= CS8
| CLOCAL
;
2073 spin_lock_irqsave(&port
->lock
, flags
);
2074 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2075 pl011_setup_status_masks(port
, termios
);
2076 spin_unlock_irqrestore(&port
->lock
, flags
);
2079 static const char *pl011_type(struct uart_port
*port
)
2081 struct uart_amba_port
*uap
=
2082 container_of(port
, struct uart_amba_port
, port
);
2083 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2087 * Release the memory region(s) being used by 'port'
2089 static void pl011_release_port(struct uart_port
*port
)
2091 release_mem_region(port
->mapbase
, SZ_4K
);
2095 * Request the memory region(s) being used by 'port'
2097 static int pl011_request_port(struct uart_port
*port
)
2099 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2100 != NULL
? 0 : -EBUSY
;
2104 * Configure/autoconfigure the port.
2106 static void pl011_config_port(struct uart_port
*port
, int flags
)
2108 if (flags
& UART_CONFIG_TYPE
) {
2109 port
->type
= PORT_AMBA
;
2110 pl011_request_port(port
);
2115 * verify the new serial_struct (for TIOCSSERIAL).
2117 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2120 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2122 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2124 if (ser
->baud_base
< 9600)
2129 static const struct uart_ops amba_pl011_pops
= {
2130 .tx_empty
= pl011_tx_empty
,
2131 .set_mctrl
= pl011_set_mctrl
,
2132 .get_mctrl
= pl011_get_mctrl
,
2133 .stop_tx
= pl011_stop_tx
,
2134 .start_tx
= pl011_start_tx
,
2135 .stop_rx
= pl011_stop_rx
,
2136 .enable_ms
= pl011_enable_ms
,
2137 .break_ctl
= pl011_break_ctl
,
2138 .startup
= pl011_startup
,
2139 .shutdown
= pl011_shutdown
,
2140 .flush_buffer
= pl011_dma_flush_buffer
,
2141 .set_termios
= pl011_set_termios
,
2143 .release_port
= pl011_release_port
,
2144 .request_port
= pl011_request_port
,
2145 .config_port
= pl011_config_port
,
2146 .verify_port
= pl011_verify_port
,
2147 #ifdef CONFIG_CONSOLE_POLL
2148 .poll_init
= pl011_hwinit
,
2149 .poll_get_char
= pl011_get_poll_char
,
2150 .poll_put_char
= pl011_put_poll_char
,
2154 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2158 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2163 static const struct uart_ops sbsa_uart_pops
= {
2164 .tx_empty
= pl011_tx_empty
,
2165 .set_mctrl
= sbsa_uart_set_mctrl
,
2166 .get_mctrl
= sbsa_uart_get_mctrl
,
2167 .stop_tx
= pl011_stop_tx
,
2168 .start_tx
= pl011_start_tx
,
2169 .stop_rx
= pl011_stop_rx
,
2170 .startup
= sbsa_uart_startup
,
2171 .shutdown
= sbsa_uart_shutdown
,
2172 .set_termios
= sbsa_uart_set_termios
,
2174 .release_port
= pl011_release_port
,
2175 .request_port
= pl011_request_port
,
2176 .config_port
= pl011_config_port
,
2177 .verify_port
= pl011_verify_port
,
2178 #ifdef CONFIG_CONSOLE_POLL
2179 .poll_init
= pl011_hwinit
,
2180 .poll_get_char
= pl011_get_poll_char
,
2181 .poll_put_char
= pl011_put_poll_char
,
2185 static struct uart_amba_port
*amba_ports
[UART_NR
];
2187 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2189 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2191 struct uart_amba_port
*uap
=
2192 container_of(port
, struct uart_amba_port
, port
);
2194 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2196 pl011_write(ch
, uap
, REG_DR
);
2200 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2202 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2203 unsigned int old_cr
= 0, new_cr
;
2204 unsigned long flags
;
2207 clk_enable(uap
->clk
);
2209 local_irq_save(flags
);
2210 if (uap
->port
.sysrq
)
2212 else if (oops_in_progress
)
2213 locked
= spin_trylock(&uap
->port
.lock
);
2215 spin_lock(&uap
->port
.lock
);
2218 * First save the CR then disable the interrupts
2220 if (!uap
->vendor
->always_enabled
) {
2221 old_cr
= pl011_read(uap
, REG_CR
);
2222 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2223 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2224 pl011_write(new_cr
, uap
, REG_CR
);
2227 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2230 * Finally, wait for transmitter to become empty and restore the
2231 * TCR. Allow feature register bits to be inverted to work around
2234 while ((pl011_read(uap
, REG_FR
) ^ uap
->vendor
->inv_fr
)
2235 & uap
->vendor
->fr_busy
)
2237 if (!uap
->vendor
->always_enabled
)
2238 pl011_write(old_cr
, uap
, REG_CR
);
2241 spin_unlock(&uap
->port
.lock
);
2242 local_irq_restore(flags
);
2244 clk_disable(uap
->clk
);
2247 static void pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2248 int *parity
, int *bits
)
2250 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2251 unsigned int lcr_h
, ibrd
, fbrd
;
2253 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2256 if (lcr_h
& UART01x_LCRH_PEN
) {
2257 if (lcr_h
& UART01x_LCRH_EPS
)
2263 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2268 ibrd
= pl011_read(uap
, REG_IBRD
);
2269 fbrd
= pl011_read(uap
, REG_FBRD
);
2271 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2273 if (uap
->vendor
->oversampling
) {
2274 if (pl011_read(uap
, REG_CR
)
2275 & ST_UART011_CR_OVSFACT
)
2281 static int pl011_console_setup(struct console
*co
, char *options
)
2283 struct uart_amba_port
*uap
;
2291 * Check whether an invalid uart number has been specified, and
2292 * if so, search for the first available port that does have
2295 if (co
->index
>= UART_NR
)
2297 uap
= amba_ports
[co
->index
];
2301 /* Allow pins to be muxed in and configured */
2302 pinctrl_pm_select_default_state(uap
->port
.dev
);
2304 ret
= clk_prepare(uap
->clk
);
2308 if (dev_get_platdata(uap
->port
.dev
)) {
2309 struct amba_pl011_data
*plat
;
2311 plat
= dev_get_platdata(uap
->port
.dev
);
2316 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2318 if (uap
->vendor
->fixed_options
) {
2319 baud
= uap
->fixed_baud
;
2322 uart_parse_options(options
,
2323 &baud
, &parity
, &bits
, &flow
);
2325 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2328 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2332 * pl011_console_match - non-standard console matching
2333 * @co: registering console
2334 * @name: name from console command line
2335 * @idx: index from console command line
2336 * @options: ptr to option string from console command line
2338 * Only attempts to match console command lines of the form:
2339 * console=pl011,mmio|mmio32,<addr>[,<options>]
2340 * console=pl011,0x<addr>[,<options>]
2341 * This form is used to register an initial earlycon boot console and
2342 * replace it with the amba_console at pl011 driver init.
2344 * Performs console setup for a match (as required by interface)
2345 * If no <options> are specified, then assume the h/w is already setup.
2347 * Returns 0 if console matches; otherwise non-zero to use default matching
2349 static int pl011_console_match(struct console
*co
, char *name
, int idx
,
2352 unsigned char iotype
;
2353 resource_size_t addr
;
2357 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2358 * have a distinct console name, so make sure we check for that.
2359 * The actual implementation of the erratum occurs in the probe
2362 if ((strcmp(name
, "qdf2400_e44") != 0) && (strcmp(name
, "pl011") != 0))
2365 if (uart_parse_earlycon(options
, &iotype
, &addr
, &options
))
2368 if (iotype
!= UPIO_MEM
&& iotype
!= UPIO_MEM32
)
2371 /* try to match the port specified on the command line */
2372 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2373 struct uart_port
*port
;
2378 port
= &amba_ports
[i
]->port
;
2380 if (port
->mapbase
!= addr
)
2385 return pl011_console_setup(co
, options
);
2391 static struct uart_driver amba_reg
;
2392 static struct console amba_console
= {
2394 .write
= pl011_console_write
,
2395 .device
= uart_console_device
,
2396 .setup
= pl011_console_setup
,
2397 .match
= pl011_console_match
,
2398 .flags
= CON_PRINTBUFFER
| CON_ANYTIME
,
2403 #define AMBA_CONSOLE (&amba_console)
2405 static void qdf2400_e44_putc(struct uart_port
*port
, int c
)
2407 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2409 writel(c
, port
->membase
+ UART01x_DR
);
2410 while (!(readl(port
->membase
+ UART01x_FR
) & UART011_FR_TXFE
))
2414 static void qdf2400_e44_early_write(struct console
*con
, const char *s
, unsigned n
)
2416 struct earlycon_device
*dev
= con
->data
;
2418 uart_console_write(&dev
->port
, s
, n
, qdf2400_e44_putc
);
2421 static void pl011_putc(struct uart_port
*port
, int c
)
2423 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2425 if (port
->iotype
== UPIO_MEM32
)
2426 writel(c
, port
->membase
+ UART01x_DR
);
2428 writeb(c
, port
->membase
+ UART01x_DR
);
2429 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2433 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2435 struct earlycon_device
*dev
= con
->data
;
2437 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2440 #ifdef CONFIG_CONSOLE_POLL
2441 static int pl011_getc(struct uart_port
*port
)
2443 if (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_RXFE
)
2444 return NO_POLL_CHAR
;
2446 if (port
->iotype
== UPIO_MEM32
)
2447 return readl(port
->membase
+ UART01x_DR
);
2449 return readb(port
->membase
+ UART01x_DR
);
2452 static int pl011_early_read(struct console
*con
, char *s
, unsigned int n
)
2454 struct earlycon_device
*dev
= con
->data
;
2455 int ch
, num_read
= 0;
2457 while (num_read
< n
) {
2458 ch
= pl011_getc(&dev
->port
);
2459 if (ch
== NO_POLL_CHAR
)
2468 #define pl011_early_read NULL
2472 * On non-ACPI systems, earlycon is enabled by specifying
2473 * "earlycon=pl011,<address>" on the kernel command line.
2475 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2476 * by specifying only "earlycon" on the command line. Because it requires
2477 * SPCR, the console starts after ACPI is parsed, which is later than a
2478 * traditional early console.
2480 * To get the traditional early console that starts before ACPI is parsed,
2481 * specify the full "earlycon=pl011,<address>" option.
2483 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2486 if (!device
->port
.membase
)
2489 device
->con
->write
= pl011_early_write
;
2490 device
->con
->read
= pl011_early_read
;
2494 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2495 OF_EARLYCON_DECLARE(pl011
, "arm,sbsa-uart", pl011_early_console_setup
);
2498 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2499 * Erratum 44, traditional earlycon can be enabled by specifying
2500 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2502 * Alternatively, you can just specify "earlycon", and the early console
2503 * will be enabled with the information from the SPCR table. In this
2504 * case, the SPCR code will detect the need for the E44 work-around,
2505 * and set the console name to "qdf2400_e44".
2508 qdf2400_e44_early_console_setup(struct earlycon_device
*device
,
2511 if (!device
->port
.membase
)
2514 device
->con
->write
= qdf2400_e44_early_write
;
2517 EARLYCON_DECLARE(qdf2400_e44
, qdf2400_e44_early_console_setup
);
2520 #define AMBA_CONSOLE NULL
2523 static struct uart_driver amba_reg
= {
2524 .owner
= THIS_MODULE
,
2525 .driver_name
= "ttyAMA",
2526 .dev_name
= "ttyAMA",
2527 .major
= SERIAL_AMBA_MAJOR
,
2528 .minor
= SERIAL_AMBA_MINOR
,
2530 .cons
= AMBA_CONSOLE
,
2533 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2535 struct device_node
*np
;
2536 static bool seen_dev_with_alias
= false;
2537 static bool seen_dev_without_alias
= false;
2540 if (!IS_ENABLED(CONFIG_OF
))
2547 ret
= of_alias_get_id(np
, "serial");
2549 seen_dev_without_alias
= true;
2552 seen_dev_with_alias
= true;
2553 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2554 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2559 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2560 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2565 /* unregisters the driver also if no more ports are left */
2566 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2571 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2572 if (amba_ports
[i
] == uap
)
2573 amba_ports
[i
] = NULL
;
2574 else if (amba_ports
[i
])
2577 pl011_dma_remove(uap
);
2579 uart_unregister_driver(&amba_reg
);
2582 static int pl011_find_free_port(void)
2586 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2587 if (amba_ports
[i
] == NULL
)
2593 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2594 struct resource
*mmiobase
, int index
)
2598 base
= devm_ioremap_resource(dev
, mmiobase
);
2600 return PTR_ERR(base
);
2602 index
= pl011_probe_dt_alias(index
, dev
);
2605 uap
->port
.dev
= dev
;
2606 uap
->port
.mapbase
= mmiobase
->start
;
2607 uap
->port
.membase
= base
;
2608 uap
->port
.fifosize
= uap
->fifosize
;
2609 uap
->port
.has_sysrq
= IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE
);
2610 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2611 uap
->port
.line
= index
;
2613 amba_ports
[index
] = uap
;
2618 static int pl011_register_port(struct uart_amba_port
*uap
)
2622 /* Ensure interrupts from this UART are masked and cleared */
2623 pl011_write(0, uap
, REG_IMSC
);
2624 pl011_write(0xffff, uap
, REG_ICR
);
2626 if (!amba_reg
.state
) {
2627 ret
= uart_register_driver(&amba_reg
);
2629 dev_err(uap
->port
.dev
,
2630 "Failed to register AMBA-PL011 driver\n");
2631 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2632 if (amba_ports
[i
] == uap
)
2633 amba_ports
[i
] = NULL
;
2638 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2640 pl011_unregister_port(uap
);
2645 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2647 struct uart_amba_port
*uap
;
2648 struct vendor_data
*vendor
= id
->data
;
2651 portnr
= pl011_find_free_port();
2655 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2660 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2661 if (IS_ERR(uap
->clk
))
2662 return PTR_ERR(uap
->clk
);
2664 uap
->reg_offset
= vendor
->reg_offset
;
2665 uap
->vendor
= vendor
;
2666 uap
->fifosize
= vendor
->get_fifosize(dev
);
2667 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2668 uap
->port
.irq
= dev
->irq
[0];
2669 uap
->port
.ops
= &amba_pl011_pops
;
2671 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2673 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2677 amba_set_drvdata(dev
, uap
);
2679 return pl011_register_port(uap
);
2682 static int pl011_remove(struct amba_device
*dev
)
2684 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2686 uart_remove_one_port(&amba_reg
, &uap
->port
);
2687 pl011_unregister_port(uap
);
2691 #ifdef CONFIG_PM_SLEEP
2692 static int pl011_suspend(struct device
*dev
)
2694 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2699 return uart_suspend_port(&amba_reg
, &uap
->port
);
2702 static int pl011_resume(struct device
*dev
)
2704 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2709 return uart_resume_port(&amba_reg
, &uap
->port
);
2713 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2715 static int sbsa_uart_probe(struct platform_device
*pdev
)
2717 struct uart_amba_port
*uap
;
2723 * Check the mandatory baud rate parameter in the DT node early
2724 * so that we can easily exit with the error.
2726 if (pdev
->dev
.of_node
) {
2727 struct device_node
*np
= pdev
->dev
.of_node
;
2729 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2736 portnr
= pl011_find_free_port();
2740 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2745 ret
= platform_get_irq(pdev
, 0);
2748 uap
->port
.irq
= ret
;
2750 #ifdef CONFIG_ACPI_SPCR_TABLE
2751 if (qdf2400_e44_present
) {
2752 dev_info(&pdev
->dev
, "working around QDF2400 SoC erratum 44\n");
2753 uap
->vendor
= &vendor_qdt_qdf2400_e44
;
2756 uap
->vendor
= &vendor_sbsa
;
2758 uap
->reg_offset
= uap
->vendor
->reg_offset
;
2760 uap
->port
.iotype
= uap
->vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2761 uap
->port
.ops
= &sbsa_uart_pops
;
2762 uap
->fixed_baud
= baudrate
;
2764 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2766 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2768 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2772 platform_set_drvdata(pdev
, uap
);
2774 return pl011_register_port(uap
);
2777 static int sbsa_uart_remove(struct platform_device
*pdev
)
2779 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2781 uart_remove_one_port(&amba_reg
, &uap
->port
);
2782 pl011_unregister_port(uap
);
2786 static const struct of_device_id sbsa_uart_of_match
[] = {
2787 { .compatible
= "arm,sbsa-uart", },
2790 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2792 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match
[] = {
2796 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2798 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2799 .probe
= sbsa_uart_probe
,
2800 .remove
= sbsa_uart_remove
,
2802 .name
= "sbsa-uart",
2803 .pm
= &pl011_dev_pm_ops
,
2804 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2805 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2806 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2810 static const struct amba_id pl011_ids
[] = {
2814 .data
= &vendor_arm
,
2822 .id
= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2824 .data
= &vendor_zte
,
2829 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2831 static struct amba_driver pl011_driver
= {
2833 .name
= "uart-pl011",
2834 .pm
= &pl011_dev_pm_ops
,
2835 .suppress_bind_attrs
= IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011
),
2837 .id_table
= pl011_ids
,
2838 .probe
= pl011_probe
,
2839 .remove
= pl011_remove
,
2842 static int __init
pl011_init(void)
2844 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2846 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2847 pr_warn("could not register SBSA UART platform driver\n");
2848 return amba_driver_register(&pl011_driver
);
2851 static void __exit
pl011_exit(void)
2853 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2854 amba_driver_unregister(&pl011_driver
);
2858 * While this can be a module, if builtin it's most likely the console
2859 * So let's leave module_exit but move module_init to an earlier place
2861 arch_initcall(pl011_init
);
2862 module_exit(pl011_exit
);
2864 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2865 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2866 MODULE_LICENSE("GPL");