1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/video/cyber2000fb.c
5 * Copyright (C) 1998-2002 Russell King
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/delay.h>
44 #include <linux/pci.h>
45 #include <linux/init.h>
47 #include <linux/i2c.h>
48 #include <linux/i2c-algo-bit.h>
52 #include <asm/mach-types.h>
55 #include "cyber2000fb.h"
59 struct display_switch
*dispsw
;
60 unsigned char __iomem
*region
;
61 unsigned char __iomem
*regs
;
74 } palette
[NR_PALETTE
];
81 * RAMDAC control register is both of these or'ed together
84 u_char ramdac_powerdown
;
86 u32 pseudo_palette
[16];
88 spinlock_t reg_b0_lock
;
90 #ifdef CONFIG_FB_CYBER2000_DDC
92 struct i2c_adapter ddc_adapter
;
93 struct i2c_algo_bit_data ddc_algo
;
96 #ifdef CONFIG_FB_CYBER2000_I2C
97 struct i2c_adapter i2c_adapter
;
98 struct i2c_algo_bit_data i2c_algo
;
102 static char *default_font
= "Acorn8x8";
103 module_param(default_font
, charp
, 0);
104 MODULE_PARM_DESC(default_font
, "Default font name");
107 * Our access methods.
109 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
110 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
113 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
116 cyber2000_crtcw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
118 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3d4, cfb
);
122 cyber2000_grphw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
124 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3ce, cfb
);
127 static inline unsigned int
128 cyber2000_grphr(unsigned int reg
, struct cfb_info
*cfb
)
130 cyber2000fb_writeb(reg
, 0x3ce, cfb
);
131 return cyber2000fb_readb(0x3cf, cfb
);
135 cyber2000_attrw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
137 cyber2000fb_readb(0x3da, cfb
);
138 cyber2000fb_writeb(reg
, 0x3c0, cfb
);
139 cyber2000fb_readb(0x3c1, cfb
);
140 cyber2000fb_writeb(val
, 0x3c0, cfb
);
144 cyber2000_seqw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
146 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3c4, cfb
);
149 /* -------------------- Hardware specific routines ------------------------- */
152 * Hardware Cyber2000 Acceleration
155 cyber2000fb_fillrect(struct fb_info
*info
, const struct fb_fillrect
*rect
)
157 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
158 unsigned long dst
, col
;
160 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
161 cfb_fillrect(info
, rect
);
165 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
166 cyber2000fb_writew(rect
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
167 cyber2000fb_writew(rect
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
170 if (cfb
->fb
.var
.bits_per_pixel
> 8)
171 col
= ((u32
*)cfb
->fb
.pseudo_palette
)[col
];
172 cyber2000fb_writel(col
, CO_REG_FGCOLOUR
, cfb
);
174 dst
= rect
->dx
+ rect
->dy
* cfb
->fb
.var
.xres_virtual
;
175 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
176 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
180 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
181 cyber2000fb_writeb(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
182 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL
, CO_REG_CMD_L
, cfb
);
183 cyber2000fb_writew(CO_CMD_H_BLITTER
, CO_REG_CMD_H
, cfb
);
187 cyber2000fb_copyarea(struct fb_info
*info
, const struct fb_copyarea
*region
)
189 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
190 unsigned int cmd
= CO_CMD_L_PATTERN_FGCOL
;
191 unsigned long src
, dst
;
193 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
194 cfb_copyarea(info
, region
);
198 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
199 cyber2000fb_writew(region
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
200 cyber2000fb_writew(region
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
202 src
= region
->sx
+ region
->sy
* cfb
->fb
.var
.xres_virtual
;
203 dst
= region
->dx
+ region
->dy
* cfb
->fb
.var
.xres_virtual
;
205 if (region
->sx
< region
->dx
) {
206 src
+= region
->width
- 1;
207 dst
+= region
->width
- 1;
208 cmd
|= CO_CMD_L_INC_LEFT
;
211 if (region
->sy
< region
->dy
) {
212 src
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
213 dst
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
214 cmd
|= CO_CMD_L_INC_UP
;
217 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
218 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
222 cyber2000fb_writel(src
, CO_REG_SRC1_PTR
, cfb
);
223 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
224 cyber2000fb_writew(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
225 cyber2000fb_writew(cmd
, CO_REG_CMD_L
, cfb
);
226 cyber2000fb_writew(CO_CMD_H_FGSRCMAP
| CO_CMD_H_BLITTER
,
231 cyber2000fb_imageblit(struct fb_info
*info
, const struct fb_image
*image
)
233 cfb_imageblit(info
, image
);
237 static int cyber2000fb_sync(struct fb_info
*info
)
239 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
242 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
))
245 while (cyber2000fb_readb(CO_REG_CONTROL
, cfb
) & CO_CTRL_BUSY
) {
247 debug_printf("accel_wait timed out\n");
248 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
257 * ===========================================================================
260 static inline u32
convert_bitfield(u_int val
, struct fb_bitfield
*bf
)
262 u_int mask
= (1 << bf
->length
) - 1;
264 return (val
>> (16 - bf
->length
) & mask
) << bf
->offset
;
268 * Set a single color register. Return != 0 for invalid regno.
271 cyber2000fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
272 u_int transp
, struct fb_info
*info
)
274 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
275 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
279 switch (cfb
->fb
.fix
.visual
) {
286 * pixel --/--+--/--> red lut --> red dac
288 * +--/--> green lut --> green dac
290 * +--/--> blue lut --> blue dac
292 case FB_VISUAL_PSEUDOCOLOR
:
293 if (regno
>= NR_PALETTE
)
300 cfb
->palette
[regno
].red
= red
;
301 cfb
->palette
[regno
].green
= green
;
302 cfb
->palette
[regno
].blue
= blue
;
304 cyber2000fb_writeb(regno
, 0x3c8, cfb
);
305 cyber2000fb_writeb(red
, 0x3c9, cfb
);
306 cyber2000fb_writeb(green
, 0x3c9, cfb
);
307 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
313 * pixel --/--+--/--> red lut --> red dac
315 * +--/--> green lut --> green dac
317 * +--/--> blue lut --> blue dac
318 * n = bpp, rl = red length, gl = green length, bl = blue length
320 case FB_VISUAL_DIRECTCOLOR
:
325 if (var
->green
.length
== 6 && regno
< 64) {
326 cfb
->palette
[regno
<< 2].green
= green
;
329 * The 6 bits of the green component are applied
330 * to the high 6 bits of the LUT.
332 cyber2000fb_writeb(regno
<< 2, 0x3c8, cfb
);
333 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].red
,
335 cyber2000fb_writeb(green
, 0x3c9, cfb
);
336 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].blue
,
339 green
= cfb
->palette
[regno
<< 3].green
;
344 if (var
->green
.length
>= 5 && regno
< 32) {
345 cfb
->palette
[regno
<< 3].red
= red
;
346 cfb
->palette
[regno
<< 3].green
= green
;
347 cfb
->palette
[regno
<< 3].blue
= blue
;
350 * The 5 bits of each colour component are
351 * applied to the high 5 bits of the LUT.
353 cyber2000fb_writeb(regno
<< 3, 0x3c8, cfb
);
354 cyber2000fb_writeb(red
, 0x3c9, cfb
);
355 cyber2000fb_writeb(green
, 0x3c9, cfb
);
356 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
360 if (var
->green
.length
== 4 && regno
< 16) {
361 cfb
->palette
[regno
<< 4].red
= red
;
362 cfb
->palette
[regno
<< 4].green
= green
;
363 cfb
->palette
[regno
<< 4].blue
= blue
;
366 * The 5 bits of each colour component are
367 * applied to the high 5 bits of the LUT.
369 cyber2000fb_writeb(regno
<< 4, 0x3c8, cfb
);
370 cyber2000fb_writeb(red
, 0x3c9, cfb
);
371 cyber2000fb_writeb(green
, 0x3c9, cfb
);
372 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
377 * Since this is only used for the first 16 colours, we
378 * don't have to care about overflowing for regno >= 32
380 pseudo_val
= regno
<< var
->red
.offset
|
381 regno
<< var
->green
.offset
|
382 regno
<< var
->blue
.offset
;
388 * pixel --/--+--/--> red dac
393 * n = bpp, rl = red length, gl = green length, bl = blue length
395 case FB_VISUAL_TRUECOLOR
:
396 pseudo_val
= convert_bitfield(transp
^ 0xffff, &var
->transp
);
397 pseudo_val
|= convert_bitfield(red
, &var
->red
);
398 pseudo_val
|= convert_bitfield(green
, &var
->green
);
399 pseudo_val
|= convert_bitfield(blue
, &var
->blue
);
405 * Now set our pseudo palette for the CFB16/24/32 drivers.
408 ((u32
*)cfb
->fb
.pseudo_palette
)[regno
] = pseudo_val
;
433 static const u_char crtc_idx
[] = {
434 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
436 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
439 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info
*cfb
)
442 unsigned int val
= cfb
->ramdac_ctrl
| cfb
->ramdac_powerdown
;
444 cyber2000fb_writeb(0x56, 0x3ce, cfb
);
445 i
= cyber2000fb_readb(0x3cf, cfb
);
446 cyber2000fb_writeb(i
| 4, 0x3cf, cfb
);
447 cyber2000fb_writeb(val
, 0x3c6, cfb
);
448 cyber2000fb_writeb(i
, 0x3cf, cfb
);
449 /* prevent card lock-up observed on x86 with CyberPro 2000 */
450 cyber2000fb_readb(0x3cf, cfb
);
453 static void cyber2000fb_set_timing(struct cfb_info
*cfb
, struct par_info
*hw
)
460 for (i
= 0; i
< NR_PALETTE
; i
++) {
461 cyber2000fb_writeb(i
, 0x3c8, cfb
);
462 cyber2000fb_writeb(0, 0x3c9, cfb
);
463 cyber2000fb_writeb(0, 0x3c9, cfb
);
464 cyber2000fb_writeb(0, 0x3c9, cfb
);
467 cyber2000fb_writeb(0xef, 0x3c2, cfb
);
468 cyber2000_crtcw(0x11, 0x0b, cfb
);
469 cyber2000_attrw(0x11, 0x00, cfb
);
471 cyber2000_seqw(0x00, 0x01, cfb
);
472 cyber2000_seqw(0x01, 0x01, cfb
);
473 cyber2000_seqw(0x02, 0x0f, cfb
);
474 cyber2000_seqw(0x03, 0x00, cfb
);
475 cyber2000_seqw(0x04, 0x0e, cfb
);
476 cyber2000_seqw(0x00, 0x03, cfb
);
478 for (i
= 0; i
< sizeof(crtc_idx
); i
++)
479 cyber2000_crtcw(crtc_idx
[i
], hw
->crtc
[i
], cfb
);
481 for (i
= 0x0a; i
< 0x10; i
++)
482 cyber2000_crtcw(i
, 0, cfb
);
484 cyber2000_grphw(EXT_CRT_VRTOFL
, hw
->crtc_ofl
, cfb
);
485 cyber2000_grphw(0x00, 0x00, cfb
);
486 cyber2000_grphw(0x01, 0x00, cfb
);
487 cyber2000_grphw(0x02, 0x00, cfb
);
488 cyber2000_grphw(0x03, 0x00, cfb
);
489 cyber2000_grphw(0x04, 0x00, cfb
);
490 cyber2000_grphw(0x05, 0x60, cfb
);
491 cyber2000_grphw(0x06, 0x05, cfb
);
492 cyber2000_grphw(0x07, 0x0f, cfb
);
493 cyber2000_grphw(0x08, 0xff, cfb
);
495 /* Attribute controller registers */
496 for (i
= 0; i
< 16; i
++)
497 cyber2000_attrw(i
, i
, cfb
);
499 cyber2000_attrw(0x10, 0x01, cfb
);
500 cyber2000_attrw(0x11, 0x00, cfb
);
501 cyber2000_attrw(0x12, 0x0f, cfb
);
502 cyber2000_attrw(0x13, 0x00, cfb
);
503 cyber2000_attrw(0x14, 0x00, cfb
);
506 spin_lock(&cfb
->reg_b0_lock
);
507 cyber2000_grphw(EXT_DCLK_MULT
, hw
->clock_mult
, cfb
);
508 cyber2000_grphw(EXT_DCLK_DIV
, hw
->clock_div
, cfb
);
509 cyber2000_grphw(EXT_MCLK_MULT
, cfb
->mclk_mult
, cfb
);
510 cyber2000_grphw(EXT_MCLK_DIV
, cfb
->mclk_div
, cfb
);
511 cyber2000_grphw(0x90, 0x01, cfb
);
512 cyber2000_grphw(0xb9, 0x80, cfb
);
513 cyber2000_grphw(0xb9, 0x00, cfb
);
514 spin_unlock(&cfb
->reg_b0_lock
);
516 cfb
->ramdac_ctrl
= hw
->ramdac
;
517 cyber2000fb_write_ramdac_ctrl(cfb
);
519 cyber2000fb_writeb(0x20, 0x3c0, cfb
);
520 cyber2000fb_writeb(0xff, 0x3c6, cfb
);
522 cyber2000_grphw(0x14, hw
->fetch
, cfb
);
523 cyber2000_grphw(0x15, ((hw
->fetch
>> 8) & 0x03) |
524 ((hw
->pitch
>> 4) & 0x30), cfb
);
525 cyber2000_grphw(EXT_SEQ_MISC
, hw
->extseqmisc
, cfb
);
528 * Set up accelerator registers
530 cyber2000fb_writew(hw
->width
, CO_REG_SRC_WIDTH
, cfb
);
531 cyber2000fb_writew(hw
->width
, CO_REG_DEST_WIDTH
, cfb
);
532 cyber2000fb_writeb(hw
->co_pixfmt
, CO_REG_PIXFMT
, cfb
);
536 cyber2000fb_update_start(struct cfb_info
*cfb
, struct fb_var_screeninfo
*var
)
538 u_int base
= var
->yoffset
* var
->xres_virtual
+ var
->xoffset
;
540 base
*= var
->bits_per_pixel
;
543 * Convert to bytes and shift two extra bits because DAC
544 * can only start on 4 byte aligned data.
551 cyber2000_grphw(0x10, base
>> 16 | 0x10, cfb
);
552 cyber2000_crtcw(0x0c, base
>> 8, cfb
);
553 cyber2000_crtcw(0x0d, base
, cfb
);
559 cyber2000fb_decode_crtc(struct par_info
*hw
, struct cfb_info
*cfb
,
560 struct fb_var_screeninfo
*var
)
562 u_int Htotal
, Hblankend
, Hsyncend
;
563 u_int Vtotal
, Vdispend
, Vblankstart
, Vblankend
, Vsyncstart
, Vsyncend
;
564 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
566 hw
->crtc
[13] = hw
->pitch
;
571 Htotal
= var
->xres
+ var
->right_margin
+
572 var
->hsync_len
+ var
->left_margin
;
577 hw
->crtc
[0] = (Htotal
>> 3) - 5;
578 hw
->crtc
[1] = (var
->xres
>> 3) - 1;
579 hw
->crtc
[2] = var
->xres
>> 3;
580 hw
->crtc
[4] = (var
->xres
+ var
->right_margin
) >> 3;
582 Hblankend
= (Htotal
- 4 * 8) >> 3;
584 hw
->crtc
[3] = ENCODE_BIT(Hblankend
, 0, 0x1f, 0) |
585 ENCODE_BIT(1, 0, 0x01, 7);
587 Hsyncend
= (var
->xres
+ var
->right_margin
+ var
->hsync_len
) >> 3;
589 hw
->crtc
[5] = ENCODE_BIT(Hsyncend
, 0, 0x1f, 0) |
590 ENCODE_BIT(Hblankend
, 5, 0x01, 7);
592 Vdispend
= var
->yres
- 1;
593 Vsyncstart
= var
->yres
+ var
->lower_margin
;
594 Vsyncend
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
;
595 Vtotal
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
+
596 var
->upper_margin
- 2;
601 Vblankstart
= var
->yres
+ 6;
602 Vblankend
= Vtotal
- 10;
604 hw
->crtc
[6] = Vtotal
;
605 hw
->crtc
[7] = ENCODE_BIT(Vtotal
, 8, 0x01, 0) |
606 ENCODE_BIT(Vdispend
, 8, 0x01, 1) |
607 ENCODE_BIT(Vsyncstart
, 8, 0x01, 2) |
608 ENCODE_BIT(Vblankstart
, 8, 0x01, 3) |
609 ENCODE_BIT(1, 0, 0x01, 4) |
610 ENCODE_BIT(Vtotal
, 9, 0x01, 5) |
611 ENCODE_BIT(Vdispend
, 9, 0x01, 6) |
612 ENCODE_BIT(Vsyncstart
, 9, 0x01, 7);
613 hw
->crtc
[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
614 ENCODE_BIT(Vblankstart
, 9, 0x01, 5) |
615 ENCODE_BIT(1, 0, 0x01, 6);
616 hw
->crtc
[10] = Vsyncstart
;
617 hw
->crtc
[11] = ENCODE_BIT(Vsyncend
, 0, 0x0f, 0) |
618 ENCODE_BIT(1, 0, 0x01, 7);
619 hw
->crtc
[12] = Vdispend
;
620 hw
->crtc
[15] = Vblankstart
;
621 hw
->crtc
[16] = Vblankend
;
625 * overflow - graphics reg 0x11
626 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
627 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
630 ENCODE_BIT(Vtotal
, 10, 0x01, 0) |
631 ENCODE_BIT(Vdispend
, 10, 0x01, 1) |
632 ENCODE_BIT(Vsyncstart
, 10, 0x01, 2) |
633 ENCODE_BIT(Vblankstart
, 10, 0x01, 3) |
634 EXT_CRT_VRTOFL_LINECOMP10
;
636 /* woody: set the interlaced bit... */
637 /* FIXME: what about doublescan? */
638 if ((var
->vmode
& FB_VMODE_MASK
) == FB_VMODE_INTERLACED
)
639 hw
->crtc_ofl
|= EXT_CRT_VRTOFL_INTERLACE
;
645 * The following was discovered by a good monitor, bit twiddling, theorising
646 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
649 * fclock = fpll / div2
650 * fpll = fref * mult / div1
652 * fref = 14.318MHz (69842ps)
654 * div1 = (reg0xb1.5:0 + 1)
655 * div2 = 2^(reg0xb1.7:6)
656 * fpll should be between 115 and 260 MHz
657 * (8696ps and 3846ps)
660 cyber2000fb_decode_clock(struct par_info
*hw
, struct cfb_info
*cfb
,
661 struct fb_var_screeninfo
*var
)
663 u_long pll_ps
= var
->pixclock
;
664 const u_long ref_ps
= cfb
->ref_ps
;
665 u_int div2
, t_div1
, best_div1
, best_mult
;
671 * find div2 such that 115MHz < fpll < 260MHz
674 for (div2
= 0; div2
< 4; div2
++) {
677 new_pll
= pll_ps
/ cfb
->divisors
[div2
];
678 if (8696 > new_pll
&& new_pll
> 3846) {
689 * Given pll_ps and ref_ps, find:
690 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
691 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
692 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
694 best_diff
= 0x7fffffff;
697 for (t_div1
= 2; t_div1
< 32; t_div1
+= 1) {
698 u_int rr
, t_mult
, t_pll_ps
;
702 * Find the multiplier for this divisor
704 rr
= ref_ps
* t_div1
;
705 t_mult
= (rr
+ pll_ps
/ 2) / pll_ps
;
708 * Is the multiplier within the correct range?
710 if (t_mult
> 256 || t_mult
< 2)
714 * Calculate the actual clock period from this multiplier
715 * and divisor, and estimate the error.
717 t_pll_ps
= (rr
+ t_mult
/ 2) / t_mult
;
718 diff
= pll_ps
- t_pll_ps
;
722 if (diff
< best_diff
) {
729 * If we hit an exact value, there is no point in continuing.
739 hw
->clock_mult
= best_mult
- 1;
740 hw
->clock_div
= div2
<< 6 | (best_div1
- 1);
742 vco
= ref_ps
* best_div1
/ best_mult
;
743 if ((ref_ps
== 40690) && (vco
< 5556))
744 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
745 hw
->clock_div
|= EXT_DCLK_DIV_VFSEL
;
751 * Set the User Defined Part of the Display
754 cyber2000fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
756 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
761 var
->transp
.msb_right
= 0;
762 var
->red
.msb_right
= 0;
763 var
->green
.msb_right
= 0;
764 var
->blue
.msb_right
= 0;
765 var
->transp
.offset
= 0;
766 var
->transp
.length
= 0;
768 switch (var
->bits_per_pixel
) {
769 case 8: /* PSEUDOCOLOUR, 256 */
772 var
->green
.offset
= 0;
773 var
->green
.length
= 8;
774 var
->blue
.offset
= 0;
775 var
->blue
.length
= 8;
778 case 16:/* DIRECTCOLOUR, 64k or 32k */
779 switch (var
->green
.length
) {
780 case 6: /* RGB565, 64k */
781 var
->red
.offset
= 11;
783 var
->green
.offset
= 5;
784 var
->green
.length
= 6;
785 var
->blue
.offset
= 0;
786 var
->blue
.length
= 5;
790 case 5: /* RGB555, 32k */
791 var
->red
.offset
= 10;
793 var
->green
.offset
= 5;
794 var
->green
.length
= 5;
795 var
->blue
.offset
= 0;
796 var
->blue
.length
= 5;
799 case 4: /* RGB444, 4k + transparency? */
800 var
->transp
.offset
= 12;
801 var
->transp
.length
= 4;
804 var
->green
.offset
= 4;
805 var
->green
.length
= 4;
806 var
->blue
.offset
= 0;
807 var
->blue
.length
= 4;
812 case 24:/* TRUECOLOUR, 16m */
813 var
->red
.offset
= 16;
815 var
->green
.offset
= 8;
816 var
->green
.length
= 8;
817 var
->blue
.offset
= 0;
818 var
->blue
.length
= 8;
821 case 32:/* TRUECOLOUR, 16m */
822 var
->transp
.offset
= 24;
823 var
->transp
.length
= 8;
824 var
->red
.offset
= 16;
826 var
->green
.offset
= 8;
827 var
->green
.length
= 8;
828 var
->blue
.offset
= 0;
829 var
->blue
.length
= 8;
836 mem
= var
->xres_virtual
* var
->yres_virtual
* (var
->bits_per_pixel
/ 8);
837 if (mem
> cfb
->fb
.fix
.smem_len
)
838 var
->yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
839 (var
->bits_per_pixel
* var
->xres_virtual
);
841 if (var
->yres
> var
->yres_virtual
)
842 var
->yres
= var
->yres_virtual
;
843 if (var
->xres
> var
->xres_virtual
)
844 var
->xres
= var
->xres_virtual
;
846 err
= cyber2000fb_decode_clock(&hw
, cfb
, var
);
850 err
= cyber2000fb_decode_crtc(&hw
, cfb
, var
);
857 static int cyber2000fb_set_par(struct fb_info
*info
)
859 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
860 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
864 hw
.width
= var
->xres_virtual
;
865 hw
.ramdac
= RAMDAC_VREFEN
| RAMDAC_DAC8BIT
;
867 switch (var
->bits_per_pixel
) {
869 hw
.co_pixfmt
= CO_PIXFMT_8BPP
;
870 hw
.pitch
= hw
.width
>> 3;
871 hw
.extseqmisc
= EXT_SEQ_MISC_8
;
875 hw
.co_pixfmt
= CO_PIXFMT_16BPP
;
876 hw
.pitch
= hw
.width
>> 2;
878 switch (var
->green
.length
) {
879 case 6: /* RGB565, 64k */
880 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB565
;
882 case 5: /* RGB555, 32k */
883 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB555
;
885 case 4: /* RGB444, 4k + transparency? */
886 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB444
;
893 case 24:/* TRUECOLOUR, 16m */
894 hw
.co_pixfmt
= CO_PIXFMT_24BPP
;
896 hw
.pitch
= hw
.width
>> 3;
897 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
898 hw
.extseqmisc
= EXT_SEQ_MISC_24_RGB888
;
901 case 32:/* TRUECOLOUR, 16m */
902 hw
.co_pixfmt
= CO_PIXFMT_32BPP
;
903 hw
.pitch
= hw
.width
>> 1;
904 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
905 hw
.extseqmisc
= EXT_SEQ_MISC_32
;
913 * Sigh, this is absolutely disgusting, but caused by
914 * the way the fbcon developers want to separate out
915 * the "checking" and the "setting" of the video mode.
917 * If the mode is not suitable for the hardware here,
918 * we can't prevent it being set by returning an error.
920 * In theory, since NetWinders contain just one VGA card,
921 * we should never end up hitting this problem.
923 BUG_ON(cyber2000fb_decode_clock(&hw
, cfb
, var
) != 0);
924 BUG_ON(cyber2000fb_decode_crtc(&hw
, cfb
, var
) != 0);
928 if (!(cfb
->mem_ctl2
& MEM_CTL2_64BIT
))
932 cfb
->fb
.fix
.line_length
= var
->xres_virtual
* var
->bits_per_pixel
/ 8;
935 * Same here - if the size of the video mode exceeds the
936 * available RAM, we can't prevent this mode being set.
938 * In theory, since NetWinders contain just one VGA card,
939 * we should never end up hitting this problem.
941 mem
= cfb
->fb
.fix
.line_length
* var
->yres_virtual
;
942 BUG_ON(mem
> cfb
->fb
.fix
.smem_len
);
945 * 8bpp displays are always pseudo colour. 16bpp and above
946 * are direct colour or true colour, depending on whether
947 * the RAMDAC palettes are bypassed. (Direct colour has
948 * palettes, true colour does not.)
950 if (var
->bits_per_pixel
== 8)
951 cfb
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
952 else if (hw
.ramdac
& RAMDAC_BYPASS
)
953 cfb
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
955 cfb
->fb
.fix
.visual
= FB_VISUAL_DIRECTCOLOR
;
957 cyber2000fb_set_timing(cfb
, &hw
);
958 cyber2000fb_update_start(cfb
, var
);
964 * Pan or Wrap the Display
967 cyber2000fb_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
969 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
971 if (cyber2000fb_update_start(cfb
, var
))
974 cfb
->fb
.var
.xoffset
= var
->xoffset
;
975 cfb
->fb
.var
.yoffset
= var
->yoffset
;
977 if (var
->vmode
& FB_VMODE_YWRAP
) {
978 cfb
->fb
.var
.vmode
|= FB_VMODE_YWRAP
;
980 cfb
->fb
.var
.vmode
&= ~FB_VMODE_YWRAP
;
987 * (Un)Blank the display.
989 * Blank the screen if blank_mode != 0, else unblank. If
990 * blank == NULL then the caller blanks by setting the CLUT
991 * (Color Look Up Table) to all black. Return 0 if blanking
992 * succeeded, != 0 if un-/blanking failed due to e.g. a
993 * video mode which doesn't support it. Implements VESA
994 * suspend and powerdown modes on hardware that supports
995 * disabling hsync/vsync:
996 * blank_mode == 2: suspend vsync
997 * blank_mode == 3: suspend hsync
998 * blank_mode == 4: powerdown
1000 * wms...Enable VESA DMPS compatible powerdown mode
1001 * run "setterm -powersave powerdown" to take advantage
1003 static int cyber2000fb_blank(int blank
, struct fb_info
*info
)
1005 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
1006 unsigned int sync
= 0;
1010 case FB_BLANK_POWERDOWN
: /* powerdown - both sync lines down */
1011 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_0
;
1013 case FB_BLANK_HSYNC_SUSPEND
: /* hsync off */
1014 sync
= EXT_SYNC_CTL_VS_NORMAL
| EXT_SYNC_CTL_HS_0
;
1016 case FB_BLANK_VSYNC_SUSPEND
: /* vsync off */
1017 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_NORMAL
;
1019 case FB_BLANK_NORMAL
: /* soft blank */
1020 default: /* unblank */
1024 cyber2000_grphw(EXT_SYNC_CTL
, sync
, cfb
);
1027 /* turn on ramdacs */
1028 cfb
->ramdac_powerdown
&= ~(RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1030 cyber2000fb_write_ramdac_ctrl(cfb
);
1034 * Soft blank/unblank the display.
1036 if (blank
) { /* soft blank */
1037 for (i
= 0; i
< NR_PALETTE
; i
++) {
1038 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1039 cyber2000fb_writeb(0, 0x3c9, cfb
);
1040 cyber2000fb_writeb(0, 0x3c9, cfb
);
1041 cyber2000fb_writeb(0, 0x3c9, cfb
);
1043 } else { /* unblank */
1044 for (i
= 0; i
< NR_PALETTE
; i
++) {
1045 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1046 cyber2000fb_writeb(cfb
->palette
[i
].red
, 0x3c9, cfb
);
1047 cyber2000fb_writeb(cfb
->palette
[i
].green
, 0x3c9, cfb
);
1048 cyber2000fb_writeb(cfb
->palette
[i
].blue
, 0x3c9, cfb
);
1053 /* turn off ramdacs */
1054 cfb
->ramdac_powerdown
|= RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1056 cyber2000fb_write_ramdac_ctrl(cfb
);
1062 static const struct fb_ops cyber2000fb_ops
= {
1063 .owner
= THIS_MODULE
,
1064 .fb_check_var
= cyber2000fb_check_var
,
1065 .fb_set_par
= cyber2000fb_set_par
,
1066 .fb_setcolreg
= cyber2000fb_setcolreg
,
1067 .fb_blank
= cyber2000fb_blank
,
1068 .fb_pan_display
= cyber2000fb_pan_display
,
1069 .fb_fillrect
= cyber2000fb_fillrect
,
1070 .fb_copyarea
= cyber2000fb_copyarea
,
1071 .fb_imageblit
= cyber2000fb_imageblit
,
1072 .fb_sync
= cyber2000fb_sync
,
1076 * This is the only "static" reference to the internal data structures
1077 * of this driver. It is here solely at the moment to support the other
1078 * CyberPro modules external to this driver.
1080 static struct cfb_info
*int_cfb_info
;
1083 * Enable access to the extended registers
1085 void cyber2000fb_enable_extregs(struct cfb_info
*cfb
)
1087 cfb
->func_use_count
+= 1;
1089 if (cfb
->func_use_count
== 1) {
1092 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1093 old
|= EXT_FUNC_CTL_EXTREGENBL
;
1094 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1097 EXPORT_SYMBOL(cyber2000fb_enable_extregs
);
1100 * Disable access to the extended registers
1102 void cyber2000fb_disable_extregs(struct cfb_info
*cfb
)
1104 if (cfb
->func_use_count
== 1) {
1107 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1108 old
&= ~EXT_FUNC_CTL_EXTREGENBL
;
1109 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1112 if (cfb
->func_use_count
== 0)
1113 printk(KERN_ERR
"disable_extregs: count = 0\n");
1115 cfb
->func_use_count
-= 1;
1117 EXPORT_SYMBOL(cyber2000fb_disable_extregs
);
1120 * Attach a capture/tv driver to the core CyberX0X0 driver.
1122 int cyber2000fb_attach(struct cyberpro_info
*info
, int idx
)
1124 if (int_cfb_info
!= NULL
) {
1125 info
->dev
= int_cfb_info
->fb
.device
;
1126 #ifdef CONFIG_FB_CYBER2000_I2C
1127 info
->i2c
= &int_cfb_info
->i2c_adapter
;
1131 info
->regs
= int_cfb_info
->regs
;
1132 info
->irq
= int_cfb_info
->irq
;
1133 info
->fb
= int_cfb_info
->fb
.screen_base
;
1134 info
->fb_size
= int_cfb_info
->fb
.fix
.smem_len
;
1135 info
->info
= int_cfb_info
;
1137 strlcpy(info
->dev_name
, int_cfb_info
->fb
.fix
.id
,
1138 sizeof(info
->dev_name
));
1141 return int_cfb_info
!= NULL
;
1143 EXPORT_SYMBOL(cyber2000fb_attach
);
1146 * Detach a capture/tv driver from the core CyberX0X0 driver.
1148 void cyber2000fb_detach(int idx
)
1151 EXPORT_SYMBOL(cyber2000fb_detach
);
1153 #ifdef CONFIG_FB_CYBER2000_DDC
1155 #define DDC_REG 0xb0
1156 #define DDC_SCL_OUT (1 << 0)
1157 #define DDC_SDA_OUT (1 << 4)
1158 #define DDC_SCL_IN (1 << 2)
1159 #define DDC_SDA_IN (1 << 6)
1161 static void cyber2000fb_enable_ddc(struct cfb_info
*cfb
)
1162 __acquires(&cfb
->reg_b0_lock
)
1164 spin_lock(&cfb
->reg_b0_lock
);
1165 cyber2000fb_writew(0x1bf, 0x3ce, cfb
);
1168 static void cyber2000fb_disable_ddc(struct cfb_info
*cfb
)
1169 __releases(&cfb
->reg_b0_lock
)
1171 cyber2000fb_writew(0x0bf, 0x3ce, cfb
);
1172 spin_unlock(&cfb
->reg_b0_lock
);
1176 static void cyber2000fb_ddc_setscl(void *data
, int val
)
1178 struct cfb_info
*cfb
= data
;
1181 cyber2000fb_enable_ddc(cfb
);
1182 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1183 if (!val
) /* bit is inverted */
1186 reg
&= ~DDC_SCL_OUT
;
1187 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1188 cyber2000fb_disable_ddc(cfb
);
1191 static void cyber2000fb_ddc_setsda(void *data
, int val
)
1193 struct cfb_info
*cfb
= data
;
1196 cyber2000fb_enable_ddc(cfb
);
1197 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1198 if (!val
) /* bit is inverted */
1201 reg
&= ~DDC_SDA_OUT
;
1202 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1203 cyber2000fb_disable_ddc(cfb
);
1206 static int cyber2000fb_ddc_getscl(void *data
)
1208 struct cfb_info
*cfb
= data
;
1211 cyber2000fb_enable_ddc(cfb
);
1212 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SCL_IN
);
1213 cyber2000fb_disable_ddc(cfb
);
1218 static int cyber2000fb_ddc_getsda(void *data
)
1220 struct cfb_info
*cfb
= data
;
1223 cyber2000fb_enable_ddc(cfb
);
1224 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SDA_IN
);
1225 cyber2000fb_disable_ddc(cfb
);
1230 static int cyber2000fb_setup_ddc_bus(struct cfb_info
*cfb
)
1232 strlcpy(cfb
->ddc_adapter
.name
, cfb
->fb
.fix
.id
,
1233 sizeof(cfb
->ddc_adapter
.name
));
1234 cfb
->ddc_adapter
.owner
= THIS_MODULE
;
1235 cfb
->ddc_adapter
.class = I2C_CLASS_DDC
;
1236 cfb
->ddc_adapter
.algo_data
= &cfb
->ddc_algo
;
1237 cfb
->ddc_adapter
.dev
.parent
= cfb
->fb
.device
;
1238 cfb
->ddc_algo
.setsda
= cyber2000fb_ddc_setsda
;
1239 cfb
->ddc_algo
.setscl
= cyber2000fb_ddc_setscl
;
1240 cfb
->ddc_algo
.getsda
= cyber2000fb_ddc_getsda
;
1241 cfb
->ddc_algo
.getscl
= cyber2000fb_ddc_getscl
;
1242 cfb
->ddc_algo
.udelay
= 10;
1243 cfb
->ddc_algo
.timeout
= 20;
1244 cfb
->ddc_algo
.data
= cfb
;
1246 i2c_set_adapdata(&cfb
->ddc_adapter
, cfb
);
1248 return i2c_bit_add_bus(&cfb
->ddc_adapter
);
1250 #endif /* CONFIG_FB_CYBER2000_DDC */
1252 #ifdef CONFIG_FB_CYBER2000_I2C
1253 static void cyber2000fb_i2c_setsda(void *data
, int state
)
1255 struct cfb_info
*cfb
= data
;
1256 unsigned int latch2
;
1258 spin_lock(&cfb
->reg_b0_lock
);
1259 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1260 latch2
&= EXT_LATCH2_I2C_CLKEN
;
1262 latch2
|= EXT_LATCH2_I2C_DATEN
;
1263 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1264 spin_unlock(&cfb
->reg_b0_lock
);
1267 static void cyber2000fb_i2c_setscl(void *data
, int state
)
1269 struct cfb_info
*cfb
= data
;
1270 unsigned int latch2
;
1272 spin_lock(&cfb
->reg_b0_lock
);
1273 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1274 latch2
&= EXT_LATCH2_I2C_DATEN
;
1276 latch2
|= EXT_LATCH2_I2C_CLKEN
;
1277 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1278 spin_unlock(&cfb
->reg_b0_lock
);
1281 static int cyber2000fb_i2c_getsda(void *data
)
1283 struct cfb_info
*cfb
= data
;
1286 spin_lock(&cfb
->reg_b0_lock
);
1287 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_DAT
);
1288 spin_unlock(&cfb
->reg_b0_lock
);
1293 static int cyber2000fb_i2c_getscl(void *data
)
1295 struct cfb_info
*cfb
= data
;
1298 spin_lock(&cfb
->reg_b0_lock
);
1299 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_CLK
);
1300 spin_unlock(&cfb
->reg_b0_lock
);
1305 static int cyber2000fb_i2c_register(struct cfb_info
*cfb
)
1307 strlcpy(cfb
->i2c_adapter
.name
, cfb
->fb
.fix
.id
,
1308 sizeof(cfb
->i2c_adapter
.name
));
1309 cfb
->i2c_adapter
.owner
= THIS_MODULE
;
1310 cfb
->i2c_adapter
.algo_data
= &cfb
->i2c_algo
;
1311 cfb
->i2c_adapter
.dev
.parent
= cfb
->fb
.device
;
1312 cfb
->i2c_algo
.setsda
= cyber2000fb_i2c_setsda
;
1313 cfb
->i2c_algo
.setscl
= cyber2000fb_i2c_setscl
;
1314 cfb
->i2c_algo
.getsda
= cyber2000fb_i2c_getsda
;
1315 cfb
->i2c_algo
.getscl
= cyber2000fb_i2c_getscl
;
1316 cfb
->i2c_algo
.udelay
= 5;
1317 cfb
->i2c_algo
.timeout
= msecs_to_jiffies(100);
1318 cfb
->i2c_algo
.data
= cfb
;
1320 return i2c_bit_add_bus(&cfb
->i2c_adapter
);
1323 static void cyber2000fb_i2c_unregister(struct cfb_info
*cfb
)
1325 i2c_del_adapter(&cfb
->i2c_adapter
);
1328 #define cyber2000fb_i2c_register(cfb) (0)
1329 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1333 * These parameters give
1334 * 640x480, hsync 31.5kHz, vsync 60Hz
1336 static const struct fb_videomode cyber2000fb_default_mode
= {
1347 .sync
= FB_SYNC_COMP_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
1348 .vmode
= FB_VMODE_NONINTERLACED
1351 static char igs_regs
[] = {
1355 EXT_SEG_WRITE_PTR
, 0,
1356 EXT_SEG_READ_PTR
, 0,
1357 EXT_BIU_MISC
, EXT_BIU_MISC_LIN_ENABLE
|
1358 EXT_BIU_MISC_COP_ENABLE
|
1359 EXT_BIU_MISC_COP_BFC
,
1362 CURS_H_START
+ 1, 0,
1365 CURS_V_START
+ 1, 0,
1368 EXT_ATTRIB_CTL
, EXT_ATTRIB_CTL_EXT
,
1369 EXT_OVERSCAN_RED
, 0,
1370 EXT_OVERSCAN_GREEN
, 0,
1371 EXT_OVERSCAN_BLUE
, 0,
1373 /* some of these are questionable when we have a BIOS */
1374 EXT_MEM_CTL0
, EXT_MEM_CTL0_7CLK
|
1375 EXT_MEM_CTL0_RAS_1
|
1376 EXT_MEM_CTL0_MULTCAS
,
1377 EXT_HIDDEN_CTL1
, 0x30,
1379 EXT_FIFO_CTL
+ 1, 0x17,
1381 EXT_HIDDEN_CTL4
, 0xc8
1385 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1386 * ensure that we're using the correct PLL (5XXX's may be
1387 * programmed to use an additional set of PLLs.)
1389 static void cyberpro_init_hw(struct cfb_info
*cfb
)
1393 for (i
= 0; i
< sizeof(igs_regs
); i
+= 2)
1394 cyber2000_grphw(igs_regs
[i
], igs_regs
[i
+ 1], cfb
);
1396 if (cfb
->id
== ID_CYBERPRO_5000
) {
1398 cyber2000fb_writeb(0xba, 0x3ce, cfb
);
1399 val
= cyber2000fb_readb(0x3cf, cfb
) & 0x80;
1400 cyber2000fb_writeb(val
, 0x3cf, cfb
);
1404 static struct cfb_info
*cyberpro_alloc_fb_info(unsigned int id
, char *name
)
1406 struct cfb_info
*cfb
;
1408 cfb
= kzalloc(sizeof(struct cfb_info
), GFP_KERNEL
);
1415 if (id
== ID_CYBERPRO_5000
)
1416 cfb
->ref_ps
= 40690; /* 24.576 MHz */
1418 cfb
->ref_ps
= 69842; /* 14.31818 MHz (69841?) */
1420 cfb
->divisors
[0] = 1;
1421 cfb
->divisors
[1] = 2;
1422 cfb
->divisors
[2] = 4;
1424 if (id
== ID_CYBERPRO_2000
)
1425 cfb
->divisors
[3] = 8;
1427 cfb
->divisors
[3] = 6;
1429 strcpy(cfb
->fb
.fix
.id
, name
);
1431 cfb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1432 cfb
->fb
.fix
.type_aux
= 0;
1433 cfb
->fb
.fix
.xpanstep
= 0;
1434 cfb
->fb
.fix
.ypanstep
= 1;
1435 cfb
->fb
.fix
.ywrapstep
= 0;
1439 cfb
->fb
.fix
.accel
= 0;
1442 case ID_CYBERPRO_2000
:
1443 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2000
;
1446 case ID_CYBERPRO_2010
:
1447 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2010
;
1450 case ID_CYBERPRO_5000
:
1451 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER5000
;
1455 cfb
->fb
.var
.nonstd
= 0;
1456 cfb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1457 cfb
->fb
.var
.height
= -1;
1458 cfb
->fb
.var
.width
= -1;
1459 cfb
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1461 cfb
->fb
.fbops
= &cyber2000fb_ops
;
1462 cfb
->fb
.flags
= FBINFO_DEFAULT
| FBINFO_HWACCEL_YPAN
;
1463 cfb
->fb
.pseudo_palette
= cfb
->pseudo_palette
;
1465 spin_lock_init(&cfb
->reg_b0_lock
);
1467 fb_alloc_cmap(&cfb
->fb
.cmap
, NR_PALETTE
, 0);
1472 static void cyberpro_free_fb_info(struct cfb_info
*cfb
)
1476 * Free the colourmap
1478 fb_alloc_cmap(&cfb
->fb
.cmap
, 0, 0);
1485 * Parse Cyber2000fb options. Usage:
1486 * video=cyber2000:font:fontname
1489 static int cyber2000fb_setup(char *options
)
1493 if (!options
|| !*options
)
1496 while ((opt
= strsep(&options
, ",")) != NULL
) {
1500 if (strncmp(opt
, "font:", 5) == 0) {
1501 static char default_font_storage
[40];
1503 strlcpy(default_font_storage
, opt
+ 5,
1504 sizeof(default_font_storage
));
1505 default_font
= default_font_storage
;
1509 printk(KERN_ERR
"CyberPro20x0: unknown parameter: %s\n", opt
);
1516 * The CyberPro chips can be placed on many different bus types.
1517 * This probe function is common to all bus types. The bus-specific
1518 * probe function is expected to have:
1519 * - enabled access to the linear memory region
1520 * - memory mapped access to the registers
1521 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1523 static int cyberpro_common_probe(struct cfb_info
*cfb
)
1526 u_int h_sync
, v_sync
;
1529 cyberpro_init_hw(cfb
);
1532 * Get the video RAM size and width from the VGA register.
1533 * This should have been already initialised by the BIOS,
1534 * but if it's garbage, claim default 1MB VRAM (woody)
1536 cfb
->mem_ctl1
= cyber2000_grphr(EXT_MEM_CTL1
, cfb
);
1537 cfb
->mem_ctl2
= cyber2000_grphr(EXT_MEM_CTL2
, cfb
);
1540 * Determine the size of the memory.
1542 switch (cfb
->mem_ctl2
& MEM_CTL2_SIZE_MASK
) {
1543 case MEM_CTL2_SIZE_4MB
:
1544 smem_size
= 0x00400000;
1546 case MEM_CTL2_SIZE_2MB
:
1547 smem_size
= 0x00200000;
1549 case MEM_CTL2_SIZE_1MB
:
1550 smem_size
= 0x00100000;
1553 smem_size
= 0x00100000;
1557 cfb
->fb
.fix
.smem_len
= smem_size
;
1558 cfb
->fb
.fix
.mmio_len
= MMIO_SIZE
;
1559 cfb
->fb
.screen_base
= cfb
->region
;
1561 #ifdef CONFIG_FB_CYBER2000_DDC
1562 if (cyber2000fb_setup_ddc_bus(cfb
) == 0)
1563 cfb
->ddc_registered
= true;
1567 if (!fb_find_mode(&cfb
->fb
.var
, &cfb
->fb
, NULL
, NULL
, 0,
1568 &cyber2000fb_default_mode
, 8)) {
1569 printk(KERN_ERR
"%s: no valid mode found\n", cfb
->fb
.fix
.id
);
1573 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
1574 (cfb
->fb
.var
.bits_per_pixel
* cfb
->fb
.var
.xres_virtual
);
1576 if (cfb
->fb
.var
.yres_virtual
< cfb
->fb
.var
.yres
)
1577 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.var
.yres
;
1579 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1582 * Calculate the hsync and vsync frequencies. Note that
1583 * we split the 1e12 constant up so that we can preserve
1584 * the precision and fit the results into 32-bit registers.
1585 * (1953125000 * 512 = 1e12)
1587 h_sync
= 1953125000 / cfb
->fb
.var
.pixclock
;
1588 h_sync
= h_sync
* 512 / (cfb
->fb
.var
.xres
+ cfb
->fb
.var
.left_margin
+
1589 cfb
->fb
.var
.right_margin
+ cfb
->fb
.var
.hsync_len
);
1590 v_sync
= h_sync
/ (cfb
->fb
.var
.yres
+ cfb
->fb
.var
.upper_margin
+
1591 cfb
->fb
.var
.lower_margin
+ cfb
->fb
.var
.vsync_len
);
1593 printk(KERN_INFO
"%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1594 cfb
->fb
.fix
.id
, cfb
->fb
.fix
.smem_len
>> 10,
1595 cfb
->fb
.var
.xres
, cfb
->fb
.var
.yres
,
1596 h_sync
/ 1000, h_sync
% 1000, v_sync
);
1598 err
= cyber2000fb_i2c_register(cfb
);
1602 err
= register_framebuffer(&cfb
->fb
);
1604 cyber2000fb_i2c_unregister(cfb
);
1607 #ifdef CONFIG_FB_CYBER2000_DDC
1608 if (err
&& cfb
->ddc_registered
)
1609 i2c_del_adapter(&cfb
->ddc_adapter
);
1614 static void cyberpro_common_remove(struct cfb_info
*cfb
)
1616 unregister_framebuffer(&cfb
->fb
);
1617 #ifdef CONFIG_FB_CYBER2000_DDC
1618 if (cfb
->ddc_registered
)
1619 i2c_del_adapter(&cfb
->ddc_adapter
);
1621 cyber2000fb_i2c_unregister(cfb
);
1624 static void cyberpro_common_resume(struct cfb_info
*cfb
)
1626 cyberpro_init_hw(cfb
);
1629 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1631 cyber2000_grphw(EXT_MEM_CTL1
, cfb
->mem_ctl1
, cfb
);
1632 cyber2000_grphw(EXT_MEM_CTL2
, cfb
->mem_ctl2
, cfb
);
1635 * Restore the old video mode and the palette.
1636 * We also need to tell fbcon to redraw the console.
1638 cyber2000fb_set_par(&cfb
->fb
);
1642 * We need to wake up the CyberPro, and make sure its in linear memory
1643 * mode. Unfortunately, this is specific to the platform and card that
1644 * we are running on.
1646 * On x86 and ARM, should we be initialising the CyberPro first via the
1647 * IO registers, and then the MMIO registers to catch all cases? Can we
1648 * end up in the situation where the chip is in MMIO mode, but not awake
1651 static int cyberpro_pci_enable_mmio(struct cfb_info
*cfb
)
1655 #if defined(__sparc_v9__)
1656 #error "You lose, consult DaveM."
1657 #elif defined(__sparc__)
1659 * SPARC does not have an "outb" instruction, so we generate
1660 * I/O cycles storing into a reserved memory space at
1661 * physical address 0x3000000
1663 unsigned char __iomem
*iop
;
1665 iop
= ioremap(0x3000000, 0x5000);
1667 printk(KERN_ERR
"iga5000: cannot map I/O\n");
1671 writeb(0x18, iop
+ 0x46e8);
1672 writeb(0x01, iop
+ 0x102);
1673 writeb(0x08, iop
+ 0x46e8);
1674 writeb(EXT_BIU_MISC
, iop
+ 0x3ce);
1675 writeb(EXT_BIU_MISC_LIN_ENABLE
, iop
+ 0x3cf);
1680 * Most other machine types are "normal", so
1681 * we use the standard IO-based wakeup.
1686 outb(EXT_BIU_MISC
, 0x3ce);
1687 outb(EXT_BIU_MISC_LIN_ENABLE
, 0x3cf);
1691 * Allow the CyberPro to accept PCI burst accesses
1693 if (cfb
->id
== ID_CYBERPRO_2010
) {
1694 printk(KERN_INFO
"%s: NOT enabling PCI bursts\n",
1697 val
= cyber2000_grphr(EXT_BUS_CTL
, cfb
);
1698 if (!(val
& EXT_BUS_CTL_PCIBURST_WRITE
)) {
1699 printk(KERN_INFO
"%s: enabling PCI bursts\n",
1702 val
|= EXT_BUS_CTL_PCIBURST_WRITE
;
1704 if (cfb
->id
== ID_CYBERPRO_5000
)
1705 val
|= EXT_BUS_CTL_PCIBURST_READ
;
1707 cyber2000_grphw(EXT_BUS_CTL
, val
, cfb
);
1714 static int cyberpro_pci_probe(struct pci_dev
*dev
,
1715 const struct pci_device_id
*id
)
1717 struct cfb_info
*cfb
;
1721 sprintf(name
, "CyberPro%4X", id
->device
);
1723 err
= pci_enable_device(dev
);
1728 cfb
= cyberpro_alloc_fb_info(id
->driver_data
, name
);
1730 goto failed_release
;
1732 err
= pci_request_regions(dev
, cfb
->fb
.fix
.id
);
1734 goto failed_regions
;
1736 cfb
->irq
= dev
->irq
;
1737 cfb
->region
= pci_ioremap_bar(dev
, 0);
1740 goto failed_ioremap
;
1743 cfb
->regs
= cfb
->region
+ MMIO_OFFSET
;
1744 cfb
->fb
.device
= &dev
->dev
;
1745 cfb
->fb
.fix
.mmio_start
= pci_resource_start(dev
, 0) + MMIO_OFFSET
;
1746 cfb
->fb
.fix
.smem_start
= pci_resource_start(dev
, 0);
1749 * Bring up the hardware. This is expected to enable access
1750 * to the linear memory region, and allow access to the memory
1751 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1754 err
= cyberpro_pci_enable_mmio(cfb
);
1759 * Use MCLK from BIOS. FIXME: what about hotplug?
1761 cfb
->mclk_mult
= cyber2000_grphr(EXT_MCLK_MULT
, cfb
);
1762 cfb
->mclk_div
= cyber2000_grphr(EXT_MCLK_DIV
, cfb
);
1766 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1768 if (machine_is_netwinder()) {
1769 cfb
->mclk_mult
= 0xdb;
1770 cfb
->mclk_div
= 0x54;
1774 err
= cyberpro_common_probe(cfb
);
1781 pci_set_drvdata(dev
, cfb
);
1782 if (int_cfb_info
== NULL
)
1788 iounmap(cfb
->region
);
1790 pci_release_regions(dev
);
1792 cyberpro_free_fb_info(cfb
);
1797 static void cyberpro_pci_remove(struct pci_dev
*dev
)
1799 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1802 cyberpro_common_remove(cfb
);
1803 iounmap(cfb
->region
);
1804 cyberpro_free_fb_info(cfb
);
1806 if (cfb
== int_cfb_info
)
1807 int_cfb_info
= NULL
;
1809 pci_release_regions(dev
);
1813 static int __maybe_unused
cyberpro_pci_suspend(struct device
*dev
)
1819 * Re-initialise the CyberPro hardware
1821 static int __maybe_unused
cyberpro_pci_resume(struct device
*dev
)
1823 struct cfb_info
*cfb
= dev_get_drvdata(dev
);
1826 cyberpro_pci_enable_mmio(cfb
);
1827 cyberpro_common_resume(cfb
);
1833 static struct pci_device_id cyberpro_pci_table
[] = {
1835 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1836 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1838 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2000
,
1839 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2000
},
1840 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2010
,
1841 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2010
},
1842 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_5000
,
1843 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_5000
},
1847 MODULE_DEVICE_TABLE(pci
, cyberpro_pci_table
);
1849 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops
,
1850 cyberpro_pci_suspend
,
1851 cyberpro_pci_resume
);
1853 static struct pci_driver cyberpro_driver
= {
1855 .probe
= cyberpro_pci_probe
,
1856 .remove
= cyberpro_pci_remove
,
1857 .driver
.pm
= &cyberpro_pci_pm_ops
,
1858 .id_table
= cyberpro_pci_table
1862 * I don't think we can use the "module_init" stuff here because
1863 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1864 * around module_init.
1866 * Tony: "module_init" is now required
1868 static int __init
cyber2000fb_init(void)
1873 char *option
= NULL
;
1875 if (fb_get_options("cyber2000fb", &option
))
1877 cyber2000fb_setup(option
);
1880 err
= pci_register_driver(&cyberpro_driver
);
1884 return ret
? err
: 0;
1886 module_init(cyber2000fb_init
);
1888 static void __exit
cyberpro_exit(void)
1890 pci_unregister_driver(&cyberpro_driver
);
1892 module_exit(cyberpro_exit
);
1894 MODULE_AUTHOR("Russell King");
1895 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1896 MODULE_LICENSE("GPL");