1 // SPDX-License-Identifier: GPL-2.0-only
4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
8 * PV guests under Xen are running in an non-contiguous memory architecture.
10 * When PCI pass-through is utilized, this necessitates an IOMMU for
11 * translating bus (DMA) to virtual and vice-versa and also providing a
12 * mechanism to have contiguous pages for device drivers operations (say DMA
15 * Specifically, under Xen the Linux idea of pages is an illusion. It
16 * assumes that pages start at zero and go up to the available memory. To
17 * help with that, the Linux Xen MMU provides a lookup mechanism to
18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20 * memory is not contiguous. Xen hypervisor stitches memory for guests
21 * from different pools, which means there is no guarantee that PFN==MFN
22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23 * allocated in descending order (high to low), meaning the guest might
24 * never get any MFN's under the 4GB mark.
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
49 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
50 static unsigned long xen_io_tlb_nslabs
;
52 * Quick lookup value of the bus address of the IOTLB.
55 static inline phys_addr_t
xen_phys_to_bus(struct device
*dev
, phys_addr_t paddr
)
57 unsigned long bfn
= pfn_to_bfn(XEN_PFN_DOWN(paddr
));
58 phys_addr_t baddr
= (phys_addr_t
)bfn
<< XEN_PAGE_SHIFT
;
60 baddr
|= paddr
& ~XEN_PAGE_MASK
;
64 static inline dma_addr_t
xen_phys_to_dma(struct device
*dev
, phys_addr_t paddr
)
66 return phys_to_dma(dev
, xen_phys_to_bus(dev
, paddr
));
69 static inline phys_addr_t
xen_bus_to_phys(struct device
*dev
,
72 unsigned long xen_pfn
= bfn_to_pfn(XEN_PFN_DOWN(baddr
));
73 phys_addr_t paddr
= (xen_pfn
<< XEN_PAGE_SHIFT
) |
74 (baddr
& ~XEN_PAGE_MASK
);
79 static inline phys_addr_t
xen_dma_to_phys(struct device
*dev
,
82 return xen_bus_to_phys(dev
, dma_to_phys(dev
, dma_addr
));
85 static inline dma_addr_t
xen_virt_to_bus(struct device
*dev
, void *address
)
87 return xen_phys_to_dma(dev
, virt_to_phys(address
));
90 static inline int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
92 unsigned long next_bfn
, xen_pfn
= XEN_PFN_DOWN(p
);
93 unsigned int i
, nr_pages
= XEN_PFN_UP(xen_offset_in_page(p
) + size
);
95 next_bfn
= pfn_to_bfn(xen_pfn
);
97 for (i
= 1; i
< nr_pages
; i
++)
98 if (pfn_to_bfn(++xen_pfn
) != ++next_bfn
)
104 static int is_xen_swiotlb_buffer(struct device
*dev
, dma_addr_t dma_addr
)
106 unsigned long bfn
= XEN_PFN_DOWN(dma_to_phys(dev
, dma_addr
));
107 unsigned long xen_pfn
= bfn_to_local_pfn(bfn
);
108 phys_addr_t paddr
= (phys_addr_t
)xen_pfn
<< XEN_PAGE_SHIFT
;
110 /* If the address is outside our domain, it CAN
111 * have the same virtual address as another address
112 * in our domain. Therefore _only_ check address within our domain.
114 if (pfn_valid(PFN_DOWN(paddr
))) {
115 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
116 paddr
< virt_to_phys(xen_io_tlb_end
);
122 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
126 dma_addr_t dma_handle
;
127 phys_addr_t p
= virt_to_phys(buf
);
129 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
133 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
136 rc
= xen_create_contiguous_region(
137 p
+ (i
<< IO_TLB_SHIFT
),
138 get_order(slabs
<< IO_TLB_SHIFT
),
139 dma_bits
, &dma_handle
);
140 } while (rc
&& dma_bits
++ < MAX_DMA_BITS
);
145 } while (i
< nslabs
);
148 static unsigned long xen_set_nslabs(unsigned long nr_tbl
)
151 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
152 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
154 xen_io_tlb_nslabs
= nr_tbl
;
156 return xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
159 enum xen_swiotlb_err
{
160 XEN_SWIOTLB_UNKNOWN
= 0,
165 static const char *xen_swiotlb_error(enum xen_swiotlb_err err
)
168 case XEN_SWIOTLB_ENOMEM
:
169 return "Cannot allocate Xen-SWIOTLB buffer\n";
170 case XEN_SWIOTLB_EFIXUP
:
171 return "Failed to get contiguous memory for DMA from Xen!\n"\
172 "You either: don't have the permissions, do not have"\
173 " enough free memory under 4GB, or the hypervisor memory"\
174 " is too fragmented!";
180 int __ref
xen_swiotlb_init(int verbose
, bool early
)
182 unsigned long bytes
, order
;
184 enum xen_swiotlb_err m_ret
= XEN_SWIOTLB_UNKNOWN
;
185 unsigned int repeat
= 3;
187 xen_io_tlb_nslabs
= swiotlb_nr_tbl();
189 bytes
= xen_set_nslabs(xen_io_tlb_nslabs
);
190 order
= get_order(xen_io_tlb_nslabs
<< IO_TLB_SHIFT
);
193 * IO TLB memory already allocated. Just use it.
195 if (io_tlb_start
!= 0) {
196 xen_io_tlb_start
= phys_to_virt(io_tlb_start
);
201 * Get IO TLB memory from any location.
204 xen_io_tlb_start
= memblock_alloc(PAGE_ALIGN(bytes
),
206 if (!xen_io_tlb_start
)
207 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208 __func__
, PAGE_ALIGN(bytes
), PAGE_SIZE
);
210 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
211 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
212 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
213 xen_io_tlb_start
= (void *)xen_get_swiotlb_free_pages(order
);
214 if (xen_io_tlb_start
)
218 if (order
!= get_order(bytes
)) {
219 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
220 (PAGE_SIZE
<< order
) >> 20);
221 xen_io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
222 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
225 if (!xen_io_tlb_start
) {
226 m_ret
= XEN_SWIOTLB_ENOMEM
;
230 * And replace that memory with pages under 4GB.
232 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
237 memblock_free(__pa(xen_io_tlb_start
),
240 free_pages((unsigned long)xen_io_tlb_start
, order
);
241 xen_io_tlb_start
= NULL
;
243 m_ret
= XEN_SWIOTLB_EFIXUP
;
247 if (swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
,
249 panic("Cannot allocate SWIOTLB buffer");
252 rc
= swiotlb_late_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
);
255 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
257 swiotlb_set_max_segment(PAGE_SIZE
);
262 xen_io_tlb_nslabs
= max(1024UL, /* Min is 2MB */
263 (xen_io_tlb_nslabs
>> 1));
264 pr_info("Lowering to %luMB\n",
265 (xen_io_tlb_nslabs
<< IO_TLB_SHIFT
) >> 20);
268 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret
), rc
);
270 panic("%s (rc:%d)", xen_swiotlb_error(m_ret
), rc
);
272 free_pages((unsigned long)xen_io_tlb_start
, order
);
277 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
278 dma_addr_t
*dma_handle
, gfp_t flags
,
282 int order
= get_order(size
);
283 u64 dma_mask
= DMA_BIT_MASK(32);
288 * Ignore region specifiers - the kernel's ideas of
289 * pseudo-phys memory layout has nothing to do with the
290 * machine physical layout. We can't allocate highmem
291 * because we can't return a pointer to it.
293 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
295 /* Convert the size to actually allocated. */
296 size
= 1UL << (order
+ XEN_PAGE_SHIFT
);
298 /* On ARM this function returns an ioremap'ped virtual address for
299 * which virt_to_phys doesn't return the corresponding physical
300 * address. In fact on ARM virt_to_phys only works for kernel direct
301 * mapped RAM memory. Also see comment below.
303 ret
= xen_alloc_coherent_pages(hwdev
, size
, dma_handle
, flags
, attrs
);
308 if (hwdev
&& hwdev
->coherent_dma_mask
)
309 dma_mask
= hwdev
->coherent_dma_mask
;
311 /* At this point dma_handle is the dma address, next we are
312 * going to set it to the machine address.
313 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
315 phys
= dma_to_phys(hwdev
, *dma_handle
);
316 dev_addr
= xen_phys_to_dma(hwdev
, phys
);
317 if (((dev_addr
+ size
- 1 <= dma_mask
)) &&
318 !range_straddles_page_boundary(phys
, size
))
319 *dma_handle
= dev_addr
;
321 if (xen_create_contiguous_region(phys
, order
,
322 fls64(dma_mask
), dma_handle
) != 0) {
323 xen_free_coherent_pages(hwdev
, size
, ret
, (dma_addr_t
)phys
, attrs
);
326 *dma_handle
= phys_to_dma(hwdev
, *dma_handle
);
327 SetPageXenRemapped(virt_to_page(ret
));
329 memset(ret
, 0, size
);
334 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
335 dma_addr_t dev_addr
, unsigned long attrs
)
337 int order
= get_order(size
);
339 u64 dma_mask
= DMA_BIT_MASK(32);
342 if (hwdev
&& hwdev
->coherent_dma_mask
)
343 dma_mask
= hwdev
->coherent_dma_mask
;
345 /* do not use virt_to_phys because on ARM it doesn't return you the
346 * physical address */
347 phys
= xen_dma_to_phys(hwdev
, dev_addr
);
349 /* Convert the size to actually allocated. */
350 size
= 1UL << (order
+ XEN_PAGE_SHIFT
);
352 if (is_vmalloc_addr(vaddr
))
353 page
= vmalloc_to_page(vaddr
);
355 page
= virt_to_page(vaddr
);
357 if (!WARN_ON((dev_addr
+ size
- 1 > dma_mask
) ||
358 range_straddles_page_boundary(phys
, size
)) &&
359 TestClearPageXenRemapped(page
))
360 xen_destroy_contiguous_region(phys
, order
);
362 xen_free_coherent_pages(hwdev
, size
, vaddr
, phys_to_dma(hwdev
, phys
),
367 * Map a single buffer of the indicated size for DMA in streaming mode. The
368 * physical address to use is returned.
370 * Once the device is given the dma address, the device owns this memory until
371 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
373 static dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
374 unsigned long offset
, size_t size
,
375 enum dma_data_direction dir
,
378 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
379 dma_addr_t dev_addr
= xen_phys_to_dma(dev
, phys
);
381 BUG_ON(dir
== DMA_NONE
);
383 * If the address happens to be in the device's DMA window,
384 * we can safely return the device addr and not worry about bounce
387 if (dma_capable(dev
, dev_addr
, size
, true) &&
388 !range_straddles_page_boundary(phys
, size
) &&
389 !xen_arch_need_swiotlb(dev
, phys
, dev_addr
) &&
390 swiotlb_force
!= SWIOTLB_FORCE
)
394 * Oh well, have to allocate and map a bounce buffer.
396 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
398 map
= swiotlb_tbl_map_single(dev
, phys
, size
, size
, dir
, attrs
);
399 if (map
== (phys_addr_t
)DMA_MAPPING_ERROR
)
400 return DMA_MAPPING_ERROR
;
403 dev_addr
= xen_phys_to_dma(dev
, map
);
406 * Ensure that the address returned is DMA'ble
408 if (unlikely(!dma_capable(dev
, dev_addr
, size
, true))) {
409 swiotlb_tbl_unmap_single(dev
, map
, size
, size
, dir
,
410 attrs
| DMA_ATTR_SKIP_CPU_SYNC
);
411 return DMA_MAPPING_ERROR
;
415 if (!dev_is_dma_coherent(dev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
)) {
416 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dev_addr
))))
417 arch_sync_dma_for_device(phys
, size
, dir
);
419 xen_dma_sync_for_device(dev
, dev_addr
, size
, dir
);
425 * Unmap a single streaming mode DMA translation. The dma_addr and size must
426 * match what was provided for in a previous xen_swiotlb_map_page call. All
427 * other usages are undefined.
429 * After this call, reads by the cpu to the buffer are guaranteed to see
430 * whatever the device wrote there.
432 static void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
433 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
435 phys_addr_t paddr
= xen_dma_to_phys(hwdev
, dev_addr
);
437 BUG_ON(dir
== DMA_NONE
);
439 if (!dev_is_dma_coherent(hwdev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
)) {
440 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev
, dev_addr
))))
441 arch_sync_dma_for_cpu(paddr
, size
, dir
);
443 xen_dma_sync_for_cpu(hwdev
, dev_addr
, size
, dir
);
446 /* NOTE: We use dev_addr here, not paddr! */
447 if (is_xen_swiotlb_buffer(hwdev
, dev_addr
))
448 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, size
, dir
, attrs
);
452 xen_swiotlb_sync_single_for_cpu(struct device
*dev
, dma_addr_t dma_addr
,
453 size_t size
, enum dma_data_direction dir
)
455 phys_addr_t paddr
= xen_dma_to_phys(dev
, dma_addr
);
457 if (!dev_is_dma_coherent(dev
)) {
458 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dma_addr
))))
459 arch_sync_dma_for_cpu(paddr
, size
, dir
);
461 xen_dma_sync_for_cpu(dev
, dma_addr
, size
, dir
);
464 if (is_xen_swiotlb_buffer(dev
, dma_addr
))
465 swiotlb_tbl_sync_single(dev
, paddr
, size
, dir
, SYNC_FOR_CPU
);
469 xen_swiotlb_sync_single_for_device(struct device
*dev
, dma_addr_t dma_addr
,
470 size_t size
, enum dma_data_direction dir
)
472 phys_addr_t paddr
= xen_dma_to_phys(dev
, dma_addr
);
474 if (is_xen_swiotlb_buffer(dev
, dma_addr
))
475 swiotlb_tbl_sync_single(dev
, paddr
, size
, dir
, SYNC_FOR_DEVICE
);
477 if (!dev_is_dma_coherent(dev
)) {
478 if (pfn_valid(PFN_DOWN(dma_to_phys(dev
, dma_addr
))))
479 arch_sync_dma_for_device(paddr
, size
, dir
);
481 xen_dma_sync_for_device(dev
, dma_addr
, size
, dir
);
486 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
487 * concerning calls here are the same as for swiotlb_unmap_page() above.
490 xen_swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
491 enum dma_data_direction dir
, unsigned long attrs
)
493 struct scatterlist
*sg
;
496 BUG_ON(dir
== DMA_NONE
);
498 for_each_sg(sgl
, sg
, nelems
, i
)
499 xen_swiotlb_unmap_page(hwdev
, sg
->dma_address
, sg_dma_len(sg
),
505 xen_swiotlb_map_sg(struct device
*dev
, struct scatterlist
*sgl
, int nelems
,
506 enum dma_data_direction dir
, unsigned long attrs
)
508 struct scatterlist
*sg
;
511 BUG_ON(dir
== DMA_NONE
);
513 for_each_sg(sgl
, sg
, nelems
, i
) {
514 sg
->dma_address
= xen_swiotlb_map_page(dev
, sg_page(sg
),
515 sg
->offset
, sg
->length
, dir
, attrs
);
516 if (sg
->dma_address
== DMA_MAPPING_ERROR
)
518 sg_dma_len(sg
) = sg
->length
;
523 xen_swiotlb_unmap_sg(dev
, sgl
, i
, dir
, attrs
| DMA_ATTR_SKIP_CPU_SYNC
);
529 xen_swiotlb_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sgl
,
530 int nelems
, enum dma_data_direction dir
)
532 struct scatterlist
*sg
;
535 for_each_sg(sgl
, sg
, nelems
, i
) {
536 xen_swiotlb_sync_single_for_cpu(dev
, sg
->dma_address
,
542 xen_swiotlb_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sgl
,
543 int nelems
, enum dma_data_direction dir
)
545 struct scatterlist
*sg
;
548 for_each_sg(sgl
, sg
, nelems
, i
) {
549 xen_swiotlb_sync_single_for_device(dev
, sg
->dma_address
,
555 * Return whether the given device DMA address mask can be supported
556 * properly. For example, if your device can only drive the low 24-bits
557 * during bus mastering, then you would pass 0x00ffffff as the mask to
561 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
563 return xen_virt_to_bus(hwdev
, xen_io_tlb_end
- 1) <= mask
;
566 const struct dma_map_ops xen_swiotlb_dma_ops
= {
567 .alloc
= xen_swiotlb_alloc_coherent
,
568 .free
= xen_swiotlb_free_coherent
,
569 .sync_single_for_cpu
= xen_swiotlb_sync_single_for_cpu
,
570 .sync_single_for_device
= xen_swiotlb_sync_single_for_device
,
571 .sync_sg_for_cpu
= xen_swiotlb_sync_sg_for_cpu
,
572 .sync_sg_for_device
= xen_swiotlb_sync_sg_for_device
,
573 .map_sg
= xen_swiotlb_map_sg
,
574 .unmap_sg
= xen_swiotlb_unmap_sg
,
575 .map_page
= xen_swiotlb_map_page
,
576 .unmap_page
= xen_swiotlb_unmap_page
,
577 .dma_supported
= xen_swiotlb_dma_supported
,
578 .mmap
= dma_common_mmap
,
579 .get_sgtable
= dma_common_get_sgtable
,
580 .alloc_pages
= dma_common_alloc_pages
,
581 .free_pages
= dma_common_free_pages
,