Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / fs / coredump.c
bloba2f6ecc8e345432990bf4deb902c41104ba54fe5
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
47 #include <asm/tlb.h>
48 #include <asm/exec.h>
50 #include <trace/events/task.h>
51 #include "internal.h"
53 #include <trace/events/sched.h>
55 int core_uses_pid;
56 unsigned int core_pipe_limit;
57 char core_pattern[CORENAME_MAX_SIZE] = "core";
58 static int core_name_size = CORENAME_MAX_SIZE;
60 struct core_name {
61 char *corename;
62 int used, size;
65 /* The maximal length of core_pattern is also specified in sysctl.c */
67 static int expand_corename(struct core_name *cn, int size)
69 char *corename = krealloc(cn->corename, size, GFP_KERNEL);
71 if (!corename)
72 return -ENOMEM;
74 if (size > core_name_size) /* racy but harmless */
75 core_name_size = size;
77 cn->size = ksize(corename);
78 cn->corename = corename;
79 return 0;
82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83 va_list arg)
85 int free, need;
86 va_list arg_copy;
88 again:
89 free = cn->size - cn->used;
91 va_copy(arg_copy, arg);
92 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93 va_end(arg_copy);
95 if (need < free) {
96 cn->used += need;
97 return 0;
100 if (!expand_corename(cn, cn->size + need - free + 1))
101 goto again;
103 return -ENOMEM;
106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
108 va_list arg;
109 int ret;
111 va_start(arg, fmt);
112 ret = cn_vprintf(cn, fmt, arg);
113 va_end(arg);
115 return ret;
118 static __printf(2, 3)
119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
121 int cur = cn->used;
122 va_list arg;
123 int ret;
125 va_start(arg, fmt);
126 ret = cn_vprintf(cn, fmt, arg);
127 va_end(arg);
129 if (ret == 0) {
131 * Ensure that this coredump name component can't cause the
132 * resulting corefile path to consist of a ".." or ".".
134 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135 (cn->used - cur == 2 && cn->corename[cur] == '.'
136 && cn->corename[cur+1] == '.'))
137 cn->corename[cur] = '!';
140 * Empty names are fishy and could be used to create a "//" in a
141 * corefile name, causing the coredump to happen one directory
142 * level too high. Enforce that all components of the core
143 * pattern are at least one character long.
145 if (cn->used == cur)
146 ret = cn_printf(cn, "!");
149 for (; cur < cn->used; ++cur) {
150 if (cn->corename[cur] == '/')
151 cn->corename[cur] = '!';
153 return ret;
156 static int cn_print_exe_file(struct core_name *cn, bool name_only)
158 struct file *exe_file;
159 char *pathbuf, *path, *ptr;
160 int ret;
162 exe_file = get_mm_exe_file(current->mm);
163 if (!exe_file)
164 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
166 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 if (!pathbuf) {
168 ret = -ENOMEM;
169 goto put_exe_file;
172 path = file_path(exe_file, pathbuf, PATH_MAX);
173 if (IS_ERR(path)) {
174 ret = PTR_ERR(path);
175 goto free_buf;
178 if (name_only) {
179 ptr = strrchr(path, '/');
180 if (ptr)
181 path = ptr + 1;
183 ret = cn_esc_printf(cn, "%s", path);
185 free_buf:
186 kfree(pathbuf);
187 put_exe_file:
188 fput(exe_file);
189 return ret;
192 /* format_corename will inspect the pattern parameter, and output a
193 * name into corename, which must have space for at least
194 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
196 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197 size_t **argv, int *argc)
199 const struct cred *cred = current_cred();
200 const char *pat_ptr = core_pattern;
201 int ispipe = (*pat_ptr == '|');
202 bool was_space = false;
203 int pid_in_pattern = 0;
204 int err = 0;
206 cn->used = 0;
207 cn->corename = NULL;
208 if (expand_corename(cn, core_name_size))
209 return -ENOMEM;
210 cn->corename[0] = '\0';
212 if (ispipe) {
213 int argvs = sizeof(core_pattern) / 2;
214 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215 if (!(*argv))
216 return -ENOMEM;
217 (*argv)[(*argc)++] = 0;
218 ++pat_ptr;
219 if (!(*pat_ptr))
220 return -ENOMEM;
223 /* Repeat as long as we have more pattern to process and more output
224 space */
225 while (*pat_ptr) {
227 * Split on spaces before doing template expansion so that
228 * %e and %E don't get split if they have spaces in them
230 if (ispipe) {
231 if (isspace(*pat_ptr)) {
232 if (cn->used != 0)
233 was_space = true;
234 pat_ptr++;
235 continue;
236 } else if (was_space) {
237 was_space = false;
238 err = cn_printf(cn, "%c", '\0');
239 if (err)
240 return err;
241 (*argv)[(*argc)++] = cn->used;
244 if (*pat_ptr != '%') {
245 err = cn_printf(cn, "%c", *pat_ptr++);
246 } else {
247 switch (*++pat_ptr) {
248 /* single % at the end, drop that */
249 case 0:
250 goto out;
251 /* Double percent, output one percent */
252 case '%':
253 err = cn_printf(cn, "%c", '%');
254 break;
255 /* pid */
256 case 'p':
257 pid_in_pattern = 1;
258 err = cn_printf(cn, "%d",
259 task_tgid_vnr(current));
260 break;
261 /* global pid */
262 case 'P':
263 err = cn_printf(cn, "%d",
264 task_tgid_nr(current));
265 break;
266 case 'i':
267 err = cn_printf(cn, "%d",
268 task_pid_vnr(current));
269 break;
270 case 'I':
271 err = cn_printf(cn, "%d",
272 task_pid_nr(current));
273 break;
274 /* uid */
275 case 'u':
276 err = cn_printf(cn, "%u",
277 from_kuid(&init_user_ns,
278 cred->uid));
279 break;
280 /* gid */
281 case 'g':
282 err = cn_printf(cn, "%u",
283 from_kgid(&init_user_ns,
284 cred->gid));
285 break;
286 case 'd':
287 err = cn_printf(cn, "%d",
288 __get_dumpable(cprm->mm_flags));
289 break;
290 /* signal that caused the coredump */
291 case 's':
292 err = cn_printf(cn, "%d",
293 cprm->siginfo->si_signo);
294 break;
295 /* UNIX time of coredump */
296 case 't': {
297 time64_t time;
299 time = ktime_get_real_seconds();
300 err = cn_printf(cn, "%lld", time);
301 break;
303 /* hostname */
304 case 'h':
305 down_read(&uts_sem);
306 err = cn_esc_printf(cn, "%s",
307 utsname()->nodename);
308 up_read(&uts_sem);
309 break;
310 /* executable, could be changed by prctl PR_SET_NAME etc */
311 case 'e':
312 err = cn_esc_printf(cn, "%s", current->comm);
313 break;
314 /* file name of executable */
315 case 'f':
316 err = cn_print_exe_file(cn, true);
317 break;
318 case 'E':
319 err = cn_print_exe_file(cn, false);
320 break;
321 /* core limit size */
322 case 'c':
323 err = cn_printf(cn, "%lu",
324 rlimit(RLIMIT_CORE));
325 break;
326 default:
327 break;
329 ++pat_ptr;
332 if (err)
333 return err;
336 out:
337 /* Backward compatibility with core_uses_pid:
339 * If core_pattern does not include a %p (as is the default)
340 * and core_uses_pid is set, then .%pid will be appended to
341 * the filename. Do not do this for piped commands. */
342 if (!ispipe && !pid_in_pattern && core_uses_pid) {
343 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
344 if (err)
345 return err;
347 return ispipe;
350 static int zap_process(struct task_struct *start, int exit_code, int flags)
352 struct task_struct *t;
353 int nr = 0;
355 /* ignore all signals except SIGKILL, see prepare_signal() */
356 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
357 start->signal->group_exit_code = exit_code;
358 start->signal->group_stop_count = 0;
360 for_each_thread(start, t) {
361 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
362 if (t != current && t->mm) {
363 sigaddset(&t->pending.signal, SIGKILL);
364 signal_wake_up(t, 1);
365 nr++;
369 return nr;
372 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
373 struct core_state *core_state, int exit_code)
375 struct task_struct *g, *p;
376 unsigned long flags;
377 int nr = -EAGAIN;
379 spin_lock_irq(&tsk->sighand->siglock);
380 if (!signal_group_exit(tsk->signal)) {
381 mm->core_state = core_state;
382 tsk->signal->group_exit_task = tsk;
383 nr = zap_process(tsk, exit_code, 0);
384 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
386 spin_unlock_irq(&tsk->sighand->siglock);
387 if (unlikely(nr < 0))
388 return nr;
390 tsk->flags |= PF_DUMPCORE;
391 if (atomic_read(&mm->mm_users) == nr + 1)
392 goto done;
394 * We should find and kill all tasks which use this mm, and we should
395 * count them correctly into ->nr_threads. We don't take tasklist
396 * lock, but this is safe wrt:
398 * fork:
399 * None of sub-threads can fork after zap_process(leader). All
400 * processes which were created before this point should be
401 * visible to zap_threads() because copy_process() adds the new
402 * process to the tail of init_task.tasks list, and lock/unlock
403 * of ->siglock provides a memory barrier.
405 * do_exit:
406 * The caller holds mm->mmap_lock. This means that the task which
407 * uses this mm can't pass exit_mm(), so it can't exit or clear
408 * its ->mm.
410 * de_thread:
411 * It does list_replace_rcu(&leader->tasks, &current->tasks),
412 * we must see either old or new leader, this does not matter.
413 * However, it can change p->sighand, so lock_task_sighand(p)
414 * must be used. Since p->mm != NULL and we hold ->mmap_lock
415 * it can't fail.
417 * Note also that "g" can be the old leader with ->mm == NULL
418 * and already unhashed and thus removed from ->thread_group.
419 * This is OK, __unhash_process()->list_del_rcu() does not
420 * clear the ->next pointer, we will find the new leader via
421 * next_thread().
423 rcu_read_lock();
424 for_each_process(g) {
425 if (g == tsk->group_leader)
426 continue;
427 if (g->flags & PF_KTHREAD)
428 continue;
430 for_each_thread(g, p) {
431 if (unlikely(!p->mm))
432 continue;
433 if (unlikely(p->mm == mm)) {
434 lock_task_sighand(p, &flags);
435 nr += zap_process(p, exit_code,
436 SIGNAL_GROUP_EXIT);
437 unlock_task_sighand(p, &flags);
439 break;
442 rcu_read_unlock();
443 done:
444 atomic_set(&core_state->nr_threads, nr);
445 return nr;
448 static int coredump_wait(int exit_code, struct core_state *core_state)
450 struct task_struct *tsk = current;
451 struct mm_struct *mm = tsk->mm;
452 int core_waiters = -EBUSY;
454 init_completion(&core_state->startup);
455 core_state->dumper.task = tsk;
456 core_state->dumper.next = NULL;
458 if (mmap_write_lock_killable(mm))
459 return -EINTR;
461 if (!mm->core_state)
462 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
463 mmap_write_unlock(mm);
465 if (core_waiters > 0) {
466 struct core_thread *ptr;
468 freezer_do_not_count();
469 wait_for_completion(&core_state->startup);
470 freezer_count();
472 * Wait for all the threads to become inactive, so that
473 * all the thread context (extended register state, like
474 * fpu etc) gets copied to the memory.
476 ptr = core_state->dumper.next;
477 while (ptr != NULL) {
478 wait_task_inactive(ptr->task, 0);
479 ptr = ptr->next;
483 return core_waiters;
486 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
488 struct core_thread *curr, *next;
489 struct task_struct *task;
491 spin_lock_irq(&current->sighand->siglock);
492 if (core_dumped && !__fatal_signal_pending(current))
493 current->signal->group_exit_code |= 0x80;
494 current->signal->group_exit_task = NULL;
495 current->signal->flags = SIGNAL_GROUP_EXIT;
496 spin_unlock_irq(&current->sighand->siglock);
498 next = mm->core_state->dumper.next;
499 while ((curr = next) != NULL) {
500 next = curr->next;
501 task = curr->task;
503 * see exit_mm(), curr->task must not see
504 * ->task == NULL before we read ->next.
506 smp_mb();
507 curr->task = NULL;
508 wake_up_process(task);
511 mm->core_state = NULL;
514 static bool dump_interrupted(void)
517 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
518 * can do try_to_freeze() and check __fatal_signal_pending(),
519 * but then we need to teach dump_write() to restart and clear
520 * TIF_SIGPENDING.
522 return signal_pending(current);
525 static void wait_for_dump_helpers(struct file *file)
527 struct pipe_inode_info *pipe = file->private_data;
529 pipe_lock(pipe);
530 pipe->readers++;
531 pipe->writers--;
532 wake_up_interruptible_sync(&pipe->rd_wait);
533 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
534 pipe_unlock(pipe);
537 * We actually want wait_event_freezable() but then we need
538 * to clear TIF_SIGPENDING and improve dump_interrupted().
540 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
542 pipe_lock(pipe);
543 pipe->readers--;
544 pipe->writers++;
545 pipe_unlock(pipe);
549 * umh_pipe_setup
550 * helper function to customize the process used
551 * to collect the core in userspace. Specifically
552 * it sets up a pipe and installs it as fd 0 (stdin)
553 * for the process. Returns 0 on success, or
554 * PTR_ERR on failure.
555 * Note that it also sets the core limit to 1. This
556 * is a special value that we use to trap recursive
557 * core dumps
559 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
561 struct file *files[2];
562 struct coredump_params *cp = (struct coredump_params *)info->data;
563 int err = create_pipe_files(files, 0);
564 if (err)
565 return err;
567 cp->file = files[1];
569 err = replace_fd(0, files[0], 0);
570 fput(files[0]);
571 /* and disallow core files too */
572 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
574 return err;
577 void do_coredump(const kernel_siginfo_t *siginfo)
579 struct core_state core_state;
580 struct core_name cn;
581 struct mm_struct *mm = current->mm;
582 struct linux_binfmt * binfmt;
583 const struct cred *old_cred;
584 struct cred *cred;
585 int retval = 0;
586 int ispipe;
587 size_t *argv = NULL;
588 int argc = 0;
589 /* require nonrelative corefile path and be extra careful */
590 bool need_suid_safe = false;
591 bool core_dumped = false;
592 static atomic_t core_dump_count = ATOMIC_INIT(0);
593 struct coredump_params cprm = {
594 .siginfo = siginfo,
595 .regs = signal_pt_regs(),
596 .limit = rlimit(RLIMIT_CORE),
598 * We must use the same mm->flags while dumping core to avoid
599 * inconsistency of bit flags, since this flag is not protected
600 * by any locks.
602 .mm_flags = mm->flags,
605 audit_core_dumps(siginfo->si_signo);
607 binfmt = mm->binfmt;
608 if (!binfmt || !binfmt->core_dump)
609 goto fail;
610 if (!__get_dumpable(cprm.mm_flags))
611 goto fail;
613 cred = prepare_creds();
614 if (!cred)
615 goto fail;
617 * We cannot trust fsuid as being the "true" uid of the process
618 * nor do we know its entire history. We only know it was tainted
619 * so we dump it as root in mode 2, and only into a controlled
620 * environment (pipe handler or fully qualified path).
622 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
623 /* Setuid core dump mode */
624 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
625 need_suid_safe = true;
628 retval = coredump_wait(siginfo->si_signo, &core_state);
629 if (retval < 0)
630 goto fail_creds;
632 old_cred = override_creds(cred);
634 ispipe = format_corename(&cn, &cprm, &argv, &argc);
636 if (ispipe) {
637 int argi;
638 int dump_count;
639 char **helper_argv;
640 struct subprocess_info *sub_info;
642 if (ispipe < 0) {
643 printk(KERN_WARNING "format_corename failed\n");
644 printk(KERN_WARNING "Aborting core\n");
645 goto fail_unlock;
648 if (cprm.limit == 1) {
649 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
651 * Normally core limits are irrelevant to pipes, since
652 * we're not writing to the file system, but we use
653 * cprm.limit of 1 here as a special value, this is a
654 * consistent way to catch recursive crashes.
655 * We can still crash if the core_pattern binary sets
656 * RLIM_CORE = !1, but it runs as root, and can do
657 * lots of stupid things.
659 * Note that we use task_tgid_vnr here to grab the pid
660 * of the process group leader. That way we get the
661 * right pid if a thread in a multi-threaded
662 * core_pattern process dies.
664 printk(KERN_WARNING
665 "Process %d(%s) has RLIMIT_CORE set to 1\n",
666 task_tgid_vnr(current), current->comm);
667 printk(KERN_WARNING "Aborting core\n");
668 goto fail_unlock;
670 cprm.limit = RLIM_INFINITY;
672 dump_count = atomic_inc_return(&core_dump_count);
673 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
674 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
675 task_tgid_vnr(current), current->comm);
676 printk(KERN_WARNING "Skipping core dump\n");
677 goto fail_dropcount;
680 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
681 GFP_KERNEL);
682 if (!helper_argv) {
683 printk(KERN_WARNING "%s failed to allocate memory\n",
684 __func__);
685 goto fail_dropcount;
687 for (argi = 0; argi < argc; argi++)
688 helper_argv[argi] = cn.corename + argv[argi];
689 helper_argv[argi] = NULL;
691 retval = -ENOMEM;
692 sub_info = call_usermodehelper_setup(helper_argv[0],
693 helper_argv, NULL, GFP_KERNEL,
694 umh_pipe_setup, NULL, &cprm);
695 if (sub_info)
696 retval = call_usermodehelper_exec(sub_info,
697 UMH_WAIT_EXEC);
699 kfree(helper_argv);
700 if (retval) {
701 printk(KERN_INFO "Core dump to |%s pipe failed\n",
702 cn.corename);
703 goto close_fail;
705 } else {
706 struct inode *inode;
707 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
708 O_LARGEFILE | O_EXCL;
710 if (cprm.limit < binfmt->min_coredump)
711 goto fail_unlock;
713 if (need_suid_safe && cn.corename[0] != '/') {
714 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
715 "to fully qualified path!\n",
716 task_tgid_vnr(current), current->comm);
717 printk(KERN_WARNING "Skipping core dump\n");
718 goto fail_unlock;
722 * Unlink the file if it exists unless this is a SUID
723 * binary - in that case, we're running around with root
724 * privs and don't want to unlink another user's coredump.
726 if (!need_suid_safe) {
728 * If it doesn't exist, that's fine. If there's some
729 * other problem, we'll catch it at the filp_open().
731 do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
735 * There is a race between unlinking and creating the
736 * file, but if that causes an EEXIST here, that's
737 * fine - another process raced with us while creating
738 * the corefile, and the other process won. To userspace,
739 * what matters is that at least one of the two processes
740 * writes its coredump successfully, not which one.
742 if (need_suid_safe) {
744 * Using user namespaces, normal user tasks can change
745 * their current->fs->root to point to arbitrary
746 * directories. Since the intention of the "only dump
747 * with a fully qualified path" rule is to control where
748 * coredumps may be placed using root privileges,
749 * current->fs->root must not be used. Instead, use the
750 * root directory of init_task.
752 struct path root;
754 task_lock(&init_task);
755 get_fs_root(init_task.fs, &root);
756 task_unlock(&init_task);
757 cprm.file = file_open_root(root.dentry, root.mnt,
758 cn.corename, open_flags, 0600);
759 path_put(&root);
760 } else {
761 cprm.file = filp_open(cn.corename, open_flags, 0600);
763 if (IS_ERR(cprm.file))
764 goto fail_unlock;
766 inode = file_inode(cprm.file);
767 if (inode->i_nlink > 1)
768 goto close_fail;
769 if (d_unhashed(cprm.file->f_path.dentry))
770 goto close_fail;
772 * AK: actually i see no reason to not allow this for named
773 * pipes etc, but keep the previous behaviour for now.
775 if (!S_ISREG(inode->i_mode))
776 goto close_fail;
778 * Don't dump core if the filesystem changed owner or mode
779 * of the file during file creation. This is an issue when
780 * a process dumps core while its cwd is e.g. on a vfat
781 * filesystem.
783 if (!uid_eq(inode->i_uid, current_fsuid()))
784 goto close_fail;
785 if ((inode->i_mode & 0677) != 0600)
786 goto close_fail;
787 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
788 goto close_fail;
789 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
790 goto close_fail;
793 /* get us an unshared descriptor table; almost always a no-op */
794 /* The cell spufs coredump code reads the file descriptor tables */
795 retval = unshare_files();
796 if (retval)
797 goto close_fail;
798 if (!dump_interrupted()) {
800 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
801 * have this set to NULL.
803 if (!cprm.file) {
804 pr_info("Core dump to |%s disabled\n", cn.corename);
805 goto close_fail;
807 file_start_write(cprm.file);
808 core_dumped = binfmt->core_dump(&cprm);
809 file_end_write(cprm.file);
811 if (ispipe && core_pipe_limit)
812 wait_for_dump_helpers(cprm.file);
813 close_fail:
814 if (cprm.file)
815 filp_close(cprm.file, NULL);
816 fail_dropcount:
817 if (ispipe)
818 atomic_dec(&core_dump_count);
819 fail_unlock:
820 kfree(argv);
821 kfree(cn.corename);
822 coredump_finish(mm, core_dumped);
823 revert_creds(old_cred);
824 fail_creds:
825 put_cred(cred);
826 fail:
827 return;
831 * Core dumping helper functions. These are the only things you should
832 * do on a core-file: use only these functions to write out all the
833 * necessary info.
835 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
837 struct file *file = cprm->file;
838 loff_t pos = file->f_pos;
839 ssize_t n;
840 if (cprm->written + nr > cprm->limit)
841 return 0;
844 if (dump_interrupted())
845 return 0;
846 n = __kernel_write(file, addr, nr, &pos);
847 if (n != nr)
848 return 0;
849 file->f_pos = pos;
850 cprm->written += n;
851 cprm->pos += n;
853 return 1;
855 EXPORT_SYMBOL(dump_emit);
857 int dump_skip(struct coredump_params *cprm, size_t nr)
859 static char zeroes[PAGE_SIZE];
860 struct file *file = cprm->file;
861 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
862 if (dump_interrupted() ||
863 file->f_op->llseek(file, nr, SEEK_CUR) < 0)
864 return 0;
865 cprm->pos += nr;
866 return 1;
867 } else {
868 while (nr > PAGE_SIZE) {
869 if (!dump_emit(cprm, zeroes, PAGE_SIZE))
870 return 0;
871 nr -= PAGE_SIZE;
873 return dump_emit(cprm, zeroes, nr);
876 EXPORT_SYMBOL(dump_skip);
878 #ifdef CONFIG_ELF_CORE
879 int dump_user_range(struct coredump_params *cprm, unsigned long start,
880 unsigned long len)
882 unsigned long addr;
884 for (addr = start; addr < start + len; addr += PAGE_SIZE) {
885 struct page *page;
886 int stop;
889 * To avoid having to allocate page tables for virtual address
890 * ranges that have never been used yet, and also to make it
891 * easy to generate sparse core files, use a helper that returns
892 * NULL when encountering an empty page table entry that would
893 * otherwise have been filled with the zero page.
895 page = get_dump_page(addr);
896 if (page) {
897 void *kaddr = kmap(page);
899 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
900 kunmap(page);
901 put_page(page);
902 } else {
903 stop = !dump_skip(cprm, PAGE_SIZE);
905 if (stop)
906 return 0;
908 return 1;
910 #endif
912 int dump_align(struct coredump_params *cprm, int align)
914 unsigned mod = cprm->pos & (align - 1);
915 if (align & (align - 1))
916 return 0;
917 return mod ? dump_skip(cprm, align - mod) : 1;
919 EXPORT_SYMBOL(dump_align);
922 * Ensures that file size is big enough to contain the current file
923 * postion. This prevents gdb from complaining about a truncated file
924 * if the last "write" to the file was dump_skip.
926 void dump_truncate(struct coredump_params *cprm)
928 struct file *file = cprm->file;
929 loff_t offset;
931 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
932 offset = file->f_op->llseek(file, 0, SEEK_CUR);
933 if (i_size_read(file->f_mapping->host) < offset)
934 do_truncate(file->f_path.dentry, offset, 0, file);
937 EXPORT_SYMBOL(dump_truncate);
940 * The purpose of always_dump_vma() is to make sure that special kernel mappings
941 * that are useful for post-mortem analysis are included in every core dump.
942 * In that way we ensure that the core dump is fully interpretable later
943 * without matching up the same kernel and hardware config to see what PC values
944 * meant. These special mappings include - vDSO, vsyscall, and other
945 * architecture specific mappings
947 static bool always_dump_vma(struct vm_area_struct *vma)
949 /* Any vsyscall mappings? */
950 if (vma == get_gate_vma(vma->vm_mm))
951 return true;
954 * Assume that all vmas with a .name op should always be dumped.
955 * If this changes, a new vm_ops field can easily be added.
957 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
958 return true;
961 * arch_vma_name() returns non-NULL for special architecture mappings,
962 * such as vDSO sections.
964 if (arch_vma_name(vma))
965 return true;
967 return false;
971 * Decide how much of @vma's contents should be included in a core dump.
973 static unsigned long vma_dump_size(struct vm_area_struct *vma,
974 unsigned long mm_flags)
976 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
978 /* always dump the vdso and vsyscall sections */
979 if (always_dump_vma(vma))
980 goto whole;
982 if (vma->vm_flags & VM_DONTDUMP)
983 return 0;
985 /* support for DAX */
986 if (vma_is_dax(vma)) {
987 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
988 goto whole;
989 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
990 goto whole;
991 return 0;
994 /* Hugetlb memory check */
995 if (is_vm_hugetlb_page(vma)) {
996 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
997 goto whole;
998 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
999 goto whole;
1000 return 0;
1003 /* Do not dump I/O mapped devices or special mappings */
1004 if (vma->vm_flags & VM_IO)
1005 return 0;
1007 /* By default, dump shared memory if mapped from an anonymous file. */
1008 if (vma->vm_flags & VM_SHARED) {
1009 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1010 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1011 goto whole;
1012 return 0;
1015 /* Dump segments that have been written to. */
1016 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1017 goto whole;
1018 if (vma->vm_file == NULL)
1019 return 0;
1021 if (FILTER(MAPPED_PRIVATE))
1022 goto whole;
1025 * If this is the beginning of an executable file mapping,
1026 * dump the first page to aid in determining what was mapped here.
1028 if (FILTER(ELF_HEADERS) &&
1029 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
1030 (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1031 return PAGE_SIZE;
1033 #undef FILTER
1035 return 0;
1037 whole:
1038 return vma->vm_end - vma->vm_start;
1041 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1042 struct vm_area_struct *gate_vma)
1044 struct vm_area_struct *ret = tsk->mm->mmap;
1046 if (ret)
1047 return ret;
1048 return gate_vma;
1052 * Helper function for iterating across a vma list. It ensures that the caller
1053 * will visit `gate_vma' prior to terminating the search.
1055 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1056 struct vm_area_struct *gate_vma)
1058 struct vm_area_struct *ret;
1060 ret = this_vma->vm_next;
1061 if (ret)
1062 return ret;
1063 if (this_vma == gate_vma)
1064 return NULL;
1065 return gate_vma;
1069 * Under the mmap_lock, take a snapshot of relevant information about the task's
1070 * VMAs.
1072 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1073 struct core_vma_metadata **vma_meta,
1074 size_t *vma_data_size_ptr)
1076 struct vm_area_struct *vma, *gate_vma;
1077 struct mm_struct *mm = current->mm;
1078 int i;
1079 size_t vma_data_size = 0;
1082 * Once the stack expansion code is fixed to not change VMA bounds
1083 * under mmap_lock in read mode, this can be changed to take the
1084 * mmap_lock in read mode.
1086 if (mmap_write_lock_killable(mm))
1087 return -EINTR;
1089 gate_vma = get_gate_vma(mm);
1090 *vma_count = mm->map_count + (gate_vma ? 1 : 0);
1092 *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1093 if (!*vma_meta) {
1094 mmap_write_unlock(mm);
1095 return -ENOMEM;
1098 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1099 vma = next_vma(vma, gate_vma), i++) {
1100 struct core_vma_metadata *m = (*vma_meta) + i;
1102 m->start = vma->vm_start;
1103 m->end = vma->vm_end;
1104 m->flags = vma->vm_flags;
1105 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1107 vma_data_size += m->dump_size;
1110 mmap_write_unlock(mm);
1112 if (WARN_ON(i != *vma_count))
1113 return -EFAULT;
1115 *vma_data_size_ptr = vma_data_size;
1116 return 0;