Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / fs / f2fs / segment.c
blobdeca74cb17dfd8d3fd206f72c311aa165b12c87c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
45 return tmp;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
54 int num = 0;
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
103 if (offset >= size)
104 return size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
109 while (1) {
110 if (*p == 0)
111 goto pass;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
139 if (offset >= size)
140 return size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
149 tmp = __reverse_ulong((unsigned char *)p);
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (f2fs_lfs_mode(sbi))
176 return false;
177 if (sbi->gc_mode == GC_URGENT_HIGH)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct inmem_pages *new;
190 f2fs_trace_pid(page);
192 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
207 trace_f2fs_register_inmem_page(page, INMEM);
210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224 if (trylock) {
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC,
249 DEFAULT_IO_TIMEOUT);
250 cond_resched();
251 goto retry;
253 err = -EAGAIN;
254 goto next;
257 err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
263 if (cur->old_addr == NEW_ADDR) {
264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 } else
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 cur->old_addr, ni.version, true, true);
269 f2fs_put_dnode(&dn);
271 next:
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop || recover) {
274 ClearPageUptodate(page);
275 clear_cold_data(page);
277 f2fs_clear_page_private(page);
278 f2fs_put_page(page, 1);
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
284 return err;
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294 next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313 skip:
314 iput(inode);
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
322 goto next;
325 void f2fs_drop_inmem_pages(struct inode *inode)
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
330 while (!list_empty(&fi->inmem_pages)) {
331 mutex_lock(&fi->inmem_lock);
332 __revoke_inmem_pages(inode, &fi->inmem_pages,
333 true, false, true);
334 mutex_unlock(&fi->inmem_lock);
337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
395 INIT_LIST_HEAD(&revoke_list);
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
411 retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC,
420 DEFAULT_IO_TIMEOUT);
421 cond_resched();
422 goto retry;
424 unlock_page(page);
425 break;
427 /* record old blkaddr for revoking */
428 cur->old_addr = fio.old_blkaddr;
429 submit_bio = true;
431 unlock_page(page);
432 list_move_tail(&cur->list, &revoke_list);
435 if (submit_bio)
436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
438 if (err) {
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
447 err = __revoke_inmem_pages(inode, &revoke_list,
448 false, true, false);
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode, &fi->inmem_pages,
452 true, false, false);
453 } else {
454 __revoke_inmem_pages(inode, &revoke_list,
455 false, false, false);
458 return err;
461 int f2fs_commit_inmem_pages(struct inode *inode)
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct f2fs_inode_info *fi = F2FS_I(inode);
465 int err;
467 f2fs_balance_fs(sbi, true);
469 down_write(&fi->i_gc_rwsem[WRITE]);
471 f2fs_lock_op(sbi);
472 set_inode_flag(inode, FI_ATOMIC_COMMIT);
474 mutex_lock(&fi->inmem_lock);
475 err = __f2fs_commit_inmem_pages(inode);
476 mutex_unlock(&fi->inmem_lock);
478 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
480 f2fs_unlock_op(sbi);
481 up_write(&fi->i_gc_rwsem[WRITE]);
483 return err;
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 f2fs_stop_checkpoint(sbi, false);
497 /* balance_fs_bg is able to be pending */
498 if (need && excess_cached_nats(sbi))
499 f2fs_balance_fs_bg(sbi, false);
501 if (!f2fs_is_checkpoint_ready(sbi))
502 return;
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
508 if (has_not_enough_free_secs(sbi, 0, 0)) {
509 down_write(&sbi->gc_lock);
510 f2fs_gc(sbi, false, false, NULL_SEGNO);
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 return;
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
527 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 else
530 f2fs_build_free_nids(sbi, false, false);
532 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
533 excess_prefree_segs(sbi))
534 goto do_sync;
536 /* there is background inflight IO or foreground operation recently */
537 if (is_inflight_io(sbi, REQ_TIME) ||
538 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
539 return;
541 /* exceed periodical checkpoint timeout threshold */
542 if (f2fs_time_over(sbi, CP_TIME))
543 goto do_sync;
545 /* checkpoint is the only way to shrink partial cached entries */
546 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
547 f2fs_available_free_memory(sbi, INO_ENTRIES))
548 return;
550 do_sync:
551 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
552 struct blk_plug plug;
554 mutex_lock(&sbi->flush_lock);
556 blk_start_plug(&plug);
557 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
558 blk_finish_plug(&plug);
560 mutex_unlock(&sbi->flush_lock);
562 f2fs_sync_fs(sbi->sb, true);
563 stat_inc_bg_cp_count(sbi->stat_info);
566 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
567 struct block_device *bdev)
569 struct bio *bio;
570 int ret;
572 bio = f2fs_bio_alloc(sbi, 0, false);
573 if (!bio)
574 return -ENOMEM;
576 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
577 bio_set_dev(bio, bdev);
578 ret = submit_bio_wait(bio);
579 bio_put(bio);
581 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
582 test_opt(sbi, FLUSH_MERGE), ret);
583 return ret;
586 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
588 int ret = 0;
589 int i;
591 if (!f2fs_is_multi_device(sbi))
592 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
594 for (i = 0; i < sbi->s_ndevs; i++) {
595 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
596 continue;
597 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
598 if (ret)
599 break;
601 return ret;
604 static int issue_flush_thread(void *data)
606 struct f2fs_sb_info *sbi = data;
607 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
608 wait_queue_head_t *q = &fcc->flush_wait_queue;
609 repeat:
610 if (kthread_should_stop())
611 return 0;
613 sb_start_intwrite(sbi->sb);
615 if (!llist_empty(&fcc->issue_list)) {
616 struct flush_cmd *cmd, *next;
617 int ret;
619 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
620 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
622 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
624 ret = submit_flush_wait(sbi, cmd->ino);
625 atomic_inc(&fcc->issued_flush);
627 llist_for_each_entry_safe(cmd, next,
628 fcc->dispatch_list, llnode) {
629 cmd->ret = ret;
630 complete(&cmd->wait);
632 fcc->dispatch_list = NULL;
635 sb_end_intwrite(sbi->sb);
637 wait_event_interruptible(*q,
638 kthread_should_stop() || !llist_empty(&fcc->issue_list));
639 goto repeat;
642 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
644 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
645 struct flush_cmd cmd;
646 int ret;
648 if (test_opt(sbi, NOBARRIER))
649 return 0;
651 if (!test_opt(sbi, FLUSH_MERGE)) {
652 atomic_inc(&fcc->queued_flush);
653 ret = submit_flush_wait(sbi, ino);
654 atomic_dec(&fcc->queued_flush);
655 atomic_inc(&fcc->issued_flush);
656 return ret;
659 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
660 f2fs_is_multi_device(sbi)) {
661 ret = submit_flush_wait(sbi, ino);
662 atomic_dec(&fcc->queued_flush);
664 atomic_inc(&fcc->issued_flush);
665 return ret;
668 cmd.ino = ino;
669 init_completion(&cmd.wait);
671 llist_add(&cmd.llnode, &fcc->issue_list);
673 /* update issue_list before we wake up issue_flush thread */
674 smp_mb();
676 if (waitqueue_active(&fcc->flush_wait_queue))
677 wake_up(&fcc->flush_wait_queue);
679 if (fcc->f2fs_issue_flush) {
680 wait_for_completion(&cmd.wait);
681 atomic_dec(&fcc->queued_flush);
682 } else {
683 struct llist_node *list;
685 list = llist_del_all(&fcc->issue_list);
686 if (!list) {
687 wait_for_completion(&cmd.wait);
688 atomic_dec(&fcc->queued_flush);
689 } else {
690 struct flush_cmd *tmp, *next;
692 ret = submit_flush_wait(sbi, ino);
694 llist_for_each_entry_safe(tmp, next, list, llnode) {
695 if (tmp == &cmd) {
696 cmd.ret = ret;
697 atomic_dec(&fcc->queued_flush);
698 continue;
700 tmp->ret = ret;
701 complete(&tmp->wait);
706 return cmd.ret;
709 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
711 dev_t dev = sbi->sb->s_bdev->bd_dev;
712 struct flush_cmd_control *fcc;
713 int err = 0;
715 if (SM_I(sbi)->fcc_info) {
716 fcc = SM_I(sbi)->fcc_info;
717 if (fcc->f2fs_issue_flush)
718 return err;
719 goto init_thread;
722 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
723 if (!fcc)
724 return -ENOMEM;
725 atomic_set(&fcc->issued_flush, 0);
726 atomic_set(&fcc->queued_flush, 0);
727 init_waitqueue_head(&fcc->flush_wait_queue);
728 init_llist_head(&fcc->issue_list);
729 SM_I(sbi)->fcc_info = fcc;
730 if (!test_opt(sbi, FLUSH_MERGE))
731 return err;
733 init_thread:
734 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
735 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
736 if (IS_ERR(fcc->f2fs_issue_flush)) {
737 err = PTR_ERR(fcc->f2fs_issue_flush);
738 kfree(fcc);
739 SM_I(sbi)->fcc_info = NULL;
740 return err;
743 return err;
746 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
748 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
750 if (fcc && fcc->f2fs_issue_flush) {
751 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
753 fcc->f2fs_issue_flush = NULL;
754 kthread_stop(flush_thread);
756 if (free) {
757 kfree(fcc);
758 SM_I(sbi)->fcc_info = NULL;
762 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
764 int ret = 0, i;
766 if (!f2fs_is_multi_device(sbi))
767 return 0;
769 if (test_opt(sbi, NOBARRIER))
770 return 0;
772 for (i = 1; i < sbi->s_ndevs; i++) {
773 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
774 continue;
775 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
776 if (ret)
777 break;
779 spin_lock(&sbi->dev_lock);
780 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
781 spin_unlock(&sbi->dev_lock);
784 return ret;
787 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
788 enum dirty_type dirty_type)
790 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 /* need not be added */
793 if (IS_CURSEG(sbi, segno))
794 return;
796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
797 dirty_i->nr_dirty[dirty_type]++;
799 if (dirty_type == DIRTY) {
800 struct seg_entry *sentry = get_seg_entry(sbi, segno);
801 enum dirty_type t = sentry->type;
803 if (unlikely(t >= DIRTY)) {
804 f2fs_bug_on(sbi, 1);
805 return;
807 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
808 dirty_i->nr_dirty[t]++;
810 if (__is_large_section(sbi)) {
811 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
812 block_t valid_blocks =
813 get_valid_blocks(sbi, segno, true);
815 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
816 valid_blocks == BLKS_PER_SEC(sbi)));
818 if (!IS_CURSEC(sbi, secno))
819 set_bit(secno, dirty_i->dirty_secmap);
824 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
825 enum dirty_type dirty_type)
827 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
828 block_t valid_blocks;
830 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
831 dirty_i->nr_dirty[dirty_type]--;
833 if (dirty_type == DIRTY) {
834 struct seg_entry *sentry = get_seg_entry(sbi, segno);
835 enum dirty_type t = sentry->type;
837 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
838 dirty_i->nr_dirty[t]--;
840 valid_blocks = get_valid_blocks(sbi, segno, true);
841 if (valid_blocks == 0) {
842 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
843 dirty_i->victim_secmap);
844 #ifdef CONFIG_F2FS_CHECK_FS
845 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
846 #endif
848 if (__is_large_section(sbi)) {
849 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
851 if (!valid_blocks ||
852 valid_blocks == BLKS_PER_SEC(sbi)) {
853 clear_bit(secno, dirty_i->dirty_secmap);
854 return;
857 if (!IS_CURSEC(sbi, secno))
858 set_bit(secno, dirty_i->dirty_secmap);
864 * Should not occur error such as -ENOMEM.
865 * Adding dirty entry into seglist is not critical operation.
866 * If a given segment is one of current working segments, it won't be added.
868 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
870 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
871 unsigned short valid_blocks, ckpt_valid_blocks;
872 unsigned int usable_blocks;
874 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
875 return;
877 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
878 mutex_lock(&dirty_i->seglist_lock);
880 valid_blocks = get_valid_blocks(sbi, segno, false);
881 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
883 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
884 ckpt_valid_blocks == usable_blocks)) {
885 __locate_dirty_segment(sbi, segno, PRE);
886 __remove_dirty_segment(sbi, segno, DIRTY);
887 } else if (valid_blocks < usable_blocks) {
888 __locate_dirty_segment(sbi, segno, DIRTY);
889 } else {
890 /* Recovery routine with SSR needs this */
891 __remove_dirty_segment(sbi, segno, DIRTY);
894 mutex_unlock(&dirty_i->seglist_lock);
897 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
898 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
901 unsigned int segno;
903 mutex_lock(&dirty_i->seglist_lock);
904 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
905 if (get_valid_blocks(sbi, segno, false))
906 continue;
907 if (IS_CURSEG(sbi, segno))
908 continue;
909 __locate_dirty_segment(sbi, segno, PRE);
910 __remove_dirty_segment(sbi, segno, DIRTY);
912 mutex_unlock(&dirty_i->seglist_lock);
915 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
917 int ovp_hole_segs =
918 (overprovision_segments(sbi) - reserved_segments(sbi));
919 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
920 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
921 block_t holes[2] = {0, 0}; /* DATA and NODE */
922 block_t unusable;
923 struct seg_entry *se;
924 unsigned int segno;
926 mutex_lock(&dirty_i->seglist_lock);
927 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
928 se = get_seg_entry(sbi, segno);
929 if (IS_NODESEG(se->type))
930 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
931 se->valid_blocks;
932 else
933 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
934 se->valid_blocks;
936 mutex_unlock(&dirty_i->seglist_lock);
938 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
939 if (unusable > ovp_holes)
940 return unusable - ovp_holes;
941 return 0;
944 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
946 int ovp_hole_segs =
947 (overprovision_segments(sbi) - reserved_segments(sbi));
948 if (unusable > F2FS_OPTION(sbi).unusable_cap)
949 return -EAGAIN;
950 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
951 dirty_segments(sbi) > ovp_hole_segs)
952 return -EAGAIN;
953 return 0;
956 /* This is only used by SBI_CP_DISABLED */
957 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
959 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
960 unsigned int segno = 0;
962 mutex_lock(&dirty_i->seglist_lock);
963 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
964 if (get_valid_blocks(sbi, segno, false))
965 continue;
966 if (get_ckpt_valid_blocks(sbi, segno))
967 continue;
968 mutex_unlock(&dirty_i->seglist_lock);
969 return segno;
971 mutex_unlock(&dirty_i->seglist_lock);
972 return NULL_SEGNO;
975 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
976 struct block_device *bdev, block_t lstart,
977 block_t start, block_t len)
979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
980 struct list_head *pend_list;
981 struct discard_cmd *dc;
983 f2fs_bug_on(sbi, !len);
985 pend_list = &dcc->pend_list[plist_idx(len)];
987 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
988 INIT_LIST_HEAD(&dc->list);
989 dc->bdev = bdev;
990 dc->lstart = lstart;
991 dc->start = start;
992 dc->len = len;
993 dc->ref = 0;
994 dc->state = D_PREP;
995 dc->queued = 0;
996 dc->error = 0;
997 init_completion(&dc->wait);
998 list_add_tail(&dc->list, pend_list);
999 spin_lock_init(&dc->lock);
1000 dc->bio_ref = 0;
1001 atomic_inc(&dcc->discard_cmd_cnt);
1002 dcc->undiscard_blks += len;
1004 return dc;
1007 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1008 struct block_device *bdev, block_t lstart,
1009 block_t start, block_t len,
1010 struct rb_node *parent, struct rb_node **p,
1011 bool leftmost)
1013 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1014 struct discard_cmd *dc;
1016 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1018 rb_link_node(&dc->rb_node, parent, p);
1019 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1021 return dc;
1024 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1025 struct discard_cmd *dc)
1027 if (dc->state == D_DONE)
1028 atomic_sub(dc->queued, &dcc->queued_discard);
1030 list_del(&dc->list);
1031 rb_erase_cached(&dc->rb_node, &dcc->root);
1032 dcc->undiscard_blks -= dc->len;
1034 kmem_cache_free(discard_cmd_slab, dc);
1036 atomic_dec(&dcc->discard_cmd_cnt);
1039 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1040 struct discard_cmd *dc)
1042 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1043 unsigned long flags;
1045 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1047 spin_lock_irqsave(&dc->lock, flags);
1048 if (dc->bio_ref) {
1049 spin_unlock_irqrestore(&dc->lock, flags);
1050 return;
1052 spin_unlock_irqrestore(&dc->lock, flags);
1054 f2fs_bug_on(sbi, dc->ref);
1056 if (dc->error == -EOPNOTSUPP)
1057 dc->error = 0;
1059 if (dc->error)
1060 printk_ratelimited(
1061 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1062 KERN_INFO, sbi->sb->s_id,
1063 dc->lstart, dc->start, dc->len, dc->error);
1064 __detach_discard_cmd(dcc, dc);
1067 static void f2fs_submit_discard_endio(struct bio *bio)
1069 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1070 unsigned long flags;
1072 spin_lock_irqsave(&dc->lock, flags);
1073 if (!dc->error)
1074 dc->error = blk_status_to_errno(bio->bi_status);
1075 dc->bio_ref--;
1076 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1077 dc->state = D_DONE;
1078 complete_all(&dc->wait);
1080 spin_unlock_irqrestore(&dc->lock, flags);
1081 bio_put(bio);
1084 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1085 block_t start, block_t end)
1087 #ifdef CONFIG_F2FS_CHECK_FS
1088 struct seg_entry *sentry;
1089 unsigned int segno;
1090 block_t blk = start;
1091 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1092 unsigned long *map;
1094 while (blk < end) {
1095 segno = GET_SEGNO(sbi, blk);
1096 sentry = get_seg_entry(sbi, segno);
1097 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1099 if (end < START_BLOCK(sbi, segno + 1))
1100 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1101 else
1102 size = max_blocks;
1103 map = (unsigned long *)(sentry->cur_valid_map);
1104 offset = __find_rev_next_bit(map, size, offset);
1105 f2fs_bug_on(sbi, offset != size);
1106 blk = START_BLOCK(sbi, segno + 1);
1108 #endif
1111 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1112 struct discard_policy *dpolicy,
1113 int discard_type, unsigned int granularity)
1115 /* common policy */
1116 dpolicy->type = discard_type;
1117 dpolicy->sync = true;
1118 dpolicy->ordered = false;
1119 dpolicy->granularity = granularity;
1121 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1122 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1123 dpolicy->timeout = false;
1125 if (discard_type == DPOLICY_BG) {
1126 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1127 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1128 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1129 dpolicy->io_aware = true;
1130 dpolicy->sync = false;
1131 dpolicy->ordered = true;
1132 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1133 dpolicy->granularity = 1;
1134 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1136 } else if (discard_type == DPOLICY_FORCE) {
1137 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1138 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1139 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1140 dpolicy->io_aware = false;
1141 } else if (discard_type == DPOLICY_FSTRIM) {
1142 dpolicy->io_aware = false;
1143 } else if (discard_type == DPOLICY_UMOUNT) {
1144 dpolicy->io_aware = false;
1145 /* we need to issue all to keep CP_TRIMMED_FLAG */
1146 dpolicy->granularity = 1;
1147 dpolicy->timeout = true;
1151 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1152 struct block_device *bdev, block_t lstart,
1153 block_t start, block_t len);
1154 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1155 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1156 struct discard_policy *dpolicy,
1157 struct discard_cmd *dc,
1158 unsigned int *issued)
1160 struct block_device *bdev = dc->bdev;
1161 struct request_queue *q = bdev_get_queue(bdev);
1162 unsigned int max_discard_blocks =
1163 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1164 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1165 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1166 &(dcc->fstrim_list) : &(dcc->wait_list);
1167 int flag = dpolicy->sync ? REQ_SYNC : 0;
1168 block_t lstart, start, len, total_len;
1169 int err = 0;
1171 if (dc->state != D_PREP)
1172 return 0;
1174 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1175 return 0;
1177 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1179 lstart = dc->lstart;
1180 start = dc->start;
1181 len = dc->len;
1182 total_len = len;
1184 dc->len = 0;
1186 while (total_len && *issued < dpolicy->max_requests && !err) {
1187 struct bio *bio = NULL;
1188 unsigned long flags;
1189 bool last = true;
1191 if (len > max_discard_blocks) {
1192 len = max_discard_blocks;
1193 last = false;
1196 (*issued)++;
1197 if (*issued == dpolicy->max_requests)
1198 last = true;
1200 dc->len += len;
1202 if (time_to_inject(sbi, FAULT_DISCARD)) {
1203 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1204 err = -EIO;
1205 goto submit;
1207 err = __blkdev_issue_discard(bdev,
1208 SECTOR_FROM_BLOCK(start),
1209 SECTOR_FROM_BLOCK(len),
1210 GFP_NOFS, 0, &bio);
1211 submit:
1212 if (err) {
1213 spin_lock_irqsave(&dc->lock, flags);
1214 if (dc->state == D_PARTIAL)
1215 dc->state = D_SUBMIT;
1216 spin_unlock_irqrestore(&dc->lock, flags);
1218 break;
1221 f2fs_bug_on(sbi, !bio);
1224 * should keep before submission to avoid D_DONE
1225 * right away
1227 spin_lock_irqsave(&dc->lock, flags);
1228 if (last)
1229 dc->state = D_SUBMIT;
1230 else
1231 dc->state = D_PARTIAL;
1232 dc->bio_ref++;
1233 spin_unlock_irqrestore(&dc->lock, flags);
1235 atomic_inc(&dcc->queued_discard);
1236 dc->queued++;
1237 list_move_tail(&dc->list, wait_list);
1239 /* sanity check on discard range */
1240 __check_sit_bitmap(sbi, lstart, lstart + len);
1242 bio->bi_private = dc;
1243 bio->bi_end_io = f2fs_submit_discard_endio;
1244 bio->bi_opf |= flag;
1245 submit_bio(bio);
1247 atomic_inc(&dcc->issued_discard);
1249 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1251 lstart += len;
1252 start += len;
1253 total_len -= len;
1254 len = total_len;
1257 if (!err && len) {
1258 dcc->undiscard_blks -= len;
1259 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1261 return err;
1264 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1265 struct block_device *bdev, block_t lstart,
1266 block_t start, block_t len,
1267 struct rb_node **insert_p,
1268 struct rb_node *insert_parent)
1270 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1271 struct rb_node **p;
1272 struct rb_node *parent = NULL;
1273 bool leftmost = true;
1275 if (insert_p && insert_parent) {
1276 parent = insert_parent;
1277 p = insert_p;
1278 goto do_insert;
1281 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1282 lstart, &leftmost);
1283 do_insert:
1284 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1285 p, leftmost);
1288 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1289 struct discard_cmd *dc)
1291 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1294 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1295 struct discard_cmd *dc, block_t blkaddr)
1297 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1298 struct discard_info di = dc->di;
1299 bool modified = false;
1301 if (dc->state == D_DONE || dc->len == 1) {
1302 __remove_discard_cmd(sbi, dc);
1303 return;
1306 dcc->undiscard_blks -= di.len;
1308 if (blkaddr > di.lstart) {
1309 dc->len = blkaddr - dc->lstart;
1310 dcc->undiscard_blks += dc->len;
1311 __relocate_discard_cmd(dcc, dc);
1312 modified = true;
1315 if (blkaddr < di.lstart + di.len - 1) {
1316 if (modified) {
1317 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1318 di.start + blkaddr + 1 - di.lstart,
1319 di.lstart + di.len - 1 - blkaddr,
1320 NULL, NULL);
1321 } else {
1322 dc->lstart++;
1323 dc->len--;
1324 dc->start++;
1325 dcc->undiscard_blks += dc->len;
1326 __relocate_discard_cmd(dcc, dc);
1331 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1332 struct block_device *bdev, block_t lstart,
1333 block_t start, block_t len)
1335 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1336 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1337 struct discard_cmd *dc;
1338 struct discard_info di = {0};
1339 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1340 struct request_queue *q = bdev_get_queue(bdev);
1341 unsigned int max_discard_blocks =
1342 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1343 block_t end = lstart + len;
1345 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1346 NULL, lstart,
1347 (struct rb_entry **)&prev_dc,
1348 (struct rb_entry **)&next_dc,
1349 &insert_p, &insert_parent, true, NULL);
1350 if (dc)
1351 prev_dc = dc;
1353 if (!prev_dc) {
1354 di.lstart = lstart;
1355 di.len = next_dc ? next_dc->lstart - lstart : len;
1356 di.len = min(di.len, len);
1357 di.start = start;
1360 while (1) {
1361 struct rb_node *node;
1362 bool merged = false;
1363 struct discard_cmd *tdc = NULL;
1365 if (prev_dc) {
1366 di.lstart = prev_dc->lstart + prev_dc->len;
1367 if (di.lstart < lstart)
1368 di.lstart = lstart;
1369 if (di.lstart >= end)
1370 break;
1372 if (!next_dc || next_dc->lstart > end)
1373 di.len = end - di.lstart;
1374 else
1375 di.len = next_dc->lstart - di.lstart;
1376 di.start = start + di.lstart - lstart;
1379 if (!di.len)
1380 goto next;
1382 if (prev_dc && prev_dc->state == D_PREP &&
1383 prev_dc->bdev == bdev &&
1384 __is_discard_back_mergeable(&di, &prev_dc->di,
1385 max_discard_blocks)) {
1386 prev_dc->di.len += di.len;
1387 dcc->undiscard_blks += di.len;
1388 __relocate_discard_cmd(dcc, prev_dc);
1389 di = prev_dc->di;
1390 tdc = prev_dc;
1391 merged = true;
1394 if (next_dc && next_dc->state == D_PREP &&
1395 next_dc->bdev == bdev &&
1396 __is_discard_front_mergeable(&di, &next_dc->di,
1397 max_discard_blocks)) {
1398 next_dc->di.lstart = di.lstart;
1399 next_dc->di.len += di.len;
1400 next_dc->di.start = di.start;
1401 dcc->undiscard_blks += di.len;
1402 __relocate_discard_cmd(dcc, next_dc);
1403 if (tdc)
1404 __remove_discard_cmd(sbi, tdc);
1405 merged = true;
1408 if (!merged) {
1409 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1410 di.len, NULL, NULL);
1412 next:
1413 prev_dc = next_dc;
1414 if (!prev_dc)
1415 break;
1417 node = rb_next(&prev_dc->rb_node);
1418 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1422 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1423 struct block_device *bdev, block_t blkstart, block_t blklen)
1425 block_t lblkstart = blkstart;
1427 if (!f2fs_bdev_support_discard(bdev))
1428 return 0;
1430 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1432 if (f2fs_is_multi_device(sbi)) {
1433 int devi = f2fs_target_device_index(sbi, blkstart);
1435 blkstart -= FDEV(devi).start_blk;
1437 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1438 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1439 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1440 return 0;
1443 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1444 struct discard_policy *dpolicy)
1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1448 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1449 struct discard_cmd *dc;
1450 struct blk_plug plug;
1451 unsigned int pos = dcc->next_pos;
1452 unsigned int issued = 0;
1453 bool io_interrupted = false;
1455 mutex_lock(&dcc->cmd_lock);
1456 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1457 NULL, pos,
1458 (struct rb_entry **)&prev_dc,
1459 (struct rb_entry **)&next_dc,
1460 &insert_p, &insert_parent, true, NULL);
1461 if (!dc)
1462 dc = next_dc;
1464 blk_start_plug(&plug);
1466 while (dc) {
1467 struct rb_node *node;
1468 int err = 0;
1470 if (dc->state != D_PREP)
1471 goto next;
1473 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1474 io_interrupted = true;
1475 break;
1478 dcc->next_pos = dc->lstart + dc->len;
1479 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1481 if (issued >= dpolicy->max_requests)
1482 break;
1483 next:
1484 node = rb_next(&dc->rb_node);
1485 if (err)
1486 __remove_discard_cmd(sbi, dc);
1487 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1490 blk_finish_plug(&plug);
1492 if (!dc)
1493 dcc->next_pos = 0;
1495 mutex_unlock(&dcc->cmd_lock);
1497 if (!issued && io_interrupted)
1498 issued = -1;
1500 return issued;
1502 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1503 struct discard_policy *dpolicy);
1505 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1506 struct discard_policy *dpolicy)
1508 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1509 struct list_head *pend_list;
1510 struct discard_cmd *dc, *tmp;
1511 struct blk_plug plug;
1512 int i, issued;
1513 bool io_interrupted = false;
1515 if (dpolicy->timeout)
1516 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1518 retry:
1519 issued = 0;
1520 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1521 if (dpolicy->timeout &&
1522 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1523 break;
1525 if (i + 1 < dpolicy->granularity)
1526 break;
1528 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1529 return __issue_discard_cmd_orderly(sbi, dpolicy);
1531 pend_list = &dcc->pend_list[i];
1533 mutex_lock(&dcc->cmd_lock);
1534 if (list_empty(pend_list))
1535 goto next;
1536 if (unlikely(dcc->rbtree_check))
1537 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1538 &dcc->root, false));
1539 blk_start_plug(&plug);
1540 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1541 f2fs_bug_on(sbi, dc->state != D_PREP);
1543 if (dpolicy->timeout &&
1544 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1545 break;
1547 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1548 !is_idle(sbi, DISCARD_TIME)) {
1549 io_interrupted = true;
1550 break;
1553 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1555 if (issued >= dpolicy->max_requests)
1556 break;
1558 blk_finish_plug(&plug);
1559 next:
1560 mutex_unlock(&dcc->cmd_lock);
1562 if (issued >= dpolicy->max_requests || io_interrupted)
1563 break;
1566 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1567 __wait_all_discard_cmd(sbi, dpolicy);
1568 goto retry;
1571 if (!issued && io_interrupted)
1572 issued = -1;
1574 return issued;
1577 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1579 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1580 struct list_head *pend_list;
1581 struct discard_cmd *dc, *tmp;
1582 int i;
1583 bool dropped = false;
1585 mutex_lock(&dcc->cmd_lock);
1586 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1587 pend_list = &dcc->pend_list[i];
1588 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1589 f2fs_bug_on(sbi, dc->state != D_PREP);
1590 __remove_discard_cmd(sbi, dc);
1591 dropped = true;
1594 mutex_unlock(&dcc->cmd_lock);
1596 return dropped;
1599 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1601 __drop_discard_cmd(sbi);
1604 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1605 struct discard_cmd *dc)
1607 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1608 unsigned int len = 0;
1610 wait_for_completion_io(&dc->wait);
1611 mutex_lock(&dcc->cmd_lock);
1612 f2fs_bug_on(sbi, dc->state != D_DONE);
1613 dc->ref--;
1614 if (!dc->ref) {
1615 if (!dc->error)
1616 len = dc->len;
1617 __remove_discard_cmd(sbi, dc);
1619 mutex_unlock(&dcc->cmd_lock);
1621 return len;
1624 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1625 struct discard_policy *dpolicy,
1626 block_t start, block_t end)
1628 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1629 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1630 &(dcc->fstrim_list) : &(dcc->wait_list);
1631 struct discard_cmd *dc, *tmp;
1632 bool need_wait;
1633 unsigned int trimmed = 0;
1635 next:
1636 need_wait = false;
1638 mutex_lock(&dcc->cmd_lock);
1639 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1640 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1641 continue;
1642 if (dc->len < dpolicy->granularity)
1643 continue;
1644 if (dc->state == D_DONE && !dc->ref) {
1645 wait_for_completion_io(&dc->wait);
1646 if (!dc->error)
1647 trimmed += dc->len;
1648 __remove_discard_cmd(sbi, dc);
1649 } else {
1650 dc->ref++;
1651 need_wait = true;
1652 break;
1655 mutex_unlock(&dcc->cmd_lock);
1657 if (need_wait) {
1658 trimmed += __wait_one_discard_bio(sbi, dc);
1659 goto next;
1662 return trimmed;
1665 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1666 struct discard_policy *dpolicy)
1668 struct discard_policy dp;
1669 unsigned int discard_blks;
1671 if (dpolicy)
1672 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1674 /* wait all */
1675 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1676 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1677 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1678 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1680 return discard_blks;
1683 /* This should be covered by global mutex, &sit_i->sentry_lock */
1684 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1686 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1687 struct discard_cmd *dc;
1688 bool need_wait = false;
1690 mutex_lock(&dcc->cmd_lock);
1691 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1692 NULL, blkaddr);
1693 if (dc) {
1694 if (dc->state == D_PREP) {
1695 __punch_discard_cmd(sbi, dc, blkaddr);
1696 } else {
1697 dc->ref++;
1698 need_wait = true;
1701 mutex_unlock(&dcc->cmd_lock);
1703 if (need_wait)
1704 __wait_one_discard_bio(sbi, dc);
1707 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1709 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1711 if (dcc && dcc->f2fs_issue_discard) {
1712 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1714 dcc->f2fs_issue_discard = NULL;
1715 kthread_stop(discard_thread);
1719 /* This comes from f2fs_put_super */
1720 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1722 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1723 struct discard_policy dpolicy;
1724 bool dropped;
1726 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1727 dcc->discard_granularity);
1728 __issue_discard_cmd(sbi, &dpolicy);
1729 dropped = __drop_discard_cmd(sbi);
1731 /* just to make sure there is no pending discard commands */
1732 __wait_all_discard_cmd(sbi, NULL);
1734 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1735 return dropped;
1738 static int issue_discard_thread(void *data)
1740 struct f2fs_sb_info *sbi = data;
1741 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742 wait_queue_head_t *q = &dcc->discard_wait_queue;
1743 struct discard_policy dpolicy;
1744 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1745 int issued;
1747 set_freezable();
1749 do {
1750 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1751 dcc->discard_granularity);
1753 wait_event_interruptible_timeout(*q,
1754 kthread_should_stop() || freezing(current) ||
1755 dcc->discard_wake,
1756 msecs_to_jiffies(wait_ms));
1758 if (dcc->discard_wake)
1759 dcc->discard_wake = 0;
1761 /* clean up pending candidates before going to sleep */
1762 if (atomic_read(&dcc->queued_discard))
1763 __wait_all_discard_cmd(sbi, NULL);
1765 if (try_to_freeze())
1766 continue;
1767 if (f2fs_readonly(sbi->sb))
1768 continue;
1769 if (kthread_should_stop())
1770 return 0;
1771 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1772 wait_ms = dpolicy.max_interval;
1773 continue;
1776 if (sbi->gc_mode == GC_URGENT_HIGH)
1777 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1779 sb_start_intwrite(sbi->sb);
1781 issued = __issue_discard_cmd(sbi, &dpolicy);
1782 if (issued > 0) {
1783 __wait_all_discard_cmd(sbi, &dpolicy);
1784 wait_ms = dpolicy.min_interval;
1785 } else if (issued == -1){
1786 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1787 if (!wait_ms)
1788 wait_ms = dpolicy.mid_interval;
1789 } else {
1790 wait_ms = dpolicy.max_interval;
1793 sb_end_intwrite(sbi->sb);
1795 } while (!kthread_should_stop());
1796 return 0;
1799 #ifdef CONFIG_BLK_DEV_ZONED
1800 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1801 struct block_device *bdev, block_t blkstart, block_t blklen)
1803 sector_t sector, nr_sects;
1804 block_t lblkstart = blkstart;
1805 int devi = 0;
1807 if (f2fs_is_multi_device(sbi)) {
1808 devi = f2fs_target_device_index(sbi, blkstart);
1809 if (blkstart < FDEV(devi).start_blk ||
1810 blkstart > FDEV(devi).end_blk) {
1811 f2fs_err(sbi, "Invalid block %x", blkstart);
1812 return -EIO;
1814 blkstart -= FDEV(devi).start_blk;
1817 /* For sequential zones, reset the zone write pointer */
1818 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1819 sector = SECTOR_FROM_BLOCK(blkstart);
1820 nr_sects = SECTOR_FROM_BLOCK(blklen);
1822 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1823 nr_sects != bdev_zone_sectors(bdev)) {
1824 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1825 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1826 blkstart, blklen);
1827 return -EIO;
1829 trace_f2fs_issue_reset_zone(bdev, blkstart);
1830 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1831 sector, nr_sects, GFP_NOFS);
1834 /* For conventional zones, use regular discard if supported */
1835 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1837 #endif
1839 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1840 struct block_device *bdev, block_t blkstart, block_t blklen)
1842 #ifdef CONFIG_BLK_DEV_ZONED
1843 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1844 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1845 #endif
1846 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1849 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1850 block_t blkstart, block_t blklen)
1852 sector_t start = blkstart, len = 0;
1853 struct block_device *bdev;
1854 struct seg_entry *se;
1855 unsigned int offset;
1856 block_t i;
1857 int err = 0;
1859 bdev = f2fs_target_device(sbi, blkstart, NULL);
1861 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1862 if (i != start) {
1863 struct block_device *bdev2 =
1864 f2fs_target_device(sbi, i, NULL);
1866 if (bdev2 != bdev) {
1867 err = __issue_discard_async(sbi, bdev,
1868 start, len);
1869 if (err)
1870 return err;
1871 bdev = bdev2;
1872 start = i;
1873 len = 0;
1877 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1878 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1880 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1881 sbi->discard_blks--;
1884 if (len)
1885 err = __issue_discard_async(sbi, bdev, start, len);
1886 return err;
1889 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1890 bool check_only)
1892 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1893 int max_blocks = sbi->blocks_per_seg;
1894 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1895 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1896 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1897 unsigned long *discard_map = (unsigned long *)se->discard_map;
1898 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1899 unsigned int start = 0, end = -1;
1900 bool force = (cpc->reason & CP_DISCARD);
1901 struct discard_entry *de = NULL;
1902 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1903 int i;
1905 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1906 return false;
1908 if (!force) {
1909 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1910 SM_I(sbi)->dcc_info->nr_discards >=
1911 SM_I(sbi)->dcc_info->max_discards)
1912 return false;
1915 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1916 for (i = 0; i < entries; i++)
1917 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1918 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1920 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1921 SM_I(sbi)->dcc_info->max_discards) {
1922 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1923 if (start >= max_blocks)
1924 break;
1926 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1927 if (force && start && end != max_blocks
1928 && (end - start) < cpc->trim_minlen)
1929 continue;
1931 if (check_only)
1932 return true;
1934 if (!de) {
1935 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1936 GFP_F2FS_ZERO);
1937 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1938 list_add_tail(&de->list, head);
1941 for (i = start; i < end; i++)
1942 __set_bit_le(i, (void *)de->discard_map);
1944 SM_I(sbi)->dcc_info->nr_discards += end - start;
1946 return false;
1949 static void release_discard_addr(struct discard_entry *entry)
1951 list_del(&entry->list);
1952 kmem_cache_free(discard_entry_slab, entry);
1955 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1957 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1958 struct discard_entry *entry, *this;
1960 /* drop caches */
1961 list_for_each_entry_safe(entry, this, head, list)
1962 release_discard_addr(entry);
1966 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1968 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1970 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1971 unsigned int segno;
1973 mutex_lock(&dirty_i->seglist_lock);
1974 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1975 __set_test_and_free(sbi, segno, false);
1976 mutex_unlock(&dirty_i->seglist_lock);
1979 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1980 struct cp_control *cpc)
1982 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1983 struct list_head *head = &dcc->entry_list;
1984 struct discard_entry *entry, *this;
1985 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1986 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1987 unsigned int start = 0, end = -1;
1988 unsigned int secno, start_segno;
1989 bool force = (cpc->reason & CP_DISCARD);
1990 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1992 mutex_lock(&dirty_i->seglist_lock);
1994 while (1) {
1995 int i;
1997 if (need_align && end != -1)
1998 end--;
1999 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2000 if (start >= MAIN_SEGS(sbi))
2001 break;
2002 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2003 start + 1);
2005 if (need_align) {
2006 start = rounddown(start, sbi->segs_per_sec);
2007 end = roundup(end, sbi->segs_per_sec);
2010 for (i = start; i < end; i++) {
2011 if (test_and_clear_bit(i, prefree_map))
2012 dirty_i->nr_dirty[PRE]--;
2015 if (!f2fs_realtime_discard_enable(sbi))
2016 continue;
2018 if (force && start >= cpc->trim_start &&
2019 (end - 1) <= cpc->trim_end)
2020 continue;
2022 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2023 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2024 (end - start) << sbi->log_blocks_per_seg);
2025 continue;
2027 next:
2028 secno = GET_SEC_FROM_SEG(sbi, start);
2029 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2030 if (!IS_CURSEC(sbi, secno) &&
2031 !get_valid_blocks(sbi, start, true))
2032 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2033 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2035 start = start_segno + sbi->segs_per_sec;
2036 if (start < end)
2037 goto next;
2038 else
2039 end = start - 1;
2041 mutex_unlock(&dirty_i->seglist_lock);
2043 /* send small discards */
2044 list_for_each_entry_safe(entry, this, head, list) {
2045 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2046 bool is_valid = test_bit_le(0, entry->discard_map);
2048 find_next:
2049 if (is_valid) {
2050 next_pos = find_next_zero_bit_le(entry->discard_map,
2051 sbi->blocks_per_seg, cur_pos);
2052 len = next_pos - cur_pos;
2054 if (f2fs_sb_has_blkzoned(sbi) ||
2055 (force && len < cpc->trim_minlen))
2056 goto skip;
2058 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2059 len);
2060 total_len += len;
2061 } else {
2062 next_pos = find_next_bit_le(entry->discard_map,
2063 sbi->blocks_per_seg, cur_pos);
2065 skip:
2066 cur_pos = next_pos;
2067 is_valid = !is_valid;
2069 if (cur_pos < sbi->blocks_per_seg)
2070 goto find_next;
2072 release_discard_addr(entry);
2073 dcc->nr_discards -= total_len;
2076 wake_up_discard_thread(sbi, false);
2079 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2081 dev_t dev = sbi->sb->s_bdev->bd_dev;
2082 struct discard_cmd_control *dcc;
2083 int err = 0, i;
2085 if (SM_I(sbi)->dcc_info) {
2086 dcc = SM_I(sbi)->dcc_info;
2087 goto init_thread;
2090 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2091 if (!dcc)
2092 return -ENOMEM;
2094 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2095 INIT_LIST_HEAD(&dcc->entry_list);
2096 for (i = 0; i < MAX_PLIST_NUM; i++)
2097 INIT_LIST_HEAD(&dcc->pend_list[i]);
2098 INIT_LIST_HEAD(&dcc->wait_list);
2099 INIT_LIST_HEAD(&dcc->fstrim_list);
2100 mutex_init(&dcc->cmd_lock);
2101 atomic_set(&dcc->issued_discard, 0);
2102 atomic_set(&dcc->queued_discard, 0);
2103 atomic_set(&dcc->discard_cmd_cnt, 0);
2104 dcc->nr_discards = 0;
2105 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2106 dcc->undiscard_blks = 0;
2107 dcc->next_pos = 0;
2108 dcc->root = RB_ROOT_CACHED;
2109 dcc->rbtree_check = false;
2111 init_waitqueue_head(&dcc->discard_wait_queue);
2112 SM_I(sbi)->dcc_info = dcc;
2113 init_thread:
2114 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2115 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2116 if (IS_ERR(dcc->f2fs_issue_discard)) {
2117 err = PTR_ERR(dcc->f2fs_issue_discard);
2118 kfree(dcc);
2119 SM_I(sbi)->dcc_info = NULL;
2120 return err;
2123 return err;
2126 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2128 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2130 if (!dcc)
2131 return;
2133 f2fs_stop_discard_thread(sbi);
2136 * Recovery can cache discard commands, so in error path of
2137 * fill_super(), it needs to give a chance to handle them.
2139 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2140 f2fs_issue_discard_timeout(sbi);
2142 kfree(dcc);
2143 SM_I(sbi)->dcc_info = NULL;
2146 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2148 struct sit_info *sit_i = SIT_I(sbi);
2150 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2151 sit_i->dirty_sentries++;
2152 return false;
2155 return true;
2158 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2159 unsigned int segno, int modified)
2161 struct seg_entry *se = get_seg_entry(sbi, segno);
2162 se->type = type;
2163 if (modified)
2164 __mark_sit_entry_dirty(sbi, segno);
2167 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2168 block_t blkaddr)
2170 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2172 if (segno == NULL_SEGNO)
2173 return 0;
2174 return get_seg_entry(sbi, segno)->mtime;
2177 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2178 unsigned long long old_mtime)
2180 struct seg_entry *se;
2181 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2182 unsigned long long ctime = get_mtime(sbi, false);
2183 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2185 if (segno == NULL_SEGNO)
2186 return;
2188 se = get_seg_entry(sbi, segno);
2190 if (!se->mtime)
2191 se->mtime = mtime;
2192 else
2193 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2194 se->valid_blocks + 1);
2196 if (ctime > SIT_I(sbi)->max_mtime)
2197 SIT_I(sbi)->max_mtime = ctime;
2200 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2202 struct seg_entry *se;
2203 unsigned int segno, offset;
2204 long int new_vblocks;
2205 bool exist;
2206 #ifdef CONFIG_F2FS_CHECK_FS
2207 bool mir_exist;
2208 #endif
2210 segno = GET_SEGNO(sbi, blkaddr);
2212 se = get_seg_entry(sbi, segno);
2213 new_vblocks = se->valid_blocks + del;
2214 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2216 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2217 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2219 se->valid_blocks = new_vblocks;
2221 /* Update valid block bitmap */
2222 if (del > 0) {
2223 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2224 #ifdef CONFIG_F2FS_CHECK_FS
2225 mir_exist = f2fs_test_and_set_bit(offset,
2226 se->cur_valid_map_mir);
2227 if (unlikely(exist != mir_exist)) {
2228 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2229 blkaddr, exist);
2230 f2fs_bug_on(sbi, 1);
2232 #endif
2233 if (unlikely(exist)) {
2234 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2235 blkaddr);
2236 f2fs_bug_on(sbi, 1);
2237 se->valid_blocks--;
2238 del = 0;
2241 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2242 sbi->discard_blks--;
2245 * SSR should never reuse block which is checkpointed
2246 * or newly invalidated.
2248 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2249 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2250 se->ckpt_valid_blocks++;
2252 } else {
2253 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2254 #ifdef CONFIG_F2FS_CHECK_FS
2255 mir_exist = f2fs_test_and_clear_bit(offset,
2256 se->cur_valid_map_mir);
2257 if (unlikely(exist != mir_exist)) {
2258 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2259 blkaddr, exist);
2260 f2fs_bug_on(sbi, 1);
2262 #endif
2263 if (unlikely(!exist)) {
2264 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2265 blkaddr);
2266 f2fs_bug_on(sbi, 1);
2267 se->valid_blocks++;
2268 del = 0;
2269 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2271 * If checkpoints are off, we must not reuse data that
2272 * was used in the previous checkpoint. If it was used
2273 * before, we must track that to know how much space we
2274 * really have.
2276 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2277 spin_lock(&sbi->stat_lock);
2278 sbi->unusable_block_count++;
2279 spin_unlock(&sbi->stat_lock);
2283 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2284 sbi->discard_blks++;
2286 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2287 se->ckpt_valid_blocks += del;
2289 __mark_sit_entry_dirty(sbi, segno);
2291 /* update total number of valid blocks to be written in ckpt area */
2292 SIT_I(sbi)->written_valid_blocks += del;
2294 if (__is_large_section(sbi))
2295 get_sec_entry(sbi, segno)->valid_blocks += del;
2298 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2300 unsigned int segno = GET_SEGNO(sbi, addr);
2301 struct sit_info *sit_i = SIT_I(sbi);
2303 f2fs_bug_on(sbi, addr == NULL_ADDR);
2304 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2305 return;
2307 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2309 /* add it into sit main buffer */
2310 down_write(&sit_i->sentry_lock);
2312 update_segment_mtime(sbi, addr, 0);
2313 update_sit_entry(sbi, addr, -1);
2315 /* add it into dirty seglist */
2316 locate_dirty_segment(sbi, segno);
2318 up_write(&sit_i->sentry_lock);
2321 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2323 struct sit_info *sit_i = SIT_I(sbi);
2324 unsigned int segno, offset;
2325 struct seg_entry *se;
2326 bool is_cp = false;
2328 if (!__is_valid_data_blkaddr(blkaddr))
2329 return true;
2331 down_read(&sit_i->sentry_lock);
2333 segno = GET_SEGNO(sbi, blkaddr);
2334 se = get_seg_entry(sbi, segno);
2335 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2337 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2338 is_cp = true;
2340 up_read(&sit_i->sentry_lock);
2342 return is_cp;
2346 * This function should be resided under the curseg_mutex lock
2348 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2349 struct f2fs_summary *sum)
2351 struct curseg_info *curseg = CURSEG_I(sbi, type);
2352 void *addr = curseg->sum_blk;
2353 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2354 memcpy(addr, sum, sizeof(struct f2fs_summary));
2358 * Calculate the number of current summary pages for writing
2360 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2362 int valid_sum_count = 0;
2363 int i, sum_in_page;
2365 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2366 if (sbi->ckpt->alloc_type[i] == SSR)
2367 valid_sum_count += sbi->blocks_per_seg;
2368 else {
2369 if (for_ra)
2370 valid_sum_count += le16_to_cpu(
2371 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2372 else
2373 valid_sum_count += curseg_blkoff(sbi, i);
2377 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2378 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2379 if (valid_sum_count <= sum_in_page)
2380 return 1;
2381 else if ((valid_sum_count - sum_in_page) <=
2382 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2383 return 2;
2384 return 3;
2388 * Caller should put this summary page
2390 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2392 if (unlikely(f2fs_cp_error(sbi)))
2393 return ERR_PTR(-EIO);
2394 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2397 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2398 void *src, block_t blk_addr)
2400 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2402 memcpy(page_address(page), src, PAGE_SIZE);
2403 set_page_dirty(page);
2404 f2fs_put_page(page, 1);
2407 static void write_sum_page(struct f2fs_sb_info *sbi,
2408 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2410 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2413 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2414 int type, block_t blk_addr)
2416 struct curseg_info *curseg = CURSEG_I(sbi, type);
2417 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2418 struct f2fs_summary_block *src = curseg->sum_blk;
2419 struct f2fs_summary_block *dst;
2421 dst = (struct f2fs_summary_block *)page_address(page);
2422 memset(dst, 0, PAGE_SIZE);
2424 mutex_lock(&curseg->curseg_mutex);
2426 down_read(&curseg->journal_rwsem);
2427 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2428 up_read(&curseg->journal_rwsem);
2430 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2431 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2433 mutex_unlock(&curseg->curseg_mutex);
2435 set_page_dirty(page);
2436 f2fs_put_page(page, 1);
2439 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2440 struct curseg_info *curseg, int type)
2442 unsigned int segno = curseg->segno + 1;
2443 struct free_segmap_info *free_i = FREE_I(sbi);
2445 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2446 return !test_bit(segno, free_i->free_segmap);
2447 return 0;
2451 * Find a new segment from the free segments bitmap to right order
2452 * This function should be returned with success, otherwise BUG
2454 static void get_new_segment(struct f2fs_sb_info *sbi,
2455 unsigned int *newseg, bool new_sec, int dir)
2457 struct free_segmap_info *free_i = FREE_I(sbi);
2458 unsigned int segno, secno, zoneno;
2459 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2460 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2461 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2462 unsigned int left_start = hint;
2463 bool init = true;
2464 int go_left = 0;
2465 int i;
2467 spin_lock(&free_i->segmap_lock);
2469 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2470 segno = find_next_zero_bit(free_i->free_segmap,
2471 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2472 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2473 goto got_it;
2475 find_other_zone:
2476 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2477 if (secno >= MAIN_SECS(sbi)) {
2478 if (dir == ALLOC_RIGHT) {
2479 secno = find_next_zero_bit(free_i->free_secmap,
2480 MAIN_SECS(sbi), 0);
2481 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2482 } else {
2483 go_left = 1;
2484 left_start = hint - 1;
2487 if (go_left == 0)
2488 goto skip_left;
2490 while (test_bit(left_start, free_i->free_secmap)) {
2491 if (left_start > 0) {
2492 left_start--;
2493 continue;
2495 left_start = find_next_zero_bit(free_i->free_secmap,
2496 MAIN_SECS(sbi), 0);
2497 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2498 break;
2500 secno = left_start;
2501 skip_left:
2502 segno = GET_SEG_FROM_SEC(sbi, secno);
2503 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2505 /* give up on finding another zone */
2506 if (!init)
2507 goto got_it;
2508 if (sbi->secs_per_zone == 1)
2509 goto got_it;
2510 if (zoneno == old_zoneno)
2511 goto got_it;
2512 if (dir == ALLOC_LEFT) {
2513 if (!go_left && zoneno + 1 >= total_zones)
2514 goto got_it;
2515 if (go_left && zoneno == 0)
2516 goto got_it;
2518 for (i = 0; i < NR_CURSEG_TYPE; i++)
2519 if (CURSEG_I(sbi, i)->zone == zoneno)
2520 break;
2522 if (i < NR_CURSEG_TYPE) {
2523 /* zone is in user, try another */
2524 if (go_left)
2525 hint = zoneno * sbi->secs_per_zone - 1;
2526 else if (zoneno + 1 >= total_zones)
2527 hint = 0;
2528 else
2529 hint = (zoneno + 1) * sbi->secs_per_zone;
2530 init = false;
2531 goto find_other_zone;
2533 got_it:
2534 /* set it as dirty segment in free segmap */
2535 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2536 __set_inuse(sbi, segno);
2537 *newseg = segno;
2538 spin_unlock(&free_i->segmap_lock);
2541 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2543 struct curseg_info *curseg = CURSEG_I(sbi, type);
2544 struct summary_footer *sum_footer;
2545 unsigned short seg_type = curseg->seg_type;
2547 curseg->inited = true;
2548 curseg->segno = curseg->next_segno;
2549 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2550 curseg->next_blkoff = 0;
2551 curseg->next_segno = NULL_SEGNO;
2553 sum_footer = &(curseg->sum_blk->footer);
2554 memset(sum_footer, 0, sizeof(struct summary_footer));
2556 sanity_check_seg_type(sbi, seg_type);
2558 if (IS_DATASEG(seg_type))
2559 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2560 if (IS_NODESEG(seg_type))
2561 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2562 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2565 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2567 struct curseg_info *curseg = CURSEG_I(sbi, type);
2568 unsigned short seg_type = curseg->seg_type;
2570 sanity_check_seg_type(sbi, seg_type);
2572 /* if segs_per_sec is large than 1, we need to keep original policy. */
2573 if (__is_large_section(sbi))
2574 return curseg->segno;
2576 /* inmem log may not locate on any segment after mount */
2577 if (!curseg->inited)
2578 return 0;
2580 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2581 return 0;
2583 if (test_opt(sbi, NOHEAP) &&
2584 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2585 return 0;
2587 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2588 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2590 /* find segments from 0 to reuse freed segments */
2591 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2592 return 0;
2594 return curseg->segno;
2598 * Allocate a current working segment.
2599 * This function always allocates a free segment in LFS manner.
2601 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2603 struct curseg_info *curseg = CURSEG_I(sbi, type);
2604 unsigned short seg_type = curseg->seg_type;
2605 unsigned int segno = curseg->segno;
2606 int dir = ALLOC_LEFT;
2608 if (curseg->inited)
2609 write_sum_page(sbi, curseg->sum_blk,
2610 GET_SUM_BLOCK(sbi, segno));
2611 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2612 dir = ALLOC_RIGHT;
2614 if (test_opt(sbi, NOHEAP))
2615 dir = ALLOC_RIGHT;
2617 segno = __get_next_segno(sbi, type);
2618 get_new_segment(sbi, &segno, new_sec, dir);
2619 curseg->next_segno = segno;
2620 reset_curseg(sbi, type, 1);
2621 curseg->alloc_type = LFS;
2624 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2625 struct curseg_info *seg, block_t start)
2627 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2628 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2629 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2630 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2631 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2632 int i, pos;
2634 for (i = 0; i < entries; i++)
2635 target_map[i] = ckpt_map[i] | cur_map[i];
2637 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2639 seg->next_blkoff = pos;
2643 * If a segment is written by LFS manner, next block offset is just obtained
2644 * by increasing the current block offset. However, if a segment is written by
2645 * SSR manner, next block offset obtained by calling __next_free_blkoff
2647 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2648 struct curseg_info *seg)
2650 if (seg->alloc_type == SSR)
2651 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2652 else
2653 seg->next_blkoff++;
2657 * This function always allocates a used segment(from dirty seglist) by SSR
2658 * manner, so it should recover the existing segment information of valid blocks
2660 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2662 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2663 struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 unsigned int new_segno = curseg->next_segno;
2665 struct f2fs_summary_block *sum_node;
2666 struct page *sum_page;
2668 if (flush)
2669 write_sum_page(sbi, curseg->sum_blk,
2670 GET_SUM_BLOCK(sbi, curseg->segno));
2672 __set_test_and_inuse(sbi, new_segno);
2674 mutex_lock(&dirty_i->seglist_lock);
2675 __remove_dirty_segment(sbi, new_segno, PRE);
2676 __remove_dirty_segment(sbi, new_segno, DIRTY);
2677 mutex_unlock(&dirty_i->seglist_lock);
2679 reset_curseg(sbi, type, 1);
2680 curseg->alloc_type = SSR;
2681 __next_free_blkoff(sbi, curseg, 0);
2683 sum_page = f2fs_get_sum_page(sbi, new_segno);
2684 if (IS_ERR(sum_page)) {
2685 /* GC won't be able to use stale summary pages by cp_error */
2686 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2687 return;
2689 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2690 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2691 f2fs_put_page(sum_page, 1);
2694 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2695 int alloc_mode, unsigned long long age);
2697 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2698 int target_type, int alloc_mode,
2699 unsigned long long age)
2701 struct curseg_info *curseg = CURSEG_I(sbi, type);
2703 curseg->seg_type = target_type;
2705 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2706 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2708 curseg->seg_type = se->type;
2709 change_curseg(sbi, type, true);
2710 } else {
2711 /* allocate cold segment by default */
2712 curseg->seg_type = CURSEG_COLD_DATA;
2713 new_curseg(sbi, type, true);
2715 stat_inc_seg_type(sbi, curseg);
2718 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2720 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2722 if (!sbi->am.atgc_enabled)
2723 return;
2725 down_read(&SM_I(sbi)->curseg_lock);
2727 mutex_lock(&curseg->curseg_mutex);
2728 down_write(&SIT_I(sbi)->sentry_lock);
2730 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2732 up_write(&SIT_I(sbi)->sentry_lock);
2733 mutex_unlock(&curseg->curseg_mutex);
2735 up_read(&SM_I(sbi)->curseg_lock);
2738 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2740 __f2fs_init_atgc_curseg(sbi);
2743 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2745 struct curseg_info *curseg = CURSEG_I(sbi, type);
2747 mutex_lock(&curseg->curseg_mutex);
2748 if (!curseg->inited)
2749 goto out;
2751 if (get_valid_blocks(sbi, curseg->segno, false)) {
2752 write_sum_page(sbi, curseg->sum_blk,
2753 GET_SUM_BLOCK(sbi, curseg->segno));
2754 } else {
2755 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2756 __set_test_and_free(sbi, curseg->segno, true);
2757 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2759 out:
2760 mutex_unlock(&curseg->curseg_mutex);
2763 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2765 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2767 if (sbi->am.atgc_enabled)
2768 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2771 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2773 struct curseg_info *curseg = CURSEG_I(sbi, type);
2775 mutex_lock(&curseg->curseg_mutex);
2776 if (!curseg->inited)
2777 goto out;
2778 if (get_valid_blocks(sbi, curseg->segno, false))
2779 goto out;
2781 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2782 __set_test_and_inuse(sbi, curseg->segno);
2783 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2784 out:
2785 mutex_unlock(&curseg->curseg_mutex);
2788 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2790 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2792 if (sbi->am.atgc_enabled)
2793 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2797 int alloc_mode, unsigned long long age)
2799 struct curseg_info *curseg = CURSEG_I(sbi, type);
2800 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2801 unsigned segno = NULL_SEGNO;
2802 unsigned short seg_type = curseg->seg_type;
2803 int i, cnt;
2804 bool reversed = false;
2806 sanity_check_seg_type(sbi, seg_type);
2808 /* f2fs_need_SSR() already forces to do this */
2809 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2810 curseg->next_segno = segno;
2811 return 1;
2814 /* For node segments, let's do SSR more intensively */
2815 if (IS_NODESEG(seg_type)) {
2816 if (seg_type >= CURSEG_WARM_NODE) {
2817 reversed = true;
2818 i = CURSEG_COLD_NODE;
2819 } else {
2820 i = CURSEG_HOT_NODE;
2822 cnt = NR_CURSEG_NODE_TYPE;
2823 } else {
2824 if (seg_type >= CURSEG_WARM_DATA) {
2825 reversed = true;
2826 i = CURSEG_COLD_DATA;
2827 } else {
2828 i = CURSEG_HOT_DATA;
2830 cnt = NR_CURSEG_DATA_TYPE;
2833 for (; cnt-- > 0; reversed ? i-- : i++) {
2834 if (i == seg_type)
2835 continue;
2836 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2837 curseg->next_segno = segno;
2838 return 1;
2842 /* find valid_blocks=0 in dirty list */
2843 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2844 segno = get_free_segment(sbi);
2845 if (segno != NULL_SEGNO) {
2846 curseg->next_segno = segno;
2847 return 1;
2850 return 0;
2854 * flush out current segment and replace it with new segment
2855 * This function should be returned with success, otherwise BUG
2857 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2858 int type, bool force)
2860 struct curseg_info *curseg = CURSEG_I(sbi, type);
2862 if (force)
2863 new_curseg(sbi, type, true);
2864 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2865 curseg->seg_type == CURSEG_WARM_NODE)
2866 new_curseg(sbi, type, false);
2867 else if (curseg->alloc_type == LFS &&
2868 is_next_segment_free(sbi, curseg, type) &&
2869 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2870 new_curseg(sbi, type, false);
2871 else if (f2fs_need_SSR(sbi) &&
2872 get_ssr_segment(sbi, type, SSR, 0))
2873 change_curseg(sbi, type, true);
2874 else
2875 new_curseg(sbi, type, false);
2877 stat_inc_seg_type(sbi, curseg);
2880 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2881 unsigned int start, unsigned int end)
2883 struct curseg_info *curseg = CURSEG_I(sbi, type);
2884 unsigned int segno;
2886 down_read(&SM_I(sbi)->curseg_lock);
2887 mutex_lock(&curseg->curseg_mutex);
2888 down_write(&SIT_I(sbi)->sentry_lock);
2890 segno = CURSEG_I(sbi, type)->segno;
2891 if (segno < start || segno > end)
2892 goto unlock;
2894 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2895 change_curseg(sbi, type, true);
2896 else
2897 new_curseg(sbi, type, true);
2899 stat_inc_seg_type(sbi, curseg);
2901 locate_dirty_segment(sbi, segno);
2902 unlock:
2903 up_write(&SIT_I(sbi)->sentry_lock);
2905 if (segno != curseg->segno)
2906 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2907 type, segno, curseg->segno);
2909 mutex_unlock(&curseg->curseg_mutex);
2910 up_read(&SM_I(sbi)->curseg_lock);
2913 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2915 struct curseg_info *curseg = CURSEG_I(sbi, type);
2916 unsigned int old_segno;
2918 if (!curseg->inited)
2919 goto alloc;
2921 if (!curseg->next_blkoff &&
2922 !get_valid_blocks(sbi, curseg->segno, false) &&
2923 !get_ckpt_valid_blocks(sbi, curseg->segno))
2924 return;
2926 alloc:
2927 old_segno = curseg->segno;
2928 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2929 locate_dirty_segment(sbi, old_segno);
2932 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2934 down_write(&SIT_I(sbi)->sentry_lock);
2935 __allocate_new_segment(sbi, type);
2936 up_write(&SIT_I(sbi)->sentry_lock);
2939 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2941 int i;
2943 down_write(&SIT_I(sbi)->sentry_lock);
2944 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2945 __allocate_new_segment(sbi, i);
2946 up_write(&SIT_I(sbi)->sentry_lock);
2949 static const struct segment_allocation default_salloc_ops = {
2950 .allocate_segment = allocate_segment_by_default,
2953 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2954 struct cp_control *cpc)
2956 __u64 trim_start = cpc->trim_start;
2957 bool has_candidate = false;
2959 down_write(&SIT_I(sbi)->sentry_lock);
2960 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2961 if (add_discard_addrs(sbi, cpc, true)) {
2962 has_candidate = true;
2963 break;
2966 up_write(&SIT_I(sbi)->sentry_lock);
2968 cpc->trim_start = trim_start;
2969 return has_candidate;
2972 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2973 struct discard_policy *dpolicy,
2974 unsigned int start, unsigned int end)
2976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2977 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2978 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2979 struct discard_cmd *dc;
2980 struct blk_plug plug;
2981 int issued;
2982 unsigned int trimmed = 0;
2984 next:
2985 issued = 0;
2987 mutex_lock(&dcc->cmd_lock);
2988 if (unlikely(dcc->rbtree_check))
2989 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2990 &dcc->root, false));
2992 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2993 NULL, start,
2994 (struct rb_entry **)&prev_dc,
2995 (struct rb_entry **)&next_dc,
2996 &insert_p, &insert_parent, true, NULL);
2997 if (!dc)
2998 dc = next_dc;
3000 blk_start_plug(&plug);
3002 while (dc && dc->lstart <= end) {
3003 struct rb_node *node;
3004 int err = 0;
3006 if (dc->len < dpolicy->granularity)
3007 goto skip;
3009 if (dc->state != D_PREP) {
3010 list_move_tail(&dc->list, &dcc->fstrim_list);
3011 goto skip;
3014 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3016 if (issued >= dpolicy->max_requests) {
3017 start = dc->lstart + dc->len;
3019 if (err)
3020 __remove_discard_cmd(sbi, dc);
3022 blk_finish_plug(&plug);
3023 mutex_unlock(&dcc->cmd_lock);
3024 trimmed += __wait_all_discard_cmd(sbi, NULL);
3025 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3026 goto next;
3028 skip:
3029 node = rb_next(&dc->rb_node);
3030 if (err)
3031 __remove_discard_cmd(sbi, dc);
3032 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3034 if (fatal_signal_pending(current))
3035 break;
3038 blk_finish_plug(&plug);
3039 mutex_unlock(&dcc->cmd_lock);
3041 return trimmed;
3044 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3046 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3047 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3048 unsigned int start_segno, end_segno;
3049 block_t start_block, end_block;
3050 struct cp_control cpc;
3051 struct discard_policy dpolicy;
3052 unsigned long long trimmed = 0;
3053 int err = 0;
3054 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3056 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3057 return -EINVAL;
3059 if (end < MAIN_BLKADDR(sbi))
3060 goto out;
3062 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3063 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3064 return -EFSCORRUPTED;
3067 /* start/end segment number in main_area */
3068 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3069 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3070 GET_SEGNO(sbi, end);
3071 if (need_align) {
3072 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3073 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3076 cpc.reason = CP_DISCARD;
3077 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3078 cpc.trim_start = start_segno;
3079 cpc.trim_end = end_segno;
3081 if (sbi->discard_blks == 0)
3082 goto out;
3084 down_write(&sbi->gc_lock);
3085 err = f2fs_write_checkpoint(sbi, &cpc);
3086 up_write(&sbi->gc_lock);
3087 if (err)
3088 goto out;
3091 * We filed discard candidates, but actually we don't need to wait for
3092 * all of them, since they'll be issued in idle time along with runtime
3093 * discard option. User configuration looks like using runtime discard
3094 * or periodic fstrim instead of it.
3096 if (f2fs_realtime_discard_enable(sbi))
3097 goto out;
3099 start_block = START_BLOCK(sbi, start_segno);
3100 end_block = START_BLOCK(sbi, end_segno + 1);
3102 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3103 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3104 start_block, end_block);
3106 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3107 start_block, end_block);
3108 out:
3109 if (!err)
3110 range->len = F2FS_BLK_TO_BYTES(trimmed);
3111 return err;
3114 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3115 struct curseg_info *curseg)
3117 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3118 curseg->segno);
3121 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3123 switch (hint) {
3124 case WRITE_LIFE_SHORT:
3125 return CURSEG_HOT_DATA;
3126 case WRITE_LIFE_EXTREME:
3127 return CURSEG_COLD_DATA;
3128 default:
3129 return CURSEG_WARM_DATA;
3133 /* This returns write hints for each segment type. This hints will be
3134 * passed down to block layer. There are mapping tables which depend on
3135 * the mount option 'whint_mode'.
3137 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3139 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3141 * User F2FS Block
3142 * ---- ---- -----
3143 * META WRITE_LIFE_NOT_SET
3144 * HOT_NODE "
3145 * WARM_NODE "
3146 * COLD_NODE "
3147 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3148 * extension list " "
3150 * -- buffered io
3151 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3152 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3153 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3154 * WRITE_LIFE_NONE " "
3155 * WRITE_LIFE_MEDIUM " "
3156 * WRITE_LIFE_LONG " "
3158 * -- direct io
3159 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3160 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3161 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3162 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3163 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3164 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3166 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3168 * User F2FS Block
3169 * ---- ---- -----
3170 * META WRITE_LIFE_MEDIUM;
3171 * HOT_NODE WRITE_LIFE_NOT_SET
3172 * WARM_NODE "
3173 * COLD_NODE WRITE_LIFE_NONE
3174 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3175 * extension list " "
3177 * -- buffered io
3178 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3179 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3180 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3181 * WRITE_LIFE_NONE " "
3182 * WRITE_LIFE_MEDIUM " "
3183 * WRITE_LIFE_LONG " "
3185 * -- direct io
3186 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3187 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3188 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3189 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3190 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3191 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3194 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3195 enum page_type type, enum temp_type temp)
3197 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3198 if (type == DATA) {
3199 if (temp == WARM)
3200 return WRITE_LIFE_NOT_SET;
3201 else if (temp == HOT)
3202 return WRITE_LIFE_SHORT;
3203 else if (temp == COLD)
3204 return WRITE_LIFE_EXTREME;
3205 } else {
3206 return WRITE_LIFE_NOT_SET;
3208 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3209 if (type == DATA) {
3210 if (temp == WARM)
3211 return WRITE_LIFE_LONG;
3212 else if (temp == HOT)
3213 return WRITE_LIFE_SHORT;
3214 else if (temp == COLD)
3215 return WRITE_LIFE_EXTREME;
3216 } else if (type == NODE) {
3217 if (temp == WARM || temp == HOT)
3218 return WRITE_LIFE_NOT_SET;
3219 else if (temp == COLD)
3220 return WRITE_LIFE_NONE;
3221 } else if (type == META) {
3222 return WRITE_LIFE_MEDIUM;
3225 return WRITE_LIFE_NOT_SET;
3228 static int __get_segment_type_2(struct f2fs_io_info *fio)
3230 if (fio->type == DATA)
3231 return CURSEG_HOT_DATA;
3232 else
3233 return CURSEG_HOT_NODE;
3236 static int __get_segment_type_4(struct f2fs_io_info *fio)
3238 if (fio->type == DATA) {
3239 struct inode *inode = fio->page->mapping->host;
3241 if (S_ISDIR(inode->i_mode))
3242 return CURSEG_HOT_DATA;
3243 else
3244 return CURSEG_COLD_DATA;
3245 } else {
3246 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3247 return CURSEG_WARM_NODE;
3248 else
3249 return CURSEG_COLD_NODE;
3253 static int __get_segment_type_6(struct f2fs_io_info *fio)
3255 if (fio->type == DATA) {
3256 struct inode *inode = fio->page->mapping->host;
3258 if (is_cold_data(fio->page)) {
3259 if (fio->sbi->am.atgc_enabled)
3260 return CURSEG_ALL_DATA_ATGC;
3261 else
3262 return CURSEG_COLD_DATA;
3264 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3265 return CURSEG_COLD_DATA;
3266 if (file_is_hot(inode) ||
3267 is_inode_flag_set(inode, FI_HOT_DATA) ||
3268 f2fs_is_atomic_file(inode) ||
3269 f2fs_is_volatile_file(inode))
3270 return CURSEG_HOT_DATA;
3271 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3272 } else {
3273 if (IS_DNODE(fio->page))
3274 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3275 CURSEG_HOT_NODE;
3276 return CURSEG_COLD_NODE;
3280 static int __get_segment_type(struct f2fs_io_info *fio)
3282 int type = 0;
3284 switch (F2FS_OPTION(fio->sbi).active_logs) {
3285 case 2:
3286 type = __get_segment_type_2(fio);
3287 break;
3288 case 4:
3289 type = __get_segment_type_4(fio);
3290 break;
3291 case 6:
3292 type = __get_segment_type_6(fio);
3293 break;
3294 default:
3295 f2fs_bug_on(fio->sbi, true);
3298 if (IS_HOT(type))
3299 fio->temp = HOT;
3300 else if (IS_WARM(type))
3301 fio->temp = WARM;
3302 else
3303 fio->temp = COLD;
3304 return type;
3307 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3308 block_t old_blkaddr, block_t *new_blkaddr,
3309 struct f2fs_summary *sum, int type,
3310 struct f2fs_io_info *fio)
3312 struct sit_info *sit_i = SIT_I(sbi);
3313 struct curseg_info *curseg = CURSEG_I(sbi, type);
3314 unsigned long long old_mtime;
3315 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3316 struct seg_entry *se = NULL;
3318 down_read(&SM_I(sbi)->curseg_lock);
3320 mutex_lock(&curseg->curseg_mutex);
3321 down_write(&sit_i->sentry_lock);
3323 if (from_gc) {
3324 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3325 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3326 sanity_check_seg_type(sbi, se->type);
3327 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3329 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3331 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3333 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3336 * __add_sum_entry should be resided under the curseg_mutex
3337 * because, this function updates a summary entry in the
3338 * current summary block.
3340 __add_sum_entry(sbi, type, sum);
3342 __refresh_next_blkoff(sbi, curseg);
3344 stat_inc_block_count(sbi, curseg);
3346 if (from_gc) {
3347 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3348 } else {
3349 update_segment_mtime(sbi, old_blkaddr, 0);
3350 old_mtime = 0;
3352 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3355 * SIT information should be updated before segment allocation,
3356 * since SSR needs latest valid block information.
3358 update_sit_entry(sbi, *new_blkaddr, 1);
3359 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3360 update_sit_entry(sbi, old_blkaddr, -1);
3362 if (!__has_curseg_space(sbi, curseg)) {
3363 if (from_gc)
3364 get_atssr_segment(sbi, type, se->type,
3365 AT_SSR, se->mtime);
3366 else
3367 sit_i->s_ops->allocate_segment(sbi, type, false);
3370 * segment dirty status should be updated after segment allocation,
3371 * so we just need to update status only one time after previous
3372 * segment being closed.
3374 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3375 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3377 up_write(&sit_i->sentry_lock);
3379 if (page && IS_NODESEG(type)) {
3380 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3382 f2fs_inode_chksum_set(sbi, page);
3385 if (F2FS_IO_ALIGNED(sbi))
3386 fio->retry = false;
3388 if (fio) {
3389 struct f2fs_bio_info *io;
3391 INIT_LIST_HEAD(&fio->list);
3392 fio->in_list = true;
3393 io = sbi->write_io[fio->type] + fio->temp;
3394 spin_lock(&io->io_lock);
3395 list_add_tail(&fio->list, &io->io_list);
3396 spin_unlock(&io->io_lock);
3399 mutex_unlock(&curseg->curseg_mutex);
3401 up_read(&SM_I(sbi)->curseg_lock);
3404 static void update_device_state(struct f2fs_io_info *fio)
3406 struct f2fs_sb_info *sbi = fio->sbi;
3407 unsigned int devidx;
3409 if (!f2fs_is_multi_device(sbi))
3410 return;
3412 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3414 /* update device state for fsync */
3415 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3417 /* update device state for checkpoint */
3418 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3419 spin_lock(&sbi->dev_lock);
3420 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3421 spin_unlock(&sbi->dev_lock);
3425 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3427 int type = __get_segment_type(fio);
3428 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3430 if (keep_order)
3431 down_read(&fio->sbi->io_order_lock);
3432 reallocate:
3433 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3434 &fio->new_blkaddr, sum, type, fio);
3435 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3436 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3437 fio->old_blkaddr, fio->old_blkaddr);
3439 /* writeout dirty page into bdev */
3440 f2fs_submit_page_write(fio);
3441 if (fio->retry) {
3442 fio->old_blkaddr = fio->new_blkaddr;
3443 goto reallocate;
3446 update_device_state(fio);
3448 if (keep_order)
3449 up_read(&fio->sbi->io_order_lock);
3452 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3453 enum iostat_type io_type)
3455 struct f2fs_io_info fio = {
3456 .sbi = sbi,
3457 .type = META,
3458 .temp = HOT,
3459 .op = REQ_OP_WRITE,
3460 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3461 .old_blkaddr = page->index,
3462 .new_blkaddr = page->index,
3463 .page = page,
3464 .encrypted_page = NULL,
3465 .in_list = false,
3468 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3469 fio.op_flags &= ~REQ_META;
3471 set_page_writeback(page);
3472 ClearPageError(page);
3473 f2fs_submit_page_write(&fio);
3475 stat_inc_meta_count(sbi, page->index);
3476 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3481 struct f2fs_summary sum;
3483 set_summary(&sum, nid, 0, 0);
3484 do_write_page(&sum, fio);
3486 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3489 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3490 struct f2fs_io_info *fio)
3492 struct f2fs_sb_info *sbi = fio->sbi;
3493 struct f2fs_summary sum;
3495 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3496 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3497 do_write_page(&sum, fio);
3498 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3500 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3503 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3505 int err;
3506 struct f2fs_sb_info *sbi = fio->sbi;
3507 unsigned int segno;
3509 fio->new_blkaddr = fio->old_blkaddr;
3510 /* i/o temperature is needed for passing down write hints */
3511 __get_segment_type(fio);
3513 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3515 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3516 set_sbi_flag(sbi, SBI_NEED_FSCK);
3517 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3518 __func__, segno);
3519 return -EFSCORRUPTED;
3522 stat_inc_inplace_blocks(fio->sbi);
3524 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3525 err = f2fs_merge_page_bio(fio);
3526 else
3527 err = f2fs_submit_page_bio(fio);
3528 if (!err) {
3529 update_device_state(fio);
3530 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3533 return err;
3536 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3537 unsigned int segno)
3539 int i;
3541 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3542 if (CURSEG_I(sbi, i)->segno == segno)
3543 break;
3545 return i;
3548 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3549 block_t old_blkaddr, block_t new_blkaddr,
3550 bool recover_curseg, bool recover_newaddr,
3551 bool from_gc)
3553 struct sit_info *sit_i = SIT_I(sbi);
3554 struct curseg_info *curseg;
3555 unsigned int segno, old_cursegno;
3556 struct seg_entry *se;
3557 int type;
3558 unsigned short old_blkoff;
3560 segno = GET_SEGNO(sbi, new_blkaddr);
3561 se = get_seg_entry(sbi, segno);
3562 type = se->type;
3564 down_write(&SM_I(sbi)->curseg_lock);
3566 if (!recover_curseg) {
3567 /* for recovery flow */
3568 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3569 if (old_blkaddr == NULL_ADDR)
3570 type = CURSEG_COLD_DATA;
3571 else
3572 type = CURSEG_WARM_DATA;
3574 } else {
3575 if (IS_CURSEG(sbi, segno)) {
3576 /* se->type is volatile as SSR allocation */
3577 type = __f2fs_get_curseg(sbi, segno);
3578 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3579 } else {
3580 type = CURSEG_WARM_DATA;
3584 f2fs_bug_on(sbi, !IS_DATASEG(type));
3585 curseg = CURSEG_I(sbi, type);
3587 mutex_lock(&curseg->curseg_mutex);
3588 down_write(&sit_i->sentry_lock);
3590 old_cursegno = curseg->segno;
3591 old_blkoff = curseg->next_blkoff;
3593 /* change the current segment */
3594 if (segno != curseg->segno) {
3595 curseg->next_segno = segno;
3596 change_curseg(sbi, type, true);
3599 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3600 __add_sum_entry(sbi, type, sum);
3602 if (!recover_curseg || recover_newaddr) {
3603 if (!from_gc)
3604 update_segment_mtime(sbi, new_blkaddr, 0);
3605 update_sit_entry(sbi, new_blkaddr, 1);
3607 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3608 invalidate_mapping_pages(META_MAPPING(sbi),
3609 old_blkaddr, old_blkaddr);
3610 if (!from_gc)
3611 update_segment_mtime(sbi, old_blkaddr, 0);
3612 update_sit_entry(sbi, old_blkaddr, -1);
3615 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3616 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3618 locate_dirty_segment(sbi, old_cursegno);
3620 if (recover_curseg) {
3621 if (old_cursegno != curseg->segno) {
3622 curseg->next_segno = old_cursegno;
3623 change_curseg(sbi, type, true);
3625 curseg->next_blkoff = old_blkoff;
3628 up_write(&sit_i->sentry_lock);
3629 mutex_unlock(&curseg->curseg_mutex);
3630 up_write(&SM_I(sbi)->curseg_lock);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 block_t old_addr, block_t new_addr,
3635 unsigned char version, bool recover_curseg,
3636 bool recover_newaddr)
3638 struct f2fs_summary sum;
3640 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3642 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3643 recover_curseg, recover_newaddr, false);
3645 f2fs_update_data_blkaddr(dn, new_addr);
3648 void f2fs_wait_on_page_writeback(struct page *page,
3649 enum page_type type, bool ordered, bool locked)
3651 if (PageWriteback(page)) {
3652 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3654 /* submit cached LFS IO */
3655 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3656 /* sbumit cached IPU IO */
3657 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3658 if (ordered) {
3659 wait_on_page_writeback(page);
3660 f2fs_bug_on(sbi, locked && PageWriteback(page));
3661 } else {
3662 wait_for_stable_page(page);
3667 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670 struct page *cpage;
3672 if (!f2fs_post_read_required(inode))
3673 return;
3675 if (!__is_valid_data_blkaddr(blkaddr))
3676 return;
3678 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3679 if (cpage) {
3680 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3681 f2fs_put_page(cpage, 1);
3685 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3686 block_t len)
3688 block_t i;
3690 for (i = 0; i < len; i++)
3691 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3694 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3696 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3697 struct curseg_info *seg_i;
3698 unsigned char *kaddr;
3699 struct page *page;
3700 block_t start;
3701 int i, j, offset;
3703 start = start_sum_block(sbi);
3705 page = f2fs_get_meta_page(sbi, start++);
3706 if (IS_ERR(page))
3707 return PTR_ERR(page);
3708 kaddr = (unsigned char *)page_address(page);
3710 /* Step 1: restore nat cache */
3711 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3712 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3714 /* Step 2: restore sit cache */
3715 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3716 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3717 offset = 2 * SUM_JOURNAL_SIZE;
3719 /* Step 3: restore summary entries */
3720 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3721 unsigned short blk_off;
3722 unsigned int segno;
3724 seg_i = CURSEG_I(sbi, i);
3725 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3726 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3727 seg_i->next_segno = segno;
3728 reset_curseg(sbi, i, 0);
3729 seg_i->alloc_type = ckpt->alloc_type[i];
3730 seg_i->next_blkoff = blk_off;
3732 if (seg_i->alloc_type == SSR)
3733 blk_off = sbi->blocks_per_seg;
3735 for (j = 0; j < blk_off; j++) {
3736 struct f2fs_summary *s;
3737 s = (struct f2fs_summary *)(kaddr + offset);
3738 seg_i->sum_blk->entries[j] = *s;
3739 offset += SUMMARY_SIZE;
3740 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3741 SUM_FOOTER_SIZE)
3742 continue;
3744 f2fs_put_page(page, 1);
3745 page = NULL;
3747 page = f2fs_get_meta_page(sbi, start++);
3748 if (IS_ERR(page))
3749 return PTR_ERR(page);
3750 kaddr = (unsigned char *)page_address(page);
3751 offset = 0;
3754 f2fs_put_page(page, 1);
3755 return 0;
3758 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3760 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3761 struct f2fs_summary_block *sum;
3762 struct curseg_info *curseg;
3763 struct page *new;
3764 unsigned short blk_off;
3765 unsigned int segno = 0;
3766 block_t blk_addr = 0;
3767 int err = 0;
3769 /* get segment number and block addr */
3770 if (IS_DATASEG(type)) {
3771 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3772 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3773 CURSEG_HOT_DATA]);
3774 if (__exist_node_summaries(sbi))
3775 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3776 else
3777 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3778 } else {
3779 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3780 CURSEG_HOT_NODE]);
3781 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3782 CURSEG_HOT_NODE]);
3783 if (__exist_node_summaries(sbi))
3784 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3785 type - CURSEG_HOT_NODE);
3786 else
3787 blk_addr = GET_SUM_BLOCK(sbi, segno);
3790 new = f2fs_get_meta_page(sbi, blk_addr);
3791 if (IS_ERR(new))
3792 return PTR_ERR(new);
3793 sum = (struct f2fs_summary_block *)page_address(new);
3795 if (IS_NODESEG(type)) {
3796 if (__exist_node_summaries(sbi)) {
3797 struct f2fs_summary *ns = &sum->entries[0];
3798 int i;
3799 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3800 ns->version = 0;
3801 ns->ofs_in_node = 0;
3803 } else {
3804 err = f2fs_restore_node_summary(sbi, segno, sum);
3805 if (err)
3806 goto out;
3810 /* set uncompleted segment to curseg */
3811 curseg = CURSEG_I(sbi, type);
3812 mutex_lock(&curseg->curseg_mutex);
3814 /* update journal info */
3815 down_write(&curseg->journal_rwsem);
3816 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3817 up_write(&curseg->journal_rwsem);
3819 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3820 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3821 curseg->next_segno = segno;
3822 reset_curseg(sbi, type, 0);
3823 curseg->alloc_type = ckpt->alloc_type[type];
3824 curseg->next_blkoff = blk_off;
3825 mutex_unlock(&curseg->curseg_mutex);
3826 out:
3827 f2fs_put_page(new, 1);
3828 return err;
3831 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3833 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3834 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3835 int type = CURSEG_HOT_DATA;
3836 int err;
3838 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3839 int npages = f2fs_npages_for_summary_flush(sbi, true);
3841 if (npages >= 2)
3842 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3843 META_CP, true);
3845 /* restore for compacted data summary */
3846 err = read_compacted_summaries(sbi);
3847 if (err)
3848 return err;
3849 type = CURSEG_HOT_NODE;
3852 if (__exist_node_summaries(sbi))
3853 f2fs_ra_meta_pages(sbi,
3854 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3855 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3857 for (; type <= CURSEG_COLD_NODE; type++) {
3858 err = read_normal_summaries(sbi, type);
3859 if (err)
3860 return err;
3863 /* sanity check for summary blocks */
3864 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3865 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3866 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3867 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3868 return -EINVAL;
3871 return 0;
3874 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3876 struct page *page;
3877 unsigned char *kaddr;
3878 struct f2fs_summary *summary;
3879 struct curseg_info *seg_i;
3880 int written_size = 0;
3881 int i, j;
3883 page = f2fs_grab_meta_page(sbi, blkaddr++);
3884 kaddr = (unsigned char *)page_address(page);
3885 memset(kaddr, 0, PAGE_SIZE);
3887 /* Step 1: write nat cache */
3888 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3889 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3890 written_size += SUM_JOURNAL_SIZE;
3892 /* Step 2: write sit cache */
3893 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3894 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3895 written_size += SUM_JOURNAL_SIZE;
3897 /* Step 3: write summary entries */
3898 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3899 unsigned short blkoff;
3900 seg_i = CURSEG_I(sbi, i);
3901 if (sbi->ckpt->alloc_type[i] == SSR)
3902 blkoff = sbi->blocks_per_seg;
3903 else
3904 blkoff = curseg_blkoff(sbi, i);
3906 for (j = 0; j < blkoff; j++) {
3907 if (!page) {
3908 page = f2fs_grab_meta_page(sbi, blkaddr++);
3909 kaddr = (unsigned char *)page_address(page);
3910 memset(kaddr, 0, PAGE_SIZE);
3911 written_size = 0;
3913 summary = (struct f2fs_summary *)(kaddr + written_size);
3914 *summary = seg_i->sum_blk->entries[j];
3915 written_size += SUMMARY_SIZE;
3917 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3918 SUM_FOOTER_SIZE)
3919 continue;
3921 set_page_dirty(page);
3922 f2fs_put_page(page, 1);
3923 page = NULL;
3926 if (page) {
3927 set_page_dirty(page);
3928 f2fs_put_page(page, 1);
3932 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3933 block_t blkaddr, int type)
3935 int i, end;
3936 if (IS_DATASEG(type))
3937 end = type + NR_CURSEG_DATA_TYPE;
3938 else
3939 end = type + NR_CURSEG_NODE_TYPE;
3941 for (i = type; i < end; i++)
3942 write_current_sum_page(sbi, i, blkaddr + (i - type));
3945 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3947 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3948 write_compacted_summaries(sbi, start_blk);
3949 else
3950 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3953 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3955 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3958 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3959 unsigned int val, int alloc)
3961 int i;
3963 if (type == NAT_JOURNAL) {
3964 for (i = 0; i < nats_in_cursum(journal); i++) {
3965 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3966 return i;
3968 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3969 return update_nats_in_cursum(journal, 1);
3970 } else if (type == SIT_JOURNAL) {
3971 for (i = 0; i < sits_in_cursum(journal); i++)
3972 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3973 return i;
3974 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3975 return update_sits_in_cursum(journal, 1);
3977 return -1;
3980 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3981 unsigned int segno)
3983 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3986 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3987 unsigned int start)
3989 struct sit_info *sit_i = SIT_I(sbi);
3990 struct page *page;
3991 pgoff_t src_off, dst_off;
3993 src_off = current_sit_addr(sbi, start);
3994 dst_off = next_sit_addr(sbi, src_off);
3996 page = f2fs_grab_meta_page(sbi, dst_off);
3997 seg_info_to_sit_page(sbi, page, start);
3999 set_page_dirty(page);
4000 set_to_next_sit(sit_i, start);
4002 return page;
4005 static struct sit_entry_set *grab_sit_entry_set(void)
4007 struct sit_entry_set *ses =
4008 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4010 ses->entry_cnt = 0;
4011 INIT_LIST_HEAD(&ses->set_list);
4012 return ses;
4015 static void release_sit_entry_set(struct sit_entry_set *ses)
4017 list_del(&ses->set_list);
4018 kmem_cache_free(sit_entry_set_slab, ses);
4021 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4022 struct list_head *head)
4024 struct sit_entry_set *next = ses;
4026 if (list_is_last(&ses->set_list, head))
4027 return;
4029 list_for_each_entry_continue(next, head, set_list)
4030 if (ses->entry_cnt <= next->entry_cnt)
4031 break;
4033 list_move_tail(&ses->set_list, &next->set_list);
4036 static void add_sit_entry(unsigned int segno, struct list_head *head)
4038 struct sit_entry_set *ses;
4039 unsigned int start_segno = START_SEGNO(segno);
4041 list_for_each_entry(ses, head, set_list) {
4042 if (ses->start_segno == start_segno) {
4043 ses->entry_cnt++;
4044 adjust_sit_entry_set(ses, head);
4045 return;
4049 ses = grab_sit_entry_set();
4051 ses->start_segno = start_segno;
4052 ses->entry_cnt++;
4053 list_add(&ses->set_list, head);
4056 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4058 struct f2fs_sm_info *sm_info = SM_I(sbi);
4059 struct list_head *set_list = &sm_info->sit_entry_set;
4060 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4061 unsigned int segno;
4063 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4064 add_sit_entry(segno, set_list);
4067 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4069 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4070 struct f2fs_journal *journal = curseg->journal;
4071 int i;
4073 down_write(&curseg->journal_rwsem);
4074 for (i = 0; i < sits_in_cursum(journal); i++) {
4075 unsigned int segno;
4076 bool dirtied;
4078 segno = le32_to_cpu(segno_in_journal(journal, i));
4079 dirtied = __mark_sit_entry_dirty(sbi, segno);
4081 if (!dirtied)
4082 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4084 update_sits_in_cursum(journal, -i);
4085 up_write(&curseg->journal_rwsem);
4089 * CP calls this function, which flushes SIT entries including sit_journal,
4090 * and moves prefree segs to free segs.
4092 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4094 struct sit_info *sit_i = SIT_I(sbi);
4095 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4096 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4097 struct f2fs_journal *journal = curseg->journal;
4098 struct sit_entry_set *ses, *tmp;
4099 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4100 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4101 struct seg_entry *se;
4103 down_write(&sit_i->sentry_lock);
4105 if (!sit_i->dirty_sentries)
4106 goto out;
4109 * add and account sit entries of dirty bitmap in sit entry
4110 * set temporarily
4112 add_sits_in_set(sbi);
4115 * if there are no enough space in journal to store dirty sit
4116 * entries, remove all entries from journal and add and account
4117 * them in sit entry set.
4119 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4120 !to_journal)
4121 remove_sits_in_journal(sbi);
4124 * there are two steps to flush sit entries:
4125 * #1, flush sit entries to journal in current cold data summary block.
4126 * #2, flush sit entries to sit page.
4128 list_for_each_entry_safe(ses, tmp, head, set_list) {
4129 struct page *page = NULL;
4130 struct f2fs_sit_block *raw_sit = NULL;
4131 unsigned int start_segno = ses->start_segno;
4132 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4133 (unsigned long)MAIN_SEGS(sbi));
4134 unsigned int segno = start_segno;
4136 if (to_journal &&
4137 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4138 to_journal = false;
4140 if (to_journal) {
4141 down_write(&curseg->journal_rwsem);
4142 } else {
4143 page = get_next_sit_page(sbi, start_segno);
4144 raw_sit = page_address(page);
4147 /* flush dirty sit entries in region of current sit set */
4148 for_each_set_bit_from(segno, bitmap, end) {
4149 int offset, sit_offset;
4151 se = get_seg_entry(sbi, segno);
4152 #ifdef CONFIG_F2FS_CHECK_FS
4153 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4154 SIT_VBLOCK_MAP_SIZE))
4155 f2fs_bug_on(sbi, 1);
4156 #endif
4158 /* add discard candidates */
4159 if (!(cpc->reason & CP_DISCARD)) {
4160 cpc->trim_start = segno;
4161 add_discard_addrs(sbi, cpc, false);
4164 if (to_journal) {
4165 offset = f2fs_lookup_journal_in_cursum(journal,
4166 SIT_JOURNAL, segno, 1);
4167 f2fs_bug_on(sbi, offset < 0);
4168 segno_in_journal(journal, offset) =
4169 cpu_to_le32(segno);
4170 seg_info_to_raw_sit(se,
4171 &sit_in_journal(journal, offset));
4172 check_block_count(sbi, segno,
4173 &sit_in_journal(journal, offset));
4174 } else {
4175 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4176 seg_info_to_raw_sit(se,
4177 &raw_sit->entries[sit_offset]);
4178 check_block_count(sbi, segno,
4179 &raw_sit->entries[sit_offset]);
4182 __clear_bit(segno, bitmap);
4183 sit_i->dirty_sentries--;
4184 ses->entry_cnt--;
4187 if (to_journal)
4188 up_write(&curseg->journal_rwsem);
4189 else
4190 f2fs_put_page(page, 1);
4192 f2fs_bug_on(sbi, ses->entry_cnt);
4193 release_sit_entry_set(ses);
4196 f2fs_bug_on(sbi, !list_empty(head));
4197 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4198 out:
4199 if (cpc->reason & CP_DISCARD) {
4200 __u64 trim_start = cpc->trim_start;
4202 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4203 add_discard_addrs(sbi, cpc, false);
4205 cpc->trim_start = trim_start;
4207 up_write(&sit_i->sentry_lock);
4209 set_prefree_as_free_segments(sbi);
4212 static int build_sit_info(struct f2fs_sb_info *sbi)
4214 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4215 struct sit_info *sit_i;
4216 unsigned int sit_segs, start;
4217 char *src_bitmap, *bitmap;
4218 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4220 /* allocate memory for SIT information */
4221 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4222 if (!sit_i)
4223 return -ENOMEM;
4225 SM_I(sbi)->sit_info = sit_i;
4227 sit_i->sentries =
4228 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4229 MAIN_SEGS(sbi)),
4230 GFP_KERNEL);
4231 if (!sit_i->sentries)
4232 return -ENOMEM;
4234 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4235 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4236 GFP_KERNEL);
4237 if (!sit_i->dirty_sentries_bitmap)
4238 return -ENOMEM;
4240 #ifdef CONFIG_F2FS_CHECK_FS
4241 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4242 #else
4243 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4244 #endif
4245 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4246 if (!sit_i->bitmap)
4247 return -ENOMEM;
4249 bitmap = sit_i->bitmap;
4251 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4252 sit_i->sentries[start].cur_valid_map = bitmap;
4253 bitmap += SIT_VBLOCK_MAP_SIZE;
4255 sit_i->sentries[start].ckpt_valid_map = bitmap;
4256 bitmap += SIT_VBLOCK_MAP_SIZE;
4258 #ifdef CONFIG_F2FS_CHECK_FS
4259 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4260 bitmap += SIT_VBLOCK_MAP_SIZE;
4261 #endif
4263 sit_i->sentries[start].discard_map = bitmap;
4264 bitmap += SIT_VBLOCK_MAP_SIZE;
4267 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4268 if (!sit_i->tmp_map)
4269 return -ENOMEM;
4271 if (__is_large_section(sbi)) {
4272 sit_i->sec_entries =
4273 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4274 MAIN_SECS(sbi)),
4275 GFP_KERNEL);
4276 if (!sit_i->sec_entries)
4277 return -ENOMEM;
4280 /* get information related with SIT */
4281 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4283 /* setup SIT bitmap from ckeckpoint pack */
4284 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4285 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4287 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4288 if (!sit_i->sit_bitmap)
4289 return -ENOMEM;
4291 #ifdef CONFIG_F2FS_CHECK_FS
4292 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4293 sit_bitmap_size, GFP_KERNEL);
4294 if (!sit_i->sit_bitmap_mir)
4295 return -ENOMEM;
4297 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4298 main_bitmap_size, GFP_KERNEL);
4299 if (!sit_i->invalid_segmap)
4300 return -ENOMEM;
4301 #endif
4303 /* init SIT information */
4304 sit_i->s_ops = &default_salloc_ops;
4306 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4307 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4308 sit_i->written_valid_blocks = 0;
4309 sit_i->bitmap_size = sit_bitmap_size;
4310 sit_i->dirty_sentries = 0;
4311 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4312 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4313 sit_i->mounted_time = ktime_get_boottime_seconds();
4314 init_rwsem(&sit_i->sentry_lock);
4315 return 0;
4318 static int build_free_segmap(struct f2fs_sb_info *sbi)
4320 struct free_segmap_info *free_i;
4321 unsigned int bitmap_size, sec_bitmap_size;
4323 /* allocate memory for free segmap information */
4324 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4325 if (!free_i)
4326 return -ENOMEM;
4328 SM_I(sbi)->free_info = free_i;
4330 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4331 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4332 if (!free_i->free_segmap)
4333 return -ENOMEM;
4335 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4336 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4337 if (!free_i->free_secmap)
4338 return -ENOMEM;
4340 /* set all segments as dirty temporarily */
4341 memset(free_i->free_segmap, 0xff, bitmap_size);
4342 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4344 /* init free segmap information */
4345 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4346 free_i->free_segments = 0;
4347 free_i->free_sections = 0;
4348 spin_lock_init(&free_i->segmap_lock);
4349 return 0;
4352 static int build_curseg(struct f2fs_sb_info *sbi)
4354 struct curseg_info *array;
4355 int i;
4357 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4358 sizeof(*array)), GFP_KERNEL);
4359 if (!array)
4360 return -ENOMEM;
4362 SM_I(sbi)->curseg_array = array;
4364 for (i = 0; i < NO_CHECK_TYPE; i++) {
4365 mutex_init(&array[i].curseg_mutex);
4366 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4367 if (!array[i].sum_blk)
4368 return -ENOMEM;
4369 init_rwsem(&array[i].journal_rwsem);
4370 array[i].journal = f2fs_kzalloc(sbi,
4371 sizeof(struct f2fs_journal), GFP_KERNEL);
4372 if (!array[i].journal)
4373 return -ENOMEM;
4374 if (i < NR_PERSISTENT_LOG)
4375 array[i].seg_type = CURSEG_HOT_DATA + i;
4376 else if (i == CURSEG_COLD_DATA_PINNED)
4377 array[i].seg_type = CURSEG_COLD_DATA;
4378 else if (i == CURSEG_ALL_DATA_ATGC)
4379 array[i].seg_type = CURSEG_COLD_DATA;
4380 array[i].segno = NULL_SEGNO;
4381 array[i].next_blkoff = 0;
4382 array[i].inited = false;
4384 return restore_curseg_summaries(sbi);
4387 static int build_sit_entries(struct f2fs_sb_info *sbi)
4389 struct sit_info *sit_i = SIT_I(sbi);
4390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4391 struct f2fs_journal *journal = curseg->journal;
4392 struct seg_entry *se;
4393 struct f2fs_sit_entry sit;
4394 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4395 unsigned int i, start, end;
4396 unsigned int readed, start_blk = 0;
4397 int err = 0;
4398 block_t total_node_blocks = 0;
4400 do {
4401 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4402 META_SIT, true);
4404 start = start_blk * sit_i->sents_per_block;
4405 end = (start_blk + readed) * sit_i->sents_per_block;
4407 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4408 struct f2fs_sit_block *sit_blk;
4409 struct page *page;
4411 se = &sit_i->sentries[start];
4412 page = get_current_sit_page(sbi, start);
4413 if (IS_ERR(page))
4414 return PTR_ERR(page);
4415 sit_blk = (struct f2fs_sit_block *)page_address(page);
4416 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4417 f2fs_put_page(page, 1);
4419 err = check_block_count(sbi, start, &sit);
4420 if (err)
4421 return err;
4422 seg_info_from_raw_sit(se, &sit);
4423 if (IS_NODESEG(se->type))
4424 total_node_blocks += se->valid_blocks;
4426 /* build discard map only one time */
4427 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4428 memset(se->discard_map, 0xff,
4429 SIT_VBLOCK_MAP_SIZE);
4430 } else {
4431 memcpy(se->discard_map,
4432 se->cur_valid_map,
4433 SIT_VBLOCK_MAP_SIZE);
4434 sbi->discard_blks +=
4435 sbi->blocks_per_seg -
4436 se->valid_blocks;
4439 if (__is_large_section(sbi))
4440 get_sec_entry(sbi, start)->valid_blocks +=
4441 se->valid_blocks;
4443 start_blk += readed;
4444 } while (start_blk < sit_blk_cnt);
4446 down_read(&curseg->journal_rwsem);
4447 for (i = 0; i < sits_in_cursum(journal); i++) {
4448 unsigned int old_valid_blocks;
4450 start = le32_to_cpu(segno_in_journal(journal, i));
4451 if (start >= MAIN_SEGS(sbi)) {
4452 f2fs_err(sbi, "Wrong journal entry on segno %u",
4453 start);
4454 err = -EFSCORRUPTED;
4455 break;
4458 se = &sit_i->sentries[start];
4459 sit = sit_in_journal(journal, i);
4461 old_valid_blocks = se->valid_blocks;
4462 if (IS_NODESEG(se->type))
4463 total_node_blocks -= old_valid_blocks;
4465 err = check_block_count(sbi, start, &sit);
4466 if (err)
4467 break;
4468 seg_info_from_raw_sit(se, &sit);
4469 if (IS_NODESEG(se->type))
4470 total_node_blocks += se->valid_blocks;
4472 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4473 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4474 } else {
4475 memcpy(se->discard_map, se->cur_valid_map,
4476 SIT_VBLOCK_MAP_SIZE);
4477 sbi->discard_blks += old_valid_blocks;
4478 sbi->discard_blks -= se->valid_blocks;
4481 if (__is_large_section(sbi)) {
4482 get_sec_entry(sbi, start)->valid_blocks +=
4483 se->valid_blocks;
4484 get_sec_entry(sbi, start)->valid_blocks -=
4485 old_valid_blocks;
4488 up_read(&curseg->journal_rwsem);
4490 if (!err && total_node_blocks != valid_node_count(sbi)) {
4491 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4492 total_node_blocks, valid_node_count(sbi));
4493 err = -EFSCORRUPTED;
4496 return err;
4499 static void init_free_segmap(struct f2fs_sb_info *sbi)
4501 unsigned int start;
4502 int type;
4503 struct seg_entry *sentry;
4505 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4506 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4507 continue;
4508 sentry = get_seg_entry(sbi, start);
4509 if (!sentry->valid_blocks)
4510 __set_free(sbi, start);
4511 else
4512 SIT_I(sbi)->written_valid_blocks +=
4513 sentry->valid_blocks;
4516 /* set use the current segments */
4517 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4518 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4519 __set_test_and_inuse(sbi, curseg_t->segno);
4523 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4526 struct free_segmap_info *free_i = FREE_I(sbi);
4527 unsigned int segno = 0, offset = 0, secno;
4528 block_t valid_blocks, usable_blks_in_seg;
4529 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4531 while (1) {
4532 /* find dirty segment based on free segmap */
4533 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4534 if (segno >= MAIN_SEGS(sbi))
4535 break;
4536 offset = segno + 1;
4537 valid_blocks = get_valid_blocks(sbi, segno, false);
4538 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4539 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4540 continue;
4541 if (valid_blocks > usable_blks_in_seg) {
4542 f2fs_bug_on(sbi, 1);
4543 continue;
4545 mutex_lock(&dirty_i->seglist_lock);
4546 __locate_dirty_segment(sbi, segno, DIRTY);
4547 mutex_unlock(&dirty_i->seglist_lock);
4550 if (!__is_large_section(sbi))
4551 return;
4553 mutex_lock(&dirty_i->seglist_lock);
4554 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4555 valid_blocks = get_valid_blocks(sbi, segno, true);
4556 secno = GET_SEC_FROM_SEG(sbi, segno);
4558 if (!valid_blocks || valid_blocks == blks_per_sec)
4559 continue;
4560 if (IS_CURSEC(sbi, secno))
4561 continue;
4562 set_bit(secno, dirty_i->dirty_secmap);
4564 mutex_unlock(&dirty_i->seglist_lock);
4567 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4569 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4570 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4572 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4573 if (!dirty_i->victim_secmap)
4574 return -ENOMEM;
4575 return 0;
4578 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4580 struct dirty_seglist_info *dirty_i;
4581 unsigned int bitmap_size, i;
4583 /* allocate memory for dirty segments list information */
4584 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4585 GFP_KERNEL);
4586 if (!dirty_i)
4587 return -ENOMEM;
4589 SM_I(sbi)->dirty_info = dirty_i;
4590 mutex_init(&dirty_i->seglist_lock);
4592 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4594 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4595 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4596 GFP_KERNEL);
4597 if (!dirty_i->dirty_segmap[i])
4598 return -ENOMEM;
4601 if (__is_large_section(sbi)) {
4602 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4603 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4604 bitmap_size, GFP_KERNEL);
4605 if (!dirty_i->dirty_secmap)
4606 return -ENOMEM;
4609 init_dirty_segmap(sbi);
4610 return init_victim_secmap(sbi);
4613 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4615 int i;
4618 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4619 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4621 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4622 struct curseg_info *curseg = CURSEG_I(sbi, i);
4623 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4624 unsigned int blkofs = curseg->next_blkoff;
4626 sanity_check_seg_type(sbi, curseg->seg_type);
4628 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4629 goto out;
4631 if (curseg->alloc_type == SSR)
4632 continue;
4634 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4635 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4636 continue;
4637 out:
4638 f2fs_err(sbi,
4639 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4640 i, curseg->segno, curseg->alloc_type,
4641 curseg->next_blkoff, blkofs);
4642 return -EFSCORRUPTED;
4645 return 0;
4648 #ifdef CONFIG_BLK_DEV_ZONED
4650 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4651 struct f2fs_dev_info *fdev,
4652 struct blk_zone *zone)
4654 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4655 block_t zone_block, wp_block, last_valid_block;
4656 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4657 int i, s, b, ret;
4658 struct seg_entry *se;
4660 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4661 return 0;
4663 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4664 wp_segno = GET_SEGNO(sbi, wp_block);
4665 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4666 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4667 zone_segno = GET_SEGNO(sbi, zone_block);
4668 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4670 if (zone_segno >= MAIN_SEGS(sbi))
4671 return 0;
4674 * Skip check of zones cursegs point to, since
4675 * fix_curseg_write_pointer() checks them.
4677 for (i = 0; i < NO_CHECK_TYPE; i++)
4678 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4679 CURSEG_I(sbi, i)->segno))
4680 return 0;
4683 * Get last valid block of the zone.
4685 last_valid_block = zone_block - 1;
4686 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4687 segno = zone_segno + s;
4688 se = get_seg_entry(sbi, segno);
4689 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4690 if (f2fs_test_bit(b, se->cur_valid_map)) {
4691 last_valid_block = START_BLOCK(sbi, segno) + b;
4692 break;
4694 if (last_valid_block >= zone_block)
4695 break;
4699 * If last valid block is beyond the write pointer, report the
4700 * inconsistency. This inconsistency does not cause write error
4701 * because the zone will not be selected for write operation until
4702 * it get discarded. Just report it.
4704 if (last_valid_block >= wp_block) {
4705 f2fs_notice(sbi, "Valid block beyond write pointer: "
4706 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4707 GET_SEGNO(sbi, last_valid_block),
4708 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4709 wp_segno, wp_blkoff);
4710 return 0;
4714 * If there is no valid block in the zone and if write pointer is
4715 * not at zone start, reset the write pointer.
4717 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4718 f2fs_notice(sbi,
4719 "Zone without valid block has non-zero write "
4720 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4721 wp_segno, wp_blkoff);
4722 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4723 zone->len >> log_sectors_per_block);
4724 if (ret) {
4725 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4726 fdev->path, ret);
4727 return ret;
4731 return 0;
4734 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4735 block_t zone_blkaddr)
4737 int i;
4739 for (i = 0; i < sbi->s_ndevs; i++) {
4740 if (!bdev_is_zoned(FDEV(i).bdev))
4741 continue;
4742 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4743 zone_blkaddr <= FDEV(i).end_blk))
4744 return &FDEV(i);
4747 return NULL;
4750 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4751 void *data) {
4752 memcpy(data, zone, sizeof(struct blk_zone));
4753 return 0;
4756 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4758 struct curseg_info *cs = CURSEG_I(sbi, type);
4759 struct f2fs_dev_info *zbd;
4760 struct blk_zone zone;
4761 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4762 block_t cs_zone_block, wp_block;
4763 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4764 sector_t zone_sector;
4765 int err;
4767 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4768 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4770 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4771 if (!zbd)
4772 return 0;
4774 /* report zone for the sector the curseg points to */
4775 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4776 << log_sectors_per_block;
4777 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4778 report_one_zone_cb, &zone);
4779 if (err != 1) {
4780 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4781 zbd->path, err);
4782 return err;
4785 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4786 return 0;
4788 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4789 wp_segno = GET_SEGNO(sbi, wp_block);
4790 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4791 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4793 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4794 wp_sector_off == 0)
4795 return 0;
4797 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4798 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4799 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4801 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4802 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4803 allocate_segment_by_default(sbi, type, true);
4805 /* check consistency of the zone curseg pointed to */
4806 if (check_zone_write_pointer(sbi, zbd, &zone))
4807 return -EIO;
4809 /* check newly assigned zone */
4810 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4811 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4813 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4814 if (!zbd)
4815 return 0;
4817 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4818 << log_sectors_per_block;
4819 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4820 report_one_zone_cb, &zone);
4821 if (err != 1) {
4822 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4823 zbd->path, err);
4824 return err;
4827 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4828 return 0;
4830 if (zone.wp != zone.start) {
4831 f2fs_notice(sbi,
4832 "New zone for curseg[%d] is not yet discarded. "
4833 "Reset the zone: curseg[0x%x,0x%x]",
4834 type, cs->segno, cs->next_blkoff);
4835 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4836 zone_sector >> log_sectors_per_block,
4837 zone.len >> log_sectors_per_block);
4838 if (err) {
4839 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4840 zbd->path, err);
4841 return err;
4845 return 0;
4848 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4850 int i, ret;
4852 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4853 ret = fix_curseg_write_pointer(sbi, i);
4854 if (ret)
4855 return ret;
4858 return 0;
4861 struct check_zone_write_pointer_args {
4862 struct f2fs_sb_info *sbi;
4863 struct f2fs_dev_info *fdev;
4866 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4867 void *data) {
4868 struct check_zone_write_pointer_args *args;
4869 args = (struct check_zone_write_pointer_args *)data;
4871 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4874 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4876 int i, ret;
4877 struct check_zone_write_pointer_args args;
4879 for (i = 0; i < sbi->s_ndevs; i++) {
4880 if (!bdev_is_zoned(FDEV(i).bdev))
4881 continue;
4883 args.sbi = sbi;
4884 args.fdev = &FDEV(i);
4885 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4886 check_zone_write_pointer_cb, &args);
4887 if (ret < 0)
4888 return ret;
4891 return 0;
4894 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4895 unsigned int dev_idx)
4897 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4898 return true;
4899 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4902 /* Return the zone index in the given device */
4903 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4904 int dev_idx)
4906 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4908 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4909 sbi->log_blocks_per_blkz;
4913 * Return the usable segments in a section based on the zone's
4914 * corresponding zone capacity. Zone is equal to a section.
4916 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4917 struct f2fs_sb_info *sbi, unsigned int segno)
4919 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4921 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4922 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4924 /* Conventional zone's capacity is always equal to zone size */
4925 if (is_conv_zone(sbi, zone_idx, dev_idx))
4926 return sbi->segs_per_sec;
4929 * If the zone_capacity_blocks array is NULL, then zone capacity
4930 * is equal to the zone size for all zones
4932 if (!FDEV(dev_idx).zone_capacity_blocks)
4933 return sbi->segs_per_sec;
4935 /* Get the segment count beyond zone capacity block */
4936 unusable_segs_in_sec = (sbi->blocks_per_blkz -
4937 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4938 sbi->log_blocks_per_seg;
4939 return sbi->segs_per_sec - unusable_segs_in_sec;
4943 * Return the number of usable blocks in a segment. The number of blocks
4944 * returned is always equal to the number of blocks in a segment for
4945 * segments fully contained within a sequential zone capacity or a
4946 * conventional zone. For segments partially contained in a sequential
4947 * zone capacity, the number of usable blocks up to the zone capacity
4948 * is returned. 0 is returned in all other cases.
4950 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4951 struct f2fs_sb_info *sbi, unsigned int segno)
4953 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4954 unsigned int zone_idx, dev_idx, secno;
4956 secno = GET_SEC_FROM_SEG(sbi, segno);
4957 seg_start = START_BLOCK(sbi, segno);
4958 dev_idx = f2fs_target_device_index(sbi, seg_start);
4959 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4962 * Conventional zone's capacity is always equal to zone size,
4963 * so, blocks per segment is unchanged.
4965 if (is_conv_zone(sbi, zone_idx, dev_idx))
4966 return sbi->blocks_per_seg;
4968 if (!FDEV(dev_idx).zone_capacity_blocks)
4969 return sbi->blocks_per_seg;
4971 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4972 sec_cap_blkaddr = sec_start_blkaddr +
4973 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4976 * If segment starts before zone capacity and spans beyond
4977 * zone capacity, then usable blocks are from seg start to
4978 * zone capacity. If the segment starts after the zone capacity,
4979 * then there are no usable blocks.
4981 if (seg_start >= sec_cap_blkaddr)
4982 return 0;
4983 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4984 return sec_cap_blkaddr - seg_start;
4986 return sbi->blocks_per_seg;
4988 #else
4989 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4991 return 0;
4994 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4996 return 0;
4999 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5000 unsigned int segno)
5002 return 0;
5005 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5006 unsigned int segno)
5008 return 0;
5010 #endif
5011 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5012 unsigned int segno)
5014 if (f2fs_sb_has_blkzoned(sbi))
5015 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5017 return sbi->blocks_per_seg;
5020 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5021 unsigned int segno)
5023 if (f2fs_sb_has_blkzoned(sbi))
5024 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5026 return sbi->segs_per_sec;
5030 * Update min, max modified time for cost-benefit GC algorithm
5032 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5034 struct sit_info *sit_i = SIT_I(sbi);
5035 unsigned int segno;
5037 down_write(&sit_i->sentry_lock);
5039 sit_i->min_mtime = ULLONG_MAX;
5041 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5042 unsigned int i;
5043 unsigned long long mtime = 0;
5045 for (i = 0; i < sbi->segs_per_sec; i++)
5046 mtime += get_seg_entry(sbi, segno + i)->mtime;
5048 mtime = div_u64(mtime, sbi->segs_per_sec);
5050 if (sit_i->min_mtime > mtime)
5051 sit_i->min_mtime = mtime;
5053 sit_i->max_mtime = get_mtime(sbi, false);
5054 sit_i->dirty_max_mtime = 0;
5055 up_write(&sit_i->sentry_lock);
5058 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5060 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5061 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5062 struct f2fs_sm_info *sm_info;
5063 int err;
5065 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5066 if (!sm_info)
5067 return -ENOMEM;
5069 /* init sm info */
5070 sbi->sm_info = sm_info;
5071 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5072 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5073 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5074 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5075 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5076 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5077 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5078 sm_info->rec_prefree_segments = sm_info->main_segments *
5079 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5080 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5081 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5083 if (!f2fs_lfs_mode(sbi))
5084 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5085 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5086 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5087 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5088 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5089 sm_info->min_ssr_sections = reserved_sections(sbi);
5091 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5093 init_rwsem(&sm_info->curseg_lock);
5095 if (!f2fs_readonly(sbi->sb)) {
5096 err = f2fs_create_flush_cmd_control(sbi);
5097 if (err)
5098 return err;
5101 err = create_discard_cmd_control(sbi);
5102 if (err)
5103 return err;
5105 err = build_sit_info(sbi);
5106 if (err)
5107 return err;
5108 err = build_free_segmap(sbi);
5109 if (err)
5110 return err;
5111 err = build_curseg(sbi);
5112 if (err)
5113 return err;
5115 /* reinit free segmap based on SIT */
5116 err = build_sit_entries(sbi);
5117 if (err)
5118 return err;
5120 init_free_segmap(sbi);
5121 err = build_dirty_segmap(sbi);
5122 if (err)
5123 return err;
5125 err = sanity_check_curseg(sbi);
5126 if (err)
5127 return err;
5129 init_min_max_mtime(sbi);
5130 return 0;
5133 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5134 enum dirty_type dirty_type)
5136 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5138 mutex_lock(&dirty_i->seglist_lock);
5139 kvfree(dirty_i->dirty_segmap[dirty_type]);
5140 dirty_i->nr_dirty[dirty_type] = 0;
5141 mutex_unlock(&dirty_i->seglist_lock);
5144 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5146 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5147 kvfree(dirty_i->victim_secmap);
5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5153 int i;
5155 if (!dirty_i)
5156 return;
5158 /* discard pre-free/dirty segments list */
5159 for (i = 0; i < NR_DIRTY_TYPE; i++)
5160 discard_dirty_segmap(sbi, i);
5162 if (__is_large_section(sbi)) {
5163 mutex_lock(&dirty_i->seglist_lock);
5164 kvfree(dirty_i->dirty_secmap);
5165 mutex_unlock(&dirty_i->seglist_lock);
5168 destroy_victim_secmap(sbi);
5169 SM_I(sbi)->dirty_info = NULL;
5170 kfree(dirty_i);
5173 static void destroy_curseg(struct f2fs_sb_info *sbi)
5175 struct curseg_info *array = SM_I(sbi)->curseg_array;
5176 int i;
5178 if (!array)
5179 return;
5180 SM_I(sbi)->curseg_array = NULL;
5181 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5182 kfree(array[i].sum_blk);
5183 kfree(array[i].journal);
5185 kfree(array);
5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5190 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5191 if (!free_i)
5192 return;
5193 SM_I(sbi)->free_info = NULL;
5194 kvfree(free_i->free_segmap);
5195 kvfree(free_i->free_secmap);
5196 kfree(free_i);
5199 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5201 struct sit_info *sit_i = SIT_I(sbi);
5203 if (!sit_i)
5204 return;
5206 if (sit_i->sentries)
5207 kvfree(sit_i->bitmap);
5208 kfree(sit_i->tmp_map);
5210 kvfree(sit_i->sentries);
5211 kvfree(sit_i->sec_entries);
5212 kvfree(sit_i->dirty_sentries_bitmap);
5214 SM_I(sbi)->sit_info = NULL;
5215 kvfree(sit_i->sit_bitmap);
5216 #ifdef CONFIG_F2FS_CHECK_FS
5217 kvfree(sit_i->sit_bitmap_mir);
5218 kvfree(sit_i->invalid_segmap);
5219 #endif
5220 kfree(sit_i);
5223 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5225 struct f2fs_sm_info *sm_info = SM_I(sbi);
5227 if (!sm_info)
5228 return;
5229 f2fs_destroy_flush_cmd_control(sbi, true);
5230 destroy_discard_cmd_control(sbi);
5231 destroy_dirty_segmap(sbi);
5232 destroy_curseg(sbi);
5233 destroy_free_segmap(sbi);
5234 destroy_sit_info(sbi);
5235 sbi->sm_info = NULL;
5236 kfree(sm_info);
5239 int __init f2fs_create_segment_manager_caches(void)
5241 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5242 sizeof(struct discard_entry));
5243 if (!discard_entry_slab)
5244 goto fail;
5246 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5247 sizeof(struct discard_cmd));
5248 if (!discard_cmd_slab)
5249 goto destroy_discard_entry;
5251 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5252 sizeof(struct sit_entry_set));
5253 if (!sit_entry_set_slab)
5254 goto destroy_discard_cmd;
5256 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5257 sizeof(struct inmem_pages));
5258 if (!inmem_entry_slab)
5259 goto destroy_sit_entry_set;
5260 return 0;
5262 destroy_sit_entry_set:
5263 kmem_cache_destroy(sit_entry_set_slab);
5264 destroy_discard_cmd:
5265 kmem_cache_destroy(discard_cmd_slab);
5266 destroy_discard_entry:
5267 kmem_cache_destroy(discard_entry_slab);
5268 fail:
5269 return -ENOMEM;
5272 void f2fs_destroy_segment_manager_caches(void)
5274 kmem_cache_destroy(sit_entry_set_slab);
5275 kmem_cache_destroy(discard_cmd_slab);
5276 kmem_cache_destroy(discard_entry_slab);
5277 kmem_cache_destroy(inmem_entry_slab);