1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
89 #include <uapi/linux/io_uring.h>
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
108 u32 head ____cacheline_aligned_in_smp
;
109 u32 tail ____cacheline_aligned_in_smp
;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq
, cq
;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask
, cq_ring_mask
;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries
, cq_ring_entries
;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes
[] ____cacheline_aligned_in_smp
;
190 struct io_mapped_ubuf
{
193 struct bio_vec
*bvec
;
194 unsigned int nr_bvecs
;
195 unsigned long acct_pages
;
198 struct fixed_file_table
{
202 struct fixed_file_ref_node
{
203 struct percpu_ref refs
;
204 struct list_head node
;
205 struct list_head file_list
;
206 struct fixed_file_data
*file_data
;
207 struct llist_node llist
;
211 struct fixed_file_data
{
212 struct fixed_file_table
*table
;
213 struct io_ring_ctx
*ctx
;
215 struct fixed_file_ref_node
*node
;
216 struct percpu_ref refs
;
217 struct completion done
;
218 struct list_head ref_list
;
223 struct list_head list
;
229 struct io_restriction
{
230 DECLARE_BITMAP(register_op
, IORING_REGISTER_LAST
);
231 DECLARE_BITMAP(sqe_op
, IORING_OP_LAST
);
232 u8 sqe_flags_allowed
;
233 u8 sqe_flags_required
;
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list
;
243 struct list_head ctx_new_list
;
244 struct mutex ctx_lock
;
246 struct task_struct
*thread
;
247 struct wait_queue_head wait
;
249 unsigned sq_thread_idle
;
254 struct percpu_ref refs
;
255 } ____cacheline_aligned_in_smp
;
259 unsigned int compat
: 1;
260 unsigned int limit_mem
: 1;
261 unsigned int cq_overflow_flushed
: 1;
262 unsigned int drain_next
: 1;
263 unsigned int eventfd_async
: 1;
264 unsigned int restricted
: 1;
265 unsigned int sqo_dead
: 1;
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
275 * The kernel modifies neither the indices array nor the entries
279 unsigned cached_sq_head
;
282 unsigned sq_thread_idle
;
283 unsigned cached_sq_dropped
;
284 unsigned cached_cq_overflow
;
285 unsigned long sq_check_overflow
;
287 struct list_head defer_list
;
288 struct list_head timeout_list
;
289 struct list_head cq_overflow_list
;
291 struct io_uring_sqe
*sq_sqes
;
292 } ____cacheline_aligned_in_smp
;
294 struct io_rings
*rings
;
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
303 struct task_struct
*sqo_task
;
305 /* Only used for accounting purposes */
306 struct mm_struct
*mm_account
;
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state
*sqo_blkcg_css
;
312 struct io_sq_data
*sq_data
; /* if using sq thread polling */
314 struct wait_queue_head sqo_sq_wait
;
315 struct list_head sqd_list
;
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
322 struct fixed_file_data
*file_data
;
323 unsigned nr_user_files
;
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs
;
327 struct io_mapped_ubuf
*user_bufs
;
329 struct user_struct
*user
;
331 const struct cred
*creds
;
335 unsigned int sessionid
;
338 struct completion ref_comp
;
339 struct completion sq_thread_comp
;
341 /* if all else fails... */
342 struct io_kiocb
*fallback_req
;
344 #if defined(CONFIG_UNIX)
345 struct socket
*ring_sock
;
348 struct idr io_buffer_idr
;
350 struct idr personality_idr
;
353 unsigned cached_cq_tail
;
356 atomic_t cq_timeouts
;
357 unsigned long cq_check_overflow
;
358 struct wait_queue_head cq_wait
;
359 struct fasync_struct
*cq_fasync
;
360 struct eventfd_ctx
*cq_ev_fd
;
361 } ____cacheline_aligned_in_smp
;
364 struct mutex uring_lock
;
365 wait_queue_head_t wait
;
366 } ____cacheline_aligned_in_smp
;
369 spinlock_t completion_lock
;
372 * ->iopoll_list is protected by the ctx->uring_lock for
373 * io_uring instances that don't use IORING_SETUP_SQPOLL.
374 * For SQPOLL, only the single threaded io_sq_thread() will
375 * manipulate the list, hence no extra locking is needed there.
377 struct list_head iopoll_list
;
378 struct hlist_head
*cancel_hash
;
379 unsigned cancel_hash_bits
;
380 bool poll_multi_file
;
382 spinlock_t inflight_lock
;
383 struct list_head inflight_list
;
384 } ____cacheline_aligned_in_smp
;
386 struct delayed_work file_put_work
;
387 struct llist_head file_put_llist
;
389 struct work_struct exit_work
;
390 struct io_restriction restrictions
;
394 * First field must be the file pointer in all the
395 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 struct io_poll_iocb
{
399 struct wait_queue_head
*head
;
403 struct wait_queue_entry wait
;
406 struct io_poll_remove
{
413 struct file
*put_file
;
417 struct io_timeout_data
{
418 struct io_kiocb
*req
;
419 struct hrtimer timer
;
420 struct timespec64 ts
;
421 enum hrtimer_mode mode
;
426 struct sockaddr __user
*addr
;
427 int __user
*addr_len
;
429 unsigned long nofile
;
449 struct list_head list
;
450 /* head of the link, used by linked timeouts only */
451 struct io_kiocb
*head
;
454 struct io_timeout_rem
{
459 struct timespec64 ts
;
464 /* NOTE: kiocb has the file as the first member, so don't do it here */
472 struct sockaddr __user
*addr
;
479 struct user_msghdr __user
*umsg
;
485 struct io_buffer
*kbuf
;
491 bool ignore_nonblock
;
492 struct filename
*filename
;
494 unsigned long nofile
;
497 struct io_files_update
{
523 struct epoll_event event
;
527 struct file
*file_out
;
528 struct file
*file_in
;
535 struct io_provide_buf
{
549 const char __user
*filename
;
550 struct statx __user
*buffer
;
562 struct filename
*oldpath
;
563 struct filename
*newpath
;
571 struct filename
*filename
;
574 struct io_completion
{
576 struct list_head list
;
580 struct io_async_connect
{
581 struct sockaddr_storage address
;
584 struct io_async_msghdr
{
585 struct iovec fast_iov
[UIO_FASTIOV
];
587 struct sockaddr __user
*uaddr
;
589 struct sockaddr_storage addr
;
593 struct iovec fast_iov
[UIO_FASTIOV
];
594 const struct iovec
*free_iovec
;
595 struct iov_iter iter
;
597 struct wait_page_queue wpq
;
601 REQ_F_FIXED_FILE_BIT
= IOSQE_FIXED_FILE_BIT
,
602 REQ_F_IO_DRAIN_BIT
= IOSQE_IO_DRAIN_BIT
,
603 REQ_F_LINK_BIT
= IOSQE_IO_LINK_BIT
,
604 REQ_F_HARDLINK_BIT
= IOSQE_IO_HARDLINK_BIT
,
605 REQ_F_FORCE_ASYNC_BIT
= IOSQE_ASYNC_BIT
,
606 REQ_F_BUFFER_SELECT_BIT
= IOSQE_BUFFER_SELECT_BIT
,
612 REQ_F_LINK_TIMEOUT_BIT
,
614 REQ_F_NEED_CLEANUP_BIT
,
616 REQ_F_BUFFER_SELECTED_BIT
,
617 REQ_F_NO_FILE_TABLE_BIT
,
618 REQ_F_WORK_INITIALIZED_BIT
,
619 REQ_F_LTIMEOUT_ACTIVE_BIT
,
621 /* not a real bit, just to check we're not overflowing the space */
627 REQ_F_FIXED_FILE
= BIT(REQ_F_FIXED_FILE_BIT
),
628 /* drain existing IO first */
629 REQ_F_IO_DRAIN
= BIT(REQ_F_IO_DRAIN_BIT
),
631 REQ_F_LINK
= BIT(REQ_F_LINK_BIT
),
632 /* doesn't sever on completion < 0 */
633 REQ_F_HARDLINK
= BIT(REQ_F_HARDLINK_BIT
),
635 REQ_F_FORCE_ASYNC
= BIT(REQ_F_FORCE_ASYNC_BIT
),
636 /* IOSQE_BUFFER_SELECT */
637 REQ_F_BUFFER_SELECT
= BIT(REQ_F_BUFFER_SELECT_BIT
),
639 /* fail rest of links */
640 REQ_F_FAIL_LINK
= BIT(REQ_F_FAIL_LINK_BIT
),
641 /* on inflight list */
642 REQ_F_INFLIGHT
= BIT(REQ_F_INFLIGHT_BIT
),
643 /* read/write uses file position */
644 REQ_F_CUR_POS
= BIT(REQ_F_CUR_POS_BIT
),
645 /* must not punt to workers */
646 REQ_F_NOWAIT
= BIT(REQ_F_NOWAIT_BIT
),
647 /* has or had linked timeout */
648 REQ_F_LINK_TIMEOUT
= BIT(REQ_F_LINK_TIMEOUT_BIT
),
650 REQ_F_ISREG
= BIT(REQ_F_ISREG_BIT
),
652 REQ_F_NEED_CLEANUP
= BIT(REQ_F_NEED_CLEANUP_BIT
),
653 /* already went through poll handler */
654 REQ_F_POLLED
= BIT(REQ_F_POLLED_BIT
),
655 /* buffer already selected */
656 REQ_F_BUFFER_SELECTED
= BIT(REQ_F_BUFFER_SELECTED_BIT
),
657 /* doesn't need file table for this request */
658 REQ_F_NO_FILE_TABLE
= BIT(REQ_F_NO_FILE_TABLE_BIT
),
659 /* io_wq_work is initialized */
660 REQ_F_WORK_INITIALIZED
= BIT(REQ_F_WORK_INITIALIZED_BIT
),
661 /* linked timeout is active, i.e. prepared by link's head */
662 REQ_F_LTIMEOUT_ACTIVE
= BIT(REQ_F_LTIMEOUT_ACTIVE_BIT
),
666 struct io_poll_iocb poll
;
667 struct io_poll_iocb
*double_poll
;
671 * NOTE! Each of the iocb union members has the file pointer
672 * as the first entry in their struct definition. So you can
673 * access the file pointer through any of the sub-structs,
674 * or directly as just 'ki_filp' in this struct.
680 struct io_poll_iocb poll
;
681 struct io_poll_remove poll_remove
;
682 struct io_accept accept
;
684 struct io_cancel cancel
;
685 struct io_timeout timeout
;
686 struct io_timeout_rem timeout_rem
;
687 struct io_connect connect
;
688 struct io_sr_msg sr_msg
;
690 struct io_close close
;
691 struct io_files_update files_update
;
692 struct io_fadvise fadvise
;
693 struct io_madvise madvise
;
694 struct io_epoll epoll
;
695 struct io_splice splice
;
696 struct io_provide_buf pbuf
;
697 struct io_statx statx
;
698 struct io_shutdown shutdown
;
699 struct io_rename rename
;
700 struct io_unlink unlink
;
701 /* use only after cleaning per-op data, see io_clean_op() */
702 struct io_completion
compl;
705 /* opcode allocated if it needs to store data for async defer */
708 /* polled IO has completed */
714 struct io_ring_ctx
*ctx
;
717 struct task_struct
*task
;
720 struct io_kiocb
*link
;
721 struct percpu_ref
*fixed_file_refs
;
724 * 1. used with ctx->iopoll_list with reads/writes
725 * 2. to track reqs with ->files (see io_op_def::file_table)
727 struct list_head inflight_entry
;
728 struct callback_head task_work
;
729 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
730 struct hlist_node hash_node
;
731 struct async_poll
*apoll
;
732 struct io_wq_work work
;
735 struct io_defer_entry
{
736 struct list_head list
;
737 struct io_kiocb
*req
;
741 #define IO_IOPOLL_BATCH 8
743 struct io_comp_state
{
745 struct list_head list
;
746 struct io_ring_ctx
*ctx
;
749 struct io_submit_state
{
750 struct blk_plug plug
;
753 * io_kiocb alloc cache
755 void *reqs
[IO_IOPOLL_BATCH
];
756 unsigned int free_reqs
;
761 * Batch completion logic
763 struct io_comp_state comp
;
766 * File reference cache
770 unsigned int file_refs
;
771 unsigned int ios_left
;
775 /* needs req->file assigned */
776 unsigned needs_file
: 1;
777 /* don't fail if file grab fails */
778 unsigned needs_file_no_error
: 1;
779 /* hash wq insertion if file is a regular file */
780 unsigned hash_reg_file
: 1;
781 /* unbound wq insertion if file is a non-regular file */
782 unsigned unbound_nonreg_file
: 1;
783 /* opcode is not supported by this kernel */
784 unsigned not_supported
: 1;
785 /* set if opcode supports polled "wait" */
787 unsigned pollout
: 1;
788 /* op supports buffer selection */
789 unsigned buffer_select
: 1;
790 /* must always have async data allocated */
791 unsigned needs_async_data
: 1;
792 /* should block plug */
794 /* size of async data needed, if any */
795 unsigned short async_size
;
799 static const struct io_op_def io_op_defs
[] = {
800 [IORING_OP_NOP
] = {},
801 [IORING_OP_READV
] = {
803 .unbound_nonreg_file
= 1,
806 .needs_async_data
= 1,
808 .async_size
= sizeof(struct io_async_rw
),
809 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
811 [IORING_OP_WRITEV
] = {
814 .unbound_nonreg_file
= 1,
816 .needs_async_data
= 1,
818 .async_size
= sizeof(struct io_async_rw
),
819 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
|
822 [IORING_OP_FSYNC
] = {
824 .work_flags
= IO_WQ_WORK_BLKCG
,
826 [IORING_OP_READ_FIXED
] = {
828 .unbound_nonreg_file
= 1,
831 .async_size
= sizeof(struct io_async_rw
),
832 .work_flags
= IO_WQ_WORK_BLKCG
| IO_WQ_WORK_MM
,
834 [IORING_OP_WRITE_FIXED
] = {
837 .unbound_nonreg_file
= 1,
840 .async_size
= sizeof(struct io_async_rw
),
841 .work_flags
= IO_WQ_WORK_BLKCG
| IO_WQ_WORK_FSIZE
|
844 [IORING_OP_POLL_ADD
] = {
846 .unbound_nonreg_file
= 1,
848 [IORING_OP_POLL_REMOVE
] = {},
849 [IORING_OP_SYNC_FILE_RANGE
] = {
851 .work_flags
= IO_WQ_WORK_BLKCG
,
853 [IORING_OP_SENDMSG
] = {
855 .unbound_nonreg_file
= 1,
857 .needs_async_data
= 1,
858 .async_size
= sizeof(struct io_async_msghdr
),
859 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
861 [IORING_OP_RECVMSG
] = {
863 .unbound_nonreg_file
= 1,
866 .needs_async_data
= 1,
867 .async_size
= sizeof(struct io_async_msghdr
),
868 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
870 [IORING_OP_TIMEOUT
] = {
871 .needs_async_data
= 1,
872 .async_size
= sizeof(struct io_timeout_data
),
873 .work_flags
= IO_WQ_WORK_MM
,
875 [IORING_OP_TIMEOUT_REMOVE
] = {
876 /* used by timeout updates' prep() */
877 .work_flags
= IO_WQ_WORK_MM
,
879 [IORING_OP_ACCEPT
] = {
881 .unbound_nonreg_file
= 1,
883 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_FILES
,
885 [IORING_OP_ASYNC_CANCEL
] = {},
886 [IORING_OP_LINK_TIMEOUT
] = {
887 .needs_async_data
= 1,
888 .async_size
= sizeof(struct io_timeout_data
),
889 .work_flags
= IO_WQ_WORK_MM
,
891 [IORING_OP_CONNECT
] = {
893 .unbound_nonreg_file
= 1,
895 .needs_async_data
= 1,
896 .async_size
= sizeof(struct io_async_connect
),
897 .work_flags
= IO_WQ_WORK_MM
,
899 [IORING_OP_FALLOCATE
] = {
901 .work_flags
= IO_WQ_WORK_BLKCG
| IO_WQ_WORK_FSIZE
,
903 [IORING_OP_OPENAT
] = {
904 .work_flags
= IO_WQ_WORK_FILES
| IO_WQ_WORK_BLKCG
|
905 IO_WQ_WORK_FS
| IO_WQ_WORK_MM
,
907 [IORING_OP_CLOSE
] = {
909 .needs_file_no_error
= 1,
910 .work_flags
= IO_WQ_WORK_FILES
| IO_WQ_WORK_BLKCG
,
912 [IORING_OP_FILES_UPDATE
] = {
913 .work_flags
= IO_WQ_WORK_FILES
| IO_WQ_WORK_MM
,
915 [IORING_OP_STATX
] = {
916 .work_flags
= IO_WQ_WORK_FILES
| IO_WQ_WORK_MM
|
917 IO_WQ_WORK_FS
| IO_WQ_WORK_BLKCG
,
921 .unbound_nonreg_file
= 1,
925 .async_size
= sizeof(struct io_async_rw
),
926 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
928 [IORING_OP_WRITE
] = {
930 .unbound_nonreg_file
= 1,
933 .async_size
= sizeof(struct io_async_rw
),
934 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
|
937 [IORING_OP_FADVISE
] = {
939 .work_flags
= IO_WQ_WORK_BLKCG
,
941 [IORING_OP_MADVISE
] = {
942 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
946 .unbound_nonreg_file
= 1,
948 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
952 .unbound_nonreg_file
= 1,
955 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_BLKCG
,
957 [IORING_OP_OPENAT2
] = {
958 .work_flags
= IO_WQ_WORK_FILES
| IO_WQ_WORK_FS
|
959 IO_WQ_WORK_BLKCG
| IO_WQ_WORK_MM
,
961 [IORING_OP_EPOLL_CTL
] = {
962 .unbound_nonreg_file
= 1,
963 .work_flags
= IO_WQ_WORK_FILES
,
965 [IORING_OP_SPLICE
] = {
968 .unbound_nonreg_file
= 1,
969 .work_flags
= IO_WQ_WORK_BLKCG
,
971 [IORING_OP_PROVIDE_BUFFERS
] = {},
972 [IORING_OP_REMOVE_BUFFERS
] = {},
976 .unbound_nonreg_file
= 1,
978 [IORING_OP_SHUTDOWN
] = {
981 [IORING_OP_RENAMEAT
] = {
982 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_FILES
|
983 IO_WQ_WORK_FS
| IO_WQ_WORK_BLKCG
,
985 [IORING_OP_UNLINKAT
] = {
986 .work_flags
= IO_WQ_WORK_MM
| IO_WQ_WORK_FILES
|
987 IO_WQ_WORK_FS
| IO_WQ_WORK_BLKCG
,
991 enum io_mem_account
{
996 static void __io_uring_cancel_task_requests(struct io_ring_ctx
*ctx
,
997 struct task_struct
*task
);
999 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node
*ref_node
);
1000 static struct fixed_file_ref_node
*alloc_fixed_file_ref_node(
1001 struct io_ring_ctx
*ctx
);
1003 static void __io_complete_rw(struct io_kiocb
*req
, long res
, long res2
,
1004 struct io_comp_state
*cs
);
1005 static void io_cqring_fill_event(struct io_kiocb
*req
, long res
);
1006 static void io_put_req(struct io_kiocb
*req
);
1007 static void io_put_req_deferred(struct io_kiocb
*req
, int nr
);
1008 static void io_double_put_req(struct io_kiocb
*req
);
1009 static struct io_kiocb
*io_prep_linked_timeout(struct io_kiocb
*req
);
1010 static void __io_queue_linked_timeout(struct io_kiocb
*req
);
1011 static void io_queue_linked_timeout(struct io_kiocb
*req
);
1012 static int __io_sqe_files_update(struct io_ring_ctx
*ctx
,
1013 struct io_uring_files_update
*ip
,
1015 static void __io_clean_op(struct io_kiocb
*req
);
1016 static struct file
*io_file_get(struct io_submit_state
*state
,
1017 struct io_kiocb
*req
, int fd
, bool fixed
);
1018 static void __io_queue_sqe(struct io_kiocb
*req
, struct io_comp_state
*cs
);
1019 static void io_file_put_work(struct work_struct
*work
);
1021 static ssize_t
io_import_iovec(int rw
, struct io_kiocb
*req
,
1022 struct iovec
**iovec
, struct iov_iter
*iter
,
1024 static int io_setup_async_rw(struct io_kiocb
*req
, const struct iovec
*iovec
,
1025 const struct iovec
*fast_iov
,
1026 struct iov_iter
*iter
, bool force
);
1028 static struct kmem_cache
*req_cachep
;
1030 static const struct file_operations io_uring_fops
;
1032 struct sock
*io_uring_get_socket(struct file
*file
)
1034 #if defined(CONFIG_UNIX)
1035 if (file
->f_op
== &io_uring_fops
) {
1036 struct io_ring_ctx
*ctx
= file
->private_data
;
1038 return ctx
->ring_sock
->sk
;
1043 EXPORT_SYMBOL(io_uring_get_socket
);
1045 #define io_for_each_link(pos, head) \
1046 for (pos = (head); pos; pos = pos->link)
1048 static inline void io_clean_op(struct io_kiocb
*req
)
1050 if (req
->flags
& (REQ_F_NEED_CLEANUP
| REQ_F_BUFFER_SELECTED
|
1055 static inline void io_set_resource_node(struct io_kiocb
*req
)
1057 struct io_ring_ctx
*ctx
= req
->ctx
;
1059 if (!req
->fixed_file_refs
) {
1060 req
->fixed_file_refs
= &ctx
->file_data
->node
->refs
;
1061 percpu_ref_get(req
->fixed_file_refs
);
1065 static bool io_match_task(struct io_kiocb
*head
,
1066 struct task_struct
*task
,
1067 struct files_struct
*files
)
1069 struct io_kiocb
*req
;
1071 if (task
&& head
->task
!= task
)
1076 io_for_each_link(req
, head
) {
1077 if ((req
->flags
& REQ_F_WORK_INITIALIZED
) &&
1078 (req
->work
.flags
& IO_WQ_WORK_FILES
) &&
1079 req
->work
.identity
->files
== files
)
1085 static void io_sq_thread_drop_mm_files(void)
1087 struct files_struct
*files
= current
->files
;
1088 struct mm_struct
*mm
= current
->mm
;
1091 kthread_unuse_mm(mm
);
1096 struct nsproxy
*nsproxy
= current
->nsproxy
;
1099 current
->files
= NULL
;
1100 current
->nsproxy
= NULL
;
1101 task_unlock(current
);
1102 put_files_struct(files
);
1103 put_nsproxy(nsproxy
);
1107 static int __io_sq_thread_acquire_files(struct io_ring_ctx
*ctx
)
1109 if (!current
->files
) {
1110 struct files_struct
*files
;
1111 struct nsproxy
*nsproxy
;
1113 task_lock(ctx
->sqo_task
);
1114 files
= ctx
->sqo_task
->files
;
1116 task_unlock(ctx
->sqo_task
);
1119 atomic_inc(&files
->count
);
1120 get_nsproxy(ctx
->sqo_task
->nsproxy
);
1121 nsproxy
= ctx
->sqo_task
->nsproxy
;
1122 task_unlock(ctx
->sqo_task
);
1125 current
->files
= files
;
1126 current
->nsproxy
= nsproxy
;
1127 task_unlock(current
);
1132 static int __io_sq_thread_acquire_mm(struct io_ring_ctx
*ctx
)
1134 struct mm_struct
*mm
;
1139 /* Should never happen */
1140 if (unlikely(!(ctx
->flags
& IORING_SETUP_SQPOLL
)))
1143 task_lock(ctx
->sqo_task
);
1144 mm
= ctx
->sqo_task
->mm
;
1145 if (unlikely(!mm
|| !mmget_not_zero(mm
)))
1147 task_unlock(ctx
->sqo_task
);
1157 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx
*ctx
,
1158 struct io_kiocb
*req
)
1160 const struct io_op_def
*def
= &io_op_defs
[req
->opcode
];
1163 if (def
->work_flags
& IO_WQ_WORK_MM
) {
1164 ret
= __io_sq_thread_acquire_mm(ctx
);
1169 if (def
->needs_file
|| (def
->work_flags
& IO_WQ_WORK_FILES
)) {
1170 ret
= __io_sq_thread_acquire_files(ctx
);
1178 static void io_sq_thread_associate_blkcg(struct io_ring_ctx
*ctx
,
1179 struct cgroup_subsys_state
**cur_css
)
1182 #ifdef CONFIG_BLK_CGROUP
1183 /* puts the old one when swapping */
1184 if (*cur_css
!= ctx
->sqo_blkcg_css
) {
1185 kthread_associate_blkcg(ctx
->sqo_blkcg_css
);
1186 *cur_css
= ctx
->sqo_blkcg_css
;
1191 static void io_sq_thread_unassociate_blkcg(void)
1193 #ifdef CONFIG_BLK_CGROUP
1194 kthread_associate_blkcg(NULL
);
1198 static inline void req_set_fail_links(struct io_kiocb
*req
)
1200 if ((req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
)) == REQ_F_LINK
)
1201 req
->flags
|= REQ_F_FAIL_LINK
;
1205 * None of these are dereferenced, they are simply used to check if any of
1206 * them have changed. If we're under current and check they are still the
1207 * same, we're fine to grab references to them for actual out-of-line use.
1209 static void io_init_identity(struct io_identity
*id
)
1211 id
->files
= current
->files
;
1212 id
->mm
= current
->mm
;
1213 #ifdef CONFIG_BLK_CGROUP
1215 id
->blkcg_css
= blkcg_css();
1218 id
->creds
= current_cred();
1219 id
->nsproxy
= current
->nsproxy
;
1220 id
->fs
= current
->fs
;
1221 id
->fsize
= rlimit(RLIMIT_FSIZE
);
1223 id
->loginuid
= current
->loginuid
;
1224 id
->sessionid
= current
->sessionid
;
1226 refcount_set(&id
->count
, 1);
1229 static inline void __io_req_init_async(struct io_kiocb
*req
)
1231 memset(&req
->work
, 0, sizeof(req
->work
));
1232 req
->flags
|= REQ_F_WORK_INITIALIZED
;
1236 * Note: must call io_req_init_async() for the first time you
1237 * touch any members of io_wq_work.
1239 static inline void io_req_init_async(struct io_kiocb
*req
)
1241 struct io_uring_task
*tctx
= current
->io_uring
;
1243 if (req
->flags
& REQ_F_WORK_INITIALIZED
)
1246 __io_req_init_async(req
);
1248 /* Grab a ref if this isn't our static identity */
1249 req
->work
.identity
= tctx
->identity
;
1250 if (tctx
->identity
!= &tctx
->__identity
)
1251 refcount_inc(&req
->work
.identity
->count
);
1254 static inline bool io_async_submit(struct io_ring_ctx
*ctx
)
1256 return ctx
->flags
& IORING_SETUP_SQPOLL
;
1259 static void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
1261 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
1263 complete(&ctx
->ref_comp
);
1266 static inline bool io_is_timeout_noseq(struct io_kiocb
*req
)
1268 return !req
->timeout
.off
;
1271 static struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
1273 struct io_ring_ctx
*ctx
;
1276 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1280 ctx
->fallback_req
= kmem_cache_alloc(req_cachep
, GFP_KERNEL
);
1281 if (!ctx
->fallback_req
)
1285 * Use 5 bits less than the max cq entries, that should give us around
1286 * 32 entries per hash list if totally full and uniformly spread.
1288 hash_bits
= ilog2(p
->cq_entries
);
1292 ctx
->cancel_hash_bits
= hash_bits
;
1293 ctx
->cancel_hash
= kmalloc((1U << hash_bits
) * sizeof(struct hlist_head
),
1295 if (!ctx
->cancel_hash
)
1297 __hash_init(ctx
->cancel_hash
, 1U << hash_bits
);
1299 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
,
1300 PERCPU_REF_ALLOW_REINIT
, GFP_KERNEL
))
1303 ctx
->flags
= p
->flags
;
1304 init_waitqueue_head(&ctx
->sqo_sq_wait
);
1305 INIT_LIST_HEAD(&ctx
->sqd_list
);
1306 init_waitqueue_head(&ctx
->cq_wait
);
1307 INIT_LIST_HEAD(&ctx
->cq_overflow_list
);
1308 init_completion(&ctx
->ref_comp
);
1309 init_completion(&ctx
->sq_thread_comp
);
1310 idr_init(&ctx
->io_buffer_idr
);
1311 idr_init(&ctx
->personality_idr
);
1312 mutex_init(&ctx
->uring_lock
);
1313 init_waitqueue_head(&ctx
->wait
);
1314 spin_lock_init(&ctx
->completion_lock
);
1315 INIT_LIST_HEAD(&ctx
->iopoll_list
);
1316 INIT_LIST_HEAD(&ctx
->defer_list
);
1317 INIT_LIST_HEAD(&ctx
->timeout_list
);
1318 spin_lock_init(&ctx
->inflight_lock
);
1319 INIT_LIST_HEAD(&ctx
->inflight_list
);
1320 INIT_DELAYED_WORK(&ctx
->file_put_work
, io_file_put_work
);
1321 init_llist_head(&ctx
->file_put_llist
);
1324 if (ctx
->fallback_req
)
1325 kmem_cache_free(req_cachep
, ctx
->fallback_req
);
1326 kfree(ctx
->cancel_hash
);
1331 static bool req_need_defer(struct io_kiocb
*req
, u32 seq
)
1333 if (unlikely(req
->flags
& REQ_F_IO_DRAIN
)) {
1334 struct io_ring_ctx
*ctx
= req
->ctx
;
1336 return seq
!= ctx
->cached_cq_tail
1337 + READ_ONCE(ctx
->cached_cq_overflow
);
1343 static void __io_commit_cqring(struct io_ring_ctx
*ctx
)
1345 struct io_rings
*rings
= ctx
->rings
;
1347 /* order cqe stores with ring update */
1348 smp_store_release(&rings
->cq
.tail
, ctx
->cached_cq_tail
);
1351 static void io_put_identity(struct io_uring_task
*tctx
, struct io_kiocb
*req
)
1353 if (req
->work
.identity
== &tctx
->__identity
)
1355 if (refcount_dec_and_test(&req
->work
.identity
->count
))
1356 kfree(req
->work
.identity
);
1359 static void io_req_clean_work(struct io_kiocb
*req
)
1361 if (!(req
->flags
& REQ_F_WORK_INITIALIZED
))
1364 req
->flags
&= ~REQ_F_WORK_INITIALIZED
;
1366 if (req
->work
.flags
& IO_WQ_WORK_MM
) {
1367 mmdrop(req
->work
.identity
->mm
);
1368 req
->work
.flags
&= ~IO_WQ_WORK_MM
;
1370 #ifdef CONFIG_BLK_CGROUP
1371 if (req
->work
.flags
& IO_WQ_WORK_BLKCG
) {
1372 css_put(req
->work
.identity
->blkcg_css
);
1373 req
->work
.flags
&= ~IO_WQ_WORK_BLKCG
;
1376 if (req
->work
.flags
& IO_WQ_WORK_CREDS
) {
1377 put_cred(req
->work
.identity
->creds
);
1378 req
->work
.flags
&= ~IO_WQ_WORK_CREDS
;
1380 if (req
->work
.flags
& IO_WQ_WORK_FS
) {
1381 struct fs_struct
*fs
= req
->work
.identity
->fs
;
1383 spin_lock(&req
->work
.identity
->fs
->lock
);
1386 spin_unlock(&req
->work
.identity
->fs
->lock
);
1389 req
->work
.flags
&= ~IO_WQ_WORK_FS
;
1392 io_put_identity(req
->task
->io_uring
, req
);
1396 * Create a private copy of io_identity, since some fields don't match
1397 * the current context.
1399 static bool io_identity_cow(struct io_kiocb
*req
)
1401 struct io_uring_task
*tctx
= current
->io_uring
;
1402 const struct cred
*creds
= NULL
;
1403 struct io_identity
*id
;
1405 if (req
->work
.flags
& IO_WQ_WORK_CREDS
)
1406 creds
= req
->work
.identity
->creds
;
1408 id
= kmemdup(req
->work
.identity
, sizeof(*id
), GFP_KERNEL
);
1409 if (unlikely(!id
)) {
1410 req
->work
.flags
|= IO_WQ_WORK_CANCEL
;
1415 * We can safely just re-init the creds we copied Either the field
1416 * matches the current one, or we haven't grabbed it yet. The only
1417 * exception is ->creds, through registered personalities, so handle
1418 * that one separately.
1420 io_init_identity(id
);
1424 /* add one for this request */
1425 refcount_inc(&id
->count
);
1427 /* drop tctx and req identity references, if needed */
1428 if (tctx
->identity
!= &tctx
->__identity
&&
1429 refcount_dec_and_test(&tctx
->identity
->count
))
1430 kfree(tctx
->identity
);
1431 if (req
->work
.identity
!= &tctx
->__identity
&&
1432 refcount_dec_and_test(&req
->work
.identity
->count
))
1433 kfree(req
->work
.identity
);
1435 req
->work
.identity
= id
;
1436 tctx
->identity
= id
;
1440 static bool io_grab_identity(struct io_kiocb
*req
)
1442 const struct io_op_def
*def
= &io_op_defs
[req
->opcode
];
1443 struct io_identity
*id
= req
->work
.identity
;
1444 struct io_ring_ctx
*ctx
= req
->ctx
;
1446 if (def
->work_flags
& IO_WQ_WORK_FSIZE
) {
1447 if (id
->fsize
!= rlimit(RLIMIT_FSIZE
))
1449 req
->work
.flags
|= IO_WQ_WORK_FSIZE
;
1451 #ifdef CONFIG_BLK_CGROUP
1452 if (!(req
->work
.flags
& IO_WQ_WORK_BLKCG
) &&
1453 (def
->work_flags
& IO_WQ_WORK_BLKCG
)) {
1455 if (id
->blkcg_css
!= blkcg_css()) {
1460 * This should be rare, either the cgroup is dying or the task
1461 * is moving cgroups. Just punt to root for the handful of ios.
1463 if (css_tryget_online(id
->blkcg_css
))
1464 req
->work
.flags
|= IO_WQ_WORK_BLKCG
;
1468 if (!(req
->work
.flags
& IO_WQ_WORK_CREDS
)) {
1469 if (id
->creds
!= current_cred())
1471 get_cred(id
->creds
);
1472 req
->work
.flags
|= IO_WQ_WORK_CREDS
;
1475 if (!uid_eq(current
->loginuid
, id
->loginuid
) ||
1476 current
->sessionid
!= id
->sessionid
)
1479 if (!(req
->work
.flags
& IO_WQ_WORK_FS
) &&
1480 (def
->work_flags
& IO_WQ_WORK_FS
)) {
1481 if (current
->fs
!= id
->fs
)
1483 spin_lock(&id
->fs
->lock
);
1484 if (!id
->fs
->in_exec
) {
1486 req
->work
.flags
|= IO_WQ_WORK_FS
;
1488 req
->work
.flags
|= IO_WQ_WORK_CANCEL
;
1490 spin_unlock(¤t
->fs
->lock
);
1492 if (!(req
->work
.flags
& IO_WQ_WORK_FILES
) &&
1493 (def
->work_flags
& IO_WQ_WORK_FILES
) &&
1494 !(req
->flags
& REQ_F_NO_FILE_TABLE
)) {
1495 if (id
->files
!= current
->files
||
1496 id
->nsproxy
!= current
->nsproxy
)
1498 atomic_inc(&id
->files
->count
);
1499 get_nsproxy(id
->nsproxy
);
1500 req
->flags
|= REQ_F_INFLIGHT
;
1502 spin_lock_irq(&ctx
->inflight_lock
);
1503 list_add(&req
->inflight_entry
, &ctx
->inflight_list
);
1504 spin_unlock_irq(&ctx
->inflight_lock
);
1505 req
->work
.flags
|= IO_WQ_WORK_FILES
;
1507 if (!(req
->work
.flags
& IO_WQ_WORK_MM
) &&
1508 (def
->work_flags
& IO_WQ_WORK_MM
)) {
1509 if (id
->mm
!= current
->mm
)
1512 req
->work
.flags
|= IO_WQ_WORK_MM
;
1518 static void io_prep_async_work(struct io_kiocb
*req
)
1520 const struct io_op_def
*def
= &io_op_defs
[req
->opcode
];
1521 struct io_ring_ctx
*ctx
= req
->ctx
;
1523 io_req_init_async(req
);
1525 if (req
->flags
& REQ_F_FORCE_ASYNC
)
1526 req
->work
.flags
|= IO_WQ_WORK_CONCURRENT
;
1528 if (req
->flags
& REQ_F_ISREG
) {
1529 if (def
->hash_reg_file
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
1530 io_wq_hash_work(&req
->work
, file_inode(req
->file
));
1532 if (def
->unbound_nonreg_file
)
1533 req
->work
.flags
|= IO_WQ_WORK_UNBOUND
;
1536 /* if we fail grabbing identity, we must COW, regrab, and retry */
1537 if (io_grab_identity(req
))
1540 if (!io_identity_cow(req
))
1543 /* can't fail at this point */
1544 if (!io_grab_identity(req
))
1548 static void io_prep_async_link(struct io_kiocb
*req
)
1550 struct io_kiocb
*cur
;
1552 io_for_each_link(cur
, req
)
1553 io_prep_async_work(cur
);
1556 static struct io_kiocb
*__io_queue_async_work(struct io_kiocb
*req
)
1558 struct io_ring_ctx
*ctx
= req
->ctx
;
1559 struct io_kiocb
*link
= io_prep_linked_timeout(req
);
1561 trace_io_uring_queue_async_work(ctx
, io_wq_is_hashed(&req
->work
), req
,
1562 &req
->work
, req
->flags
);
1563 io_wq_enqueue(ctx
->io_wq
, &req
->work
);
1567 static void io_queue_async_work(struct io_kiocb
*req
)
1569 struct io_kiocb
*link
;
1571 /* init ->work of the whole link before punting */
1572 io_prep_async_link(req
);
1573 link
= __io_queue_async_work(req
);
1576 io_queue_linked_timeout(link
);
1579 static void io_kill_timeout(struct io_kiocb
*req
)
1581 struct io_timeout_data
*io
= req
->async_data
;
1584 ret
= hrtimer_try_to_cancel(&io
->timer
);
1586 atomic_set(&req
->ctx
->cq_timeouts
,
1587 atomic_read(&req
->ctx
->cq_timeouts
) + 1);
1588 list_del_init(&req
->timeout
.list
);
1589 io_cqring_fill_event(req
, 0);
1590 io_put_req_deferred(req
, 1);
1595 * Returns true if we found and killed one or more timeouts
1597 static bool io_kill_timeouts(struct io_ring_ctx
*ctx
, struct task_struct
*tsk
,
1598 struct files_struct
*files
)
1600 struct io_kiocb
*req
, *tmp
;
1603 spin_lock_irq(&ctx
->completion_lock
);
1604 list_for_each_entry_safe(req
, tmp
, &ctx
->timeout_list
, timeout
.list
) {
1605 if (io_match_task(req
, tsk
, files
)) {
1606 io_kill_timeout(req
);
1610 spin_unlock_irq(&ctx
->completion_lock
);
1611 return canceled
!= 0;
1614 static void __io_queue_deferred(struct io_ring_ctx
*ctx
)
1617 struct io_defer_entry
*de
= list_first_entry(&ctx
->defer_list
,
1618 struct io_defer_entry
, list
);
1619 struct io_kiocb
*link
;
1621 if (req_need_defer(de
->req
, de
->seq
))
1623 list_del_init(&de
->list
);
1624 /* punt-init is done before queueing for defer */
1625 link
= __io_queue_async_work(de
->req
);
1627 __io_queue_linked_timeout(link
);
1628 /* drop submission reference */
1629 io_put_req_deferred(link
, 1);
1632 } while (!list_empty(&ctx
->defer_list
));
1635 static void io_flush_timeouts(struct io_ring_ctx
*ctx
)
1637 while (!list_empty(&ctx
->timeout_list
)) {
1638 struct io_kiocb
*req
= list_first_entry(&ctx
->timeout_list
,
1639 struct io_kiocb
, timeout
.list
);
1641 if (io_is_timeout_noseq(req
))
1643 if (req
->timeout
.target_seq
!= ctx
->cached_cq_tail
1644 - atomic_read(&ctx
->cq_timeouts
))
1647 list_del_init(&req
->timeout
.list
);
1648 io_kill_timeout(req
);
1652 static void io_commit_cqring(struct io_ring_ctx
*ctx
)
1654 io_flush_timeouts(ctx
);
1655 __io_commit_cqring(ctx
);
1657 if (unlikely(!list_empty(&ctx
->defer_list
)))
1658 __io_queue_deferred(ctx
);
1661 static inline bool io_sqring_full(struct io_ring_ctx
*ctx
)
1663 struct io_rings
*r
= ctx
->rings
;
1665 return READ_ONCE(r
->sq
.tail
) - ctx
->cached_sq_head
== r
->sq_ring_entries
;
1668 static struct io_uring_cqe
*io_get_cqring(struct io_ring_ctx
*ctx
)
1670 struct io_rings
*rings
= ctx
->rings
;
1673 tail
= ctx
->cached_cq_tail
;
1675 * writes to the cq entry need to come after reading head; the
1676 * control dependency is enough as we're using WRITE_ONCE to
1679 if (tail
- READ_ONCE(rings
->cq
.head
) == rings
->cq_ring_entries
)
1682 ctx
->cached_cq_tail
++;
1683 return &rings
->cqes
[tail
& ctx
->cq_mask
];
1686 static inline bool io_should_trigger_evfd(struct io_ring_ctx
*ctx
)
1690 if (READ_ONCE(ctx
->rings
->cq_flags
) & IORING_CQ_EVENTFD_DISABLED
)
1692 if (!ctx
->eventfd_async
)
1694 return io_wq_current_is_worker();
1697 static inline unsigned __io_cqring_events(struct io_ring_ctx
*ctx
)
1699 return ctx
->cached_cq_tail
- READ_ONCE(ctx
->rings
->cq
.head
);
1702 static void io_cqring_ev_posted(struct io_ring_ctx
*ctx
)
1704 /* see waitqueue_active() comment */
1707 if (waitqueue_active(&ctx
->wait
))
1708 wake_up(&ctx
->wait
);
1709 if (ctx
->sq_data
&& waitqueue_active(&ctx
->sq_data
->wait
))
1710 wake_up(&ctx
->sq_data
->wait
);
1711 if (io_should_trigger_evfd(ctx
))
1712 eventfd_signal(ctx
->cq_ev_fd
, 1);
1713 if (waitqueue_active(&ctx
->cq_wait
)) {
1714 wake_up_interruptible(&ctx
->cq_wait
);
1715 kill_fasync(&ctx
->cq_fasync
, SIGIO
, POLL_IN
);
1719 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx
*ctx
)
1721 /* see waitqueue_active() comment */
1724 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
1725 if (waitqueue_active(&ctx
->wait
))
1726 wake_up(&ctx
->wait
);
1728 if (io_should_trigger_evfd(ctx
))
1729 eventfd_signal(ctx
->cq_ev_fd
, 1);
1730 if (waitqueue_active(&ctx
->cq_wait
)) {
1731 wake_up_interruptible(&ctx
->cq_wait
);
1732 kill_fasync(&ctx
->cq_fasync
, SIGIO
, POLL_IN
);
1736 /* Returns true if there are no backlogged entries after the flush */
1737 static bool __io_cqring_overflow_flush(struct io_ring_ctx
*ctx
, bool force
,
1738 struct task_struct
*tsk
,
1739 struct files_struct
*files
)
1741 struct io_rings
*rings
= ctx
->rings
;
1742 struct io_kiocb
*req
, *tmp
;
1743 struct io_uring_cqe
*cqe
;
1744 unsigned long flags
;
1748 if (!force
&& __io_cqring_events(ctx
) == rings
->cq_ring_entries
)
1751 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1752 list_for_each_entry_safe(req
, tmp
, &ctx
->cq_overflow_list
, compl.list
) {
1753 if (!io_match_task(req
, tsk
, files
))
1756 cqe
= io_get_cqring(ctx
);
1760 list_move(&req
->compl.list
, &list
);
1762 WRITE_ONCE(cqe
->user_data
, req
->user_data
);
1763 WRITE_ONCE(cqe
->res
, req
->result
);
1764 WRITE_ONCE(cqe
->flags
, req
->compl.cflags
);
1766 ctx
->cached_cq_overflow
++;
1767 WRITE_ONCE(ctx
->rings
->cq_overflow
,
1768 ctx
->cached_cq_overflow
);
1772 all_flushed
= list_empty(&ctx
->cq_overflow_list
);
1774 clear_bit(0, &ctx
->sq_check_overflow
);
1775 clear_bit(0, &ctx
->cq_check_overflow
);
1776 ctx
->rings
->sq_flags
&= ~IORING_SQ_CQ_OVERFLOW
;
1779 io_commit_cqring(ctx
);
1780 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1781 io_cqring_ev_posted(ctx
);
1783 while (!list_empty(&list
)) {
1784 req
= list_first_entry(&list
, struct io_kiocb
, compl.list
);
1785 list_del(&req
->compl.list
);
1792 static void io_cqring_overflow_flush(struct io_ring_ctx
*ctx
, bool force
,
1793 struct task_struct
*tsk
,
1794 struct files_struct
*files
)
1796 if (test_bit(0, &ctx
->cq_check_overflow
)) {
1797 /* iopoll syncs against uring_lock, not completion_lock */
1798 if (ctx
->flags
& IORING_SETUP_IOPOLL
)
1799 mutex_lock(&ctx
->uring_lock
);
1800 __io_cqring_overflow_flush(ctx
, force
, tsk
, files
);
1801 if (ctx
->flags
& IORING_SETUP_IOPOLL
)
1802 mutex_unlock(&ctx
->uring_lock
);
1806 static void __io_cqring_fill_event(struct io_kiocb
*req
, long res
, long cflags
)
1808 struct io_ring_ctx
*ctx
= req
->ctx
;
1809 struct io_uring_cqe
*cqe
;
1811 trace_io_uring_complete(ctx
, req
->user_data
, res
);
1814 * If we can't get a cq entry, userspace overflowed the
1815 * submission (by quite a lot). Increment the overflow count in
1818 cqe
= io_get_cqring(ctx
);
1820 WRITE_ONCE(cqe
->user_data
, req
->user_data
);
1821 WRITE_ONCE(cqe
->res
, res
);
1822 WRITE_ONCE(cqe
->flags
, cflags
);
1823 } else if (ctx
->cq_overflow_flushed
||
1824 atomic_read(&req
->task
->io_uring
->in_idle
)) {
1826 * If we're in ring overflow flush mode, or in task cancel mode,
1827 * then we cannot store the request for later flushing, we need
1828 * to drop it on the floor.
1830 ctx
->cached_cq_overflow
++;
1831 WRITE_ONCE(ctx
->rings
->cq_overflow
, ctx
->cached_cq_overflow
);
1833 if (list_empty(&ctx
->cq_overflow_list
)) {
1834 set_bit(0, &ctx
->sq_check_overflow
);
1835 set_bit(0, &ctx
->cq_check_overflow
);
1836 ctx
->rings
->sq_flags
|= IORING_SQ_CQ_OVERFLOW
;
1840 req
->compl.cflags
= cflags
;
1841 refcount_inc(&req
->refs
);
1842 list_add_tail(&req
->compl.list
, &ctx
->cq_overflow_list
);
1846 static void io_cqring_fill_event(struct io_kiocb
*req
, long res
)
1848 __io_cqring_fill_event(req
, res
, 0);
1851 static void io_cqring_add_event(struct io_kiocb
*req
, long res
, long cflags
)
1853 struct io_ring_ctx
*ctx
= req
->ctx
;
1854 unsigned long flags
;
1856 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1857 __io_cqring_fill_event(req
, res
, cflags
);
1858 io_commit_cqring(ctx
);
1859 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1861 io_cqring_ev_posted(ctx
);
1864 static void io_submit_flush_completions(struct io_comp_state
*cs
)
1866 struct io_ring_ctx
*ctx
= cs
->ctx
;
1868 spin_lock_irq(&ctx
->completion_lock
);
1869 while (!list_empty(&cs
->list
)) {
1870 struct io_kiocb
*req
;
1872 req
= list_first_entry(&cs
->list
, struct io_kiocb
, compl.list
);
1873 list_del(&req
->compl.list
);
1874 __io_cqring_fill_event(req
, req
->result
, req
->compl.cflags
);
1877 * io_free_req() doesn't care about completion_lock unless one
1878 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1879 * because of a potential deadlock with req->work.fs->lock
1881 if (req
->flags
& (REQ_F_FAIL_LINK
|REQ_F_LINK_TIMEOUT
1882 |REQ_F_WORK_INITIALIZED
)) {
1883 spin_unlock_irq(&ctx
->completion_lock
);
1885 spin_lock_irq(&ctx
->completion_lock
);
1890 io_commit_cqring(ctx
);
1891 spin_unlock_irq(&ctx
->completion_lock
);
1893 io_cqring_ev_posted(ctx
);
1897 static void __io_req_complete(struct io_kiocb
*req
, long res
, unsigned cflags
,
1898 struct io_comp_state
*cs
)
1901 io_cqring_add_event(req
, res
, cflags
);
1906 req
->compl.cflags
= cflags
;
1907 list_add_tail(&req
->compl.list
, &cs
->list
);
1909 io_submit_flush_completions(cs
);
1913 static void io_req_complete(struct io_kiocb
*req
, long res
)
1915 __io_req_complete(req
, res
, 0, NULL
);
1918 static inline bool io_is_fallback_req(struct io_kiocb
*req
)
1920 return req
== (struct io_kiocb
*)
1921 ((unsigned long) req
->ctx
->fallback_req
& ~1UL);
1924 static struct io_kiocb
*io_get_fallback_req(struct io_ring_ctx
*ctx
)
1926 struct io_kiocb
*req
;
1928 req
= ctx
->fallback_req
;
1929 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx
->fallback_req
))
1935 static struct io_kiocb
*io_alloc_req(struct io_ring_ctx
*ctx
,
1936 struct io_submit_state
*state
)
1938 if (!state
->free_reqs
) {
1939 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
1943 sz
= min_t(size_t, state
->ios_left
, ARRAY_SIZE(state
->reqs
));
1944 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, sz
, state
->reqs
);
1947 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1948 * retry single alloc to be on the safe side.
1950 if (unlikely(ret
<= 0)) {
1951 state
->reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
1952 if (!state
->reqs
[0])
1956 state
->free_reqs
= ret
;
1960 return state
->reqs
[state
->free_reqs
];
1962 return io_get_fallback_req(ctx
);
1965 static inline void io_put_file(struct io_kiocb
*req
, struct file
*file
,
1972 static void io_dismantle_req(struct io_kiocb
*req
)
1976 if (req
->async_data
)
1977 kfree(req
->async_data
);
1979 io_put_file(req
, req
->file
, (req
->flags
& REQ_F_FIXED_FILE
));
1980 if (req
->fixed_file_refs
)
1981 percpu_ref_put(req
->fixed_file_refs
);
1982 io_req_clean_work(req
);
1985 static void __io_free_req(struct io_kiocb
*req
)
1987 struct io_uring_task
*tctx
= req
->task
->io_uring
;
1988 struct io_ring_ctx
*ctx
= req
->ctx
;
1990 io_dismantle_req(req
);
1992 percpu_counter_dec(&tctx
->inflight
);
1993 if (atomic_read(&tctx
->in_idle
))
1994 wake_up(&tctx
->wait
);
1995 put_task_struct(req
->task
);
1997 if (likely(!io_is_fallback_req(req
)))
1998 kmem_cache_free(req_cachep
, req
);
2000 clear_bit_unlock(0, (unsigned long *) &ctx
->fallback_req
);
2001 percpu_ref_put(&ctx
->refs
);
2004 static inline void io_remove_next_linked(struct io_kiocb
*req
)
2006 struct io_kiocb
*nxt
= req
->link
;
2008 req
->link
= nxt
->link
;
2012 static void io_kill_linked_timeout(struct io_kiocb
*req
)
2014 struct io_ring_ctx
*ctx
= req
->ctx
;
2015 struct io_kiocb
*link
;
2016 bool cancelled
= false;
2017 unsigned long flags
;
2019 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
2023 * Can happen if a linked timeout fired and link had been like
2024 * req -> link t-out -> link t-out [-> ...]
2026 if (link
&& (link
->flags
& REQ_F_LTIMEOUT_ACTIVE
)) {
2027 struct io_timeout_data
*io
= link
->async_data
;
2030 io_remove_next_linked(req
);
2031 link
->timeout
.head
= NULL
;
2032 ret
= hrtimer_try_to_cancel(&io
->timer
);
2034 io_cqring_fill_event(link
, -ECANCELED
);
2035 io_commit_cqring(ctx
);
2039 req
->flags
&= ~REQ_F_LINK_TIMEOUT
;
2040 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
2043 io_cqring_ev_posted(ctx
);
2049 static void io_fail_links(struct io_kiocb
*req
)
2051 struct io_kiocb
*link
, *nxt
;
2052 struct io_ring_ctx
*ctx
= req
->ctx
;
2053 unsigned long flags
;
2055 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
2063 trace_io_uring_fail_link(req
, link
);
2064 io_cqring_fill_event(link
, -ECANCELED
);
2067 * It's ok to free under spinlock as they're not linked anymore,
2068 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2071 if (link
->flags
& REQ_F_WORK_INITIALIZED
)
2072 io_put_req_deferred(link
, 2);
2074 io_double_put_req(link
);
2077 io_commit_cqring(ctx
);
2078 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
2080 io_cqring_ev_posted(ctx
);
2083 static struct io_kiocb
*__io_req_find_next(struct io_kiocb
*req
)
2085 if (req
->flags
& REQ_F_LINK_TIMEOUT
)
2086 io_kill_linked_timeout(req
);
2089 * If LINK is set, we have dependent requests in this chain. If we
2090 * didn't fail this request, queue the first one up, moving any other
2091 * dependencies to the next request. In case of failure, fail the rest
2094 if (likely(!(req
->flags
& REQ_F_FAIL_LINK
))) {
2095 struct io_kiocb
*nxt
= req
->link
;
2104 static inline struct io_kiocb
*io_req_find_next(struct io_kiocb
*req
)
2106 if (likely(!(req
->link
) && !(req
->flags
& REQ_F_LINK_TIMEOUT
)))
2108 return __io_req_find_next(req
);
2111 static int io_req_task_work_add(struct io_kiocb
*req
)
2113 struct task_struct
*tsk
= req
->task
;
2114 struct io_ring_ctx
*ctx
= req
->ctx
;
2115 enum task_work_notify_mode notify
;
2118 if (tsk
->flags
& PF_EXITING
)
2122 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2123 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2124 * processing task_work. There's no reliable way to tell if TWA_RESUME
2128 if (!(ctx
->flags
& IORING_SETUP_SQPOLL
))
2129 notify
= TWA_SIGNAL
;
2131 ret
= task_work_add(tsk
, &req
->task_work
, notify
);
2133 wake_up_process(tsk
);
2138 static void __io_req_task_cancel(struct io_kiocb
*req
, int error
)
2140 struct io_ring_ctx
*ctx
= req
->ctx
;
2142 spin_lock_irq(&ctx
->completion_lock
);
2143 io_cqring_fill_event(req
, error
);
2144 io_commit_cqring(ctx
);
2145 spin_unlock_irq(&ctx
->completion_lock
);
2147 io_cqring_ev_posted(ctx
);
2148 req_set_fail_links(req
);
2149 io_double_put_req(req
);
2152 static void io_req_task_cancel(struct callback_head
*cb
)
2154 struct io_kiocb
*req
= container_of(cb
, struct io_kiocb
, task_work
);
2155 struct io_ring_ctx
*ctx
= req
->ctx
;
2157 __io_req_task_cancel(req
, -ECANCELED
);
2158 percpu_ref_put(&ctx
->refs
);
2161 static void __io_req_task_submit(struct io_kiocb
*req
)
2163 struct io_ring_ctx
*ctx
= req
->ctx
;
2165 mutex_lock(&ctx
->uring_lock
);
2166 if (!ctx
->sqo_dead
&&
2167 !__io_sq_thread_acquire_mm(ctx
) &&
2168 !__io_sq_thread_acquire_files(ctx
))
2169 __io_queue_sqe(req
, NULL
);
2171 __io_req_task_cancel(req
, -EFAULT
);
2172 mutex_unlock(&ctx
->uring_lock
);
2175 static void io_req_task_submit(struct callback_head
*cb
)
2177 struct io_kiocb
*req
= container_of(cb
, struct io_kiocb
, task_work
);
2178 struct io_ring_ctx
*ctx
= req
->ctx
;
2180 __io_req_task_submit(req
);
2181 percpu_ref_put(&ctx
->refs
);
2184 static void io_req_task_queue(struct io_kiocb
*req
)
2188 init_task_work(&req
->task_work
, io_req_task_submit
);
2189 percpu_ref_get(&req
->ctx
->refs
);
2191 ret
= io_req_task_work_add(req
);
2192 if (unlikely(ret
)) {
2193 struct task_struct
*tsk
;
2195 init_task_work(&req
->task_work
, io_req_task_cancel
);
2196 tsk
= io_wq_get_task(req
->ctx
->io_wq
);
2197 task_work_add(tsk
, &req
->task_work
, TWA_NONE
);
2198 wake_up_process(tsk
);
2202 static inline void io_queue_next(struct io_kiocb
*req
)
2204 struct io_kiocb
*nxt
= io_req_find_next(req
);
2207 io_req_task_queue(nxt
);
2210 static void io_free_req(struct io_kiocb
*req
)
2217 void *reqs
[IO_IOPOLL_BATCH
];
2220 struct task_struct
*task
;
2224 static inline void io_init_req_batch(struct req_batch
*rb
)
2231 static void __io_req_free_batch_flush(struct io_ring_ctx
*ctx
,
2232 struct req_batch
*rb
)
2234 kmem_cache_free_bulk(req_cachep
, rb
->to_free
, rb
->reqs
);
2235 percpu_ref_put_many(&ctx
->refs
, rb
->to_free
);
2239 static void io_req_free_batch_finish(struct io_ring_ctx
*ctx
,
2240 struct req_batch
*rb
)
2243 __io_req_free_batch_flush(ctx
, rb
);
2245 struct io_uring_task
*tctx
= rb
->task
->io_uring
;
2247 percpu_counter_sub(&tctx
->inflight
, rb
->task_refs
);
2248 put_task_struct_many(rb
->task
, rb
->task_refs
);
2253 static void io_req_free_batch(struct req_batch
*rb
, struct io_kiocb
*req
)
2255 if (unlikely(io_is_fallback_req(req
))) {
2261 if (req
->task
!= rb
->task
) {
2263 struct io_uring_task
*tctx
= rb
->task
->io_uring
;
2265 percpu_counter_sub(&tctx
->inflight
, rb
->task_refs
);
2266 put_task_struct_many(rb
->task
, rb
->task_refs
);
2268 rb
->task
= req
->task
;
2273 io_dismantle_req(req
);
2274 rb
->reqs
[rb
->to_free
++] = req
;
2275 if (unlikely(rb
->to_free
== ARRAY_SIZE(rb
->reqs
)))
2276 __io_req_free_batch_flush(req
->ctx
, rb
);
2280 * Drop reference to request, return next in chain (if there is one) if this
2281 * was the last reference to this request.
2283 static struct io_kiocb
*io_put_req_find_next(struct io_kiocb
*req
)
2285 struct io_kiocb
*nxt
= NULL
;
2287 if (refcount_dec_and_test(&req
->refs
)) {
2288 nxt
= io_req_find_next(req
);
2294 static void io_put_req(struct io_kiocb
*req
)
2296 if (refcount_dec_and_test(&req
->refs
))
2300 static void io_put_req_deferred_cb(struct callback_head
*cb
)
2302 struct io_kiocb
*req
= container_of(cb
, struct io_kiocb
, task_work
);
2307 static void io_free_req_deferred(struct io_kiocb
*req
)
2311 init_task_work(&req
->task_work
, io_put_req_deferred_cb
);
2312 ret
= io_req_task_work_add(req
);
2313 if (unlikely(ret
)) {
2314 struct task_struct
*tsk
;
2316 tsk
= io_wq_get_task(req
->ctx
->io_wq
);
2317 task_work_add(tsk
, &req
->task_work
, TWA_NONE
);
2318 wake_up_process(tsk
);
2322 static inline void io_put_req_deferred(struct io_kiocb
*req
, int refs
)
2324 if (refcount_sub_and_test(refs
, &req
->refs
))
2325 io_free_req_deferred(req
);
2328 static struct io_wq_work
*io_steal_work(struct io_kiocb
*req
)
2330 struct io_kiocb
*nxt
;
2333 * A ref is owned by io-wq in which context we're. So, if that's the
2334 * last one, it's safe to steal next work. False negatives are Ok,
2335 * it just will be re-punted async in io_put_work()
2337 if (refcount_read(&req
->refs
) != 1)
2340 nxt
= io_req_find_next(req
);
2341 return nxt
? &nxt
->work
: NULL
;
2344 static void io_double_put_req(struct io_kiocb
*req
)
2346 /* drop both submit and complete references */
2347 if (refcount_sub_and_test(2, &req
->refs
))
2351 static unsigned io_cqring_events(struct io_ring_ctx
*ctx
)
2353 /* See comment at the top of this file */
2355 return __io_cqring_events(ctx
);
2358 static inline unsigned int io_sqring_entries(struct io_ring_ctx
*ctx
)
2360 struct io_rings
*rings
= ctx
->rings
;
2362 /* make sure SQ entry isn't read before tail */
2363 return smp_load_acquire(&rings
->sq
.tail
) - ctx
->cached_sq_head
;
2366 static unsigned int io_put_kbuf(struct io_kiocb
*req
, struct io_buffer
*kbuf
)
2368 unsigned int cflags
;
2370 cflags
= kbuf
->bid
<< IORING_CQE_BUFFER_SHIFT
;
2371 cflags
|= IORING_CQE_F_BUFFER
;
2372 req
->flags
&= ~REQ_F_BUFFER_SELECTED
;
2377 static inline unsigned int io_put_rw_kbuf(struct io_kiocb
*req
)
2379 struct io_buffer
*kbuf
;
2381 kbuf
= (struct io_buffer
*) (unsigned long) req
->rw
.addr
;
2382 return io_put_kbuf(req
, kbuf
);
2385 static inline bool io_run_task_work(void)
2388 * Not safe to run on exiting task, and the task_work handling will
2389 * not add work to such a task.
2391 if (unlikely(current
->flags
& PF_EXITING
))
2393 if (current
->task_works
) {
2394 __set_current_state(TASK_RUNNING
);
2402 static void io_iopoll_queue(struct list_head
*again
)
2404 struct io_kiocb
*req
;
2407 req
= list_first_entry(again
, struct io_kiocb
, inflight_entry
);
2408 list_del(&req
->inflight_entry
);
2409 __io_complete_rw(req
, -EAGAIN
, 0, NULL
);
2410 } while (!list_empty(again
));
2414 * Find and free completed poll iocbs
2416 static void io_iopoll_complete(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
2417 struct list_head
*done
)
2419 struct req_batch rb
;
2420 struct io_kiocb
*req
;
2423 /* order with ->result store in io_complete_rw_iopoll() */
2426 io_init_req_batch(&rb
);
2427 while (!list_empty(done
)) {
2430 req
= list_first_entry(done
, struct io_kiocb
, inflight_entry
);
2431 if (READ_ONCE(req
->result
) == -EAGAIN
) {
2433 req
->iopoll_completed
= 0;
2434 list_move_tail(&req
->inflight_entry
, &again
);
2437 list_del(&req
->inflight_entry
);
2439 if (req
->flags
& REQ_F_BUFFER_SELECTED
)
2440 cflags
= io_put_rw_kbuf(req
);
2442 __io_cqring_fill_event(req
, req
->result
, cflags
);
2445 if (refcount_dec_and_test(&req
->refs
))
2446 io_req_free_batch(&rb
, req
);
2449 io_commit_cqring(ctx
);
2450 io_cqring_ev_posted_iopoll(ctx
);
2451 io_req_free_batch_finish(ctx
, &rb
);
2453 if (!list_empty(&again
))
2454 io_iopoll_queue(&again
);
2457 static int io_do_iopoll(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
2460 struct io_kiocb
*req
, *tmp
;
2466 * Only spin for completions if we don't have multiple devices hanging
2467 * off our complete list, and we're under the requested amount.
2469 spin
= !ctx
->poll_multi_file
&& *nr_events
< min
;
2472 list_for_each_entry_safe(req
, tmp
, &ctx
->iopoll_list
, inflight_entry
) {
2473 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
2476 * Move completed and retryable entries to our local lists.
2477 * If we find a request that requires polling, break out
2478 * and complete those lists first, if we have entries there.
2480 if (READ_ONCE(req
->iopoll_completed
)) {
2481 list_move_tail(&req
->inflight_entry
, &done
);
2484 if (!list_empty(&done
))
2487 ret
= kiocb
->ki_filp
->f_op
->iopoll(kiocb
, spin
);
2491 /* iopoll may have completed current req */
2492 if (READ_ONCE(req
->iopoll_completed
))
2493 list_move_tail(&req
->inflight_entry
, &done
);
2500 if (!list_empty(&done
))
2501 io_iopoll_complete(ctx
, nr_events
, &done
);
2507 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2508 * non-spinning poll check - we'll still enter the driver poll loop, but only
2509 * as a non-spinning completion check.
2511 static int io_iopoll_getevents(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
2514 while (!list_empty(&ctx
->iopoll_list
) && !need_resched()) {
2517 ret
= io_do_iopoll(ctx
, nr_events
, min
);
2520 if (*nr_events
>= min
)
2528 * We can't just wait for polled events to come to us, we have to actively
2529 * find and complete them.
2531 static void io_iopoll_try_reap_events(struct io_ring_ctx
*ctx
)
2533 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
2536 mutex_lock(&ctx
->uring_lock
);
2537 while (!list_empty(&ctx
->iopoll_list
)) {
2538 unsigned int nr_events
= 0;
2540 io_do_iopoll(ctx
, &nr_events
, 0);
2542 /* let it sleep and repeat later if can't complete a request */
2546 * Ensure we allow local-to-the-cpu processing to take place,
2547 * in this case we need to ensure that we reap all events.
2548 * Also let task_work, etc. to progress by releasing the mutex
2550 if (need_resched()) {
2551 mutex_unlock(&ctx
->uring_lock
);
2553 mutex_lock(&ctx
->uring_lock
);
2556 mutex_unlock(&ctx
->uring_lock
);
2559 static int io_iopoll_check(struct io_ring_ctx
*ctx
, long min
)
2561 unsigned int nr_events
= 0;
2562 int iters
= 0, ret
= 0;
2565 * We disallow the app entering submit/complete with polling, but we
2566 * still need to lock the ring to prevent racing with polled issue
2567 * that got punted to a workqueue.
2569 mutex_lock(&ctx
->uring_lock
);
2572 * Don't enter poll loop if we already have events pending.
2573 * If we do, we can potentially be spinning for commands that
2574 * already triggered a CQE (eg in error).
2576 if (test_bit(0, &ctx
->cq_check_overflow
))
2577 __io_cqring_overflow_flush(ctx
, false, NULL
, NULL
);
2578 if (io_cqring_events(ctx
))
2582 * If a submit got punted to a workqueue, we can have the
2583 * application entering polling for a command before it gets
2584 * issued. That app will hold the uring_lock for the duration
2585 * of the poll right here, so we need to take a breather every
2586 * now and then to ensure that the issue has a chance to add
2587 * the poll to the issued list. Otherwise we can spin here
2588 * forever, while the workqueue is stuck trying to acquire the
2591 if (!(++iters
& 7)) {
2592 mutex_unlock(&ctx
->uring_lock
);
2594 mutex_lock(&ctx
->uring_lock
);
2597 ret
= io_iopoll_getevents(ctx
, &nr_events
, min
);
2601 } while (min
&& !nr_events
&& !need_resched());
2603 mutex_unlock(&ctx
->uring_lock
);
2607 static void kiocb_end_write(struct io_kiocb
*req
)
2610 * Tell lockdep we inherited freeze protection from submission
2613 if (req
->flags
& REQ_F_ISREG
) {
2614 struct inode
*inode
= file_inode(req
->file
);
2616 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
2618 file_end_write(req
->file
);
2621 static void io_complete_rw_common(struct kiocb
*kiocb
, long res
,
2622 struct io_comp_state
*cs
)
2624 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
.kiocb
);
2627 if (kiocb
->ki_flags
& IOCB_WRITE
)
2628 kiocb_end_write(req
);
2630 if (res
!= req
->result
)
2631 req_set_fail_links(req
);
2632 if (req
->flags
& REQ_F_BUFFER_SELECTED
)
2633 cflags
= io_put_rw_kbuf(req
);
2634 __io_req_complete(req
, res
, cflags
, cs
);
2638 static bool io_resubmit_prep(struct io_kiocb
*req
, int error
)
2640 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
2641 ssize_t ret
= -ECANCELED
;
2642 struct iov_iter iter
;
2650 switch (req
->opcode
) {
2651 case IORING_OP_READV
:
2652 case IORING_OP_READ_FIXED
:
2653 case IORING_OP_READ
:
2656 case IORING_OP_WRITEV
:
2657 case IORING_OP_WRITE_FIXED
:
2658 case IORING_OP_WRITE
:
2662 printk_once(KERN_WARNING
"io_uring: bad opcode in resubmit %d\n",
2667 if (!req
->async_data
) {
2668 ret
= io_import_iovec(rw
, req
, &iovec
, &iter
, false);
2671 ret
= io_setup_async_rw(req
, iovec
, inline_vecs
, &iter
, false);
2679 req_set_fail_links(req
);
2684 static bool io_rw_reissue(struct io_kiocb
*req
, long res
)
2687 umode_t mode
= file_inode(req
->file
)->i_mode
;
2690 if (!S_ISBLK(mode
) && !S_ISREG(mode
))
2692 if ((res
!= -EAGAIN
&& res
!= -EOPNOTSUPP
) || io_wq_current_is_worker())
2695 lockdep_assert_held(&req
->ctx
->uring_lock
);
2697 ret
= io_sq_thread_acquire_mm_files(req
->ctx
, req
);
2699 if (io_resubmit_prep(req
, ret
)) {
2700 refcount_inc(&req
->refs
);
2701 io_queue_async_work(req
);
2709 static void __io_complete_rw(struct io_kiocb
*req
, long res
, long res2
,
2710 struct io_comp_state
*cs
)
2712 if (!io_rw_reissue(req
, res
))
2713 io_complete_rw_common(&req
->rw
.kiocb
, res
, cs
);
2716 static void io_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
2718 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
.kiocb
);
2720 __io_complete_rw(req
, res
, res2
, NULL
);
2723 static void io_complete_rw_iopoll(struct kiocb
*kiocb
, long res
, long res2
)
2725 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
.kiocb
);
2727 if (kiocb
->ki_flags
& IOCB_WRITE
)
2728 kiocb_end_write(req
);
2730 if (res
!= -EAGAIN
&& res
!= req
->result
)
2731 req_set_fail_links(req
);
2733 WRITE_ONCE(req
->result
, res
);
2734 /* order with io_poll_complete() checking ->result */
2736 WRITE_ONCE(req
->iopoll_completed
, 1);
2740 * After the iocb has been issued, it's safe to be found on the poll list.
2741 * Adding the kiocb to the list AFTER submission ensures that we don't
2742 * find it from a io_iopoll_getevents() thread before the issuer is done
2743 * accessing the kiocb cookie.
2745 static void io_iopoll_req_issued(struct io_kiocb
*req
, bool in_async
)
2747 struct io_ring_ctx
*ctx
= req
->ctx
;
2750 * Track whether we have multiple files in our lists. This will impact
2751 * how we do polling eventually, not spinning if we're on potentially
2752 * different devices.
2754 if (list_empty(&ctx
->iopoll_list
)) {
2755 ctx
->poll_multi_file
= false;
2756 } else if (!ctx
->poll_multi_file
) {
2757 struct io_kiocb
*list_req
;
2759 list_req
= list_first_entry(&ctx
->iopoll_list
, struct io_kiocb
,
2761 if (list_req
->file
!= req
->file
)
2762 ctx
->poll_multi_file
= true;
2766 * For fast devices, IO may have already completed. If it has, add
2767 * it to the front so we find it first.
2769 if (READ_ONCE(req
->iopoll_completed
))
2770 list_add(&req
->inflight_entry
, &ctx
->iopoll_list
);
2772 list_add_tail(&req
->inflight_entry
, &ctx
->iopoll_list
);
2775 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2776 * task context or in io worker task context. If current task context is
2777 * sq thread, we don't need to check whether should wake up sq thread.
2779 if (in_async
&& (ctx
->flags
& IORING_SETUP_SQPOLL
) &&
2780 wq_has_sleeper(&ctx
->sq_data
->wait
))
2781 wake_up(&ctx
->sq_data
->wait
);
2784 static inline void __io_state_file_put(struct io_submit_state
*state
)
2786 fput_many(state
->file
, state
->file_refs
);
2787 state
->file_refs
= 0;
2790 static inline void io_state_file_put(struct io_submit_state
*state
)
2792 if (state
->file_refs
)
2793 __io_state_file_put(state
);
2797 * Get as many references to a file as we have IOs left in this submission,
2798 * assuming most submissions are for one file, or at least that each file
2799 * has more than one submission.
2801 static struct file
*__io_file_get(struct io_submit_state
*state
, int fd
)
2806 if (state
->file_refs
) {
2807 if (state
->fd
== fd
) {
2811 __io_state_file_put(state
);
2813 state
->file
= fget_many(fd
, state
->ios_left
);
2814 if (unlikely(!state
->file
))
2818 state
->file_refs
= state
->ios_left
- 1;
2822 static bool io_bdev_nowait(struct block_device
*bdev
)
2824 return !bdev
|| blk_queue_nowait(bdev_get_queue(bdev
));
2828 * If we tracked the file through the SCM inflight mechanism, we could support
2829 * any file. For now, just ensure that anything potentially problematic is done
2832 static bool io_file_supports_async(struct file
*file
, int rw
)
2834 umode_t mode
= file_inode(file
)->i_mode
;
2836 if (S_ISBLK(mode
)) {
2837 if (IS_ENABLED(CONFIG_BLOCK
) &&
2838 io_bdev_nowait(I_BDEV(file
->f_mapping
->host
)))
2842 if (S_ISCHR(mode
) || S_ISSOCK(mode
))
2844 if (S_ISREG(mode
)) {
2845 if (IS_ENABLED(CONFIG_BLOCK
) &&
2846 io_bdev_nowait(file
->f_inode
->i_sb
->s_bdev
) &&
2847 file
->f_op
!= &io_uring_fops
)
2852 /* any ->read/write should understand O_NONBLOCK */
2853 if (file
->f_flags
& O_NONBLOCK
)
2856 if (!(file
->f_mode
& FMODE_NOWAIT
))
2860 return file
->f_op
->read_iter
!= NULL
;
2862 return file
->f_op
->write_iter
!= NULL
;
2865 static int io_prep_rw(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
2867 struct io_ring_ctx
*ctx
= req
->ctx
;
2868 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
2872 if (S_ISREG(file_inode(req
->file
)->i_mode
))
2873 req
->flags
|= REQ_F_ISREG
;
2875 kiocb
->ki_pos
= READ_ONCE(sqe
->off
);
2876 if (kiocb
->ki_pos
== -1 && !(req
->file
->f_mode
& FMODE_STREAM
)) {
2877 req
->flags
|= REQ_F_CUR_POS
;
2878 kiocb
->ki_pos
= req
->file
->f_pos
;
2880 kiocb
->ki_hint
= ki_hint_validate(file_write_hint(kiocb
->ki_filp
));
2881 kiocb
->ki_flags
= iocb_flags(kiocb
->ki_filp
);
2882 ret
= kiocb_set_rw_flags(kiocb
, READ_ONCE(sqe
->rw_flags
));
2886 ioprio
= READ_ONCE(sqe
->ioprio
);
2888 ret
= ioprio_check_cap(ioprio
);
2892 kiocb
->ki_ioprio
= ioprio
;
2894 kiocb
->ki_ioprio
= get_current_ioprio();
2896 /* don't allow async punt if RWF_NOWAIT was requested */
2897 if (kiocb
->ki_flags
& IOCB_NOWAIT
)
2898 req
->flags
|= REQ_F_NOWAIT
;
2900 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
2901 if (!(kiocb
->ki_flags
& IOCB_DIRECT
) ||
2902 !kiocb
->ki_filp
->f_op
->iopoll
)
2905 kiocb
->ki_flags
|= IOCB_HIPRI
;
2906 kiocb
->ki_complete
= io_complete_rw_iopoll
;
2907 req
->iopoll_completed
= 0;
2909 if (kiocb
->ki_flags
& IOCB_HIPRI
)
2911 kiocb
->ki_complete
= io_complete_rw
;
2914 req
->rw
.addr
= READ_ONCE(sqe
->addr
);
2915 req
->rw
.len
= READ_ONCE(sqe
->len
);
2916 req
->buf_index
= READ_ONCE(sqe
->buf_index
);
2920 static inline void io_rw_done(struct kiocb
*kiocb
, ssize_t ret
)
2926 case -ERESTARTNOINTR
:
2927 case -ERESTARTNOHAND
:
2928 case -ERESTART_RESTARTBLOCK
:
2930 * We can't just restart the syscall, since previously
2931 * submitted sqes may already be in progress. Just fail this
2937 kiocb
->ki_complete(kiocb
, ret
, 0);
2941 static void kiocb_done(struct kiocb
*kiocb
, ssize_t ret
,
2942 struct io_comp_state
*cs
)
2944 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
.kiocb
);
2945 struct io_async_rw
*io
= req
->async_data
;
2947 /* add previously done IO, if any */
2948 if (io
&& io
->bytes_done
> 0) {
2950 ret
= io
->bytes_done
;
2952 ret
+= io
->bytes_done
;
2955 if (req
->flags
& REQ_F_CUR_POS
)
2956 req
->file
->f_pos
= kiocb
->ki_pos
;
2957 if (ret
>= 0 && kiocb
->ki_complete
== io_complete_rw
)
2958 __io_complete_rw(req
, ret
, 0, cs
);
2960 io_rw_done(kiocb
, ret
);
2963 static ssize_t
io_import_fixed(struct io_kiocb
*req
, int rw
,
2964 struct iov_iter
*iter
)
2966 struct io_ring_ctx
*ctx
= req
->ctx
;
2967 size_t len
= req
->rw
.len
;
2968 struct io_mapped_ubuf
*imu
;
2969 u16 index
, buf_index
= req
->buf_index
;
2973 if (unlikely(buf_index
>= ctx
->nr_user_bufs
))
2975 index
= array_index_nospec(buf_index
, ctx
->nr_user_bufs
);
2976 imu
= &ctx
->user_bufs
[index
];
2977 buf_addr
= req
->rw
.addr
;
2980 if (buf_addr
+ len
< buf_addr
)
2982 /* not inside the mapped region */
2983 if (buf_addr
< imu
->ubuf
|| buf_addr
+ len
> imu
->ubuf
+ imu
->len
)
2987 * May not be a start of buffer, set size appropriately
2988 * and advance us to the beginning.
2990 offset
= buf_addr
- imu
->ubuf
;
2991 iov_iter_bvec(iter
, rw
, imu
->bvec
, imu
->nr_bvecs
, offset
+ len
);
2995 * Don't use iov_iter_advance() here, as it's really slow for
2996 * using the latter parts of a big fixed buffer - it iterates
2997 * over each segment manually. We can cheat a bit here, because
3000 * 1) it's a BVEC iter, we set it up
3001 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3002 * first and last bvec
3004 * So just find our index, and adjust the iterator afterwards.
3005 * If the offset is within the first bvec (or the whole first
3006 * bvec, just use iov_iter_advance(). This makes it easier
3007 * since we can just skip the first segment, which may not
3008 * be PAGE_SIZE aligned.
3010 const struct bio_vec
*bvec
= imu
->bvec
;
3012 if (offset
<= bvec
->bv_len
) {
3013 iov_iter_advance(iter
, offset
);
3015 unsigned long seg_skip
;
3017 /* skip first vec */
3018 offset
-= bvec
->bv_len
;
3019 seg_skip
= 1 + (offset
>> PAGE_SHIFT
);
3021 iter
->bvec
= bvec
+ seg_skip
;
3022 iter
->nr_segs
-= seg_skip
;
3023 iter
->count
-= bvec
->bv_len
+ offset
;
3024 iter
->iov_offset
= offset
& ~PAGE_MASK
;
3031 static void io_ring_submit_unlock(struct io_ring_ctx
*ctx
, bool needs_lock
)
3034 mutex_unlock(&ctx
->uring_lock
);
3037 static void io_ring_submit_lock(struct io_ring_ctx
*ctx
, bool needs_lock
)
3040 * "Normal" inline submissions always hold the uring_lock, since we
3041 * grab it from the system call. Same is true for the SQPOLL offload.
3042 * The only exception is when we've detached the request and issue it
3043 * from an async worker thread, grab the lock for that case.
3046 mutex_lock(&ctx
->uring_lock
);
3049 static struct io_buffer
*io_buffer_select(struct io_kiocb
*req
, size_t *len
,
3050 int bgid
, struct io_buffer
*kbuf
,
3053 struct io_buffer
*head
;
3055 if (req
->flags
& REQ_F_BUFFER_SELECTED
)
3058 io_ring_submit_lock(req
->ctx
, needs_lock
);
3060 lockdep_assert_held(&req
->ctx
->uring_lock
);
3062 head
= idr_find(&req
->ctx
->io_buffer_idr
, bgid
);
3064 if (!list_empty(&head
->list
)) {
3065 kbuf
= list_last_entry(&head
->list
, struct io_buffer
,
3067 list_del(&kbuf
->list
);
3070 idr_remove(&req
->ctx
->io_buffer_idr
, bgid
);
3072 if (*len
> kbuf
->len
)
3075 kbuf
= ERR_PTR(-ENOBUFS
);
3078 io_ring_submit_unlock(req
->ctx
, needs_lock
);
3083 static void __user
*io_rw_buffer_select(struct io_kiocb
*req
, size_t *len
,
3086 struct io_buffer
*kbuf
;
3089 kbuf
= (struct io_buffer
*) (unsigned long) req
->rw
.addr
;
3090 bgid
= req
->buf_index
;
3091 kbuf
= io_buffer_select(req
, len
, bgid
, kbuf
, needs_lock
);
3094 req
->rw
.addr
= (u64
) (unsigned long) kbuf
;
3095 req
->flags
|= REQ_F_BUFFER_SELECTED
;
3096 return u64_to_user_ptr(kbuf
->addr
);
3099 #ifdef CONFIG_COMPAT
3100 static ssize_t
io_compat_import(struct io_kiocb
*req
, struct iovec
*iov
,
3103 struct compat_iovec __user
*uiov
;
3104 compat_ssize_t clen
;
3108 uiov
= u64_to_user_ptr(req
->rw
.addr
);
3109 if (!access_ok(uiov
, sizeof(*uiov
)))
3111 if (__get_user(clen
, &uiov
->iov_len
))
3117 buf
= io_rw_buffer_select(req
, &len
, needs_lock
);
3119 return PTR_ERR(buf
);
3120 iov
[0].iov_base
= buf
;
3121 iov
[0].iov_len
= (compat_size_t
) len
;
3126 static ssize_t
__io_iov_buffer_select(struct io_kiocb
*req
, struct iovec
*iov
,
3129 struct iovec __user
*uiov
= u64_to_user_ptr(req
->rw
.addr
);
3133 if (copy_from_user(iov
, uiov
, sizeof(*uiov
)))
3136 len
= iov
[0].iov_len
;
3139 buf
= io_rw_buffer_select(req
, &len
, needs_lock
);
3141 return PTR_ERR(buf
);
3142 iov
[0].iov_base
= buf
;
3143 iov
[0].iov_len
= len
;
3147 static ssize_t
io_iov_buffer_select(struct io_kiocb
*req
, struct iovec
*iov
,
3150 if (req
->flags
& REQ_F_BUFFER_SELECTED
) {
3151 struct io_buffer
*kbuf
;
3153 kbuf
= (struct io_buffer
*) (unsigned long) req
->rw
.addr
;
3154 iov
[0].iov_base
= u64_to_user_ptr(kbuf
->addr
);
3155 iov
[0].iov_len
= kbuf
->len
;
3158 if (req
->rw
.len
!= 1)
3161 #ifdef CONFIG_COMPAT
3162 if (req
->ctx
->compat
)
3163 return io_compat_import(req
, iov
, needs_lock
);
3166 return __io_iov_buffer_select(req
, iov
, needs_lock
);
3169 static ssize_t
io_import_iovec(int rw
, struct io_kiocb
*req
,
3170 struct iovec
**iovec
, struct iov_iter
*iter
,
3173 void __user
*buf
= u64_to_user_ptr(req
->rw
.addr
);
3174 size_t sqe_len
= req
->rw
.len
;
3178 opcode
= req
->opcode
;
3179 if (opcode
== IORING_OP_READ_FIXED
|| opcode
== IORING_OP_WRITE_FIXED
) {
3181 return io_import_fixed(req
, rw
, iter
);
3184 /* buffer index only valid with fixed read/write, or buffer select */
3185 if (req
->buf_index
&& !(req
->flags
& REQ_F_BUFFER_SELECT
))
3188 if (opcode
== IORING_OP_READ
|| opcode
== IORING_OP_WRITE
) {
3189 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
3190 buf
= io_rw_buffer_select(req
, &sqe_len
, needs_lock
);
3192 return PTR_ERR(buf
);
3193 req
->rw
.len
= sqe_len
;
3196 ret
= import_single_range(rw
, buf
, sqe_len
, *iovec
, iter
);
3201 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
3202 ret
= io_iov_buffer_select(req
, *iovec
, needs_lock
);
3204 ret
= (*iovec
)->iov_len
;
3205 iov_iter_init(iter
, rw
, *iovec
, 1, ret
);
3211 return __import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
, iovec
, iter
,
3215 static inline loff_t
*io_kiocb_ppos(struct kiocb
*kiocb
)
3217 return (kiocb
->ki_filp
->f_mode
& FMODE_STREAM
) ? NULL
: &kiocb
->ki_pos
;
3221 * For files that don't have ->read_iter() and ->write_iter(), handle them
3222 * by looping over ->read() or ->write() manually.
3224 static ssize_t
loop_rw_iter(int rw
, struct io_kiocb
*req
, struct iov_iter
*iter
)
3226 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
3227 struct file
*file
= req
->file
;
3231 * Don't support polled IO through this interface, and we can't
3232 * support non-blocking either. For the latter, this just causes
3233 * the kiocb to be handled from an async context.
3235 if (kiocb
->ki_flags
& IOCB_HIPRI
)
3237 if (kiocb
->ki_flags
& IOCB_NOWAIT
)
3240 while (iov_iter_count(iter
)) {
3244 if (!iov_iter_is_bvec(iter
)) {
3245 iovec
= iov_iter_iovec(iter
);
3247 iovec
.iov_base
= u64_to_user_ptr(req
->rw
.addr
);
3248 iovec
.iov_len
= req
->rw
.len
;
3252 nr
= file
->f_op
->read(file
, iovec
.iov_base
,
3253 iovec
.iov_len
, io_kiocb_ppos(kiocb
));
3255 nr
= file
->f_op
->write(file
, iovec
.iov_base
,
3256 iovec
.iov_len
, io_kiocb_ppos(kiocb
));
3265 if (nr
!= iovec
.iov_len
)
3269 iov_iter_advance(iter
, nr
);
3275 static void io_req_map_rw(struct io_kiocb
*req
, const struct iovec
*iovec
,
3276 const struct iovec
*fast_iov
, struct iov_iter
*iter
)
3278 struct io_async_rw
*rw
= req
->async_data
;
3280 memcpy(&rw
->iter
, iter
, sizeof(*iter
));
3281 rw
->free_iovec
= iovec
;
3283 /* can only be fixed buffers, no need to do anything */
3284 if (iov_iter_is_bvec(iter
))
3287 unsigned iov_off
= 0;
3289 rw
->iter
.iov
= rw
->fast_iov
;
3290 if (iter
->iov
!= fast_iov
) {
3291 iov_off
= iter
->iov
- fast_iov
;
3292 rw
->iter
.iov
+= iov_off
;
3294 if (rw
->fast_iov
!= fast_iov
)
3295 memcpy(rw
->fast_iov
+ iov_off
, fast_iov
+ iov_off
,
3296 sizeof(struct iovec
) * iter
->nr_segs
);
3298 req
->flags
|= REQ_F_NEED_CLEANUP
;
3302 static inline int __io_alloc_async_data(struct io_kiocb
*req
)
3304 WARN_ON_ONCE(!io_op_defs
[req
->opcode
].async_size
);
3305 req
->async_data
= kmalloc(io_op_defs
[req
->opcode
].async_size
, GFP_KERNEL
);
3306 return req
->async_data
== NULL
;
3309 static int io_alloc_async_data(struct io_kiocb
*req
)
3311 if (!io_op_defs
[req
->opcode
].needs_async_data
)
3314 return __io_alloc_async_data(req
);
3317 static int io_setup_async_rw(struct io_kiocb
*req
, const struct iovec
*iovec
,
3318 const struct iovec
*fast_iov
,
3319 struct iov_iter
*iter
, bool force
)
3321 if (!force
&& !io_op_defs
[req
->opcode
].needs_async_data
)
3323 if (!req
->async_data
) {
3324 if (__io_alloc_async_data(req
))
3327 io_req_map_rw(req
, iovec
, fast_iov
, iter
);
3332 static inline int io_rw_prep_async(struct io_kiocb
*req
, int rw
)
3334 struct io_async_rw
*iorw
= req
->async_data
;
3335 struct iovec
*iov
= iorw
->fast_iov
;
3338 ret
= io_import_iovec(rw
, req
, &iov
, &iorw
->iter
, false);
3339 if (unlikely(ret
< 0))
3342 iorw
->bytes_done
= 0;
3343 iorw
->free_iovec
= iov
;
3345 req
->flags
|= REQ_F_NEED_CLEANUP
;
3349 static int io_read_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
3353 ret
= io_prep_rw(req
, sqe
);
3357 if (unlikely(!(req
->file
->f_mode
& FMODE_READ
)))
3360 /* either don't need iovec imported or already have it */
3361 if (!req
->async_data
)
3363 return io_rw_prep_async(req
, READ
);
3367 * This is our waitqueue callback handler, registered through lock_page_async()
3368 * when we initially tried to do the IO with the iocb armed our waitqueue.
3369 * This gets called when the page is unlocked, and we generally expect that to
3370 * happen when the page IO is completed and the page is now uptodate. This will
3371 * queue a task_work based retry of the operation, attempting to copy the data
3372 * again. If the latter fails because the page was NOT uptodate, then we will
3373 * do a thread based blocking retry of the operation. That's the unexpected
3376 static int io_async_buf_func(struct wait_queue_entry
*wait
, unsigned mode
,
3377 int sync
, void *arg
)
3379 struct wait_page_queue
*wpq
;
3380 struct io_kiocb
*req
= wait
->private;
3381 struct wait_page_key
*key
= arg
;
3384 wpq
= container_of(wait
, struct wait_page_queue
, wait
);
3386 if (!wake_page_match(wpq
, key
))
3389 req
->rw
.kiocb
.ki_flags
&= ~IOCB_WAITQ
;
3390 list_del_init(&wait
->entry
);
3392 init_task_work(&req
->task_work
, io_req_task_submit
);
3393 percpu_ref_get(&req
->ctx
->refs
);
3395 /* submit ref gets dropped, acquire a new one */
3396 refcount_inc(&req
->refs
);
3397 ret
= io_req_task_work_add(req
);
3398 if (unlikely(ret
)) {
3399 struct task_struct
*tsk
;
3401 /* queue just for cancelation */
3402 init_task_work(&req
->task_work
, io_req_task_cancel
);
3403 tsk
= io_wq_get_task(req
->ctx
->io_wq
);
3404 task_work_add(tsk
, &req
->task_work
, TWA_NONE
);
3405 wake_up_process(tsk
);
3411 * This controls whether a given IO request should be armed for async page
3412 * based retry. If we return false here, the request is handed to the async
3413 * worker threads for retry. If we're doing buffered reads on a regular file,
3414 * we prepare a private wait_page_queue entry and retry the operation. This
3415 * will either succeed because the page is now uptodate and unlocked, or it
3416 * will register a callback when the page is unlocked at IO completion. Through
3417 * that callback, io_uring uses task_work to setup a retry of the operation.
3418 * That retry will attempt the buffered read again. The retry will generally
3419 * succeed, or in rare cases where it fails, we then fall back to using the
3420 * async worker threads for a blocking retry.
3422 static bool io_rw_should_retry(struct io_kiocb
*req
)
3424 struct io_async_rw
*rw
= req
->async_data
;
3425 struct wait_page_queue
*wait
= &rw
->wpq
;
3426 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
3428 /* never retry for NOWAIT, we just complete with -EAGAIN */
3429 if (req
->flags
& REQ_F_NOWAIT
)
3432 /* Only for buffered IO */
3433 if (kiocb
->ki_flags
& (IOCB_DIRECT
| IOCB_HIPRI
))
3437 * just use poll if we can, and don't attempt if the fs doesn't
3438 * support callback based unlocks
3440 if (file_can_poll(req
->file
) || !(req
->file
->f_mode
& FMODE_BUF_RASYNC
))
3443 wait
->wait
.func
= io_async_buf_func
;
3444 wait
->wait
.private = req
;
3445 wait
->wait
.flags
= 0;
3446 INIT_LIST_HEAD(&wait
->wait
.entry
);
3447 kiocb
->ki_flags
|= IOCB_WAITQ
;
3448 kiocb
->ki_flags
&= ~IOCB_NOWAIT
;
3449 kiocb
->ki_waitq
= wait
;
3453 static int io_iter_do_read(struct io_kiocb
*req
, struct iov_iter
*iter
)
3455 if (req
->file
->f_op
->read_iter
)
3456 return call_read_iter(req
->file
, &req
->rw
.kiocb
, iter
);
3457 else if (req
->file
->f_op
->read
)
3458 return loop_rw_iter(READ
, req
, iter
);
3463 static int io_read(struct io_kiocb
*req
, bool force_nonblock
,
3464 struct io_comp_state
*cs
)
3466 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
3467 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
3468 struct iov_iter __iter
, *iter
= &__iter
;
3469 struct io_async_rw
*rw
= req
->async_data
;
3470 ssize_t io_size
, ret
, ret2
;
3477 ret
= io_import_iovec(READ
, req
, &iovec
, iter
, !force_nonblock
);
3481 io_size
= iov_iter_count(iter
);
3482 req
->result
= io_size
;
3485 /* Ensure we clear previously set non-block flag */
3486 if (!force_nonblock
)
3487 kiocb
->ki_flags
&= ~IOCB_NOWAIT
;
3489 kiocb
->ki_flags
|= IOCB_NOWAIT
;
3492 /* If the file doesn't support async, just async punt */
3493 no_async
= force_nonblock
&& !io_file_supports_async(req
->file
, READ
);
3497 ret
= rw_verify_area(READ
, req
->file
, io_kiocb_ppos(kiocb
), io_size
);
3501 ret
= io_iter_do_read(req
, iter
);
3505 } else if (ret
== -EIOCBQUEUED
) {
3508 } else if (ret
== -EAGAIN
) {
3509 /* IOPOLL retry should happen for io-wq threads */
3510 if (!force_nonblock
&& !(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
3512 /* no retry on NONBLOCK marked file */
3513 if (req
->file
->f_flags
& O_NONBLOCK
)
3515 /* some cases will consume bytes even on error returns */
3516 iov_iter_revert(iter
, io_size
- iov_iter_count(iter
));
3519 } else if (ret
< 0) {
3520 /* make sure -ERESTARTSYS -> -EINTR is done */
3524 /* read it all, or we did blocking attempt. no retry. */
3525 if (!iov_iter_count(iter
) || !force_nonblock
||
3526 (req
->file
->f_flags
& O_NONBLOCK
))
3531 ret2
= io_setup_async_rw(req
, iovec
, inline_vecs
, iter
, true);
3538 rw
= req
->async_data
;
3539 /* it's copied and will be cleaned with ->io */
3541 /* now use our persistent iterator, if we aren't already */
3544 rw
->bytes_done
+= ret
;
3545 /* if we can retry, do so with the callbacks armed */
3546 if (!io_rw_should_retry(req
)) {
3547 kiocb
->ki_flags
&= ~IOCB_WAITQ
;
3552 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3553 * get -EIOCBQUEUED, then we'll get a notification when the desired
3554 * page gets unlocked. We can also get a partial read here, and if we
3555 * do, then just retry at the new offset.
3557 ret
= io_iter_do_read(req
, iter
);
3558 if (ret
== -EIOCBQUEUED
) {
3561 } else if (ret
> 0 && ret
< io_size
) {
3562 /* we got some bytes, but not all. retry. */
3566 kiocb_done(kiocb
, ret
, cs
);
3569 /* it's reportedly faster than delegating the null check to kfree() */
3575 static int io_write_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
3579 ret
= io_prep_rw(req
, sqe
);
3583 if (unlikely(!(req
->file
->f_mode
& FMODE_WRITE
)))
3586 /* either don't need iovec imported or already have it */
3587 if (!req
->async_data
)
3589 return io_rw_prep_async(req
, WRITE
);
3592 static int io_write(struct io_kiocb
*req
, bool force_nonblock
,
3593 struct io_comp_state
*cs
)
3595 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
3596 struct kiocb
*kiocb
= &req
->rw
.kiocb
;
3597 struct iov_iter __iter
, *iter
= &__iter
;
3598 struct io_async_rw
*rw
= req
->async_data
;
3599 ssize_t ret
, ret2
, io_size
;
3605 ret
= io_import_iovec(WRITE
, req
, &iovec
, iter
, !force_nonblock
);
3609 io_size
= iov_iter_count(iter
);
3610 req
->result
= io_size
;
3612 /* Ensure we clear previously set non-block flag */
3613 if (!force_nonblock
)
3614 kiocb
->ki_flags
&= ~IOCB_NOWAIT
;
3616 kiocb
->ki_flags
|= IOCB_NOWAIT
;
3618 /* If the file doesn't support async, just async punt */
3619 if (force_nonblock
&& !io_file_supports_async(req
->file
, WRITE
))
3622 /* file path doesn't support NOWAIT for non-direct_IO */
3623 if (force_nonblock
&& !(kiocb
->ki_flags
& IOCB_DIRECT
) &&
3624 (req
->flags
& REQ_F_ISREG
))
3627 ret
= rw_verify_area(WRITE
, req
->file
, io_kiocb_ppos(kiocb
), io_size
);
3632 * Open-code file_start_write here to grab freeze protection,
3633 * which will be released by another thread in
3634 * io_complete_rw(). Fool lockdep by telling it the lock got
3635 * released so that it doesn't complain about the held lock when
3636 * we return to userspace.
3638 if (req
->flags
& REQ_F_ISREG
) {
3639 sb_start_write(file_inode(req
->file
)->i_sb
);
3640 __sb_writers_release(file_inode(req
->file
)->i_sb
,
3643 kiocb
->ki_flags
|= IOCB_WRITE
;
3645 if (req
->file
->f_op
->write_iter
)
3646 ret2
= call_write_iter(req
->file
, kiocb
, iter
);
3647 else if (req
->file
->f_op
->write
)
3648 ret2
= loop_rw_iter(WRITE
, req
, iter
);
3653 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3654 * retry them without IOCB_NOWAIT.
3656 if (ret2
== -EOPNOTSUPP
&& (kiocb
->ki_flags
& IOCB_NOWAIT
))
3658 /* no retry on NONBLOCK marked file */
3659 if (ret2
== -EAGAIN
&& (req
->file
->f_flags
& O_NONBLOCK
))
3661 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
3662 /* IOPOLL retry should happen for io-wq threads */
3663 if ((req
->ctx
->flags
& IORING_SETUP_IOPOLL
) && ret2
== -EAGAIN
)
3666 kiocb_done(kiocb
, ret2
, cs
);
3669 /* some cases will consume bytes even on error returns */
3670 iov_iter_revert(iter
, io_size
- iov_iter_count(iter
));
3671 ret
= io_setup_async_rw(req
, iovec
, inline_vecs
, iter
, false);
3676 /* it's reportedly faster than delegating the null check to kfree() */
3682 static int io_renameat_prep(struct io_kiocb
*req
,
3683 const struct io_uring_sqe
*sqe
)
3685 struct io_rename
*ren
= &req
->rename
;
3686 const char __user
*oldf
, *newf
;
3688 if (unlikely(req
->flags
& REQ_F_FIXED_FILE
))
3691 ren
->old_dfd
= READ_ONCE(sqe
->fd
);
3692 oldf
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
3693 newf
= u64_to_user_ptr(READ_ONCE(sqe
->addr2
));
3694 ren
->new_dfd
= READ_ONCE(sqe
->len
);
3695 ren
->flags
= READ_ONCE(sqe
->rename_flags
);
3697 ren
->oldpath
= getname(oldf
);
3698 if (IS_ERR(ren
->oldpath
))
3699 return PTR_ERR(ren
->oldpath
);
3701 ren
->newpath
= getname(newf
);
3702 if (IS_ERR(ren
->newpath
)) {
3703 putname(ren
->oldpath
);
3704 return PTR_ERR(ren
->newpath
);
3707 req
->flags
|= REQ_F_NEED_CLEANUP
;
3711 static int io_renameat(struct io_kiocb
*req
, bool force_nonblock
)
3713 struct io_rename
*ren
= &req
->rename
;
3719 ret
= do_renameat2(ren
->old_dfd
, ren
->oldpath
, ren
->new_dfd
,
3720 ren
->newpath
, ren
->flags
);
3722 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
3724 req_set_fail_links(req
);
3725 io_req_complete(req
, ret
);
3729 static int io_unlinkat_prep(struct io_kiocb
*req
,
3730 const struct io_uring_sqe
*sqe
)
3732 struct io_unlink
*un
= &req
->unlink
;
3733 const char __user
*fname
;
3735 if (unlikely(req
->flags
& REQ_F_FIXED_FILE
))
3738 un
->dfd
= READ_ONCE(sqe
->fd
);
3740 un
->flags
= READ_ONCE(sqe
->unlink_flags
);
3741 if (un
->flags
& ~AT_REMOVEDIR
)
3744 fname
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
3745 un
->filename
= getname(fname
);
3746 if (IS_ERR(un
->filename
))
3747 return PTR_ERR(un
->filename
);
3749 req
->flags
|= REQ_F_NEED_CLEANUP
;
3753 static int io_unlinkat(struct io_kiocb
*req
, bool force_nonblock
)
3755 struct io_unlink
*un
= &req
->unlink
;
3761 if (un
->flags
& AT_REMOVEDIR
)
3762 ret
= do_rmdir(un
->dfd
, un
->filename
);
3764 ret
= do_unlinkat(un
->dfd
, un
->filename
);
3766 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
3768 req_set_fail_links(req
);
3769 io_req_complete(req
, ret
);
3773 static int io_shutdown_prep(struct io_kiocb
*req
,
3774 const struct io_uring_sqe
*sqe
)
3776 #if defined(CONFIG_NET)
3777 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
3779 if (sqe
->ioprio
|| sqe
->off
|| sqe
->addr
|| sqe
->rw_flags
||
3783 req
->shutdown
.how
= READ_ONCE(sqe
->len
);
3790 static int io_shutdown(struct io_kiocb
*req
, bool force_nonblock
)
3792 #if defined(CONFIG_NET)
3793 struct socket
*sock
;
3799 sock
= sock_from_file(req
->file
);
3800 if (unlikely(!sock
))
3803 ret
= __sys_shutdown_sock(sock
, req
->shutdown
.how
);
3805 req_set_fail_links(req
);
3806 io_req_complete(req
, ret
);
3813 static int __io_splice_prep(struct io_kiocb
*req
,
3814 const struct io_uring_sqe
*sqe
)
3816 struct io_splice
* sp
= &req
->splice
;
3817 unsigned int valid_flags
= SPLICE_F_FD_IN_FIXED
| SPLICE_F_ALL
;
3819 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
3823 sp
->len
= READ_ONCE(sqe
->len
);
3824 sp
->flags
= READ_ONCE(sqe
->splice_flags
);
3826 if (unlikely(sp
->flags
& ~valid_flags
))
3829 sp
->file_in
= io_file_get(NULL
, req
, READ_ONCE(sqe
->splice_fd_in
),
3830 (sp
->flags
& SPLICE_F_FD_IN_FIXED
));
3833 req
->flags
|= REQ_F_NEED_CLEANUP
;
3835 if (!S_ISREG(file_inode(sp
->file_in
)->i_mode
)) {
3837 * Splice operation will be punted aync, and here need to
3838 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3840 io_req_init_async(req
);
3841 req
->work
.flags
|= IO_WQ_WORK_UNBOUND
;
3847 static int io_tee_prep(struct io_kiocb
*req
,
3848 const struct io_uring_sqe
*sqe
)
3850 if (READ_ONCE(sqe
->splice_off_in
) || READ_ONCE(sqe
->off
))
3852 return __io_splice_prep(req
, sqe
);
3855 static int io_tee(struct io_kiocb
*req
, bool force_nonblock
)
3857 struct io_splice
*sp
= &req
->splice
;
3858 struct file
*in
= sp
->file_in
;
3859 struct file
*out
= sp
->file_out
;
3860 unsigned int flags
= sp
->flags
& ~SPLICE_F_FD_IN_FIXED
;
3866 ret
= do_tee(in
, out
, sp
->len
, flags
);
3868 io_put_file(req
, in
, (sp
->flags
& SPLICE_F_FD_IN_FIXED
));
3869 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
3872 req_set_fail_links(req
);
3873 io_req_complete(req
, ret
);
3877 static int io_splice_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
3879 struct io_splice
* sp
= &req
->splice
;
3881 sp
->off_in
= READ_ONCE(sqe
->splice_off_in
);
3882 sp
->off_out
= READ_ONCE(sqe
->off
);
3883 return __io_splice_prep(req
, sqe
);
3886 static int io_splice(struct io_kiocb
*req
, bool force_nonblock
)
3888 struct io_splice
*sp
= &req
->splice
;
3889 struct file
*in
= sp
->file_in
;
3890 struct file
*out
= sp
->file_out
;
3891 unsigned int flags
= sp
->flags
& ~SPLICE_F_FD_IN_FIXED
;
3892 loff_t
*poff_in
, *poff_out
;
3898 poff_in
= (sp
->off_in
== -1) ? NULL
: &sp
->off_in
;
3899 poff_out
= (sp
->off_out
== -1) ? NULL
: &sp
->off_out
;
3902 ret
= do_splice(in
, poff_in
, out
, poff_out
, sp
->len
, flags
);
3904 io_put_file(req
, in
, (sp
->flags
& SPLICE_F_FD_IN_FIXED
));
3905 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
3908 req_set_fail_links(req
);
3909 io_req_complete(req
, ret
);
3914 * IORING_OP_NOP just posts a completion event, nothing else.
3916 static int io_nop(struct io_kiocb
*req
, struct io_comp_state
*cs
)
3918 struct io_ring_ctx
*ctx
= req
->ctx
;
3920 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
3923 __io_req_complete(req
, 0, 0, cs
);
3927 static int io_prep_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
3929 struct io_ring_ctx
*ctx
= req
->ctx
;
3934 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
3936 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
3939 req
->sync
.flags
= READ_ONCE(sqe
->fsync_flags
);
3940 if (unlikely(req
->sync
.flags
& ~IORING_FSYNC_DATASYNC
))
3943 req
->sync
.off
= READ_ONCE(sqe
->off
);
3944 req
->sync
.len
= READ_ONCE(sqe
->len
);
3948 static int io_fsync(struct io_kiocb
*req
, bool force_nonblock
)
3950 loff_t end
= req
->sync
.off
+ req
->sync
.len
;
3953 /* fsync always requires a blocking context */
3957 ret
= vfs_fsync_range(req
->file
, req
->sync
.off
,
3958 end
> 0 ? end
: LLONG_MAX
,
3959 req
->sync
.flags
& IORING_FSYNC_DATASYNC
);
3961 req_set_fail_links(req
);
3962 io_req_complete(req
, ret
);
3966 static int io_fallocate_prep(struct io_kiocb
*req
,
3967 const struct io_uring_sqe
*sqe
)
3969 if (sqe
->ioprio
|| sqe
->buf_index
|| sqe
->rw_flags
)
3971 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
3974 req
->sync
.off
= READ_ONCE(sqe
->off
);
3975 req
->sync
.len
= READ_ONCE(sqe
->addr
);
3976 req
->sync
.mode
= READ_ONCE(sqe
->len
);
3980 static int io_fallocate(struct io_kiocb
*req
, bool force_nonblock
)
3984 /* fallocate always requiring blocking context */
3987 ret
= vfs_fallocate(req
->file
, req
->sync
.mode
, req
->sync
.off
,
3990 req_set_fail_links(req
);
3991 io_req_complete(req
, ret
);
3995 static int __io_openat_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
3997 const char __user
*fname
;
4000 if (unlikely(sqe
->ioprio
|| sqe
->buf_index
))
4002 if (unlikely(req
->flags
& REQ_F_FIXED_FILE
))
4005 /* open.how should be already initialised */
4006 if (!(req
->open
.how
.flags
& O_PATH
) && force_o_largefile())
4007 req
->open
.how
.flags
|= O_LARGEFILE
;
4009 req
->open
.dfd
= READ_ONCE(sqe
->fd
);
4010 fname
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4011 req
->open
.filename
= getname(fname
);
4012 if (IS_ERR(req
->open
.filename
)) {
4013 ret
= PTR_ERR(req
->open
.filename
);
4014 req
->open
.filename
= NULL
;
4017 req
->open
.nofile
= rlimit(RLIMIT_NOFILE
);
4018 req
->open
.ignore_nonblock
= false;
4019 req
->flags
|= REQ_F_NEED_CLEANUP
;
4023 static int io_openat_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4027 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4029 mode
= READ_ONCE(sqe
->len
);
4030 flags
= READ_ONCE(sqe
->open_flags
);
4031 req
->open
.how
= build_open_how(flags
, mode
);
4032 return __io_openat_prep(req
, sqe
);
4035 static int io_openat2_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4037 struct open_how __user
*how
;
4041 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4043 how
= u64_to_user_ptr(READ_ONCE(sqe
->addr2
));
4044 len
= READ_ONCE(sqe
->len
);
4045 if (len
< OPEN_HOW_SIZE_VER0
)
4048 ret
= copy_struct_from_user(&req
->open
.how
, sizeof(req
->open
.how
), how
,
4053 return __io_openat_prep(req
, sqe
);
4056 static int io_openat2(struct io_kiocb
*req
, bool force_nonblock
)
4058 struct open_flags op
;
4062 if (force_nonblock
&& !req
->open
.ignore_nonblock
)
4065 ret
= build_open_flags(&req
->open
.how
, &op
);
4069 ret
= __get_unused_fd_flags(req
->open
.how
.flags
, req
->open
.nofile
);
4073 file
= do_filp_open(req
->open
.dfd
, req
->open
.filename
, &op
);
4076 ret
= PTR_ERR(file
);
4078 * A work-around to ensure that /proc/self works that way
4079 * that it should - if we get -EOPNOTSUPP back, then assume
4080 * that proc_self_get_link() failed us because we're in async
4081 * context. We should be safe to retry this from the task
4082 * itself with force_nonblock == false set, as it should not
4083 * block on lookup. Would be nice to know this upfront and
4084 * avoid the async dance, but doesn't seem feasible.
4086 if (ret
== -EOPNOTSUPP
&& io_wq_current_is_worker()) {
4087 req
->open
.ignore_nonblock
= true;
4088 refcount_inc(&req
->refs
);
4089 io_req_task_queue(req
);
4093 fsnotify_open(file
);
4094 fd_install(ret
, file
);
4097 putname(req
->open
.filename
);
4098 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
4100 req_set_fail_links(req
);
4101 io_req_complete(req
, ret
);
4105 static int io_openat(struct io_kiocb
*req
, bool force_nonblock
)
4107 return io_openat2(req
, force_nonblock
);
4110 static int io_remove_buffers_prep(struct io_kiocb
*req
,
4111 const struct io_uring_sqe
*sqe
)
4113 struct io_provide_buf
*p
= &req
->pbuf
;
4116 if (sqe
->ioprio
|| sqe
->rw_flags
|| sqe
->addr
|| sqe
->len
|| sqe
->off
)
4119 tmp
= READ_ONCE(sqe
->fd
);
4120 if (!tmp
|| tmp
> USHRT_MAX
)
4123 memset(p
, 0, sizeof(*p
));
4125 p
->bgid
= READ_ONCE(sqe
->buf_group
);
4129 static int __io_remove_buffers(struct io_ring_ctx
*ctx
, struct io_buffer
*buf
,
4130 int bgid
, unsigned nbufs
)
4134 /* shouldn't happen */
4138 /* the head kbuf is the list itself */
4139 while (!list_empty(&buf
->list
)) {
4140 struct io_buffer
*nxt
;
4142 nxt
= list_first_entry(&buf
->list
, struct io_buffer
, list
);
4143 list_del(&nxt
->list
);
4150 idr_remove(&ctx
->io_buffer_idr
, bgid
);
4155 static int io_remove_buffers(struct io_kiocb
*req
, bool force_nonblock
,
4156 struct io_comp_state
*cs
)
4158 struct io_provide_buf
*p
= &req
->pbuf
;
4159 struct io_ring_ctx
*ctx
= req
->ctx
;
4160 struct io_buffer
*head
;
4163 io_ring_submit_lock(ctx
, !force_nonblock
);
4165 lockdep_assert_held(&ctx
->uring_lock
);
4168 head
= idr_find(&ctx
->io_buffer_idr
, p
->bgid
);
4170 ret
= __io_remove_buffers(ctx
, head
, p
->bgid
, p
->nbufs
);
4172 req_set_fail_links(req
);
4174 /* need to hold the lock to complete IOPOLL requests */
4175 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
4176 __io_req_complete(req
, ret
, 0, cs
);
4177 io_ring_submit_unlock(ctx
, !force_nonblock
);
4179 io_ring_submit_unlock(ctx
, !force_nonblock
);
4180 __io_req_complete(req
, ret
, 0, cs
);
4185 static int io_provide_buffers_prep(struct io_kiocb
*req
,
4186 const struct io_uring_sqe
*sqe
)
4188 struct io_provide_buf
*p
= &req
->pbuf
;
4191 if (sqe
->ioprio
|| sqe
->rw_flags
)
4194 tmp
= READ_ONCE(sqe
->fd
);
4195 if (!tmp
|| tmp
> USHRT_MAX
)
4198 p
->addr
= READ_ONCE(sqe
->addr
);
4199 p
->len
= READ_ONCE(sqe
->len
);
4201 if (!access_ok(u64_to_user_ptr(p
->addr
), (p
->len
* p
->nbufs
)))
4204 p
->bgid
= READ_ONCE(sqe
->buf_group
);
4205 tmp
= READ_ONCE(sqe
->off
);
4206 if (tmp
> USHRT_MAX
)
4212 static int io_add_buffers(struct io_provide_buf
*pbuf
, struct io_buffer
**head
)
4214 struct io_buffer
*buf
;
4215 u64 addr
= pbuf
->addr
;
4216 int i
, bid
= pbuf
->bid
;
4218 for (i
= 0; i
< pbuf
->nbufs
; i
++) {
4219 buf
= kmalloc(sizeof(*buf
), GFP_KERNEL
);
4224 buf
->len
= pbuf
->len
;
4229 INIT_LIST_HEAD(&buf
->list
);
4232 list_add_tail(&buf
->list
, &(*head
)->list
);
4236 return i
? i
: -ENOMEM
;
4239 static int io_provide_buffers(struct io_kiocb
*req
, bool force_nonblock
,
4240 struct io_comp_state
*cs
)
4242 struct io_provide_buf
*p
= &req
->pbuf
;
4243 struct io_ring_ctx
*ctx
= req
->ctx
;
4244 struct io_buffer
*head
, *list
;
4247 io_ring_submit_lock(ctx
, !force_nonblock
);
4249 lockdep_assert_held(&ctx
->uring_lock
);
4251 list
= head
= idr_find(&ctx
->io_buffer_idr
, p
->bgid
);
4253 ret
= io_add_buffers(p
, &head
);
4258 ret
= idr_alloc(&ctx
->io_buffer_idr
, head
, p
->bgid
, p
->bgid
+ 1,
4261 __io_remove_buffers(ctx
, head
, p
->bgid
, -1U);
4267 req_set_fail_links(req
);
4269 /* need to hold the lock to complete IOPOLL requests */
4270 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
4271 __io_req_complete(req
, ret
, 0, cs
);
4272 io_ring_submit_unlock(ctx
, !force_nonblock
);
4274 io_ring_submit_unlock(ctx
, !force_nonblock
);
4275 __io_req_complete(req
, ret
, 0, cs
);
4280 static int io_epoll_ctl_prep(struct io_kiocb
*req
,
4281 const struct io_uring_sqe
*sqe
)
4283 #if defined(CONFIG_EPOLL)
4284 if (sqe
->ioprio
|| sqe
->buf_index
)
4286 if (unlikely(req
->ctx
->flags
& (IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
)))
4289 req
->epoll
.epfd
= READ_ONCE(sqe
->fd
);
4290 req
->epoll
.op
= READ_ONCE(sqe
->len
);
4291 req
->epoll
.fd
= READ_ONCE(sqe
->off
);
4293 if (ep_op_has_event(req
->epoll
.op
)) {
4294 struct epoll_event __user
*ev
;
4296 ev
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4297 if (copy_from_user(&req
->epoll
.event
, ev
, sizeof(*ev
)))
4307 static int io_epoll_ctl(struct io_kiocb
*req
, bool force_nonblock
,
4308 struct io_comp_state
*cs
)
4310 #if defined(CONFIG_EPOLL)
4311 struct io_epoll
*ie
= &req
->epoll
;
4314 ret
= do_epoll_ctl(ie
->epfd
, ie
->op
, ie
->fd
, &ie
->event
, force_nonblock
);
4315 if (force_nonblock
&& ret
== -EAGAIN
)
4319 req_set_fail_links(req
);
4320 __io_req_complete(req
, ret
, 0, cs
);
4327 static int io_madvise_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4329 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4330 if (sqe
->ioprio
|| sqe
->buf_index
|| sqe
->off
)
4332 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4335 req
->madvise
.addr
= READ_ONCE(sqe
->addr
);
4336 req
->madvise
.len
= READ_ONCE(sqe
->len
);
4337 req
->madvise
.advice
= READ_ONCE(sqe
->fadvise_advice
);
4344 static int io_madvise(struct io_kiocb
*req
, bool force_nonblock
)
4346 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4347 struct io_madvise
*ma
= &req
->madvise
;
4353 ret
= do_madvise(current
->mm
, ma
->addr
, ma
->len
, ma
->advice
);
4355 req_set_fail_links(req
);
4356 io_req_complete(req
, ret
);
4363 static int io_fadvise_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4365 if (sqe
->ioprio
|| sqe
->buf_index
|| sqe
->addr
)
4367 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4370 req
->fadvise
.offset
= READ_ONCE(sqe
->off
);
4371 req
->fadvise
.len
= READ_ONCE(sqe
->len
);
4372 req
->fadvise
.advice
= READ_ONCE(sqe
->fadvise_advice
);
4376 static int io_fadvise(struct io_kiocb
*req
, bool force_nonblock
)
4378 struct io_fadvise
*fa
= &req
->fadvise
;
4381 if (force_nonblock
) {
4382 switch (fa
->advice
) {
4383 case POSIX_FADV_NORMAL
:
4384 case POSIX_FADV_RANDOM
:
4385 case POSIX_FADV_SEQUENTIAL
:
4392 ret
= vfs_fadvise(req
->file
, fa
->offset
, fa
->len
, fa
->advice
);
4394 req_set_fail_links(req
);
4395 io_req_complete(req
, ret
);
4399 static int io_statx_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4401 if (unlikely(req
->ctx
->flags
& (IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
)))
4403 if (sqe
->ioprio
|| sqe
->buf_index
)
4405 if (req
->flags
& REQ_F_FIXED_FILE
)
4408 req
->statx
.dfd
= READ_ONCE(sqe
->fd
);
4409 req
->statx
.mask
= READ_ONCE(sqe
->len
);
4410 req
->statx
.filename
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4411 req
->statx
.buffer
= u64_to_user_ptr(READ_ONCE(sqe
->addr2
));
4412 req
->statx
.flags
= READ_ONCE(sqe
->statx_flags
);
4417 static int io_statx(struct io_kiocb
*req
, bool force_nonblock
)
4419 struct io_statx
*ctx
= &req
->statx
;
4422 if (force_nonblock
) {
4423 /* only need file table for an actual valid fd */
4424 if (ctx
->dfd
== -1 || ctx
->dfd
== AT_FDCWD
)
4425 req
->flags
|= REQ_F_NO_FILE_TABLE
;
4429 ret
= do_statx(ctx
->dfd
, ctx
->filename
, ctx
->flags
, ctx
->mask
,
4433 req_set_fail_links(req
);
4434 io_req_complete(req
, ret
);
4438 static int io_close_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4441 * If we queue this for async, it must not be cancellable. That would
4442 * leave the 'file' in an undeterminate state, and here need to modify
4443 * io_wq_work.flags, so initialize io_wq_work firstly.
4445 io_req_init_async(req
);
4446 req
->work
.flags
|= IO_WQ_WORK_NO_CANCEL
;
4448 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4450 if (sqe
->ioprio
|| sqe
->off
|| sqe
->addr
|| sqe
->len
||
4451 sqe
->rw_flags
|| sqe
->buf_index
)
4453 if (req
->flags
& REQ_F_FIXED_FILE
)
4456 req
->close
.fd
= READ_ONCE(sqe
->fd
);
4457 if ((req
->file
&& req
->file
->f_op
== &io_uring_fops
))
4460 req
->close
.put_file
= NULL
;
4464 static int io_close(struct io_kiocb
*req
, bool force_nonblock
,
4465 struct io_comp_state
*cs
)
4467 struct io_close
*close
= &req
->close
;
4470 /* might be already done during nonblock submission */
4471 if (!close
->put_file
) {
4472 ret
= close_fd_get_file(close
->fd
, &close
->put_file
);
4474 return (ret
== -ENOENT
) ? -EBADF
: ret
;
4477 /* if the file has a flush method, be safe and punt to async */
4478 if (close
->put_file
->f_op
->flush
&& force_nonblock
) {
4479 /* was never set, but play safe */
4480 req
->flags
&= ~REQ_F_NOWAIT
;
4481 /* avoid grabbing files - we don't need the files */
4482 req
->flags
|= REQ_F_NO_FILE_TABLE
;
4486 /* No ->flush() or already async, safely close from here */
4487 ret
= filp_close(close
->put_file
, req
->work
.identity
->files
);
4489 req_set_fail_links(req
);
4490 fput(close
->put_file
);
4491 close
->put_file
= NULL
;
4492 __io_req_complete(req
, ret
, 0, cs
);
4496 static int io_prep_sfr(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4498 struct io_ring_ctx
*ctx
= req
->ctx
;
4503 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
4505 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
4508 req
->sync
.off
= READ_ONCE(sqe
->off
);
4509 req
->sync
.len
= READ_ONCE(sqe
->len
);
4510 req
->sync
.flags
= READ_ONCE(sqe
->sync_range_flags
);
4514 static int io_sync_file_range(struct io_kiocb
*req
, bool force_nonblock
)
4518 /* sync_file_range always requires a blocking context */
4522 ret
= sync_file_range(req
->file
, req
->sync
.off
, req
->sync
.len
,
4525 req_set_fail_links(req
);
4526 io_req_complete(req
, ret
);
4530 #if defined(CONFIG_NET)
4531 static int io_setup_async_msg(struct io_kiocb
*req
,
4532 struct io_async_msghdr
*kmsg
)
4534 struct io_async_msghdr
*async_msg
= req
->async_data
;
4538 if (io_alloc_async_data(req
)) {
4539 if (kmsg
->iov
!= kmsg
->fast_iov
)
4543 async_msg
= req
->async_data
;
4544 req
->flags
|= REQ_F_NEED_CLEANUP
;
4545 memcpy(async_msg
, kmsg
, sizeof(*kmsg
));
4549 static int io_sendmsg_copy_hdr(struct io_kiocb
*req
,
4550 struct io_async_msghdr
*iomsg
)
4552 iomsg
->iov
= iomsg
->fast_iov
;
4553 iomsg
->msg
.msg_name
= &iomsg
->addr
;
4554 return sendmsg_copy_msghdr(&iomsg
->msg
, req
->sr_msg
.umsg
,
4555 req
->sr_msg
.msg_flags
, &iomsg
->iov
);
4558 static int io_sendmsg_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4560 struct io_async_msghdr
*async_msg
= req
->async_data
;
4561 struct io_sr_msg
*sr
= &req
->sr_msg
;
4564 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4567 sr
->msg_flags
= READ_ONCE(sqe
->msg_flags
);
4568 sr
->umsg
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4569 sr
->len
= READ_ONCE(sqe
->len
);
4571 #ifdef CONFIG_COMPAT
4572 if (req
->ctx
->compat
)
4573 sr
->msg_flags
|= MSG_CMSG_COMPAT
;
4576 if (!async_msg
|| !io_op_defs
[req
->opcode
].needs_async_data
)
4578 ret
= io_sendmsg_copy_hdr(req
, async_msg
);
4580 req
->flags
|= REQ_F_NEED_CLEANUP
;
4584 static int io_sendmsg(struct io_kiocb
*req
, bool force_nonblock
,
4585 struct io_comp_state
*cs
)
4587 struct io_async_msghdr iomsg
, *kmsg
;
4588 struct socket
*sock
;
4592 sock
= sock_from_file(req
->file
);
4593 if (unlikely(!sock
))
4596 if (req
->async_data
) {
4597 kmsg
= req
->async_data
;
4598 kmsg
->msg
.msg_name
= &kmsg
->addr
;
4599 /* if iov is set, it's allocated already */
4601 kmsg
->iov
= kmsg
->fast_iov
;
4602 kmsg
->msg
.msg_iter
.iov
= kmsg
->iov
;
4604 ret
= io_sendmsg_copy_hdr(req
, &iomsg
);
4610 flags
= req
->sr_msg
.msg_flags
;
4611 if (flags
& MSG_DONTWAIT
)
4612 req
->flags
|= REQ_F_NOWAIT
;
4613 else if (force_nonblock
)
4614 flags
|= MSG_DONTWAIT
;
4616 ret
= __sys_sendmsg_sock(sock
, &kmsg
->msg
, flags
);
4617 if (force_nonblock
&& ret
== -EAGAIN
)
4618 return io_setup_async_msg(req
, kmsg
);
4619 if (ret
== -ERESTARTSYS
)
4622 if (kmsg
->iov
!= kmsg
->fast_iov
)
4624 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
4626 req_set_fail_links(req
);
4627 __io_req_complete(req
, ret
, 0, cs
);
4631 static int io_send(struct io_kiocb
*req
, bool force_nonblock
,
4632 struct io_comp_state
*cs
)
4634 struct io_sr_msg
*sr
= &req
->sr_msg
;
4637 struct socket
*sock
;
4641 sock
= sock_from_file(req
->file
);
4642 if (unlikely(!sock
))
4645 ret
= import_single_range(WRITE
, sr
->buf
, sr
->len
, &iov
, &msg
.msg_iter
);
4649 msg
.msg_name
= NULL
;
4650 msg
.msg_control
= NULL
;
4651 msg
.msg_controllen
= 0;
4652 msg
.msg_namelen
= 0;
4654 flags
= req
->sr_msg
.msg_flags
;
4655 if (flags
& MSG_DONTWAIT
)
4656 req
->flags
|= REQ_F_NOWAIT
;
4657 else if (force_nonblock
)
4658 flags
|= MSG_DONTWAIT
;
4660 msg
.msg_flags
= flags
;
4661 ret
= sock_sendmsg(sock
, &msg
);
4662 if (force_nonblock
&& ret
== -EAGAIN
)
4664 if (ret
== -ERESTARTSYS
)
4668 req_set_fail_links(req
);
4669 __io_req_complete(req
, ret
, 0, cs
);
4673 static int __io_recvmsg_copy_hdr(struct io_kiocb
*req
,
4674 struct io_async_msghdr
*iomsg
)
4676 struct io_sr_msg
*sr
= &req
->sr_msg
;
4677 struct iovec __user
*uiov
;
4681 ret
= __copy_msghdr_from_user(&iomsg
->msg
, sr
->umsg
,
4682 &iomsg
->uaddr
, &uiov
, &iov_len
);
4686 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
4689 if (copy_from_user(iomsg
->iov
, uiov
, sizeof(*uiov
)))
4691 sr
->len
= iomsg
->iov
[0].iov_len
;
4692 iov_iter_init(&iomsg
->msg
.msg_iter
, READ
, iomsg
->iov
, 1,
4696 ret
= __import_iovec(READ
, uiov
, iov_len
, UIO_FASTIOV
,
4697 &iomsg
->iov
, &iomsg
->msg
.msg_iter
,
4706 #ifdef CONFIG_COMPAT
4707 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb
*req
,
4708 struct io_async_msghdr
*iomsg
)
4710 struct compat_msghdr __user
*msg_compat
;
4711 struct io_sr_msg
*sr
= &req
->sr_msg
;
4712 struct compat_iovec __user
*uiov
;
4717 msg_compat
= (struct compat_msghdr __user
*) sr
->umsg
;
4718 ret
= __get_compat_msghdr(&iomsg
->msg
, msg_compat
, &iomsg
->uaddr
,
4723 uiov
= compat_ptr(ptr
);
4724 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
4725 compat_ssize_t clen
;
4729 if (!access_ok(uiov
, sizeof(*uiov
)))
4731 if (__get_user(clen
, &uiov
->iov_len
))
4736 iomsg
->iov
[0].iov_len
= clen
;
4739 ret
= __import_iovec(READ
, (struct iovec __user
*)uiov
, len
,
4740 UIO_FASTIOV
, &iomsg
->iov
,
4741 &iomsg
->msg
.msg_iter
, true);
4750 static int io_recvmsg_copy_hdr(struct io_kiocb
*req
,
4751 struct io_async_msghdr
*iomsg
)
4753 iomsg
->msg
.msg_name
= &iomsg
->addr
;
4754 iomsg
->iov
= iomsg
->fast_iov
;
4756 #ifdef CONFIG_COMPAT
4757 if (req
->ctx
->compat
)
4758 return __io_compat_recvmsg_copy_hdr(req
, iomsg
);
4761 return __io_recvmsg_copy_hdr(req
, iomsg
);
4764 static struct io_buffer
*io_recv_buffer_select(struct io_kiocb
*req
,
4767 struct io_sr_msg
*sr
= &req
->sr_msg
;
4768 struct io_buffer
*kbuf
;
4770 kbuf
= io_buffer_select(req
, &sr
->len
, sr
->bgid
, sr
->kbuf
, needs_lock
);
4775 req
->flags
|= REQ_F_BUFFER_SELECTED
;
4779 static inline unsigned int io_put_recv_kbuf(struct io_kiocb
*req
)
4781 return io_put_kbuf(req
, req
->sr_msg
.kbuf
);
4784 static int io_recvmsg_prep(struct io_kiocb
*req
,
4785 const struct io_uring_sqe
*sqe
)
4787 struct io_async_msghdr
*async_msg
= req
->async_data
;
4788 struct io_sr_msg
*sr
= &req
->sr_msg
;
4791 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4794 sr
->msg_flags
= READ_ONCE(sqe
->msg_flags
);
4795 sr
->umsg
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4796 sr
->len
= READ_ONCE(sqe
->len
);
4797 sr
->bgid
= READ_ONCE(sqe
->buf_group
);
4799 #ifdef CONFIG_COMPAT
4800 if (req
->ctx
->compat
)
4801 sr
->msg_flags
|= MSG_CMSG_COMPAT
;
4804 if (!async_msg
|| !io_op_defs
[req
->opcode
].needs_async_data
)
4806 ret
= io_recvmsg_copy_hdr(req
, async_msg
);
4808 req
->flags
|= REQ_F_NEED_CLEANUP
;
4812 static int io_recvmsg(struct io_kiocb
*req
, bool force_nonblock
,
4813 struct io_comp_state
*cs
)
4815 struct io_async_msghdr iomsg
, *kmsg
;
4816 struct socket
*sock
;
4817 struct io_buffer
*kbuf
;
4819 int ret
, cflags
= 0;
4821 sock
= sock_from_file(req
->file
);
4822 if (unlikely(!sock
))
4825 if (req
->async_data
) {
4826 kmsg
= req
->async_data
;
4827 kmsg
->msg
.msg_name
= &kmsg
->addr
;
4828 /* if iov is set, it's allocated already */
4830 kmsg
->iov
= kmsg
->fast_iov
;
4831 kmsg
->msg
.msg_iter
.iov
= kmsg
->iov
;
4833 ret
= io_recvmsg_copy_hdr(req
, &iomsg
);
4839 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
4840 kbuf
= io_recv_buffer_select(req
, !force_nonblock
);
4842 return PTR_ERR(kbuf
);
4843 kmsg
->fast_iov
[0].iov_base
= u64_to_user_ptr(kbuf
->addr
);
4844 iov_iter_init(&kmsg
->msg
.msg_iter
, READ
, kmsg
->iov
,
4845 1, req
->sr_msg
.len
);
4848 flags
= req
->sr_msg
.msg_flags
;
4849 if (flags
& MSG_DONTWAIT
)
4850 req
->flags
|= REQ_F_NOWAIT
;
4851 else if (force_nonblock
)
4852 flags
|= MSG_DONTWAIT
;
4854 ret
= __sys_recvmsg_sock(sock
, &kmsg
->msg
, req
->sr_msg
.umsg
,
4855 kmsg
->uaddr
, flags
);
4856 if (force_nonblock
&& ret
== -EAGAIN
)
4857 return io_setup_async_msg(req
, kmsg
);
4858 if (ret
== -ERESTARTSYS
)
4861 if (req
->flags
& REQ_F_BUFFER_SELECTED
)
4862 cflags
= io_put_recv_kbuf(req
);
4863 if (kmsg
->iov
!= kmsg
->fast_iov
)
4865 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
4867 req_set_fail_links(req
);
4868 __io_req_complete(req
, ret
, cflags
, cs
);
4872 static int io_recv(struct io_kiocb
*req
, bool force_nonblock
,
4873 struct io_comp_state
*cs
)
4875 struct io_buffer
*kbuf
;
4876 struct io_sr_msg
*sr
= &req
->sr_msg
;
4878 void __user
*buf
= sr
->buf
;
4879 struct socket
*sock
;
4882 int ret
, cflags
= 0;
4884 sock
= sock_from_file(req
->file
);
4885 if (unlikely(!sock
))
4888 if (req
->flags
& REQ_F_BUFFER_SELECT
) {
4889 kbuf
= io_recv_buffer_select(req
, !force_nonblock
);
4891 return PTR_ERR(kbuf
);
4892 buf
= u64_to_user_ptr(kbuf
->addr
);
4895 ret
= import_single_range(READ
, buf
, sr
->len
, &iov
, &msg
.msg_iter
);
4899 msg
.msg_name
= NULL
;
4900 msg
.msg_control
= NULL
;
4901 msg
.msg_controllen
= 0;
4902 msg
.msg_namelen
= 0;
4903 msg
.msg_iocb
= NULL
;
4906 flags
= req
->sr_msg
.msg_flags
;
4907 if (flags
& MSG_DONTWAIT
)
4908 req
->flags
|= REQ_F_NOWAIT
;
4909 else if (force_nonblock
)
4910 flags
|= MSG_DONTWAIT
;
4912 ret
= sock_recvmsg(sock
, &msg
, flags
);
4913 if (force_nonblock
&& ret
== -EAGAIN
)
4915 if (ret
== -ERESTARTSYS
)
4918 if (req
->flags
& REQ_F_BUFFER_SELECTED
)
4919 cflags
= io_put_recv_kbuf(req
);
4921 req_set_fail_links(req
);
4922 __io_req_complete(req
, ret
, cflags
, cs
);
4926 static int io_accept_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4928 struct io_accept
*accept
= &req
->accept
;
4930 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4932 if (sqe
->ioprio
|| sqe
->len
|| sqe
->buf_index
)
4935 accept
->addr
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4936 accept
->addr_len
= u64_to_user_ptr(READ_ONCE(sqe
->addr2
));
4937 accept
->flags
= READ_ONCE(sqe
->accept_flags
);
4938 accept
->nofile
= rlimit(RLIMIT_NOFILE
);
4942 static int io_accept(struct io_kiocb
*req
, bool force_nonblock
,
4943 struct io_comp_state
*cs
)
4945 struct io_accept
*accept
= &req
->accept
;
4946 unsigned int file_flags
= force_nonblock
? O_NONBLOCK
: 0;
4949 if (req
->file
->f_flags
& O_NONBLOCK
)
4950 req
->flags
|= REQ_F_NOWAIT
;
4952 ret
= __sys_accept4_file(req
->file
, file_flags
, accept
->addr
,
4953 accept
->addr_len
, accept
->flags
,
4955 if (ret
== -EAGAIN
&& force_nonblock
)
4958 if (ret
== -ERESTARTSYS
)
4960 req_set_fail_links(req
);
4962 __io_req_complete(req
, ret
, 0, cs
);
4966 static int io_connect_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
4968 struct io_connect
*conn
= &req
->connect
;
4969 struct io_async_connect
*io
= req
->async_data
;
4971 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
4973 if (sqe
->ioprio
|| sqe
->len
|| sqe
->buf_index
|| sqe
->rw_flags
)
4976 conn
->addr
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
4977 conn
->addr_len
= READ_ONCE(sqe
->addr2
);
4982 return move_addr_to_kernel(conn
->addr
, conn
->addr_len
,
4986 static int io_connect(struct io_kiocb
*req
, bool force_nonblock
,
4987 struct io_comp_state
*cs
)
4989 struct io_async_connect __io
, *io
;
4990 unsigned file_flags
;
4993 if (req
->async_data
) {
4994 io
= req
->async_data
;
4996 ret
= move_addr_to_kernel(req
->connect
.addr
,
4997 req
->connect
.addr_len
,
5004 file_flags
= force_nonblock
? O_NONBLOCK
: 0;
5006 ret
= __sys_connect_file(req
->file
, &io
->address
,
5007 req
->connect
.addr_len
, file_flags
);
5008 if ((ret
== -EAGAIN
|| ret
== -EINPROGRESS
) && force_nonblock
) {
5009 if (req
->async_data
)
5011 if (io_alloc_async_data(req
)) {
5015 io
= req
->async_data
;
5016 memcpy(req
->async_data
, &__io
, sizeof(__io
));
5019 if (ret
== -ERESTARTSYS
)
5023 req_set_fail_links(req
);
5024 __io_req_complete(req
, ret
, 0, cs
);
5027 #else /* !CONFIG_NET */
5028 static int io_sendmsg_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
5033 static int io_sendmsg(struct io_kiocb
*req
, bool force_nonblock
,
5034 struct io_comp_state
*cs
)
5039 static int io_send(struct io_kiocb
*req
, bool force_nonblock
,
5040 struct io_comp_state
*cs
)
5045 static int io_recvmsg_prep(struct io_kiocb
*req
,
5046 const struct io_uring_sqe
*sqe
)
5051 static int io_recvmsg(struct io_kiocb
*req
, bool force_nonblock
,
5052 struct io_comp_state
*cs
)
5057 static int io_recv(struct io_kiocb
*req
, bool force_nonblock
,
5058 struct io_comp_state
*cs
)
5063 static int io_accept_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
5068 static int io_accept(struct io_kiocb
*req
, bool force_nonblock
,
5069 struct io_comp_state
*cs
)
5074 static int io_connect_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
5079 static int io_connect(struct io_kiocb
*req
, bool force_nonblock
,
5080 struct io_comp_state
*cs
)
5084 #endif /* CONFIG_NET */
5086 struct io_poll_table
{
5087 struct poll_table_struct pt
;
5088 struct io_kiocb
*req
;
5092 static int __io_async_wake(struct io_kiocb
*req
, struct io_poll_iocb
*poll
,
5093 __poll_t mask
, task_work_func_t func
)
5097 /* for instances that support it check for an event match first: */
5098 if (mask
&& !(mask
& poll
->events
))
5101 trace_io_uring_task_add(req
->ctx
, req
->opcode
, req
->user_data
, mask
);
5103 list_del_init(&poll
->wait
.entry
);
5106 init_task_work(&req
->task_work
, func
);
5107 percpu_ref_get(&req
->ctx
->refs
);
5110 * If this fails, then the task is exiting. When a task exits, the
5111 * work gets canceled, so just cancel this request as well instead
5112 * of executing it. We can't safely execute it anyway, as we may not
5113 * have the needed state needed for it anyway.
5115 ret
= io_req_task_work_add(req
);
5116 if (unlikely(ret
)) {
5117 struct task_struct
*tsk
;
5119 WRITE_ONCE(poll
->canceled
, true);
5120 tsk
= io_wq_get_task(req
->ctx
->io_wq
);
5121 task_work_add(tsk
, &req
->task_work
, TWA_NONE
);
5122 wake_up_process(tsk
);
5127 static bool io_poll_rewait(struct io_kiocb
*req
, struct io_poll_iocb
*poll
)
5128 __acquires(&req
->ctx
->completion_lock
)
5130 struct io_ring_ctx
*ctx
= req
->ctx
;
5132 if (!req
->result
&& !READ_ONCE(poll
->canceled
)) {
5133 struct poll_table_struct pt
= { ._key
= poll
->events
};
5135 req
->result
= vfs_poll(req
->file
, &pt
) & poll
->events
;
5138 spin_lock_irq(&ctx
->completion_lock
);
5139 if (!req
->result
&& !READ_ONCE(poll
->canceled
)) {
5140 add_wait_queue(poll
->head
, &poll
->wait
);
5147 static struct io_poll_iocb
*io_poll_get_double(struct io_kiocb
*req
)
5149 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5150 if (req
->opcode
== IORING_OP_POLL_ADD
)
5151 return req
->async_data
;
5152 return req
->apoll
->double_poll
;
5155 static struct io_poll_iocb
*io_poll_get_single(struct io_kiocb
*req
)
5157 if (req
->opcode
== IORING_OP_POLL_ADD
)
5159 return &req
->apoll
->poll
;
5162 static void io_poll_remove_double(struct io_kiocb
*req
)
5164 struct io_poll_iocb
*poll
= io_poll_get_double(req
);
5166 lockdep_assert_held(&req
->ctx
->completion_lock
);
5168 if (poll
&& poll
->head
) {
5169 struct wait_queue_head
*head
= poll
->head
;
5171 spin_lock(&head
->lock
);
5172 list_del_init(&poll
->wait
.entry
);
5173 if (poll
->wait
.private)
5174 refcount_dec(&req
->refs
);
5176 spin_unlock(&head
->lock
);
5180 static void io_poll_complete(struct io_kiocb
*req
, __poll_t mask
, int error
)
5182 struct io_ring_ctx
*ctx
= req
->ctx
;
5184 io_poll_remove_double(req
);
5185 req
->poll
.done
= true;
5186 io_cqring_fill_event(req
, error
? error
: mangle_poll(mask
));
5187 io_commit_cqring(ctx
);
5190 static void io_poll_task_func(struct callback_head
*cb
)
5192 struct io_kiocb
*req
= container_of(cb
, struct io_kiocb
, task_work
);
5193 struct io_ring_ctx
*ctx
= req
->ctx
;
5194 struct io_kiocb
*nxt
;
5196 if (io_poll_rewait(req
, &req
->poll
)) {
5197 spin_unlock_irq(&ctx
->completion_lock
);
5199 hash_del(&req
->hash_node
);
5200 io_poll_complete(req
, req
->result
, 0);
5201 spin_unlock_irq(&ctx
->completion_lock
);
5203 nxt
= io_put_req_find_next(req
);
5204 io_cqring_ev_posted(ctx
);
5206 __io_req_task_submit(nxt
);
5209 percpu_ref_put(&ctx
->refs
);
5212 static int io_poll_double_wake(struct wait_queue_entry
*wait
, unsigned mode
,
5213 int sync
, void *key
)
5215 struct io_kiocb
*req
= wait
->private;
5216 struct io_poll_iocb
*poll
= io_poll_get_single(req
);
5217 __poll_t mask
= key_to_poll(key
);
5219 /* for instances that support it check for an event match first: */
5220 if (mask
&& !(mask
& poll
->events
))
5223 list_del_init(&wait
->entry
);
5225 if (poll
&& poll
->head
) {
5228 spin_lock(&poll
->head
->lock
);
5229 done
= list_empty(&poll
->wait
.entry
);
5231 list_del_init(&poll
->wait
.entry
);
5232 /* make sure double remove sees this as being gone */
5233 wait
->private = NULL
;
5234 spin_unlock(&poll
->head
->lock
);
5236 /* use wait func handler, so it matches the rq type */
5237 poll
->wait
.func(&poll
->wait
, mode
, sync
, key
);
5240 refcount_dec(&req
->refs
);
5244 static void io_init_poll_iocb(struct io_poll_iocb
*poll
, __poll_t events
,
5245 wait_queue_func_t wake_func
)
5249 poll
->canceled
= false;
5250 poll
->events
= events
;
5251 INIT_LIST_HEAD(&poll
->wait
.entry
);
5252 init_waitqueue_func_entry(&poll
->wait
, wake_func
);
5255 static void __io_queue_proc(struct io_poll_iocb
*poll
, struct io_poll_table
*pt
,
5256 struct wait_queue_head
*head
,
5257 struct io_poll_iocb
**poll_ptr
)
5259 struct io_kiocb
*req
= pt
->req
;
5262 * If poll->head is already set, it's because the file being polled
5263 * uses multiple waitqueues for poll handling (eg one for read, one
5264 * for write). Setup a separate io_poll_iocb if this happens.
5266 if (unlikely(poll
->head
)) {
5267 struct io_poll_iocb
*poll_one
= poll
;
5269 /* already have a 2nd entry, fail a third attempt */
5271 pt
->error
= -EINVAL
;
5274 poll
= kmalloc(sizeof(*poll
), GFP_ATOMIC
);
5276 pt
->error
= -ENOMEM
;
5279 io_init_poll_iocb(poll
, poll_one
->events
, io_poll_double_wake
);
5280 refcount_inc(&req
->refs
);
5281 poll
->wait
.private = req
;
5288 if (poll
->events
& EPOLLEXCLUSIVE
)
5289 add_wait_queue_exclusive(head
, &poll
->wait
);
5291 add_wait_queue(head
, &poll
->wait
);
5294 static void io_async_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
5295 struct poll_table_struct
*p
)
5297 struct io_poll_table
*pt
= container_of(p
, struct io_poll_table
, pt
);
5298 struct async_poll
*apoll
= pt
->req
->apoll
;
5300 __io_queue_proc(&apoll
->poll
, pt
, head
, &apoll
->double_poll
);
5303 static void io_async_task_func(struct callback_head
*cb
)
5305 struct io_kiocb
*req
= container_of(cb
, struct io_kiocb
, task_work
);
5306 struct async_poll
*apoll
= req
->apoll
;
5307 struct io_ring_ctx
*ctx
= req
->ctx
;
5309 trace_io_uring_task_run(req
->ctx
, req
->opcode
, req
->user_data
);
5311 if (io_poll_rewait(req
, &apoll
->poll
)) {
5312 spin_unlock_irq(&ctx
->completion_lock
);
5313 percpu_ref_put(&ctx
->refs
);
5317 /* If req is still hashed, it cannot have been canceled. Don't check. */
5318 if (hash_hashed(&req
->hash_node
))
5319 hash_del(&req
->hash_node
);
5321 io_poll_remove_double(req
);
5322 spin_unlock_irq(&ctx
->completion_lock
);
5324 if (!READ_ONCE(apoll
->poll
.canceled
))
5325 __io_req_task_submit(req
);
5327 __io_req_task_cancel(req
, -ECANCELED
);
5329 percpu_ref_put(&ctx
->refs
);
5330 kfree(apoll
->double_poll
);
5334 static int io_async_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
5337 struct io_kiocb
*req
= wait
->private;
5338 struct io_poll_iocb
*poll
= &req
->apoll
->poll
;
5340 trace_io_uring_poll_wake(req
->ctx
, req
->opcode
, req
->user_data
,
5343 return __io_async_wake(req
, poll
, key_to_poll(key
), io_async_task_func
);
5346 static void io_poll_req_insert(struct io_kiocb
*req
)
5348 struct io_ring_ctx
*ctx
= req
->ctx
;
5349 struct hlist_head
*list
;
5351 list
= &ctx
->cancel_hash
[hash_long(req
->user_data
, ctx
->cancel_hash_bits
)];
5352 hlist_add_head(&req
->hash_node
, list
);
5355 static __poll_t
__io_arm_poll_handler(struct io_kiocb
*req
,
5356 struct io_poll_iocb
*poll
,
5357 struct io_poll_table
*ipt
, __poll_t mask
,
5358 wait_queue_func_t wake_func
)
5359 __acquires(&ctx
->completion_lock
)
5361 struct io_ring_ctx
*ctx
= req
->ctx
;
5362 bool cancel
= false;
5364 INIT_HLIST_NODE(&req
->hash_node
);
5365 io_init_poll_iocb(poll
, mask
, wake_func
);
5366 poll
->file
= req
->file
;
5367 poll
->wait
.private = req
;
5369 ipt
->pt
._key
= mask
;
5371 ipt
->error
= -EINVAL
;
5373 mask
= vfs_poll(req
->file
, &ipt
->pt
) & poll
->events
;
5375 spin_lock_irq(&ctx
->completion_lock
);
5376 if (likely(poll
->head
)) {
5377 spin_lock(&poll
->head
->lock
);
5378 if (unlikely(list_empty(&poll
->wait
.entry
))) {
5384 if (mask
|| ipt
->error
)
5385 list_del_init(&poll
->wait
.entry
);
5387 WRITE_ONCE(poll
->canceled
, true);
5388 else if (!poll
->done
) /* actually waiting for an event */
5389 io_poll_req_insert(req
);
5390 spin_unlock(&poll
->head
->lock
);
5396 static bool io_arm_poll_handler(struct io_kiocb
*req
)
5398 const struct io_op_def
*def
= &io_op_defs
[req
->opcode
];
5399 struct io_ring_ctx
*ctx
= req
->ctx
;
5400 struct async_poll
*apoll
;
5401 struct io_poll_table ipt
;
5405 if (!req
->file
|| !file_can_poll(req
->file
))
5407 if (req
->flags
& REQ_F_POLLED
)
5411 else if (def
->pollout
)
5415 /* if we can't nonblock try, then no point in arming a poll handler */
5416 if (!io_file_supports_async(req
->file
, rw
))
5419 apoll
= kmalloc(sizeof(*apoll
), GFP_ATOMIC
);
5420 if (unlikely(!apoll
))
5422 apoll
->double_poll
= NULL
;
5424 req
->flags
|= REQ_F_POLLED
;
5429 mask
|= POLLIN
| POLLRDNORM
;
5431 mask
|= POLLOUT
| POLLWRNORM
;
5433 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5434 if ((req
->opcode
== IORING_OP_RECVMSG
) &&
5435 (req
->sr_msg
.msg_flags
& MSG_ERRQUEUE
))
5438 mask
|= POLLERR
| POLLPRI
;
5440 ipt
.pt
._qproc
= io_async_queue_proc
;
5442 ret
= __io_arm_poll_handler(req
, &apoll
->poll
, &ipt
, mask
,
5444 if (ret
|| ipt
.error
) {
5445 io_poll_remove_double(req
);
5446 spin_unlock_irq(&ctx
->completion_lock
);
5447 kfree(apoll
->double_poll
);
5451 spin_unlock_irq(&ctx
->completion_lock
);
5452 trace_io_uring_poll_arm(ctx
, req
->opcode
, req
->user_data
, mask
,
5453 apoll
->poll
.events
);
5457 static bool __io_poll_remove_one(struct io_kiocb
*req
,
5458 struct io_poll_iocb
*poll
)
5460 bool do_complete
= false;
5462 spin_lock(&poll
->head
->lock
);
5463 WRITE_ONCE(poll
->canceled
, true);
5464 if (!list_empty(&poll
->wait
.entry
)) {
5465 list_del_init(&poll
->wait
.entry
);
5468 spin_unlock(&poll
->head
->lock
);
5469 hash_del(&req
->hash_node
);
5473 static bool io_poll_remove_one(struct io_kiocb
*req
)
5477 io_poll_remove_double(req
);
5479 if (req
->opcode
== IORING_OP_POLL_ADD
) {
5480 do_complete
= __io_poll_remove_one(req
, &req
->poll
);
5482 struct async_poll
*apoll
= req
->apoll
;
5484 /* non-poll requests have submit ref still */
5485 do_complete
= __io_poll_remove_one(req
, &apoll
->poll
);
5488 kfree(apoll
->double_poll
);
5494 io_cqring_fill_event(req
, -ECANCELED
);
5495 io_commit_cqring(req
->ctx
);
5496 req_set_fail_links(req
);
5497 io_put_req_deferred(req
, 1);
5504 * Returns true if we found and killed one or more poll requests
5506 static bool io_poll_remove_all(struct io_ring_ctx
*ctx
, struct task_struct
*tsk
,
5507 struct files_struct
*files
)
5509 struct hlist_node
*tmp
;
5510 struct io_kiocb
*req
;
5513 spin_lock_irq(&ctx
->completion_lock
);
5514 for (i
= 0; i
< (1U << ctx
->cancel_hash_bits
); i
++) {
5515 struct hlist_head
*list
;
5517 list
= &ctx
->cancel_hash
[i
];
5518 hlist_for_each_entry_safe(req
, tmp
, list
, hash_node
) {
5519 if (io_match_task(req
, tsk
, files
))
5520 posted
+= io_poll_remove_one(req
);
5523 spin_unlock_irq(&ctx
->completion_lock
);
5526 io_cqring_ev_posted(ctx
);
5531 static int io_poll_cancel(struct io_ring_ctx
*ctx
, __u64 sqe_addr
)
5533 struct hlist_head
*list
;
5534 struct io_kiocb
*req
;
5536 list
= &ctx
->cancel_hash
[hash_long(sqe_addr
, ctx
->cancel_hash_bits
)];
5537 hlist_for_each_entry(req
, list
, hash_node
) {
5538 if (sqe_addr
!= req
->user_data
)
5540 if (io_poll_remove_one(req
))
5548 static int io_poll_remove_prep(struct io_kiocb
*req
,
5549 const struct io_uring_sqe
*sqe
)
5551 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
5553 if (sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
||
5557 req
->poll_remove
.addr
= READ_ONCE(sqe
->addr
);
5562 * Find a running poll command that matches one specified in sqe->addr,
5563 * and remove it if found.
5565 static int io_poll_remove(struct io_kiocb
*req
)
5567 struct io_ring_ctx
*ctx
= req
->ctx
;
5570 spin_lock_irq(&ctx
->completion_lock
);
5571 ret
= io_poll_cancel(ctx
, req
->poll_remove
.addr
);
5572 spin_unlock_irq(&ctx
->completion_lock
);
5575 req_set_fail_links(req
);
5576 io_req_complete(req
, ret
);
5580 static int io_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
5583 struct io_kiocb
*req
= wait
->private;
5584 struct io_poll_iocb
*poll
= &req
->poll
;
5586 return __io_async_wake(req
, poll
, key_to_poll(key
), io_poll_task_func
);
5589 static void io_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
5590 struct poll_table_struct
*p
)
5592 struct io_poll_table
*pt
= container_of(p
, struct io_poll_table
, pt
);
5594 __io_queue_proc(&pt
->req
->poll
, pt
, head
, (struct io_poll_iocb
**) &pt
->req
->async_data
);
5597 static int io_poll_add_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
5599 struct io_poll_iocb
*poll
= &req
->poll
;
5602 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
5604 if (sqe
->addr
|| sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
)
5607 events
= READ_ONCE(sqe
->poll32_events
);
5609 events
= swahw32(events
);
5611 poll
->events
= demangle_poll(events
) | EPOLLERR
| EPOLLHUP
|
5612 (events
& EPOLLEXCLUSIVE
);
5616 static int io_poll_add(struct io_kiocb
*req
)
5618 struct io_poll_iocb
*poll
= &req
->poll
;
5619 struct io_ring_ctx
*ctx
= req
->ctx
;
5620 struct io_poll_table ipt
;
5623 ipt
.pt
._qproc
= io_poll_queue_proc
;
5625 mask
= __io_arm_poll_handler(req
, &req
->poll
, &ipt
, poll
->events
,
5628 if (mask
) { /* no async, we'd stolen it */
5630 io_poll_complete(req
, mask
, 0);
5632 spin_unlock_irq(&ctx
->completion_lock
);
5635 io_cqring_ev_posted(ctx
);
5641 static enum hrtimer_restart
io_timeout_fn(struct hrtimer
*timer
)
5643 struct io_timeout_data
*data
= container_of(timer
,
5644 struct io_timeout_data
, timer
);
5645 struct io_kiocb
*req
= data
->req
;
5646 struct io_ring_ctx
*ctx
= req
->ctx
;
5647 unsigned long flags
;
5649 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
5650 list_del_init(&req
->timeout
.list
);
5651 atomic_set(&req
->ctx
->cq_timeouts
,
5652 atomic_read(&req
->ctx
->cq_timeouts
) + 1);
5654 io_cqring_fill_event(req
, -ETIME
);
5655 io_commit_cqring(ctx
);
5656 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
5658 io_cqring_ev_posted(ctx
);
5659 req_set_fail_links(req
);
5661 return HRTIMER_NORESTART
;
5664 static struct io_kiocb
*io_timeout_extract(struct io_ring_ctx
*ctx
,
5667 struct io_timeout_data
*io
;
5668 struct io_kiocb
*req
;
5671 list_for_each_entry(req
, &ctx
->timeout_list
, timeout
.list
) {
5672 if (user_data
== req
->user_data
) {
5679 return ERR_PTR(ret
);
5681 io
= req
->async_data
;
5682 ret
= hrtimer_try_to_cancel(&io
->timer
);
5684 return ERR_PTR(-EALREADY
);
5685 list_del_init(&req
->timeout
.list
);
5689 static int io_timeout_cancel(struct io_ring_ctx
*ctx
, __u64 user_data
)
5691 struct io_kiocb
*req
= io_timeout_extract(ctx
, user_data
);
5694 return PTR_ERR(req
);
5696 req_set_fail_links(req
);
5697 io_cqring_fill_event(req
, -ECANCELED
);
5698 io_put_req_deferred(req
, 1);
5702 static int io_timeout_update(struct io_ring_ctx
*ctx
, __u64 user_data
,
5703 struct timespec64
*ts
, enum hrtimer_mode mode
)
5705 struct io_kiocb
*req
= io_timeout_extract(ctx
, user_data
);
5706 struct io_timeout_data
*data
;
5709 return PTR_ERR(req
);
5711 req
->timeout
.off
= 0; /* noseq */
5712 data
= req
->async_data
;
5713 list_add_tail(&req
->timeout
.list
, &ctx
->timeout_list
);
5714 hrtimer_init(&data
->timer
, CLOCK_MONOTONIC
, mode
);
5715 data
->timer
.function
= io_timeout_fn
;
5716 hrtimer_start(&data
->timer
, timespec64_to_ktime(*ts
), mode
);
5720 static int io_timeout_remove_prep(struct io_kiocb
*req
,
5721 const struct io_uring_sqe
*sqe
)
5723 struct io_timeout_rem
*tr
= &req
->timeout_rem
;
5725 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
5727 if (unlikely(req
->flags
& (REQ_F_FIXED_FILE
| REQ_F_BUFFER_SELECT
)))
5729 if (sqe
->ioprio
|| sqe
->buf_index
|| sqe
->len
)
5732 tr
->addr
= READ_ONCE(sqe
->addr
);
5733 tr
->flags
= READ_ONCE(sqe
->timeout_flags
);
5734 if (tr
->flags
& IORING_TIMEOUT_UPDATE
) {
5735 if (tr
->flags
& ~(IORING_TIMEOUT_UPDATE
|IORING_TIMEOUT_ABS
))
5737 if (get_timespec64(&tr
->ts
, u64_to_user_ptr(sqe
->addr2
)))
5739 } else if (tr
->flags
) {
5740 /* timeout removal doesn't support flags */
5748 * Remove or update an existing timeout command
5750 static int io_timeout_remove(struct io_kiocb
*req
)
5752 struct io_timeout_rem
*tr
= &req
->timeout_rem
;
5753 struct io_ring_ctx
*ctx
= req
->ctx
;
5756 spin_lock_irq(&ctx
->completion_lock
);
5757 if (req
->timeout_rem
.flags
& IORING_TIMEOUT_UPDATE
) {
5758 enum hrtimer_mode mode
= (tr
->flags
& IORING_TIMEOUT_ABS
)
5759 ? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
5761 ret
= io_timeout_update(ctx
, tr
->addr
, &tr
->ts
, mode
);
5763 ret
= io_timeout_cancel(ctx
, tr
->addr
);
5766 io_cqring_fill_event(req
, ret
);
5767 io_commit_cqring(ctx
);
5768 spin_unlock_irq(&ctx
->completion_lock
);
5769 io_cqring_ev_posted(ctx
);
5771 req_set_fail_links(req
);
5776 static int io_timeout_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
5777 bool is_timeout_link
)
5779 struct io_timeout_data
*data
;
5781 u32 off
= READ_ONCE(sqe
->off
);
5783 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
5785 if (sqe
->ioprio
|| sqe
->buf_index
|| sqe
->len
!= 1)
5787 if (off
&& is_timeout_link
)
5789 flags
= READ_ONCE(sqe
->timeout_flags
);
5790 if (flags
& ~IORING_TIMEOUT_ABS
)
5793 req
->timeout
.off
= off
;
5795 if (!req
->async_data
&& io_alloc_async_data(req
))
5798 data
= req
->async_data
;
5801 if (get_timespec64(&data
->ts
, u64_to_user_ptr(sqe
->addr
)))
5804 if (flags
& IORING_TIMEOUT_ABS
)
5805 data
->mode
= HRTIMER_MODE_ABS
;
5807 data
->mode
= HRTIMER_MODE_REL
;
5809 hrtimer_init(&data
->timer
, CLOCK_MONOTONIC
, data
->mode
);
5813 static int io_timeout(struct io_kiocb
*req
)
5815 struct io_ring_ctx
*ctx
= req
->ctx
;
5816 struct io_timeout_data
*data
= req
->async_data
;
5817 struct list_head
*entry
;
5818 u32 tail
, off
= req
->timeout
.off
;
5820 spin_lock_irq(&ctx
->completion_lock
);
5823 * sqe->off holds how many events that need to occur for this
5824 * timeout event to be satisfied. If it isn't set, then this is
5825 * a pure timeout request, sequence isn't used.
5827 if (io_is_timeout_noseq(req
)) {
5828 entry
= ctx
->timeout_list
.prev
;
5832 tail
= ctx
->cached_cq_tail
- atomic_read(&ctx
->cq_timeouts
);
5833 req
->timeout
.target_seq
= tail
+ off
;
5836 * Insertion sort, ensuring the first entry in the list is always
5837 * the one we need first.
5839 list_for_each_prev(entry
, &ctx
->timeout_list
) {
5840 struct io_kiocb
*nxt
= list_entry(entry
, struct io_kiocb
,
5843 if (io_is_timeout_noseq(nxt
))
5845 /* nxt.seq is behind @tail, otherwise would've been completed */
5846 if (off
>= nxt
->timeout
.target_seq
- tail
)
5850 list_add(&req
->timeout
.list
, entry
);
5851 data
->timer
.function
= io_timeout_fn
;
5852 hrtimer_start(&data
->timer
, timespec64_to_ktime(data
->ts
), data
->mode
);
5853 spin_unlock_irq(&ctx
->completion_lock
);
5857 static bool io_cancel_cb(struct io_wq_work
*work
, void *data
)
5859 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
5861 return req
->user_data
== (unsigned long) data
;
5864 static int io_async_cancel_one(struct io_ring_ctx
*ctx
, void *sqe_addr
)
5866 enum io_wq_cancel cancel_ret
;
5869 cancel_ret
= io_wq_cancel_cb(ctx
->io_wq
, io_cancel_cb
, sqe_addr
, false);
5870 switch (cancel_ret
) {
5871 case IO_WQ_CANCEL_OK
:
5874 case IO_WQ_CANCEL_RUNNING
:
5877 case IO_WQ_CANCEL_NOTFOUND
:
5885 static void io_async_find_and_cancel(struct io_ring_ctx
*ctx
,
5886 struct io_kiocb
*req
, __u64 sqe_addr
,
5889 unsigned long flags
;
5892 ret
= io_async_cancel_one(ctx
, (void *) (unsigned long) sqe_addr
);
5893 if (ret
!= -ENOENT
) {
5894 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
5898 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
5899 ret
= io_timeout_cancel(ctx
, sqe_addr
);
5902 ret
= io_poll_cancel(ctx
, sqe_addr
);
5906 io_cqring_fill_event(req
, ret
);
5907 io_commit_cqring(ctx
);
5908 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
5909 io_cqring_ev_posted(ctx
);
5912 req_set_fail_links(req
);
5916 static int io_async_cancel_prep(struct io_kiocb
*req
,
5917 const struct io_uring_sqe
*sqe
)
5919 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
5921 if (unlikely(req
->flags
& (REQ_F_FIXED_FILE
| REQ_F_BUFFER_SELECT
)))
5923 if (sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->cancel_flags
)
5926 req
->cancel
.addr
= READ_ONCE(sqe
->addr
);
5930 static int io_async_cancel(struct io_kiocb
*req
)
5932 struct io_ring_ctx
*ctx
= req
->ctx
;
5934 io_async_find_and_cancel(ctx
, req
, req
->cancel
.addr
, 0);
5938 static int io_files_update_prep(struct io_kiocb
*req
,
5939 const struct io_uring_sqe
*sqe
)
5941 if (unlikely(req
->ctx
->flags
& IORING_SETUP_SQPOLL
))
5943 if (unlikely(req
->flags
& (REQ_F_FIXED_FILE
| REQ_F_BUFFER_SELECT
)))
5945 if (sqe
->ioprio
|| sqe
->rw_flags
)
5948 req
->files_update
.offset
= READ_ONCE(sqe
->off
);
5949 req
->files_update
.nr_args
= READ_ONCE(sqe
->len
);
5950 if (!req
->files_update
.nr_args
)
5952 req
->files_update
.arg
= READ_ONCE(sqe
->addr
);
5956 static int io_files_update(struct io_kiocb
*req
, bool force_nonblock
,
5957 struct io_comp_state
*cs
)
5959 struct io_ring_ctx
*ctx
= req
->ctx
;
5960 struct io_uring_files_update up
;
5966 up
.offset
= req
->files_update
.offset
;
5967 up
.fds
= req
->files_update
.arg
;
5969 mutex_lock(&ctx
->uring_lock
);
5970 ret
= __io_sqe_files_update(ctx
, &up
, req
->files_update
.nr_args
);
5971 mutex_unlock(&ctx
->uring_lock
);
5974 req_set_fail_links(req
);
5975 __io_req_complete(req
, ret
, 0, cs
);
5979 static int io_req_prep(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
5981 switch (req
->opcode
) {
5984 case IORING_OP_READV
:
5985 case IORING_OP_READ_FIXED
:
5986 case IORING_OP_READ
:
5987 return io_read_prep(req
, sqe
);
5988 case IORING_OP_WRITEV
:
5989 case IORING_OP_WRITE_FIXED
:
5990 case IORING_OP_WRITE
:
5991 return io_write_prep(req
, sqe
);
5992 case IORING_OP_POLL_ADD
:
5993 return io_poll_add_prep(req
, sqe
);
5994 case IORING_OP_POLL_REMOVE
:
5995 return io_poll_remove_prep(req
, sqe
);
5996 case IORING_OP_FSYNC
:
5997 return io_prep_fsync(req
, sqe
);
5998 case IORING_OP_SYNC_FILE_RANGE
:
5999 return io_prep_sfr(req
, sqe
);
6000 case IORING_OP_SENDMSG
:
6001 case IORING_OP_SEND
:
6002 return io_sendmsg_prep(req
, sqe
);
6003 case IORING_OP_RECVMSG
:
6004 case IORING_OP_RECV
:
6005 return io_recvmsg_prep(req
, sqe
);
6006 case IORING_OP_CONNECT
:
6007 return io_connect_prep(req
, sqe
);
6008 case IORING_OP_TIMEOUT
:
6009 return io_timeout_prep(req
, sqe
, false);
6010 case IORING_OP_TIMEOUT_REMOVE
:
6011 return io_timeout_remove_prep(req
, sqe
);
6012 case IORING_OP_ASYNC_CANCEL
:
6013 return io_async_cancel_prep(req
, sqe
);
6014 case IORING_OP_LINK_TIMEOUT
:
6015 return io_timeout_prep(req
, sqe
, true);
6016 case IORING_OP_ACCEPT
:
6017 return io_accept_prep(req
, sqe
);
6018 case IORING_OP_FALLOCATE
:
6019 return io_fallocate_prep(req
, sqe
);
6020 case IORING_OP_OPENAT
:
6021 return io_openat_prep(req
, sqe
);
6022 case IORING_OP_CLOSE
:
6023 return io_close_prep(req
, sqe
);
6024 case IORING_OP_FILES_UPDATE
:
6025 return io_files_update_prep(req
, sqe
);
6026 case IORING_OP_STATX
:
6027 return io_statx_prep(req
, sqe
);
6028 case IORING_OP_FADVISE
:
6029 return io_fadvise_prep(req
, sqe
);
6030 case IORING_OP_MADVISE
:
6031 return io_madvise_prep(req
, sqe
);
6032 case IORING_OP_OPENAT2
:
6033 return io_openat2_prep(req
, sqe
);
6034 case IORING_OP_EPOLL_CTL
:
6035 return io_epoll_ctl_prep(req
, sqe
);
6036 case IORING_OP_SPLICE
:
6037 return io_splice_prep(req
, sqe
);
6038 case IORING_OP_PROVIDE_BUFFERS
:
6039 return io_provide_buffers_prep(req
, sqe
);
6040 case IORING_OP_REMOVE_BUFFERS
:
6041 return io_remove_buffers_prep(req
, sqe
);
6043 return io_tee_prep(req
, sqe
);
6044 case IORING_OP_SHUTDOWN
:
6045 return io_shutdown_prep(req
, sqe
);
6046 case IORING_OP_RENAMEAT
:
6047 return io_renameat_prep(req
, sqe
);
6048 case IORING_OP_UNLINKAT
:
6049 return io_unlinkat_prep(req
, sqe
);
6052 printk_once(KERN_WARNING
"io_uring: unhandled opcode %d\n",
6057 static int io_req_defer_prep(struct io_kiocb
*req
,
6058 const struct io_uring_sqe
*sqe
)
6062 if (io_alloc_async_data(req
))
6064 return io_req_prep(req
, sqe
);
6067 static u32
io_get_sequence(struct io_kiocb
*req
)
6069 struct io_kiocb
*pos
;
6070 struct io_ring_ctx
*ctx
= req
->ctx
;
6071 u32 total_submitted
, nr_reqs
= 0;
6073 io_for_each_link(pos
, req
)
6076 total_submitted
= ctx
->cached_sq_head
- ctx
->cached_sq_dropped
;
6077 return total_submitted
- nr_reqs
;
6080 static int io_req_defer(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
6082 struct io_ring_ctx
*ctx
= req
->ctx
;
6083 struct io_defer_entry
*de
;
6087 /* Still need defer if there is pending req in defer list. */
6088 if (likely(list_empty_careful(&ctx
->defer_list
) &&
6089 !(req
->flags
& REQ_F_IO_DRAIN
)))
6092 seq
= io_get_sequence(req
);
6093 /* Still a chance to pass the sequence check */
6094 if (!req_need_defer(req
, seq
) && list_empty_careful(&ctx
->defer_list
))
6097 if (!req
->async_data
) {
6098 ret
= io_req_defer_prep(req
, sqe
);
6102 io_prep_async_link(req
);
6103 de
= kmalloc(sizeof(*de
), GFP_KERNEL
);
6107 spin_lock_irq(&ctx
->completion_lock
);
6108 if (!req_need_defer(req
, seq
) && list_empty(&ctx
->defer_list
)) {
6109 spin_unlock_irq(&ctx
->completion_lock
);
6111 io_queue_async_work(req
);
6112 return -EIOCBQUEUED
;
6115 trace_io_uring_defer(ctx
, req
, req
->user_data
);
6118 list_add_tail(&de
->list
, &ctx
->defer_list
);
6119 spin_unlock_irq(&ctx
->completion_lock
);
6120 return -EIOCBQUEUED
;
6123 static void io_req_drop_files(struct io_kiocb
*req
)
6125 struct io_ring_ctx
*ctx
= req
->ctx
;
6126 struct io_uring_task
*tctx
= req
->task
->io_uring
;
6127 unsigned long flags
;
6129 put_files_struct(req
->work
.identity
->files
);
6130 put_nsproxy(req
->work
.identity
->nsproxy
);
6131 spin_lock_irqsave(&ctx
->inflight_lock
, flags
);
6132 list_del(&req
->inflight_entry
);
6133 spin_unlock_irqrestore(&ctx
->inflight_lock
, flags
);
6134 req
->flags
&= ~REQ_F_INFLIGHT
;
6135 req
->work
.flags
&= ~IO_WQ_WORK_FILES
;
6136 if (atomic_read(&tctx
->in_idle
))
6137 wake_up(&tctx
->wait
);
6140 static void __io_clean_op(struct io_kiocb
*req
)
6142 if (req
->flags
& REQ_F_BUFFER_SELECTED
) {
6143 switch (req
->opcode
) {
6144 case IORING_OP_READV
:
6145 case IORING_OP_READ_FIXED
:
6146 case IORING_OP_READ
:
6147 kfree((void *)(unsigned long)req
->rw
.addr
);
6149 case IORING_OP_RECVMSG
:
6150 case IORING_OP_RECV
:
6151 kfree(req
->sr_msg
.kbuf
);
6154 req
->flags
&= ~REQ_F_BUFFER_SELECTED
;
6157 if (req
->flags
& REQ_F_NEED_CLEANUP
) {
6158 switch (req
->opcode
) {
6159 case IORING_OP_READV
:
6160 case IORING_OP_READ_FIXED
:
6161 case IORING_OP_READ
:
6162 case IORING_OP_WRITEV
:
6163 case IORING_OP_WRITE_FIXED
:
6164 case IORING_OP_WRITE
: {
6165 struct io_async_rw
*io
= req
->async_data
;
6167 kfree(io
->free_iovec
);
6170 case IORING_OP_RECVMSG
:
6171 case IORING_OP_SENDMSG
: {
6172 struct io_async_msghdr
*io
= req
->async_data
;
6173 if (io
->iov
!= io
->fast_iov
)
6177 case IORING_OP_SPLICE
:
6179 io_put_file(req
, req
->splice
.file_in
,
6180 (req
->splice
.flags
& SPLICE_F_FD_IN_FIXED
));
6182 case IORING_OP_OPENAT
:
6183 case IORING_OP_OPENAT2
:
6184 if (req
->open
.filename
)
6185 putname(req
->open
.filename
);
6187 case IORING_OP_RENAMEAT
:
6188 putname(req
->rename
.oldpath
);
6189 putname(req
->rename
.newpath
);
6191 case IORING_OP_UNLINKAT
:
6192 putname(req
->unlink
.filename
);
6195 req
->flags
&= ~REQ_F_NEED_CLEANUP
;
6198 if (req
->flags
& REQ_F_INFLIGHT
)
6199 io_req_drop_files(req
);
6202 static int io_issue_sqe(struct io_kiocb
*req
, bool force_nonblock
,
6203 struct io_comp_state
*cs
)
6205 struct io_ring_ctx
*ctx
= req
->ctx
;
6208 switch (req
->opcode
) {
6210 ret
= io_nop(req
, cs
);
6212 case IORING_OP_READV
:
6213 case IORING_OP_READ_FIXED
:
6214 case IORING_OP_READ
:
6215 ret
= io_read(req
, force_nonblock
, cs
);
6217 case IORING_OP_WRITEV
:
6218 case IORING_OP_WRITE_FIXED
:
6219 case IORING_OP_WRITE
:
6220 ret
= io_write(req
, force_nonblock
, cs
);
6222 case IORING_OP_FSYNC
:
6223 ret
= io_fsync(req
, force_nonblock
);
6225 case IORING_OP_POLL_ADD
:
6226 ret
= io_poll_add(req
);
6228 case IORING_OP_POLL_REMOVE
:
6229 ret
= io_poll_remove(req
);
6231 case IORING_OP_SYNC_FILE_RANGE
:
6232 ret
= io_sync_file_range(req
, force_nonblock
);
6234 case IORING_OP_SENDMSG
:
6235 ret
= io_sendmsg(req
, force_nonblock
, cs
);
6237 case IORING_OP_SEND
:
6238 ret
= io_send(req
, force_nonblock
, cs
);
6240 case IORING_OP_RECVMSG
:
6241 ret
= io_recvmsg(req
, force_nonblock
, cs
);
6243 case IORING_OP_RECV
:
6244 ret
= io_recv(req
, force_nonblock
, cs
);
6246 case IORING_OP_TIMEOUT
:
6247 ret
= io_timeout(req
);
6249 case IORING_OP_TIMEOUT_REMOVE
:
6250 ret
= io_timeout_remove(req
);
6252 case IORING_OP_ACCEPT
:
6253 ret
= io_accept(req
, force_nonblock
, cs
);
6255 case IORING_OP_CONNECT
:
6256 ret
= io_connect(req
, force_nonblock
, cs
);
6258 case IORING_OP_ASYNC_CANCEL
:
6259 ret
= io_async_cancel(req
);
6261 case IORING_OP_FALLOCATE
:
6262 ret
= io_fallocate(req
, force_nonblock
);
6264 case IORING_OP_OPENAT
:
6265 ret
= io_openat(req
, force_nonblock
);
6267 case IORING_OP_CLOSE
:
6268 ret
= io_close(req
, force_nonblock
, cs
);
6270 case IORING_OP_FILES_UPDATE
:
6271 ret
= io_files_update(req
, force_nonblock
, cs
);
6273 case IORING_OP_STATX
:
6274 ret
= io_statx(req
, force_nonblock
);
6276 case IORING_OP_FADVISE
:
6277 ret
= io_fadvise(req
, force_nonblock
);
6279 case IORING_OP_MADVISE
:
6280 ret
= io_madvise(req
, force_nonblock
);
6282 case IORING_OP_OPENAT2
:
6283 ret
= io_openat2(req
, force_nonblock
);
6285 case IORING_OP_EPOLL_CTL
:
6286 ret
= io_epoll_ctl(req
, force_nonblock
, cs
);
6288 case IORING_OP_SPLICE
:
6289 ret
= io_splice(req
, force_nonblock
);
6291 case IORING_OP_PROVIDE_BUFFERS
:
6292 ret
= io_provide_buffers(req
, force_nonblock
, cs
);
6294 case IORING_OP_REMOVE_BUFFERS
:
6295 ret
= io_remove_buffers(req
, force_nonblock
, cs
);
6298 ret
= io_tee(req
, force_nonblock
);
6300 case IORING_OP_SHUTDOWN
:
6301 ret
= io_shutdown(req
, force_nonblock
);
6303 case IORING_OP_RENAMEAT
:
6304 ret
= io_renameat(req
, force_nonblock
);
6306 case IORING_OP_UNLINKAT
:
6307 ret
= io_unlinkat(req
, force_nonblock
);
6317 /* If the op doesn't have a file, we're not polling for it */
6318 if ((ctx
->flags
& IORING_SETUP_IOPOLL
) && req
->file
) {
6319 const bool in_async
= io_wq_current_is_worker();
6321 /* workqueue context doesn't hold uring_lock, grab it now */
6323 mutex_lock(&ctx
->uring_lock
);
6325 io_iopoll_req_issued(req
, in_async
);
6328 mutex_unlock(&ctx
->uring_lock
);
6334 static struct io_wq_work
*io_wq_submit_work(struct io_wq_work
*work
)
6336 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
6337 struct io_kiocb
*timeout
;
6340 timeout
= io_prep_linked_timeout(req
);
6342 io_queue_linked_timeout(timeout
);
6344 /* if NO_CANCEL is set, we must still run the work */
6345 if ((work
->flags
& (IO_WQ_WORK_CANCEL
|IO_WQ_WORK_NO_CANCEL
)) ==
6346 IO_WQ_WORK_CANCEL
) {
6352 ret
= io_issue_sqe(req
, false, NULL
);
6354 * We can get EAGAIN for polled IO even though we're
6355 * forcing a sync submission from here, since we can't
6356 * wait for request slots on the block side.
6365 struct io_ring_ctx
*lock_ctx
= NULL
;
6367 if (req
->ctx
->flags
& IORING_SETUP_IOPOLL
)
6368 lock_ctx
= req
->ctx
;
6371 * io_iopoll_complete() does not hold completion_lock to
6372 * complete polled io, so here for polled io, we can not call
6373 * io_req_complete() directly, otherwise there maybe concurrent
6374 * access to cqring, defer_list, etc, which is not safe. Given
6375 * that io_iopoll_complete() is always called under uring_lock,
6376 * so here for polled io, we also get uring_lock to complete
6380 mutex_lock(&lock_ctx
->uring_lock
);
6382 req_set_fail_links(req
);
6383 io_req_complete(req
, ret
);
6386 mutex_unlock(&lock_ctx
->uring_lock
);
6389 return io_steal_work(req
);
6392 static inline struct file
*io_file_from_index(struct io_ring_ctx
*ctx
,
6395 struct fixed_file_table
*table
;
6397 table
= &ctx
->file_data
->table
[index
>> IORING_FILE_TABLE_SHIFT
];
6398 return table
->files
[index
& IORING_FILE_TABLE_MASK
];
6401 static struct file
*io_file_get(struct io_submit_state
*state
,
6402 struct io_kiocb
*req
, int fd
, bool fixed
)
6404 struct io_ring_ctx
*ctx
= req
->ctx
;
6408 if (unlikely((unsigned int)fd
>= ctx
->nr_user_files
))
6410 fd
= array_index_nospec(fd
, ctx
->nr_user_files
);
6411 file
= io_file_from_index(ctx
, fd
);
6412 io_set_resource_node(req
);
6414 trace_io_uring_file_get(ctx
, fd
);
6415 file
= __io_file_get(state
, fd
);
6421 static enum hrtimer_restart
io_link_timeout_fn(struct hrtimer
*timer
)
6423 struct io_timeout_data
*data
= container_of(timer
,
6424 struct io_timeout_data
, timer
);
6425 struct io_kiocb
*prev
, *req
= data
->req
;
6426 struct io_ring_ctx
*ctx
= req
->ctx
;
6427 unsigned long flags
;
6429 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
6430 prev
= req
->timeout
.head
;
6431 req
->timeout
.head
= NULL
;
6434 * We don't expect the list to be empty, that will only happen if we
6435 * race with the completion of the linked work.
6437 if (prev
&& refcount_inc_not_zero(&prev
->refs
))
6438 io_remove_next_linked(prev
);
6441 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
6444 req_set_fail_links(prev
);
6445 io_async_find_and_cancel(ctx
, req
, prev
->user_data
, -ETIME
);
6448 io_req_complete(req
, -ETIME
);
6450 return HRTIMER_NORESTART
;
6453 static void __io_queue_linked_timeout(struct io_kiocb
*req
)
6456 * If the back reference is NULL, then our linked request finished
6457 * before we got a chance to setup the timer
6459 if (req
->timeout
.head
) {
6460 struct io_timeout_data
*data
= req
->async_data
;
6462 data
->timer
.function
= io_link_timeout_fn
;
6463 hrtimer_start(&data
->timer
, timespec64_to_ktime(data
->ts
),
6468 static void io_queue_linked_timeout(struct io_kiocb
*req
)
6470 struct io_ring_ctx
*ctx
= req
->ctx
;
6472 spin_lock_irq(&ctx
->completion_lock
);
6473 __io_queue_linked_timeout(req
);
6474 spin_unlock_irq(&ctx
->completion_lock
);
6476 /* drop submission reference */
6480 static struct io_kiocb
*io_prep_linked_timeout(struct io_kiocb
*req
)
6482 struct io_kiocb
*nxt
= req
->link
;
6484 if (!nxt
|| (req
->flags
& REQ_F_LINK_TIMEOUT
) ||
6485 nxt
->opcode
!= IORING_OP_LINK_TIMEOUT
)
6488 nxt
->timeout
.head
= req
;
6489 nxt
->flags
|= REQ_F_LTIMEOUT_ACTIVE
;
6490 req
->flags
|= REQ_F_LINK_TIMEOUT
;
6494 static void __io_queue_sqe(struct io_kiocb
*req
, struct io_comp_state
*cs
)
6496 struct io_kiocb
*linked_timeout
;
6497 const struct cred
*old_creds
= NULL
;
6501 linked_timeout
= io_prep_linked_timeout(req
);
6503 if ((req
->flags
& REQ_F_WORK_INITIALIZED
) &&
6504 (req
->work
.flags
& IO_WQ_WORK_CREDS
) &&
6505 req
->work
.identity
->creds
!= current_cred()) {
6507 revert_creds(old_creds
);
6508 if (old_creds
== req
->work
.identity
->creds
)
6509 old_creds
= NULL
; /* restored original creds */
6511 old_creds
= override_creds(req
->work
.identity
->creds
);
6514 ret
= io_issue_sqe(req
, true, cs
);
6517 * We async punt it if the file wasn't marked NOWAIT, or if the file
6518 * doesn't support non-blocking read/write attempts
6520 if (ret
== -EAGAIN
&& !(req
->flags
& REQ_F_NOWAIT
)) {
6521 if (!io_arm_poll_handler(req
)) {
6523 * Queued up for async execution, worker will release
6524 * submit reference when the iocb is actually submitted.
6526 io_queue_async_work(req
);
6530 io_queue_linked_timeout(linked_timeout
);
6531 } else if (likely(!ret
)) {
6532 /* drop submission reference */
6533 req
= io_put_req_find_next(req
);
6535 io_queue_linked_timeout(linked_timeout
);
6538 if (!(req
->flags
& REQ_F_FORCE_ASYNC
))
6540 io_queue_async_work(req
);
6543 /* un-prep timeout, so it'll be killed as any other linked */
6544 req
->flags
&= ~REQ_F_LINK_TIMEOUT
;
6545 req_set_fail_links(req
);
6547 io_req_complete(req
, ret
);
6551 revert_creds(old_creds
);
6554 static void io_queue_sqe(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
6555 struct io_comp_state
*cs
)
6559 ret
= io_req_defer(req
, sqe
);
6561 if (ret
!= -EIOCBQUEUED
) {
6563 req_set_fail_links(req
);
6565 io_req_complete(req
, ret
);
6567 } else if (req
->flags
& REQ_F_FORCE_ASYNC
) {
6568 if (!req
->async_data
) {
6569 ret
= io_req_defer_prep(req
, sqe
);
6573 io_queue_async_work(req
);
6576 ret
= io_req_prep(req
, sqe
);
6580 __io_queue_sqe(req
, cs
);
6584 static inline void io_queue_link_head(struct io_kiocb
*req
,
6585 struct io_comp_state
*cs
)
6587 if (unlikely(req
->flags
& REQ_F_FAIL_LINK
)) {
6589 io_req_complete(req
, -ECANCELED
);
6591 io_queue_sqe(req
, NULL
, cs
);
6594 struct io_submit_link
{
6595 struct io_kiocb
*head
;
6596 struct io_kiocb
*last
;
6599 static int io_submit_sqe(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
6600 struct io_submit_link
*link
, struct io_comp_state
*cs
)
6602 struct io_ring_ctx
*ctx
= req
->ctx
;
6606 * If we already have a head request, queue this one for async
6607 * submittal once the head completes. If we don't have a head but
6608 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6609 * submitted sync once the chain is complete. If none of those
6610 * conditions are true (normal request), then just queue it.
6613 struct io_kiocb
*head
= link
->head
;
6616 * Taking sequential execution of a link, draining both sides
6617 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6618 * requests in the link. So, it drains the head and the
6619 * next after the link request. The last one is done via
6620 * drain_next flag to persist the effect across calls.
6622 if (req
->flags
& REQ_F_IO_DRAIN
) {
6623 head
->flags
|= REQ_F_IO_DRAIN
;
6624 ctx
->drain_next
= 1;
6626 ret
= io_req_defer_prep(req
, sqe
);
6627 if (unlikely(ret
)) {
6628 /* fail even hard links since we don't submit */
6629 head
->flags
|= REQ_F_FAIL_LINK
;
6632 trace_io_uring_link(ctx
, req
, head
);
6633 link
->last
->link
= req
;
6636 /* last request of a link, enqueue the link */
6637 if (!(req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
))) {
6638 io_queue_link_head(head
, cs
);
6642 if (unlikely(ctx
->drain_next
)) {
6643 req
->flags
|= REQ_F_IO_DRAIN
;
6644 ctx
->drain_next
= 0;
6646 if (req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
)) {
6647 ret
= io_req_defer_prep(req
, sqe
);
6649 req
->flags
|= REQ_F_FAIL_LINK
;
6653 io_queue_sqe(req
, sqe
, cs
);
6661 * Batched submission is done, ensure local IO is flushed out.
6663 static void io_submit_state_end(struct io_submit_state
*state
)
6665 if (!list_empty(&state
->comp
.list
))
6666 io_submit_flush_completions(&state
->comp
);
6667 if (state
->plug_started
)
6668 blk_finish_plug(&state
->plug
);
6669 io_state_file_put(state
);
6670 if (state
->free_reqs
)
6671 kmem_cache_free_bulk(req_cachep
, state
->free_reqs
, state
->reqs
);
6675 * Start submission side cache.
6677 static void io_submit_state_start(struct io_submit_state
*state
,
6678 struct io_ring_ctx
*ctx
, unsigned int max_ios
)
6680 state
->plug_started
= false;
6682 INIT_LIST_HEAD(&state
->comp
.list
);
6683 state
->comp
.ctx
= ctx
;
6684 state
->free_reqs
= 0;
6685 state
->file_refs
= 0;
6686 state
->ios_left
= max_ios
;
6689 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
6691 struct io_rings
*rings
= ctx
->rings
;
6694 * Ensure any loads from the SQEs are done at this point,
6695 * since once we write the new head, the application could
6696 * write new data to them.
6698 smp_store_release(&rings
->sq
.head
, ctx
->cached_sq_head
);
6702 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6703 * that is mapped by userspace. This means that care needs to be taken to
6704 * ensure that reads are stable, as we cannot rely on userspace always
6705 * being a good citizen. If members of the sqe are validated and then later
6706 * used, it's important that those reads are done through READ_ONCE() to
6707 * prevent a re-load down the line.
6709 static const struct io_uring_sqe
*io_get_sqe(struct io_ring_ctx
*ctx
)
6711 u32
*sq_array
= ctx
->sq_array
;
6715 * The cached sq head (or cq tail) serves two purposes:
6717 * 1) allows us to batch the cost of updating the user visible
6719 * 2) allows the kernel side to track the head on its own, even
6720 * though the application is the one updating it.
6722 head
= READ_ONCE(sq_array
[ctx
->cached_sq_head
& ctx
->sq_mask
]);
6723 if (likely(head
< ctx
->sq_entries
))
6724 return &ctx
->sq_sqes
[head
];
6726 /* drop invalid entries */
6727 ctx
->cached_sq_dropped
++;
6728 WRITE_ONCE(ctx
->rings
->sq_dropped
, ctx
->cached_sq_dropped
);
6732 static inline void io_consume_sqe(struct io_ring_ctx
*ctx
)
6734 ctx
->cached_sq_head
++;
6738 * Check SQE restrictions (opcode and flags).
6740 * Returns 'true' if SQE is allowed, 'false' otherwise.
6742 static inline bool io_check_restriction(struct io_ring_ctx
*ctx
,
6743 struct io_kiocb
*req
,
6744 unsigned int sqe_flags
)
6746 if (!ctx
->restricted
)
6749 if (!test_bit(req
->opcode
, ctx
->restrictions
.sqe_op
))
6752 if ((sqe_flags
& ctx
->restrictions
.sqe_flags_required
) !=
6753 ctx
->restrictions
.sqe_flags_required
)
6756 if (sqe_flags
& ~(ctx
->restrictions
.sqe_flags_allowed
|
6757 ctx
->restrictions
.sqe_flags_required
))
6763 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6764 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6765 IOSQE_BUFFER_SELECT)
6767 static int io_init_req(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
6768 const struct io_uring_sqe
*sqe
,
6769 struct io_submit_state
*state
)
6771 unsigned int sqe_flags
;
6774 req
->opcode
= READ_ONCE(sqe
->opcode
);
6775 req
->user_data
= READ_ONCE(sqe
->user_data
);
6776 req
->async_data
= NULL
;
6781 req
->fixed_file_refs
= NULL
;
6782 /* one is dropped after submission, the other at completion */
6783 refcount_set(&req
->refs
, 2);
6784 req
->task
= current
;
6787 if (unlikely(req
->opcode
>= IORING_OP_LAST
))
6790 if (unlikely(io_sq_thread_acquire_mm_files(ctx
, req
)))
6793 sqe_flags
= READ_ONCE(sqe
->flags
);
6794 /* enforce forwards compatibility on users */
6795 if (unlikely(sqe_flags
& ~SQE_VALID_FLAGS
))
6798 if (unlikely(!io_check_restriction(ctx
, req
, sqe_flags
)))
6801 if ((sqe_flags
& IOSQE_BUFFER_SELECT
) &&
6802 !io_op_defs
[req
->opcode
].buffer_select
)
6805 id
= READ_ONCE(sqe
->personality
);
6807 struct io_identity
*iod
;
6809 iod
= idr_find(&ctx
->personality_idr
, id
);
6812 refcount_inc(&iod
->count
);
6814 __io_req_init_async(req
);
6815 get_cred(iod
->creds
);
6816 req
->work
.identity
= iod
;
6817 req
->work
.flags
|= IO_WQ_WORK_CREDS
;
6820 /* same numerical values with corresponding REQ_F_*, safe to copy */
6821 req
->flags
|= sqe_flags
;
6824 * Plug now if we have more than 1 IO left after this, and the target
6825 * is potentially a read/write to block based storage.
6827 if (!state
->plug_started
&& state
->ios_left
> 1 &&
6828 io_op_defs
[req
->opcode
].plug
) {
6829 blk_start_plug(&state
->plug
);
6830 state
->plug_started
= true;
6834 if (io_op_defs
[req
->opcode
].needs_file
) {
6835 bool fixed
= req
->flags
& REQ_F_FIXED_FILE
;
6837 req
->file
= io_file_get(state
, req
, READ_ONCE(sqe
->fd
), fixed
);
6838 if (unlikely(!req
->file
&&
6839 !io_op_defs
[req
->opcode
].needs_file_no_error
))
6847 static int io_submit_sqes(struct io_ring_ctx
*ctx
, unsigned int nr
)
6849 struct io_submit_state state
;
6850 struct io_submit_link link
;
6851 int i
, submitted
= 0;
6853 /* if we have a backlog and couldn't flush it all, return BUSY */
6854 if (test_bit(0, &ctx
->sq_check_overflow
)) {
6855 if (!__io_cqring_overflow_flush(ctx
, false, NULL
, NULL
))
6859 /* make sure SQ entry isn't read before tail */
6860 nr
= min3(nr
, ctx
->sq_entries
, io_sqring_entries(ctx
));
6862 if (!percpu_ref_tryget_many(&ctx
->refs
, nr
))
6865 percpu_counter_add(¤t
->io_uring
->inflight
, nr
);
6866 refcount_add(nr
, ¤t
->usage
);
6868 io_submit_state_start(&state
, ctx
, nr
);
6871 for (i
= 0; i
< nr
; i
++) {
6872 const struct io_uring_sqe
*sqe
;
6873 struct io_kiocb
*req
;
6876 sqe
= io_get_sqe(ctx
);
6877 if (unlikely(!sqe
)) {
6878 io_consume_sqe(ctx
);
6881 req
= io_alloc_req(ctx
, &state
);
6882 if (unlikely(!req
)) {
6884 submitted
= -EAGAIN
;
6887 io_consume_sqe(ctx
);
6888 /* will complete beyond this point, count as submitted */
6891 err
= io_init_req(ctx
, req
, sqe
, &state
);
6892 if (unlikely(err
)) {
6895 io_req_complete(req
, err
);
6899 trace_io_uring_submit_sqe(ctx
, req
->opcode
, req
->user_data
,
6900 true, io_async_submit(ctx
));
6901 err
= io_submit_sqe(req
, sqe
, &link
, &state
.comp
);
6906 if (unlikely(submitted
!= nr
)) {
6907 int ref_used
= (submitted
== -EAGAIN
) ? 0 : submitted
;
6908 struct io_uring_task
*tctx
= current
->io_uring
;
6909 int unused
= nr
- ref_used
;
6911 percpu_ref_put_many(&ctx
->refs
, unused
);
6912 percpu_counter_sub(&tctx
->inflight
, unused
);
6913 put_task_struct_many(current
, unused
);
6916 io_queue_link_head(link
.head
, &state
.comp
);
6917 io_submit_state_end(&state
);
6919 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6920 io_commit_sqring(ctx
);
6925 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx
*ctx
)
6927 /* Tell userspace we may need a wakeup call */
6928 spin_lock_irq(&ctx
->completion_lock
);
6929 ctx
->rings
->sq_flags
|= IORING_SQ_NEED_WAKEUP
;
6930 spin_unlock_irq(&ctx
->completion_lock
);
6933 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx
*ctx
)
6935 spin_lock_irq(&ctx
->completion_lock
);
6936 ctx
->rings
->sq_flags
&= ~IORING_SQ_NEED_WAKEUP
;
6937 spin_unlock_irq(&ctx
->completion_lock
);
6940 static int __io_sq_thread(struct io_ring_ctx
*ctx
, bool cap_entries
)
6942 unsigned int to_submit
;
6945 to_submit
= io_sqring_entries(ctx
);
6946 /* if we're handling multiple rings, cap submit size for fairness */
6947 if (cap_entries
&& to_submit
> 8)
6950 if (!list_empty(&ctx
->iopoll_list
) || to_submit
) {
6951 unsigned nr_events
= 0;
6953 mutex_lock(&ctx
->uring_lock
);
6954 if (!list_empty(&ctx
->iopoll_list
))
6955 io_do_iopoll(ctx
, &nr_events
, 0);
6957 if (to_submit
&& !ctx
->sqo_dead
&&
6958 likely(!percpu_ref_is_dying(&ctx
->refs
)))
6959 ret
= io_submit_sqes(ctx
, to_submit
);
6960 mutex_unlock(&ctx
->uring_lock
);
6963 if (!io_sqring_full(ctx
) && wq_has_sleeper(&ctx
->sqo_sq_wait
))
6964 wake_up(&ctx
->sqo_sq_wait
);
6969 static void io_sqd_update_thread_idle(struct io_sq_data
*sqd
)
6971 struct io_ring_ctx
*ctx
;
6972 unsigned sq_thread_idle
= 0;
6974 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
) {
6975 if (sq_thread_idle
< ctx
->sq_thread_idle
)
6976 sq_thread_idle
= ctx
->sq_thread_idle
;
6979 sqd
->sq_thread_idle
= sq_thread_idle
;
6982 static void io_sqd_init_new(struct io_sq_data
*sqd
)
6984 struct io_ring_ctx
*ctx
;
6986 while (!list_empty(&sqd
->ctx_new_list
)) {
6987 ctx
= list_first_entry(&sqd
->ctx_new_list
, struct io_ring_ctx
, sqd_list
);
6988 list_move_tail(&ctx
->sqd_list
, &sqd
->ctx_list
);
6989 complete(&ctx
->sq_thread_comp
);
6992 io_sqd_update_thread_idle(sqd
);
6995 static int io_sq_thread(void *data
)
6997 struct cgroup_subsys_state
*cur_css
= NULL
;
6998 struct files_struct
*old_files
= current
->files
;
6999 struct nsproxy
*old_nsproxy
= current
->nsproxy
;
7000 const struct cred
*old_cred
= NULL
;
7001 struct io_sq_data
*sqd
= data
;
7002 struct io_ring_ctx
*ctx
;
7003 unsigned long timeout
= 0;
7007 current
->files
= NULL
;
7008 current
->nsproxy
= NULL
;
7009 task_unlock(current
);
7011 while (!kthread_should_stop()) {
7013 bool cap_entries
, sqt_spin
, needs_sched
;
7016 * Any changes to the sqd lists are synchronized through the
7017 * kthread parking. This synchronizes the thread vs users,
7018 * the users are synchronized on the sqd->ctx_lock.
7020 if (kthread_should_park()) {
7023 * When sq thread is unparked, in case the previous park operation
7024 * comes from io_put_sq_data(), which means that sq thread is going
7025 * to be stopped, so here needs to have a check.
7027 if (kthread_should_stop())
7031 if (unlikely(!list_empty(&sqd
->ctx_new_list
))) {
7032 io_sqd_init_new(sqd
);
7033 timeout
= jiffies
+ sqd
->sq_thread_idle
;
7037 cap_entries
= !list_is_singular(&sqd
->ctx_list
);
7038 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
) {
7039 if (current
->cred
!= ctx
->creds
) {
7041 revert_creds(old_cred
);
7042 old_cred
= override_creds(ctx
->creds
);
7044 io_sq_thread_associate_blkcg(ctx
, &cur_css
);
7046 current
->loginuid
= ctx
->loginuid
;
7047 current
->sessionid
= ctx
->sessionid
;
7050 ret
= __io_sq_thread(ctx
, cap_entries
);
7051 if (!sqt_spin
&& (ret
> 0 || !list_empty(&ctx
->iopoll_list
)))
7054 io_sq_thread_drop_mm_files();
7057 if (sqt_spin
|| !time_after(jiffies
, timeout
)) {
7061 timeout
= jiffies
+ sqd
->sq_thread_idle
;
7065 if (kthread_should_park())
7069 prepare_to_wait(&sqd
->wait
, &wait
, TASK_INTERRUPTIBLE
);
7070 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
) {
7071 if ((ctx
->flags
& IORING_SETUP_IOPOLL
) &&
7072 !list_empty_careful(&ctx
->iopoll_list
)) {
7073 needs_sched
= false;
7076 if (io_sqring_entries(ctx
)) {
7077 needs_sched
= false;
7083 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
)
7084 io_ring_set_wakeup_flag(ctx
);
7087 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
)
7088 io_ring_clear_wakeup_flag(ctx
);
7091 finish_wait(&sqd
->wait
, &wait
);
7092 timeout
= jiffies
+ sqd
->sq_thread_idle
;
7098 io_sq_thread_unassociate_blkcg();
7100 revert_creds(old_cred
);
7103 current
->files
= old_files
;
7104 current
->nsproxy
= old_nsproxy
;
7105 task_unlock(current
);
7112 struct io_wait_queue
{
7113 struct wait_queue_entry wq
;
7114 struct io_ring_ctx
*ctx
;
7116 unsigned nr_timeouts
;
7119 static inline bool io_should_wake(struct io_wait_queue
*iowq
)
7121 struct io_ring_ctx
*ctx
= iowq
->ctx
;
7124 * Wake up if we have enough events, or if a timeout occurred since we
7125 * started waiting. For timeouts, we always want to return to userspace,
7126 * regardless of event count.
7128 return io_cqring_events(ctx
) >= iowq
->to_wait
||
7129 atomic_read(&ctx
->cq_timeouts
) != iowq
->nr_timeouts
;
7132 static int io_wake_function(struct wait_queue_entry
*curr
, unsigned int mode
,
7133 int wake_flags
, void *key
)
7135 struct io_wait_queue
*iowq
= container_of(curr
, struct io_wait_queue
,
7139 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7140 * the task, and the next invocation will do it.
7142 if (io_should_wake(iowq
) || test_bit(0, &iowq
->ctx
->cq_check_overflow
))
7143 return autoremove_wake_function(curr
, mode
, wake_flags
, key
);
7147 static int io_run_task_work_sig(void)
7149 if (io_run_task_work())
7151 if (!signal_pending(current
))
7153 if (test_tsk_thread_flag(current
, TIF_NOTIFY_SIGNAL
))
7154 return -ERESTARTSYS
;
7159 * Wait until events become available, if we don't already have some. The
7160 * application must reap them itself, as they reside on the shared cq ring.
7162 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
,
7163 const sigset_t __user
*sig
, size_t sigsz
,
7164 struct __kernel_timespec __user
*uts
)
7166 struct io_wait_queue iowq
= {
7169 .func
= io_wake_function
,
7170 .entry
= LIST_HEAD_INIT(iowq
.wq
.entry
),
7173 .to_wait
= min_events
,
7175 struct io_rings
*rings
= ctx
->rings
;
7176 struct timespec64 ts
;
7177 signed long timeout
= 0;
7181 io_cqring_overflow_flush(ctx
, false, NULL
, NULL
);
7182 if (io_cqring_events(ctx
) >= min_events
)
7184 if (!io_run_task_work())
7189 #ifdef CONFIG_COMPAT
7190 if (in_compat_syscall())
7191 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)sig
,
7195 ret
= set_user_sigmask(sig
, sigsz
);
7202 if (get_timespec64(&ts
, uts
))
7204 timeout
= timespec64_to_jiffies(&ts
);
7207 iowq
.nr_timeouts
= atomic_read(&ctx
->cq_timeouts
);
7208 trace_io_uring_cqring_wait(ctx
, min_events
);
7210 io_cqring_overflow_flush(ctx
, false, NULL
, NULL
);
7211 prepare_to_wait_exclusive(&ctx
->wait
, &iowq
.wq
,
7212 TASK_INTERRUPTIBLE
);
7213 /* make sure we run task_work before checking for signals */
7214 ret
= io_run_task_work_sig();
7219 if (io_should_wake(&iowq
))
7221 if (test_bit(0, &ctx
->cq_check_overflow
))
7224 timeout
= schedule_timeout(timeout
);
7233 finish_wait(&ctx
->wait
, &iowq
.wq
);
7235 restore_saved_sigmask_unless(ret
== -EINTR
);
7237 return READ_ONCE(rings
->cq
.head
) == READ_ONCE(rings
->cq
.tail
) ? ret
: 0;
7240 static void __io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
7242 #if defined(CONFIG_UNIX)
7243 if (ctx
->ring_sock
) {
7244 struct sock
*sock
= ctx
->ring_sock
->sk
;
7245 struct sk_buff
*skb
;
7247 while ((skb
= skb_dequeue(&sock
->sk_receive_queue
)) != NULL
)
7253 for (i
= 0; i
< ctx
->nr_user_files
; i
++) {
7256 file
= io_file_from_index(ctx
, i
);
7263 static void io_file_ref_kill(struct percpu_ref
*ref
)
7265 struct fixed_file_data
*data
;
7267 data
= container_of(ref
, struct fixed_file_data
, refs
);
7268 complete(&data
->done
);
7271 static void io_sqe_files_set_node(struct fixed_file_data
*file_data
,
7272 struct fixed_file_ref_node
*ref_node
)
7274 spin_lock_bh(&file_data
->lock
);
7275 file_data
->node
= ref_node
;
7276 list_add_tail(&ref_node
->node
, &file_data
->ref_list
);
7277 spin_unlock_bh(&file_data
->lock
);
7278 percpu_ref_get(&file_data
->refs
);
7281 static int io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
7283 struct fixed_file_data
*data
= ctx
->file_data
;
7284 struct fixed_file_ref_node
*backup_node
, *ref_node
= NULL
;
7285 unsigned nr_tables
, i
;
7290 backup_node
= alloc_fixed_file_ref_node(ctx
);
7294 spin_lock_bh(&data
->lock
);
7295 ref_node
= data
->node
;
7296 spin_unlock_bh(&data
->lock
);
7298 percpu_ref_kill(&ref_node
->refs
);
7300 percpu_ref_kill(&data
->refs
);
7302 /* wait for all refs nodes to complete */
7303 flush_delayed_work(&ctx
->file_put_work
);
7305 ret
= wait_for_completion_interruptible(&data
->done
);
7308 ret
= io_run_task_work_sig();
7310 percpu_ref_resurrect(&data
->refs
);
7311 reinit_completion(&data
->done
);
7312 io_sqe_files_set_node(data
, backup_node
);
7317 __io_sqe_files_unregister(ctx
);
7318 nr_tables
= DIV_ROUND_UP(ctx
->nr_user_files
, IORING_MAX_FILES_TABLE
);
7319 for (i
= 0; i
< nr_tables
; i
++)
7320 kfree(data
->table
[i
].files
);
7322 percpu_ref_exit(&data
->refs
);
7324 ctx
->file_data
= NULL
;
7325 ctx
->nr_user_files
= 0;
7326 destroy_fixed_file_ref_node(backup_node
);
7330 static void io_put_sq_data(struct io_sq_data
*sqd
)
7332 if (refcount_dec_and_test(&sqd
->refs
)) {
7334 * The park is a bit of a work-around, without it we get
7335 * warning spews on shutdown with SQPOLL set and affinity
7336 * set to a single CPU.
7339 kthread_park(sqd
->thread
);
7340 kthread_stop(sqd
->thread
);
7347 static struct io_sq_data
*io_attach_sq_data(struct io_uring_params
*p
)
7349 struct io_ring_ctx
*ctx_attach
;
7350 struct io_sq_data
*sqd
;
7353 f
= fdget(p
->wq_fd
);
7355 return ERR_PTR(-ENXIO
);
7356 if (f
.file
->f_op
!= &io_uring_fops
) {
7358 return ERR_PTR(-EINVAL
);
7361 ctx_attach
= f
.file
->private_data
;
7362 sqd
= ctx_attach
->sq_data
;
7365 return ERR_PTR(-EINVAL
);
7368 refcount_inc(&sqd
->refs
);
7373 static struct io_sq_data
*io_get_sq_data(struct io_uring_params
*p
)
7375 struct io_sq_data
*sqd
;
7377 if (p
->flags
& IORING_SETUP_ATTACH_WQ
)
7378 return io_attach_sq_data(p
);
7380 sqd
= kzalloc(sizeof(*sqd
), GFP_KERNEL
);
7382 return ERR_PTR(-ENOMEM
);
7384 refcount_set(&sqd
->refs
, 1);
7385 INIT_LIST_HEAD(&sqd
->ctx_list
);
7386 INIT_LIST_HEAD(&sqd
->ctx_new_list
);
7387 mutex_init(&sqd
->ctx_lock
);
7388 mutex_init(&sqd
->lock
);
7389 init_waitqueue_head(&sqd
->wait
);
7393 static void io_sq_thread_unpark(struct io_sq_data
*sqd
)
7394 __releases(&sqd
->lock
)
7398 kthread_unpark(sqd
->thread
);
7399 mutex_unlock(&sqd
->lock
);
7402 static void io_sq_thread_park(struct io_sq_data
*sqd
)
7403 __acquires(&sqd
->lock
)
7407 mutex_lock(&sqd
->lock
);
7408 kthread_park(sqd
->thread
);
7411 static void io_sq_thread_stop(struct io_ring_ctx
*ctx
)
7413 struct io_sq_data
*sqd
= ctx
->sq_data
;
7418 * We may arrive here from the error branch in
7419 * io_sq_offload_create() where the kthread is created
7420 * without being waked up, thus wake it up now to make
7421 * sure the wait will complete.
7423 wake_up_process(sqd
->thread
);
7424 wait_for_completion(&ctx
->sq_thread_comp
);
7426 io_sq_thread_park(sqd
);
7429 mutex_lock(&sqd
->ctx_lock
);
7430 list_del(&ctx
->sqd_list
);
7431 io_sqd_update_thread_idle(sqd
);
7432 mutex_unlock(&sqd
->ctx_lock
);
7435 io_sq_thread_unpark(sqd
);
7437 io_put_sq_data(sqd
);
7438 ctx
->sq_data
= NULL
;
7442 static void io_finish_async(struct io_ring_ctx
*ctx
)
7444 io_sq_thread_stop(ctx
);
7447 io_wq_destroy(ctx
->io_wq
);
7452 #if defined(CONFIG_UNIX)
7454 * Ensure the UNIX gc is aware of our file set, so we are certain that
7455 * the io_uring can be safely unregistered on process exit, even if we have
7456 * loops in the file referencing.
7458 static int __io_sqe_files_scm(struct io_ring_ctx
*ctx
, int nr
, int offset
)
7460 struct sock
*sk
= ctx
->ring_sock
->sk
;
7461 struct scm_fp_list
*fpl
;
7462 struct sk_buff
*skb
;
7465 fpl
= kzalloc(sizeof(*fpl
), GFP_KERNEL
);
7469 skb
= alloc_skb(0, GFP_KERNEL
);
7478 fpl
->user
= get_uid(ctx
->user
);
7479 for (i
= 0; i
< nr
; i
++) {
7480 struct file
*file
= io_file_from_index(ctx
, i
+ offset
);
7484 fpl
->fp
[nr_files
] = get_file(file
);
7485 unix_inflight(fpl
->user
, fpl
->fp
[nr_files
]);
7490 fpl
->max
= SCM_MAX_FD
;
7491 fpl
->count
= nr_files
;
7492 UNIXCB(skb
).fp
= fpl
;
7493 skb
->destructor
= unix_destruct_scm
;
7494 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
7495 skb_queue_head(&sk
->sk_receive_queue
, skb
);
7497 for (i
= 0; i
< nr_files
; i
++)
7508 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7509 * causes regular reference counting to break down. We rely on the UNIX
7510 * garbage collection to take care of this problem for us.
7512 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
7514 unsigned left
, total
;
7518 left
= ctx
->nr_user_files
;
7520 unsigned this_files
= min_t(unsigned, left
, SCM_MAX_FD
);
7522 ret
= __io_sqe_files_scm(ctx
, this_files
, total
);
7526 total
+= this_files
;
7532 while (total
< ctx
->nr_user_files
) {
7533 struct file
*file
= io_file_from_index(ctx
, total
);
7543 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
7549 static int io_sqe_alloc_file_tables(struct fixed_file_data
*file_data
,
7550 unsigned nr_tables
, unsigned nr_files
)
7554 for (i
= 0; i
< nr_tables
; i
++) {
7555 struct fixed_file_table
*table
= &file_data
->table
[i
];
7556 unsigned this_files
;
7558 this_files
= min(nr_files
, IORING_MAX_FILES_TABLE
);
7559 table
->files
= kcalloc(this_files
, sizeof(struct file
*),
7563 nr_files
-= this_files
;
7569 for (i
= 0; i
< nr_tables
; i
++) {
7570 struct fixed_file_table
*table
= &file_data
->table
[i
];
7571 kfree(table
->files
);
7576 static void io_ring_file_put(struct io_ring_ctx
*ctx
, struct file
*file
)
7578 #if defined(CONFIG_UNIX)
7579 struct sock
*sock
= ctx
->ring_sock
->sk
;
7580 struct sk_buff_head list
, *head
= &sock
->sk_receive_queue
;
7581 struct sk_buff
*skb
;
7584 __skb_queue_head_init(&list
);
7587 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7588 * remove this entry and rearrange the file array.
7590 skb
= skb_dequeue(head
);
7592 struct scm_fp_list
*fp
;
7594 fp
= UNIXCB(skb
).fp
;
7595 for (i
= 0; i
< fp
->count
; i
++) {
7598 if (fp
->fp
[i
] != file
)
7601 unix_notinflight(fp
->user
, fp
->fp
[i
]);
7602 left
= fp
->count
- 1 - i
;
7604 memmove(&fp
->fp
[i
], &fp
->fp
[i
+ 1],
7605 left
* sizeof(struct file
*));
7612 __skb_queue_tail(&list
, skb
);
7622 __skb_queue_tail(&list
, skb
);
7624 skb
= skb_dequeue(head
);
7627 if (skb_peek(&list
)) {
7628 spin_lock_irq(&head
->lock
);
7629 while ((skb
= __skb_dequeue(&list
)) != NULL
)
7630 __skb_queue_tail(head
, skb
);
7631 spin_unlock_irq(&head
->lock
);
7638 struct io_file_put
{
7639 struct list_head list
;
7643 static void __io_file_put_work(struct fixed_file_ref_node
*ref_node
)
7645 struct fixed_file_data
*file_data
= ref_node
->file_data
;
7646 struct io_ring_ctx
*ctx
= file_data
->ctx
;
7647 struct io_file_put
*pfile
, *tmp
;
7649 list_for_each_entry_safe(pfile
, tmp
, &ref_node
->file_list
, list
) {
7650 list_del(&pfile
->list
);
7651 io_ring_file_put(ctx
, pfile
->file
);
7655 percpu_ref_exit(&ref_node
->refs
);
7657 percpu_ref_put(&file_data
->refs
);
7660 static void io_file_put_work(struct work_struct
*work
)
7662 struct io_ring_ctx
*ctx
;
7663 struct llist_node
*node
;
7665 ctx
= container_of(work
, struct io_ring_ctx
, file_put_work
.work
);
7666 node
= llist_del_all(&ctx
->file_put_llist
);
7669 struct fixed_file_ref_node
*ref_node
;
7670 struct llist_node
*next
= node
->next
;
7672 ref_node
= llist_entry(node
, struct fixed_file_ref_node
, llist
);
7673 __io_file_put_work(ref_node
);
7678 static void io_file_data_ref_zero(struct percpu_ref
*ref
)
7680 struct fixed_file_ref_node
*ref_node
;
7681 struct fixed_file_data
*data
;
7682 struct io_ring_ctx
*ctx
;
7683 bool first_add
= false;
7686 ref_node
= container_of(ref
, struct fixed_file_ref_node
, refs
);
7687 data
= ref_node
->file_data
;
7690 spin_lock_bh(&data
->lock
);
7691 ref_node
->done
= true;
7693 while (!list_empty(&data
->ref_list
)) {
7694 ref_node
= list_first_entry(&data
->ref_list
,
7695 struct fixed_file_ref_node
, node
);
7696 /* recycle ref nodes in order */
7697 if (!ref_node
->done
)
7699 list_del(&ref_node
->node
);
7700 first_add
|= llist_add(&ref_node
->llist
, &ctx
->file_put_llist
);
7702 spin_unlock_bh(&data
->lock
);
7704 if (percpu_ref_is_dying(&data
->refs
))
7708 mod_delayed_work(system_wq
, &ctx
->file_put_work
, 0);
7710 queue_delayed_work(system_wq
, &ctx
->file_put_work
, delay
);
7713 static struct fixed_file_ref_node
*alloc_fixed_file_ref_node(
7714 struct io_ring_ctx
*ctx
)
7716 struct fixed_file_ref_node
*ref_node
;
7718 ref_node
= kzalloc(sizeof(*ref_node
), GFP_KERNEL
);
7722 if (percpu_ref_init(&ref_node
->refs
, io_file_data_ref_zero
,
7727 INIT_LIST_HEAD(&ref_node
->node
);
7728 INIT_LIST_HEAD(&ref_node
->file_list
);
7729 ref_node
->file_data
= ctx
->file_data
;
7730 ref_node
->done
= false;
7734 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node
*ref_node
)
7736 percpu_ref_exit(&ref_node
->refs
);
7740 static int io_sqe_files_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
7743 __s32 __user
*fds
= (__s32 __user
*) arg
;
7744 unsigned nr_tables
, i
;
7746 int fd
, ret
= -ENOMEM
;
7747 struct fixed_file_ref_node
*ref_node
;
7748 struct fixed_file_data
*file_data
;
7754 if (nr_args
> IORING_MAX_FIXED_FILES
)
7757 file_data
= kzalloc(sizeof(*ctx
->file_data
), GFP_KERNEL
);
7760 file_data
->ctx
= ctx
;
7761 init_completion(&file_data
->done
);
7762 INIT_LIST_HEAD(&file_data
->ref_list
);
7763 spin_lock_init(&file_data
->lock
);
7765 nr_tables
= DIV_ROUND_UP(nr_args
, IORING_MAX_FILES_TABLE
);
7766 file_data
->table
= kcalloc(nr_tables
, sizeof(*file_data
->table
),
7768 if (!file_data
->table
)
7771 if (percpu_ref_init(&file_data
->refs
, io_file_ref_kill
,
7772 PERCPU_REF_ALLOW_REINIT
, GFP_KERNEL
))
7775 if (io_sqe_alloc_file_tables(file_data
, nr_tables
, nr_args
))
7777 ctx
->file_data
= file_data
;
7779 for (i
= 0; i
< nr_args
; i
++, ctx
->nr_user_files
++) {
7780 struct fixed_file_table
*table
;
7783 if (copy_from_user(&fd
, &fds
[i
], sizeof(fd
))) {
7787 /* allow sparse sets */
7797 * Don't allow io_uring instances to be registered. If UNIX
7798 * isn't enabled, then this causes a reference cycle and this
7799 * instance can never get freed. If UNIX is enabled we'll
7800 * handle it just fine, but there's still no point in allowing
7801 * a ring fd as it doesn't support regular read/write anyway.
7803 if (file
->f_op
== &io_uring_fops
) {
7807 table
= &file_data
->table
[i
>> IORING_FILE_TABLE_SHIFT
];
7808 index
= i
& IORING_FILE_TABLE_MASK
;
7809 table
->files
[index
] = file
;
7812 ret
= io_sqe_files_scm(ctx
);
7814 io_sqe_files_unregister(ctx
);
7818 ref_node
= alloc_fixed_file_ref_node(ctx
);
7820 io_sqe_files_unregister(ctx
);
7824 io_sqe_files_set_node(file_data
, ref_node
);
7827 for (i
= 0; i
< ctx
->nr_user_files
; i
++) {
7828 file
= io_file_from_index(ctx
, i
);
7832 for (i
= 0; i
< nr_tables
; i
++)
7833 kfree(file_data
->table
[i
].files
);
7834 ctx
->nr_user_files
= 0;
7836 percpu_ref_exit(&file_data
->refs
);
7838 kfree(file_data
->table
);
7840 ctx
->file_data
= NULL
;
7844 static int io_sqe_file_register(struct io_ring_ctx
*ctx
, struct file
*file
,
7847 #if defined(CONFIG_UNIX)
7848 struct sock
*sock
= ctx
->ring_sock
->sk
;
7849 struct sk_buff_head
*head
= &sock
->sk_receive_queue
;
7850 struct sk_buff
*skb
;
7853 * See if we can merge this file into an existing skb SCM_RIGHTS
7854 * file set. If there's no room, fall back to allocating a new skb
7855 * and filling it in.
7857 spin_lock_irq(&head
->lock
);
7858 skb
= skb_peek(head
);
7860 struct scm_fp_list
*fpl
= UNIXCB(skb
).fp
;
7862 if (fpl
->count
< SCM_MAX_FD
) {
7863 __skb_unlink(skb
, head
);
7864 spin_unlock_irq(&head
->lock
);
7865 fpl
->fp
[fpl
->count
] = get_file(file
);
7866 unix_inflight(fpl
->user
, fpl
->fp
[fpl
->count
]);
7868 spin_lock_irq(&head
->lock
);
7869 __skb_queue_head(head
, skb
);
7874 spin_unlock_irq(&head
->lock
);
7881 return __io_sqe_files_scm(ctx
, 1, index
);
7887 static int io_queue_file_removal(struct fixed_file_data
*data
,
7890 struct io_file_put
*pfile
;
7891 struct fixed_file_ref_node
*ref_node
= data
->node
;
7893 pfile
= kzalloc(sizeof(*pfile
), GFP_KERNEL
);
7898 list_add(&pfile
->list
, &ref_node
->file_list
);
7903 static int __io_sqe_files_update(struct io_ring_ctx
*ctx
,
7904 struct io_uring_files_update
*up
,
7907 struct fixed_file_data
*data
= ctx
->file_data
;
7908 struct fixed_file_ref_node
*ref_node
;
7913 bool needs_switch
= false;
7915 if (check_add_overflow(up
->offset
, nr_args
, &done
))
7917 if (done
> ctx
->nr_user_files
)
7920 ref_node
= alloc_fixed_file_ref_node(ctx
);
7925 fds
= u64_to_user_ptr(up
->fds
);
7927 struct fixed_file_table
*table
;
7931 if (copy_from_user(&fd
, &fds
[done
], sizeof(fd
))) {
7935 i
= array_index_nospec(up
->offset
, ctx
->nr_user_files
);
7936 table
= &ctx
->file_data
->table
[i
>> IORING_FILE_TABLE_SHIFT
];
7937 index
= i
& IORING_FILE_TABLE_MASK
;
7938 if (table
->files
[index
]) {
7939 file
= table
->files
[index
];
7940 err
= io_queue_file_removal(data
, file
);
7943 table
->files
[index
] = NULL
;
7944 needs_switch
= true;
7953 * Don't allow io_uring instances to be registered. If
7954 * UNIX isn't enabled, then this causes a reference
7955 * cycle and this instance can never get freed. If UNIX
7956 * is enabled we'll handle it just fine, but there's
7957 * still no point in allowing a ring fd as it doesn't
7958 * support regular read/write anyway.
7960 if (file
->f_op
== &io_uring_fops
) {
7965 table
->files
[index
] = file
;
7966 err
= io_sqe_file_register(ctx
, file
, i
);
7968 table
->files
[index
] = NULL
;
7979 percpu_ref_kill(&data
->node
->refs
);
7980 io_sqe_files_set_node(data
, ref_node
);
7982 destroy_fixed_file_ref_node(ref_node
);
7984 return done
? done
: err
;
7987 static int io_sqe_files_update(struct io_ring_ctx
*ctx
, void __user
*arg
,
7990 struct io_uring_files_update up
;
7992 if (!ctx
->file_data
)
7996 if (copy_from_user(&up
, arg
, sizeof(up
)))
8001 return __io_sqe_files_update(ctx
, &up
, nr_args
);
8004 static void io_free_work(struct io_wq_work
*work
)
8006 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
8008 /* Consider that io_steal_work() relies on this ref */
8012 static int io_init_wq_offload(struct io_ring_ctx
*ctx
,
8013 struct io_uring_params
*p
)
8015 struct io_wq_data data
;
8017 struct io_ring_ctx
*ctx_attach
;
8018 unsigned int concurrency
;
8021 data
.user
= ctx
->user
;
8022 data
.free_work
= io_free_work
;
8023 data
.do_work
= io_wq_submit_work
;
8025 if (!(p
->flags
& IORING_SETUP_ATTACH_WQ
)) {
8026 /* Do QD, or 4 * CPUS, whatever is smallest */
8027 concurrency
= min(ctx
->sq_entries
, 4 * num_online_cpus());
8029 ctx
->io_wq
= io_wq_create(concurrency
, &data
);
8030 if (IS_ERR(ctx
->io_wq
)) {
8031 ret
= PTR_ERR(ctx
->io_wq
);
8037 f
= fdget(p
->wq_fd
);
8041 if (f
.file
->f_op
!= &io_uring_fops
) {
8046 ctx_attach
= f
.file
->private_data
;
8047 /* @io_wq is protected by holding the fd */
8048 if (!io_wq_get(ctx_attach
->io_wq
, &data
)) {
8053 ctx
->io_wq
= ctx_attach
->io_wq
;
8059 static int io_uring_alloc_task_context(struct task_struct
*task
)
8061 struct io_uring_task
*tctx
;
8064 tctx
= kmalloc(sizeof(*tctx
), GFP_KERNEL
);
8065 if (unlikely(!tctx
))
8068 ret
= percpu_counter_init(&tctx
->inflight
, 0, GFP_KERNEL
);
8069 if (unlikely(ret
)) {
8075 init_waitqueue_head(&tctx
->wait
);
8077 atomic_set(&tctx
->in_idle
, 0);
8078 tctx
->sqpoll
= false;
8079 io_init_identity(&tctx
->__identity
);
8080 tctx
->identity
= &tctx
->__identity
;
8081 task
->io_uring
= tctx
;
8085 void __io_uring_free(struct task_struct
*tsk
)
8087 struct io_uring_task
*tctx
= tsk
->io_uring
;
8089 WARN_ON_ONCE(!xa_empty(&tctx
->xa
));
8090 WARN_ON_ONCE(refcount_read(&tctx
->identity
->count
) != 1);
8091 if (tctx
->identity
!= &tctx
->__identity
)
8092 kfree(tctx
->identity
);
8093 percpu_counter_destroy(&tctx
->inflight
);
8095 tsk
->io_uring
= NULL
;
8098 static int io_sq_offload_create(struct io_ring_ctx
*ctx
,
8099 struct io_uring_params
*p
)
8103 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
8104 struct io_sq_data
*sqd
;
8107 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_NICE
))
8110 sqd
= io_get_sq_data(p
);
8117 io_sq_thread_park(sqd
);
8118 mutex_lock(&sqd
->ctx_lock
);
8119 list_add(&ctx
->sqd_list
, &sqd
->ctx_new_list
);
8120 mutex_unlock(&sqd
->ctx_lock
);
8121 io_sq_thread_unpark(sqd
);
8123 ctx
->sq_thread_idle
= msecs_to_jiffies(p
->sq_thread_idle
);
8124 if (!ctx
->sq_thread_idle
)
8125 ctx
->sq_thread_idle
= HZ
;
8130 if (p
->flags
& IORING_SETUP_SQ_AFF
) {
8131 int cpu
= p
->sq_thread_cpu
;
8134 if (cpu
>= nr_cpu_ids
)
8136 if (!cpu_online(cpu
))
8139 sqd
->thread
= kthread_create_on_cpu(io_sq_thread
, sqd
,
8140 cpu
, "io_uring-sq");
8142 sqd
->thread
= kthread_create(io_sq_thread
, sqd
,
8145 if (IS_ERR(sqd
->thread
)) {
8146 ret
= PTR_ERR(sqd
->thread
);
8150 ret
= io_uring_alloc_task_context(sqd
->thread
);
8153 } else if (p
->flags
& IORING_SETUP_SQ_AFF
) {
8154 /* Can't have SQ_AFF without SQPOLL */
8160 ret
= io_init_wq_offload(ctx
, p
);
8166 io_finish_async(ctx
);
8170 static void io_sq_offload_start(struct io_ring_ctx
*ctx
)
8172 struct io_sq_data
*sqd
= ctx
->sq_data
;
8174 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) && sqd
->thread
)
8175 wake_up_process(sqd
->thread
);
8178 static inline void __io_unaccount_mem(struct user_struct
*user
,
8179 unsigned long nr_pages
)
8181 atomic_long_sub(nr_pages
, &user
->locked_vm
);
8184 static inline int __io_account_mem(struct user_struct
*user
,
8185 unsigned long nr_pages
)
8187 unsigned long page_limit
, cur_pages
, new_pages
;
8189 /* Don't allow more pages than we can safely lock */
8190 page_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
8193 cur_pages
= atomic_long_read(&user
->locked_vm
);
8194 new_pages
= cur_pages
+ nr_pages
;
8195 if (new_pages
> page_limit
)
8197 } while (atomic_long_cmpxchg(&user
->locked_vm
, cur_pages
,
8198 new_pages
) != cur_pages
);
8203 static void io_unaccount_mem(struct io_ring_ctx
*ctx
, unsigned long nr_pages
,
8204 enum io_mem_account acct
)
8207 __io_unaccount_mem(ctx
->user
, nr_pages
);
8209 if (ctx
->mm_account
) {
8210 if (acct
== ACCT_LOCKED
) {
8211 mmap_write_lock(ctx
->mm_account
);
8212 ctx
->mm_account
->locked_vm
-= nr_pages
;
8213 mmap_write_unlock(ctx
->mm_account
);
8214 }else if (acct
== ACCT_PINNED
) {
8215 atomic64_sub(nr_pages
, &ctx
->mm_account
->pinned_vm
);
8220 static int io_account_mem(struct io_ring_ctx
*ctx
, unsigned long nr_pages
,
8221 enum io_mem_account acct
)
8225 if (ctx
->limit_mem
) {
8226 ret
= __io_account_mem(ctx
->user
, nr_pages
);
8231 if (ctx
->mm_account
) {
8232 if (acct
== ACCT_LOCKED
) {
8233 mmap_write_lock(ctx
->mm_account
);
8234 ctx
->mm_account
->locked_vm
+= nr_pages
;
8235 mmap_write_unlock(ctx
->mm_account
);
8236 } else if (acct
== ACCT_PINNED
) {
8237 atomic64_add(nr_pages
, &ctx
->mm_account
->pinned_vm
);
8244 static void io_mem_free(void *ptr
)
8251 page
= virt_to_head_page(ptr
);
8252 if (put_page_testzero(page
))
8253 free_compound_page(page
);
8256 static void *io_mem_alloc(size_t size
)
8258 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| __GFP_NOWARN
| __GFP_COMP
|
8261 return (void *) __get_free_pages(gfp_flags
, get_order(size
));
8264 static unsigned long rings_size(unsigned sq_entries
, unsigned cq_entries
,
8267 struct io_rings
*rings
;
8268 size_t off
, sq_array_size
;
8270 off
= struct_size(rings
, cqes
, cq_entries
);
8271 if (off
== SIZE_MAX
)
8275 off
= ALIGN(off
, SMP_CACHE_BYTES
);
8283 sq_array_size
= array_size(sizeof(u32
), sq_entries
);
8284 if (sq_array_size
== SIZE_MAX
)
8287 if (check_add_overflow(off
, sq_array_size
, &off
))
8293 static unsigned long ring_pages(unsigned sq_entries
, unsigned cq_entries
)
8297 pages
= (size_t)1 << get_order(
8298 rings_size(sq_entries
, cq_entries
, NULL
));
8299 pages
+= (size_t)1 << get_order(
8300 array_size(sizeof(struct io_uring_sqe
), sq_entries
));
8305 static int io_sqe_buffer_unregister(struct io_ring_ctx
*ctx
)
8309 if (!ctx
->user_bufs
)
8312 for (i
= 0; i
< ctx
->nr_user_bufs
; i
++) {
8313 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
8315 for (j
= 0; j
< imu
->nr_bvecs
; j
++)
8316 unpin_user_page(imu
->bvec
[j
].bv_page
);
8318 if (imu
->acct_pages
)
8319 io_unaccount_mem(ctx
, imu
->acct_pages
, ACCT_PINNED
);
8324 kfree(ctx
->user_bufs
);
8325 ctx
->user_bufs
= NULL
;
8326 ctx
->nr_user_bufs
= 0;
8330 static int io_copy_iov(struct io_ring_ctx
*ctx
, struct iovec
*dst
,
8331 void __user
*arg
, unsigned index
)
8333 struct iovec __user
*src
;
8335 #ifdef CONFIG_COMPAT
8337 struct compat_iovec __user
*ciovs
;
8338 struct compat_iovec ciov
;
8340 ciovs
= (struct compat_iovec __user
*) arg
;
8341 if (copy_from_user(&ciov
, &ciovs
[index
], sizeof(ciov
)))
8344 dst
->iov_base
= u64_to_user_ptr((u64
)ciov
.iov_base
);
8345 dst
->iov_len
= ciov
.iov_len
;
8349 src
= (struct iovec __user
*) arg
;
8350 if (copy_from_user(dst
, &src
[index
], sizeof(*dst
)))
8356 * Not super efficient, but this is just a registration time. And we do cache
8357 * the last compound head, so generally we'll only do a full search if we don't
8360 * We check if the given compound head page has already been accounted, to
8361 * avoid double accounting it. This allows us to account the full size of the
8362 * page, not just the constituent pages of a huge page.
8364 static bool headpage_already_acct(struct io_ring_ctx
*ctx
, struct page
**pages
,
8365 int nr_pages
, struct page
*hpage
)
8369 /* check current page array */
8370 for (i
= 0; i
< nr_pages
; i
++) {
8371 if (!PageCompound(pages
[i
]))
8373 if (compound_head(pages
[i
]) == hpage
)
8377 /* check previously registered pages */
8378 for (i
= 0; i
< ctx
->nr_user_bufs
; i
++) {
8379 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
8381 for (j
= 0; j
< imu
->nr_bvecs
; j
++) {
8382 if (!PageCompound(imu
->bvec
[j
].bv_page
))
8384 if (compound_head(imu
->bvec
[j
].bv_page
) == hpage
)
8392 static int io_buffer_account_pin(struct io_ring_ctx
*ctx
, struct page
**pages
,
8393 int nr_pages
, struct io_mapped_ubuf
*imu
,
8394 struct page
**last_hpage
)
8398 for (i
= 0; i
< nr_pages
; i
++) {
8399 if (!PageCompound(pages
[i
])) {
8404 hpage
= compound_head(pages
[i
]);
8405 if (hpage
== *last_hpage
)
8407 *last_hpage
= hpage
;
8408 if (headpage_already_acct(ctx
, pages
, i
, hpage
))
8410 imu
->acct_pages
+= page_size(hpage
) >> PAGE_SHIFT
;
8414 if (!imu
->acct_pages
)
8417 ret
= io_account_mem(ctx
, imu
->acct_pages
, ACCT_PINNED
);
8419 imu
->acct_pages
= 0;
8423 static int io_sqe_buffer_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
8426 struct vm_area_struct
**vmas
= NULL
;
8427 struct page
**pages
= NULL
;
8428 struct page
*last_hpage
= NULL
;
8429 int i
, j
, got_pages
= 0;
8434 if (!nr_args
|| nr_args
> UIO_MAXIOV
)
8437 ctx
->user_bufs
= kcalloc(nr_args
, sizeof(struct io_mapped_ubuf
),
8439 if (!ctx
->user_bufs
)
8442 for (i
= 0; i
< nr_args
; i
++) {
8443 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
8444 unsigned long off
, start
, end
, ubuf
;
8449 ret
= io_copy_iov(ctx
, &iov
, arg
, i
);
8454 * Don't impose further limits on the size and buffer
8455 * constraints here, we'll -EINVAL later when IO is
8456 * submitted if they are wrong.
8459 if (!iov
.iov_base
|| !iov
.iov_len
)
8462 /* arbitrary limit, but we need something */
8463 if (iov
.iov_len
> SZ_1G
)
8466 ubuf
= (unsigned long) iov
.iov_base
;
8467 end
= (ubuf
+ iov
.iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
8468 start
= ubuf
>> PAGE_SHIFT
;
8469 nr_pages
= end
- start
;
8472 if (!pages
|| nr_pages
> got_pages
) {
8475 pages
= kvmalloc_array(nr_pages
, sizeof(struct page
*),
8477 vmas
= kvmalloc_array(nr_pages
,
8478 sizeof(struct vm_area_struct
*),
8480 if (!pages
|| !vmas
) {
8484 got_pages
= nr_pages
;
8487 imu
->bvec
= kvmalloc_array(nr_pages
, sizeof(struct bio_vec
),
8494 mmap_read_lock(current
->mm
);
8495 pret
= pin_user_pages(ubuf
, nr_pages
,
8496 FOLL_WRITE
| FOLL_LONGTERM
,
8498 if (pret
== nr_pages
) {
8499 /* don't support file backed memory */
8500 for (j
= 0; j
< nr_pages
; j
++) {
8501 struct vm_area_struct
*vma
= vmas
[j
];
8504 !is_file_hugepages(vma
->vm_file
)) {
8510 ret
= pret
< 0 ? pret
: -EFAULT
;
8512 mmap_read_unlock(current
->mm
);
8515 * if we did partial map, or found file backed vmas,
8516 * release any pages we did get
8519 unpin_user_pages(pages
, pret
);
8524 ret
= io_buffer_account_pin(ctx
, pages
, pret
, imu
, &last_hpage
);
8526 unpin_user_pages(pages
, pret
);
8531 off
= ubuf
& ~PAGE_MASK
;
8533 for (j
= 0; j
< nr_pages
; j
++) {
8536 vec_len
= min_t(size_t, size
, PAGE_SIZE
- off
);
8537 imu
->bvec
[j
].bv_page
= pages
[j
];
8538 imu
->bvec
[j
].bv_len
= vec_len
;
8539 imu
->bvec
[j
].bv_offset
= off
;
8543 /* store original address for later verification */
8545 imu
->len
= iov
.iov_len
;
8546 imu
->nr_bvecs
= nr_pages
;
8548 ctx
->nr_user_bufs
++;
8556 io_sqe_buffer_unregister(ctx
);
8560 static int io_eventfd_register(struct io_ring_ctx
*ctx
, void __user
*arg
)
8562 __s32 __user
*fds
= arg
;
8568 if (copy_from_user(&fd
, fds
, sizeof(*fds
)))
8571 ctx
->cq_ev_fd
= eventfd_ctx_fdget(fd
);
8572 if (IS_ERR(ctx
->cq_ev_fd
)) {
8573 int ret
= PTR_ERR(ctx
->cq_ev_fd
);
8574 ctx
->cq_ev_fd
= NULL
;
8581 static int io_eventfd_unregister(struct io_ring_ctx
*ctx
)
8583 if (ctx
->cq_ev_fd
) {
8584 eventfd_ctx_put(ctx
->cq_ev_fd
);
8585 ctx
->cq_ev_fd
= NULL
;
8592 static int __io_destroy_buffers(int id
, void *p
, void *data
)
8594 struct io_ring_ctx
*ctx
= data
;
8595 struct io_buffer
*buf
= p
;
8597 __io_remove_buffers(ctx
, buf
, id
, -1U);
8601 static void io_destroy_buffers(struct io_ring_ctx
*ctx
)
8603 idr_for_each(&ctx
->io_buffer_idr
, __io_destroy_buffers
, ctx
);
8604 idr_destroy(&ctx
->io_buffer_idr
);
8607 static void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
8609 io_finish_async(ctx
);
8610 io_sqe_buffer_unregister(ctx
);
8612 if (ctx
->sqo_task
) {
8613 put_task_struct(ctx
->sqo_task
);
8614 ctx
->sqo_task
= NULL
;
8615 mmdrop(ctx
->mm_account
);
8616 ctx
->mm_account
= NULL
;
8619 #ifdef CONFIG_BLK_CGROUP
8620 if (ctx
->sqo_blkcg_css
)
8621 css_put(ctx
->sqo_blkcg_css
);
8624 io_sqe_files_unregister(ctx
);
8625 io_eventfd_unregister(ctx
);
8626 io_destroy_buffers(ctx
);
8627 idr_destroy(&ctx
->personality_idr
);
8629 #if defined(CONFIG_UNIX)
8630 if (ctx
->ring_sock
) {
8631 ctx
->ring_sock
->file
= NULL
; /* so that iput() is called */
8632 sock_release(ctx
->ring_sock
);
8636 io_mem_free(ctx
->rings
);
8637 io_mem_free(ctx
->sq_sqes
);
8639 percpu_ref_exit(&ctx
->refs
);
8640 free_uid(ctx
->user
);
8641 put_cred(ctx
->creds
);
8642 kfree(ctx
->cancel_hash
);
8643 kmem_cache_free(req_cachep
, ctx
->fallback_req
);
8647 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
8649 struct io_ring_ctx
*ctx
= file
->private_data
;
8652 poll_wait(file
, &ctx
->cq_wait
, wait
);
8654 * synchronizes with barrier from wq_has_sleeper call in
8658 if (!io_sqring_full(ctx
))
8659 mask
|= EPOLLOUT
| EPOLLWRNORM
;
8660 io_cqring_overflow_flush(ctx
, false, NULL
, NULL
);
8661 if (io_cqring_events(ctx
))
8662 mask
|= EPOLLIN
| EPOLLRDNORM
;
8667 static int io_uring_fasync(int fd
, struct file
*file
, int on
)
8669 struct io_ring_ctx
*ctx
= file
->private_data
;
8671 return fasync_helper(fd
, file
, on
, &ctx
->cq_fasync
);
8674 static int io_remove_personalities(int id
, void *p
, void *data
)
8676 struct io_ring_ctx
*ctx
= data
;
8677 struct io_identity
*iod
;
8679 iod
= idr_remove(&ctx
->personality_idr
, id
);
8681 put_cred(iod
->creds
);
8682 if (refcount_dec_and_test(&iod
->count
))
8688 static void io_ring_exit_work(struct work_struct
*work
)
8690 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
,
8694 * If we're doing polled IO and end up having requests being
8695 * submitted async (out-of-line), then completions can come in while
8696 * we're waiting for refs to drop. We need to reap these manually,
8697 * as nobody else will be looking for them.
8700 __io_uring_cancel_task_requests(ctx
, NULL
);
8701 } while (!wait_for_completion_timeout(&ctx
->ref_comp
, HZ
/20));
8702 io_ring_ctx_free(ctx
);
8705 static bool io_cancel_ctx_cb(struct io_wq_work
*work
, void *data
)
8707 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
8709 return req
->ctx
== data
;
8712 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
8714 mutex_lock(&ctx
->uring_lock
);
8715 percpu_ref_kill(&ctx
->refs
);
8717 if (WARN_ON_ONCE((ctx
->flags
& IORING_SETUP_SQPOLL
) && !ctx
->sqo_dead
))
8720 /* if force is set, the ring is going away. always drop after that */
8721 ctx
->cq_overflow_flushed
= 1;
8723 __io_cqring_overflow_flush(ctx
, true, NULL
, NULL
);
8724 mutex_unlock(&ctx
->uring_lock
);
8726 io_kill_timeouts(ctx
, NULL
, NULL
);
8727 io_poll_remove_all(ctx
, NULL
, NULL
);
8730 io_wq_cancel_cb(ctx
->io_wq
, io_cancel_ctx_cb
, ctx
, true);
8732 /* if we failed setting up the ctx, we might not have any rings */
8733 io_iopoll_try_reap_events(ctx
);
8734 idr_for_each(&ctx
->personality_idr
, io_remove_personalities
, ctx
);
8737 * Do this upfront, so we won't have a grace period where the ring
8738 * is closed but resources aren't reaped yet. This can cause
8739 * spurious failure in setting up a new ring.
8741 io_unaccount_mem(ctx
, ring_pages(ctx
->sq_entries
, ctx
->cq_entries
),
8744 INIT_WORK(&ctx
->exit_work
, io_ring_exit_work
);
8746 * Use system_unbound_wq to avoid spawning tons of event kworkers
8747 * if we're exiting a ton of rings at the same time. It just adds
8748 * noise and overhead, there's no discernable change in runtime
8749 * over using system_wq.
8751 queue_work(system_unbound_wq
, &ctx
->exit_work
);
8754 static int io_uring_release(struct inode
*inode
, struct file
*file
)
8756 struct io_ring_ctx
*ctx
= file
->private_data
;
8758 file
->private_data
= NULL
;
8759 io_ring_ctx_wait_and_kill(ctx
);
8763 struct io_task_cancel
{
8764 struct task_struct
*task
;
8765 struct files_struct
*files
;
8768 static bool io_cancel_task_cb(struct io_wq_work
*work
, void *data
)
8770 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
8771 struct io_task_cancel
*cancel
= data
;
8774 if (cancel
->files
&& (req
->flags
& REQ_F_LINK_TIMEOUT
)) {
8775 unsigned long flags
;
8776 struct io_ring_ctx
*ctx
= req
->ctx
;
8778 /* protect against races with linked timeouts */
8779 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
8780 ret
= io_match_task(req
, cancel
->task
, cancel
->files
);
8781 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
8783 ret
= io_match_task(req
, cancel
->task
, cancel
->files
);
8788 static void io_cancel_defer_files(struct io_ring_ctx
*ctx
,
8789 struct task_struct
*task
,
8790 struct files_struct
*files
)
8792 struct io_defer_entry
*de
= NULL
;
8795 spin_lock_irq(&ctx
->completion_lock
);
8796 list_for_each_entry_reverse(de
, &ctx
->defer_list
, list
) {
8797 if (io_match_task(de
->req
, task
, files
)) {
8798 list_cut_position(&list
, &ctx
->defer_list
, &de
->list
);
8802 spin_unlock_irq(&ctx
->completion_lock
);
8804 while (!list_empty(&list
)) {
8805 de
= list_first_entry(&list
, struct io_defer_entry
, list
);
8806 list_del_init(&de
->list
);
8807 req_set_fail_links(de
->req
);
8808 io_put_req(de
->req
);
8809 io_req_complete(de
->req
, -ECANCELED
);
8814 static void io_uring_cancel_files(struct io_ring_ctx
*ctx
,
8815 struct task_struct
*task
,
8816 struct files_struct
*files
)
8818 while (!list_empty_careful(&ctx
->inflight_list
)) {
8819 struct io_task_cancel cancel
= { .task
= task
, .files
= files
};
8820 struct io_kiocb
*req
;
8824 spin_lock_irq(&ctx
->inflight_lock
);
8825 list_for_each_entry(req
, &ctx
->inflight_list
, inflight_entry
) {
8826 if (req
->task
!= task
||
8827 req
->work
.identity
->files
!= files
)
8833 prepare_to_wait(&task
->io_uring
->wait
, &wait
,
8834 TASK_UNINTERRUPTIBLE
);
8835 spin_unlock_irq(&ctx
->inflight_lock
);
8837 /* We need to keep going until we don't find a matching req */
8841 io_wq_cancel_cb(ctx
->io_wq
, io_cancel_task_cb
, &cancel
, true);
8842 io_poll_remove_all(ctx
, task
, files
);
8843 io_kill_timeouts(ctx
, task
, files
);
8844 /* cancellations _may_ trigger task work */
8847 finish_wait(&task
->io_uring
->wait
, &wait
);
8851 static void __io_uring_cancel_task_requests(struct io_ring_ctx
*ctx
,
8852 struct task_struct
*task
)
8855 struct io_task_cancel cancel
= { .task
= task
, .files
= NULL
, };
8856 enum io_wq_cancel cret
;
8860 cret
= io_wq_cancel_cb(ctx
->io_wq
, io_cancel_task_cb
,
8862 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
8865 /* SQPOLL thread does its own polling */
8866 if (!(ctx
->flags
& IORING_SETUP_SQPOLL
)) {
8867 while (!list_empty_careful(&ctx
->iopoll_list
)) {
8868 io_iopoll_try_reap_events(ctx
);
8873 ret
|= io_poll_remove_all(ctx
, task
, NULL
);
8874 ret
|= io_kill_timeouts(ctx
, task
, NULL
);
8875 ret
|= io_run_task_work();
8882 static void io_disable_sqo_submit(struct io_ring_ctx
*ctx
)
8884 WARN_ON_ONCE(ctx
->sqo_task
!= current
);
8886 mutex_lock(&ctx
->uring_lock
);
8888 mutex_unlock(&ctx
->uring_lock
);
8890 /* make sure callers enter the ring to get error */
8891 io_ring_set_wakeup_flag(ctx
);
8895 * We need to iteratively cancel requests, in case a request has dependent
8896 * hard links. These persist even for failure of cancelations, hence keep
8897 * looping until none are found.
8899 static void io_uring_cancel_task_requests(struct io_ring_ctx
*ctx
,
8900 struct files_struct
*files
)
8902 struct task_struct
*task
= current
;
8904 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) && ctx
->sq_data
) {
8905 /* for SQPOLL only sqo_task has task notes */
8906 io_disable_sqo_submit(ctx
);
8907 task
= ctx
->sq_data
->thread
;
8908 atomic_inc(&task
->io_uring
->in_idle
);
8909 io_sq_thread_park(ctx
->sq_data
);
8912 io_cancel_defer_files(ctx
, task
, files
);
8913 io_cqring_overflow_flush(ctx
, true, task
, files
);
8916 __io_uring_cancel_task_requests(ctx
, task
);
8918 io_uring_cancel_files(ctx
, task
, files
);
8920 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) && ctx
->sq_data
) {
8921 atomic_dec(&task
->io_uring
->in_idle
);
8923 * If the files that are going away are the ones in the thread
8924 * identity, clear them out.
8926 if (task
->io_uring
->identity
->files
== files
)
8927 task
->io_uring
->identity
->files
= NULL
;
8928 io_sq_thread_unpark(ctx
->sq_data
);
8933 * Note that this task has used io_uring. We use it for cancelation purposes.
8935 static int io_uring_add_task_file(struct io_ring_ctx
*ctx
, struct file
*file
)
8937 struct io_uring_task
*tctx
= current
->io_uring
;
8940 if (unlikely(!tctx
)) {
8941 ret
= io_uring_alloc_task_context(current
);
8944 tctx
= current
->io_uring
;
8946 if (tctx
->last
!= file
) {
8947 void *old
= xa_load(&tctx
->xa
, (unsigned long)file
);
8951 ret
= xa_err(xa_store(&tctx
->xa
, (unsigned long)file
,
8962 * This is race safe in that the task itself is doing this, hence it
8963 * cannot be going through the exit/cancel paths at the same time.
8964 * This cannot be modified while exit/cancel is running.
8966 if (!tctx
->sqpoll
&& (ctx
->flags
& IORING_SETUP_SQPOLL
))
8967 tctx
->sqpoll
= true;
8973 * Remove this io_uring_file -> task mapping.
8975 static void io_uring_del_task_file(struct file
*file
)
8977 struct io_uring_task
*tctx
= current
->io_uring
;
8979 if (tctx
->last
== file
)
8981 file
= xa_erase(&tctx
->xa
, (unsigned long)file
);
8986 static void io_uring_remove_task_files(struct io_uring_task
*tctx
)
8989 unsigned long index
;
8991 xa_for_each(&tctx
->xa
, index
, file
)
8992 io_uring_del_task_file(file
);
8995 void __io_uring_files_cancel(struct files_struct
*files
)
8997 struct io_uring_task
*tctx
= current
->io_uring
;
8999 unsigned long index
;
9001 /* make sure overflow events are dropped */
9002 atomic_inc(&tctx
->in_idle
);
9003 xa_for_each(&tctx
->xa
, index
, file
)
9004 io_uring_cancel_task_requests(file
->private_data
, files
);
9005 atomic_dec(&tctx
->in_idle
);
9008 io_uring_remove_task_files(tctx
);
9011 static s64
tctx_inflight(struct io_uring_task
*tctx
)
9013 unsigned long index
;
9017 inflight
= percpu_counter_sum(&tctx
->inflight
);
9022 * If we have SQPOLL rings, then we need to iterate and find them, and
9023 * add the pending count for those.
9025 xa_for_each(&tctx
->xa
, index
, file
) {
9026 struct io_ring_ctx
*ctx
= file
->private_data
;
9028 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
9029 struct io_uring_task
*__tctx
= ctx
->sqo_task
->io_uring
;
9031 inflight
+= percpu_counter_sum(&__tctx
->inflight
);
9039 * Find any io_uring fd that this task has registered or done IO on, and cancel
9042 void __io_uring_task_cancel(void)
9044 struct io_uring_task
*tctx
= current
->io_uring
;
9048 /* make sure overflow events are dropped */
9049 atomic_inc(&tctx
->in_idle
);
9052 /* read completions before cancelations */
9053 inflight
= tctx_inflight(tctx
);
9056 __io_uring_files_cancel(NULL
);
9058 prepare_to_wait(&tctx
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
9061 * If we've seen completions, retry. This avoids a race where
9062 * a completion comes in before we did prepare_to_wait().
9064 if (inflight
!= tctx_inflight(tctx
))
9067 finish_wait(&tctx
->wait
, &wait
);
9070 atomic_dec(&tctx
->in_idle
);
9072 io_uring_remove_task_files(tctx
);
9075 static int io_uring_flush(struct file
*file
, void *data
)
9077 struct io_uring_task
*tctx
= current
->io_uring
;
9078 struct io_ring_ctx
*ctx
= file
->private_data
;
9083 /* we should have cancelled and erased it before PF_EXITING */
9084 WARN_ON_ONCE((current
->flags
& PF_EXITING
) &&
9085 xa_load(&tctx
->xa
, (unsigned long)file
));
9088 * fput() is pending, will be 2 if the only other ref is our potential
9089 * task file note. If the task is exiting, drop regardless of count.
9091 if (atomic_long_read(&file
->f_count
) != 2)
9094 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
9095 /* there is only one file note, which is owned by sqo_task */
9096 WARN_ON_ONCE((ctx
->sqo_task
== current
) ==
9097 !xa_load(&tctx
->xa
, (unsigned long)file
));
9099 io_disable_sqo_submit(ctx
);
9102 if (!(ctx
->flags
& IORING_SETUP_SQPOLL
) || ctx
->sqo_task
== current
)
9103 io_uring_del_task_file(file
);
9107 static void *io_uring_validate_mmap_request(struct file
*file
,
9108 loff_t pgoff
, size_t sz
)
9110 struct io_ring_ctx
*ctx
= file
->private_data
;
9111 loff_t offset
= pgoff
<< PAGE_SHIFT
;
9116 case IORING_OFF_SQ_RING
:
9117 case IORING_OFF_CQ_RING
:
9120 case IORING_OFF_SQES
:
9124 return ERR_PTR(-EINVAL
);
9127 page
= virt_to_head_page(ptr
);
9128 if (sz
> page_size(page
))
9129 return ERR_PTR(-EINVAL
);
9136 static int io_uring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
9138 size_t sz
= vma
->vm_end
- vma
->vm_start
;
9142 ptr
= io_uring_validate_mmap_request(file
, vma
->vm_pgoff
, sz
);
9144 return PTR_ERR(ptr
);
9146 pfn
= virt_to_phys(ptr
) >> PAGE_SHIFT
;
9147 return remap_pfn_range(vma
, vma
->vm_start
, pfn
, sz
, vma
->vm_page_prot
);
9150 #else /* !CONFIG_MMU */
9152 static int io_uring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
9154 return vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
) ? 0 : -EINVAL
;
9157 static unsigned int io_uring_nommu_mmap_capabilities(struct file
*file
)
9159 return NOMMU_MAP_DIRECT
| NOMMU_MAP_READ
| NOMMU_MAP_WRITE
;
9162 static unsigned long io_uring_nommu_get_unmapped_area(struct file
*file
,
9163 unsigned long addr
, unsigned long len
,
9164 unsigned long pgoff
, unsigned long flags
)
9168 ptr
= io_uring_validate_mmap_request(file
, pgoff
, len
);
9170 return PTR_ERR(ptr
);
9172 return (unsigned long) ptr
;
9175 #endif /* !CONFIG_MMU */
9177 static int io_sqpoll_wait_sq(struct io_ring_ctx
*ctx
)
9183 if (!io_sqring_full(ctx
))
9186 prepare_to_wait(&ctx
->sqo_sq_wait
, &wait
, TASK_INTERRUPTIBLE
);
9188 if (unlikely(ctx
->sqo_dead
)) {
9193 if (!io_sqring_full(ctx
))
9197 } while (!signal_pending(current
));
9199 finish_wait(&ctx
->sqo_sq_wait
, &wait
);
9204 static int io_get_ext_arg(unsigned flags
, const void __user
*argp
, size_t *argsz
,
9205 struct __kernel_timespec __user
**ts
,
9206 const sigset_t __user
**sig
)
9208 struct io_uring_getevents_arg arg
;
9211 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9212 * is just a pointer to the sigset_t.
9214 if (!(flags
& IORING_ENTER_EXT_ARG
)) {
9215 *sig
= (const sigset_t __user
*) argp
;
9221 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9222 * timespec and sigset_t pointers if good.
9224 if (*argsz
!= sizeof(arg
))
9226 if (copy_from_user(&arg
, argp
, sizeof(arg
)))
9228 *sig
= u64_to_user_ptr(arg
.sigmask
);
9229 *argsz
= arg
.sigmask_sz
;
9230 *ts
= u64_to_user_ptr(arg
.ts
);
9234 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
9235 u32
, min_complete
, u32
, flags
, const void __user
*, argp
,
9238 struct io_ring_ctx
*ctx
;
9245 if (flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
|
9246 IORING_ENTER_SQ_WAIT
| IORING_ENTER_EXT_ARG
))
9254 if (f
.file
->f_op
!= &io_uring_fops
)
9258 ctx
= f
.file
->private_data
;
9259 if (!percpu_ref_tryget(&ctx
->refs
))
9263 if (ctx
->flags
& IORING_SETUP_R_DISABLED
)
9267 * For SQ polling, the thread will do all submissions and completions.
9268 * Just return the requested submit count, and wake the thread if
9272 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
9273 io_cqring_overflow_flush(ctx
, false, NULL
, NULL
);
9276 if (unlikely(ctx
->sqo_dead
))
9278 if (flags
& IORING_ENTER_SQ_WAKEUP
)
9279 wake_up(&ctx
->sq_data
->wait
);
9280 if (flags
& IORING_ENTER_SQ_WAIT
) {
9281 ret
= io_sqpoll_wait_sq(ctx
);
9285 submitted
= to_submit
;
9286 } else if (to_submit
) {
9287 ret
= io_uring_add_task_file(ctx
, f
.file
);
9290 mutex_lock(&ctx
->uring_lock
);
9291 submitted
= io_submit_sqes(ctx
, to_submit
);
9292 mutex_unlock(&ctx
->uring_lock
);
9294 if (submitted
!= to_submit
)
9297 if (flags
& IORING_ENTER_GETEVENTS
) {
9298 const sigset_t __user
*sig
;
9299 struct __kernel_timespec __user
*ts
;
9301 ret
= io_get_ext_arg(flags
, argp
, &argsz
, &ts
, &sig
);
9305 min_complete
= min(min_complete
, ctx
->cq_entries
);
9308 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9309 * space applications don't need to do io completion events
9310 * polling again, they can rely on io_sq_thread to do polling
9311 * work, which can reduce cpu usage and uring_lock contention.
9313 if (ctx
->flags
& IORING_SETUP_IOPOLL
&&
9314 !(ctx
->flags
& IORING_SETUP_SQPOLL
)) {
9315 ret
= io_iopoll_check(ctx
, min_complete
);
9317 ret
= io_cqring_wait(ctx
, min_complete
, sig
, argsz
, ts
);
9322 percpu_ref_put(&ctx
->refs
);
9325 return submitted
? submitted
: ret
;
9328 #ifdef CONFIG_PROC_FS
9329 static int io_uring_show_cred(int id
, void *p
, void *data
)
9331 struct io_identity
*iod
= p
;
9332 const struct cred
*cred
= iod
->creds
;
9333 struct seq_file
*m
= data
;
9334 struct user_namespace
*uns
= seq_user_ns(m
);
9335 struct group_info
*gi
;
9340 seq_printf(m
, "%5d\n", id
);
9341 seq_put_decimal_ull(m
, "\tUid:\t", from_kuid_munged(uns
, cred
->uid
));
9342 seq_put_decimal_ull(m
, "\t\t", from_kuid_munged(uns
, cred
->euid
));
9343 seq_put_decimal_ull(m
, "\t\t", from_kuid_munged(uns
, cred
->suid
));
9344 seq_put_decimal_ull(m
, "\t\t", from_kuid_munged(uns
, cred
->fsuid
));
9345 seq_put_decimal_ull(m
, "\n\tGid:\t", from_kgid_munged(uns
, cred
->gid
));
9346 seq_put_decimal_ull(m
, "\t\t", from_kgid_munged(uns
, cred
->egid
));
9347 seq_put_decimal_ull(m
, "\t\t", from_kgid_munged(uns
, cred
->sgid
));
9348 seq_put_decimal_ull(m
, "\t\t", from_kgid_munged(uns
, cred
->fsgid
));
9349 seq_puts(m
, "\n\tGroups:\t");
9350 gi
= cred
->group_info
;
9351 for (g
= 0; g
< gi
->ngroups
; g
++) {
9352 seq_put_decimal_ull(m
, g
? " " : "",
9353 from_kgid_munged(uns
, gi
->gid
[g
]));
9355 seq_puts(m
, "\n\tCapEff:\t");
9356 cap
= cred
->cap_effective
;
9357 CAP_FOR_EACH_U32(__capi
)
9358 seq_put_hex_ll(m
, NULL
, cap
.cap
[CAP_LAST_U32
- __capi
], 8);
9363 static void __io_uring_show_fdinfo(struct io_ring_ctx
*ctx
, struct seq_file
*m
)
9365 struct io_sq_data
*sq
= NULL
;
9370 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9371 * since fdinfo case grabs it in the opposite direction of normal use
9372 * cases. If we fail to get the lock, we just don't iterate any
9373 * structures that could be going away outside the io_uring mutex.
9375 has_lock
= mutex_trylock(&ctx
->uring_lock
);
9377 if (has_lock
&& (ctx
->flags
& IORING_SETUP_SQPOLL
))
9380 seq_printf(m
, "SqThread:\t%d\n", sq
? task_pid_nr(sq
->thread
) : -1);
9381 seq_printf(m
, "SqThreadCpu:\t%d\n", sq
? task_cpu(sq
->thread
) : -1);
9382 seq_printf(m
, "UserFiles:\t%u\n", ctx
->nr_user_files
);
9383 for (i
= 0; has_lock
&& i
< ctx
->nr_user_files
; i
++) {
9384 struct fixed_file_table
*table
;
9387 table
= &ctx
->file_data
->table
[i
>> IORING_FILE_TABLE_SHIFT
];
9388 f
= table
->files
[i
& IORING_FILE_TABLE_MASK
];
9390 seq_printf(m
, "%5u: %s\n", i
, file_dentry(f
)->d_iname
);
9392 seq_printf(m
, "%5u: <none>\n", i
);
9394 seq_printf(m
, "UserBufs:\t%u\n", ctx
->nr_user_bufs
);
9395 for (i
= 0; has_lock
&& i
< ctx
->nr_user_bufs
; i
++) {
9396 struct io_mapped_ubuf
*buf
= &ctx
->user_bufs
[i
];
9398 seq_printf(m
, "%5u: 0x%llx/%u\n", i
, buf
->ubuf
,
9399 (unsigned int) buf
->len
);
9401 if (has_lock
&& !idr_is_empty(&ctx
->personality_idr
)) {
9402 seq_printf(m
, "Personalities:\n");
9403 idr_for_each(&ctx
->personality_idr
, io_uring_show_cred
, m
);
9405 seq_printf(m
, "PollList:\n");
9406 spin_lock_irq(&ctx
->completion_lock
);
9407 for (i
= 0; i
< (1U << ctx
->cancel_hash_bits
); i
++) {
9408 struct hlist_head
*list
= &ctx
->cancel_hash
[i
];
9409 struct io_kiocb
*req
;
9411 hlist_for_each_entry(req
, list
, hash_node
)
9412 seq_printf(m
, " op=%d, task_works=%d\n", req
->opcode
,
9413 req
->task
->task_works
!= NULL
);
9415 spin_unlock_irq(&ctx
->completion_lock
);
9417 mutex_unlock(&ctx
->uring_lock
);
9420 static void io_uring_show_fdinfo(struct seq_file
*m
, struct file
*f
)
9422 struct io_ring_ctx
*ctx
= f
->private_data
;
9424 if (percpu_ref_tryget(&ctx
->refs
)) {
9425 __io_uring_show_fdinfo(ctx
, m
);
9426 percpu_ref_put(&ctx
->refs
);
9431 static const struct file_operations io_uring_fops
= {
9432 .release
= io_uring_release
,
9433 .flush
= io_uring_flush
,
9434 .mmap
= io_uring_mmap
,
9436 .get_unmapped_area
= io_uring_nommu_get_unmapped_area
,
9437 .mmap_capabilities
= io_uring_nommu_mmap_capabilities
,
9439 .poll
= io_uring_poll
,
9440 .fasync
= io_uring_fasync
,
9441 #ifdef CONFIG_PROC_FS
9442 .show_fdinfo
= io_uring_show_fdinfo
,
9446 static int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
9447 struct io_uring_params
*p
)
9449 struct io_rings
*rings
;
9450 size_t size
, sq_array_offset
;
9452 /* make sure these are sane, as we already accounted them */
9453 ctx
->sq_entries
= p
->sq_entries
;
9454 ctx
->cq_entries
= p
->cq_entries
;
9456 size
= rings_size(p
->sq_entries
, p
->cq_entries
, &sq_array_offset
);
9457 if (size
== SIZE_MAX
)
9460 rings
= io_mem_alloc(size
);
9465 ctx
->sq_array
= (u32
*)((char *)rings
+ sq_array_offset
);
9466 rings
->sq_ring_mask
= p
->sq_entries
- 1;
9467 rings
->cq_ring_mask
= p
->cq_entries
- 1;
9468 rings
->sq_ring_entries
= p
->sq_entries
;
9469 rings
->cq_ring_entries
= p
->cq_entries
;
9470 ctx
->sq_mask
= rings
->sq_ring_mask
;
9471 ctx
->cq_mask
= rings
->cq_ring_mask
;
9473 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
9474 if (size
== SIZE_MAX
) {
9475 io_mem_free(ctx
->rings
);
9480 ctx
->sq_sqes
= io_mem_alloc(size
);
9481 if (!ctx
->sq_sqes
) {
9482 io_mem_free(ctx
->rings
);
9490 static int io_uring_install_fd(struct io_ring_ctx
*ctx
, struct file
*file
)
9494 fd
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
9498 ret
= io_uring_add_task_file(ctx
, file
);
9503 fd_install(fd
, file
);
9508 * Allocate an anonymous fd, this is what constitutes the application
9509 * visible backing of an io_uring instance. The application mmaps this
9510 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9511 * we have to tie this fd to a socket for file garbage collection purposes.
9513 static struct file
*io_uring_get_file(struct io_ring_ctx
*ctx
)
9516 #if defined(CONFIG_UNIX)
9519 ret
= sock_create_kern(&init_net
, PF_UNIX
, SOCK_RAW
, IPPROTO_IP
,
9522 return ERR_PTR(ret
);
9525 file
= anon_inode_getfile("[io_uring]", &io_uring_fops
, ctx
,
9526 O_RDWR
| O_CLOEXEC
);
9527 #if defined(CONFIG_UNIX)
9529 sock_release(ctx
->ring_sock
);
9530 ctx
->ring_sock
= NULL
;
9532 ctx
->ring_sock
->file
= file
;
9538 static int io_uring_create(unsigned entries
, struct io_uring_params
*p
,
9539 struct io_uring_params __user
*params
)
9541 struct user_struct
*user
= NULL
;
9542 struct io_ring_ctx
*ctx
;
9549 if (entries
> IORING_MAX_ENTRIES
) {
9550 if (!(p
->flags
& IORING_SETUP_CLAMP
))
9552 entries
= IORING_MAX_ENTRIES
;
9556 * Use twice as many entries for the CQ ring. It's possible for the
9557 * application to drive a higher depth than the size of the SQ ring,
9558 * since the sqes are only used at submission time. This allows for
9559 * some flexibility in overcommitting a bit. If the application has
9560 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9561 * of CQ ring entries manually.
9563 p
->sq_entries
= roundup_pow_of_two(entries
);
9564 if (p
->flags
& IORING_SETUP_CQSIZE
) {
9566 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9567 * to a power-of-two, if it isn't already. We do NOT impose
9568 * any cq vs sq ring sizing.
9572 if (p
->cq_entries
> IORING_MAX_CQ_ENTRIES
) {
9573 if (!(p
->flags
& IORING_SETUP_CLAMP
))
9575 p
->cq_entries
= IORING_MAX_CQ_ENTRIES
;
9577 p
->cq_entries
= roundup_pow_of_two(p
->cq_entries
);
9578 if (p
->cq_entries
< p
->sq_entries
)
9581 p
->cq_entries
= 2 * p
->sq_entries
;
9584 user
= get_uid(current_user());
9585 limit_mem
= !capable(CAP_IPC_LOCK
);
9588 ret
= __io_account_mem(user
,
9589 ring_pages(p
->sq_entries
, p
->cq_entries
));
9596 ctx
= io_ring_ctx_alloc(p
);
9599 __io_unaccount_mem(user
, ring_pages(p
->sq_entries
,
9604 ctx
->compat
= in_compat_syscall();
9606 ctx
->creds
= get_current_cred();
9608 ctx
->loginuid
= current
->loginuid
;
9609 ctx
->sessionid
= current
->sessionid
;
9611 ctx
->sqo_task
= get_task_struct(current
);
9614 * This is just grabbed for accounting purposes. When a process exits,
9615 * the mm is exited and dropped before the files, hence we need to hang
9616 * on to this mm purely for the purposes of being able to unaccount
9617 * memory (locked/pinned vm). It's not used for anything else.
9619 mmgrab(current
->mm
);
9620 ctx
->mm_account
= current
->mm
;
9622 #ifdef CONFIG_BLK_CGROUP
9624 * The sq thread will belong to the original cgroup it was inited in.
9625 * If the cgroup goes offline (e.g. disabling the io controller), then
9626 * issued bios will be associated with the closest cgroup later in the
9630 ctx
->sqo_blkcg_css
= blkcg_css();
9631 ret
= css_tryget_online(ctx
->sqo_blkcg_css
);
9634 /* don't init against a dying cgroup, have the user try again */
9635 ctx
->sqo_blkcg_css
= NULL
;
9642 * Account memory _before_ installing the file descriptor. Once
9643 * the descriptor is installed, it can get closed at any time. Also
9644 * do this before hitting the general error path, as ring freeing
9645 * will un-account as well.
9647 io_account_mem(ctx
, ring_pages(p
->sq_entries
, p
->cq_entries
),
9649 ctx
->limit_mem
= limit_mem
;
9651 ret
= io_allocate_scq_urings(ctx
, p
);
9655 ret
= io_sq_offload_create(ctx
, p
);
9659 if (!(p
->flags
& IORING_SETUP_R_DISABLED
))
9660 io_sq_offload_start(ctx
);
9662 memset(&p
->sq_off
, 0, sizeof(p
->sq_off
));
9663 p
->sq_off
.head
= offsetof(struct io_rings
, sq
.head
);
9664 p
->sq_off
.tail
= offsetof(struct io_rings
, sq
.tail
);
9665 p
->sq_off
.ring_mask
= offsetof(struct io_rings
, sq_ring_mask
);
9666 p
->sq_off
.ring_entries
= offsetof(struct io_rings
, sq_ring_entries
);
9667 p
->sq_off
.flags
= offsetof(struct io_rings
, sq_flags
);
9668 p
->sq_off
.dropped
= offsetof(struct io_rings
, sq_dropped
);
9669 p
->sq_off
.array
= (char *)ctx
->sq_array
- (char *)ctx
->rings
;
9671 memset(&p
->cq_off
, 0, sizeof(p
->cq_off
));
9672 p
->cq_off
.head
= offsetof(struct io_rings
, cq
.head
);
9673 p
->cq_off
.tail
= offsetof(struct io_rings
, cq
.tail
);
9674 p
->cq_off
.ring_mask
= offsetof(struct io_rings
, cq_ring_mask
);
9675 p
->cq_off
.ring_entries
= offsetof(struct io_rings
, cq_ring_entries
);
9676 p
->cq_off
.overflow
= offsetof(struct io_rings
, cq_overflow
);
9677 p
->cq_off
.cqes
= offsetof(struct io_rings
, cqes
);
9678 p
->cq_off
.flags
= offsetof(struct io_rings
, cq_flags
);
9680 p
->features
= IORING_FEAT_SINGLE_MMAP
| IORING_FEAT_NODROP
|
9681 IORING_FEAT_SUBMIT_STABLE
| IORING_FEAT_RW_CUR_POS
|
9682 IORING_FEAT_CUR_PERSONALITY
| IORING_FEAT_FAST_POLL
|
9683 IORING_FEAT_POLL_32BITS
| IORING_FEAT_SQPOLL_NONFIXED
|
9684 IORING_FEAT_EXT_ARG
;
9686 if (copy_to_user(params
, p
, sizeof(*p
))) {
9691 file
= io_uring_get_file(ctx
);
9693 ret
= PTR_ERR(file
);
9698 * Install ring fd as the very last thing, so we don't risk someone
9699 * having closed it before we finish setup
9701 ret
= io_uring_install_fd(ctx
, file
);
9703 /* fput will clean it up */
9708 trace_io_uring_create(ret
, ctx
, p
->sq_entries
, p
->cq_entries
, p
->flags
);
9711 io_disable_sqo_submit(ctx
);
9712 io_ring_ctx_wait_and_kill(ctx
);
9717 * Sets up an aio uring context, and returns the fd. Applications asks for a
9718 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9719 * params structure passed in.
9721 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
9723 struct io_uring_params p
;
9726 if (copy_from_user(&p
, params
, sizeof(p
)))
9728 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
9733 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
9734 IORING_SETUP_SQ_AFF
| IORING_SETUP_CQSIZE
|
9735 IORING_SETUP_CLAMP
| IORING_SETUP_ATTACH_WQ
|
9736 IORING_SETUP_R_DISABLED
))
9739 return io_uring_create(entries
, &p
, params
);
9742 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
9743 struct io_uring_params __user
*, params
)
9745 return io_uring_setup(entries
, params
);
9748 static int io_probe(struct io_ring_ctx
*ctx
, void __user
*arg
, unsigned nr_args
)
9750 struct io_uring_probe
*p
;
9754 size
= struct_size(p
, ops
, nr_args
);
9755 if (size
== SIZE_MAX
)
9757 p
= kzalloc(size
, GFP_KERNEL
);
9762 if (copy_from_user(p
, arg
, size
))
9765 if (memchr_inv(p
, 0, size
))
9768 p
->last_op
= IORING_OP_LAST
- 1;
9769 if (nr_args
> IORING_OP_LAST
)
9770 nr_args
= IORING_OP_LAST
;
9772 for (i
= 0; i
< nr_args
; i
++) {
9774 if (!io_op_defs
[i
].not_supported
)
9775 p
->ops
[i
].flags
= IO_URING_OP_SUPPORTED
;
9780 if (copy_to_user(arg
, p
, size
))
9787 static int io_register_personality(struct io_ring_ctx
*ctx
)
9789 struct io_identity
*id
;
9792 id
= kmalloc(sizeof(*id
), GFP_KERNEL
);
9796 io_init_identity(id
);
9797 id
->creds
= get_current_cred();
9799 ret
= idr_alloc_cyclic(&ctx
->personality_idr
, id
, 1, USHRT_MAX
, GFP_KERNEL
);
9801 put_cred(id
->creds
);
9807 static int io_unregister_personality(struct io_ring_ctx
*ctx
, unsigned id
)
9809 struct io_identity
*iod
;
9811 iod
= idr_remove(&ctx
->personality_idr
, id
);
9813 put_cred(iod
->creds
);
9814 if (refcount_dec_and_test(&iod
->count
))
9822 static int io_register_restrictions(struct io_ring_ctx
*ctx
, void __user
*arg
,
9823 unsigned int nr_args
)
9825 struct io_uring_restriction
*res
;
9829 /* Restrictions allowed only if rings started disabled */
9830 if (!(ctx
->flags
& IORING_SETUP_R_DISABLED
))
9833 /* We allow only a single restrictions registration */
9834 if (ctx
->restrictions
.registered
)
9837 if (!arg
|| nr_args
> IORING_MAX_RESTRICTIONS
)
9840 size
= array_size(nr_args
, sizeof(*res
));
9841 if (size
== SIZE_MAX
)
9844 res
= memdup_user(arg
, size
);
9846 return PTR_ERR(res
);
9850 for (i
= 0; i
< nr_args
; i
++) {
9851 switch (res
[i
].opcode
) {
9852 case IORING_RESTRICTION_REGISTER_OP
:
9853 if (res
[i
].register_op
>= IORING_REGISTER_LAST
) {
9858 __set_bit(res
[i
].register_op
,
9859 ctx
->restrictions
.register_op
);
9861 case IORING_RESTRICTION_SQE_OP
:
9862 if (res
[i
].sqe_op
>= IORING_OP_LAST
) {
9867 __set_bit(res
[i
].sqe_op
, ctx
->restrictions
.sqe_op
);
9869 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED
:
9870 ctx
->restrictions
.sqe_flags_allowed
= res
[i
].sqe_flags
;
9872 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED
:
9873 ctx
->restrictions
.sqe_flags_required
= res
[i
].sqe_flags
;
9882 /* Reset all restrictions if an error happened */
9884 memset(&ctx
->restrictions
, 0, sizeof(ctx
->restrictions
));
9886 ctx
->restrictions
.registered
= true;
9892 static int io_register_enable_rings(struct io_ring_ctx
*ctx
)
9894 if (!(ctx
->flags
& IORING_SETUP_R_DISABLED
))
9897 if (ctx
->restrictions
.registered
)
9898 ctx
->restricted
= 1;
9900 ctx
->flags
&= ~IORING_SETUP_R_DISABLED
;
9902 io_sq_offload_start(ctx
);
9907 static bool io_register_op_must_quiesce(int op
)
9910 case IORING_UNREGISTER_FILES
:
9911 case IORING_REGISTER_FILES_UPDATE
:
9912 case IORING_REGISTER_PROBE
:
9913 case IORING_REGISTER_PERSONALITY
:
9914 case IORING_UNREGISTER_PERSONALITY
:
9921 static int __io_uring_register(struct io_ring_ctx
*ctx
, unsigned opcode
,
9922 void __user
*arg
, unsigned nr_args
)
9923 __releases(ctx
->uring_lock
)
9924 __acquires(ctx
->uring_lock
)
9929 * We're inside the ring mutex, if the ref is already dying, then
9930 * someone else killed the ctx or is already going through
9931 * io_uring_register().
9933 if (percpu_ref_is_dying(&ctx
->refs
))
9936 if (io_register_op_must_quiesce(opcode
)) {
9937 percpu_ref_kill(&ctx
->refs
);
9940 * Drop uring mutex before waiting for references to exit. If
9941 * another thread is currently inside io_uring_enter() it might
9942 * need to grab the uring_lock to make progress. If we hold it
9943 * here across the drain wait, then we can deadlock. It's safe
9944 * to drop the mutex here, since no new references will come in
9945 * after we've killed the percpu ref.
9947 mutex_unlock(&ctx
->uring_lock
);
9949 ret
= wait_for_completion_interruptible(&ctx
->ref_comp
);
9952 ret
= io_run_task_work_sig();
9957 mutex_lock(&ctx
->uring_lock
);
9960 percpu_ref_resurrect(&ctx
->refs
);
9965 if (ctx
->restricted
) {
9966 if (opcode
>= IORING_REGISTER_LAST
) {
9971 if (!test_bit(opcode
, ctx
->restrictions
.register_op
)) {
9978 case IORING_REGISTER_BUFFERS
:
9979 ret
= io_sqe_buffer_register(ctx
, arg
, nr_args
);
9981 case IORING_UNREGISTER_BUFFERS
:
9985 ret
= io_sqe_buffer_unregister(ctx
);
9987 case IORING_REGISTER_FILES
:
9988 ret
= io_sqe_files_register(ctx
, arg
, nr_args
);
9990 case IORING_UNREGISTER_FILES
:
9994 ret
= io_sqe_files_unregister(ctx
);
9996 case IORING_REGISTER_FILES_UPDATE
:
9997 ret
= io_sqe_files_update(ctx
, arg
, nr_args
);
9999 case IORING_REGISTER_EVENTFD
:
10000 case IORING_REGISTER_EVENTFD_ASYNC
:
10004 ret
= io_eventfd_register(ctx
, arg
);
10007 if (opcode
== IORING_REGISTER_EVENTFD_ASYNC
)
10008 ctx
->eventfd_async
= 1;
10010 ctx
->eventfd_async
= 0;
10012 case IORING_UNREGISTER_EVENTFD
:
10014 if (arg
|| nr_args
)
10016 ret
= io_eventfd_unregister(ctx
);
10018 case IORING_REGISTER_PROBE
:
10020 if (!arg
|| nr_args
> 256)
10022 ret
= io_probe(ctx
, arg
, nr_args
);
10024 case IORING_REGISTER_PERSONALITY
:
10026 if (arg
|| nr_args
)
10028 ret
= io_register_personality(ctx
);
10030 case IORING_UNREGISTER_PERSONALITY
:
10034 ret
= io_unregister_personality(ctx
, nr_args
);
10036 case IORING_REGISTER_ENABLE_RINGS
:
10038 if (arg
|| nr_args
)
10040 ret
= io_register_enable_rings(ctx
);
10042 case IORING_REGISTER_RESTRICTIONS
:
10043 ret
= io_register_restrictions(ctx
, arg
, nr_args
);
10051 if (io_register_op_must_quiesce(opcode
)) {
10052 /* bring the ctx back to life */
10053 percpu_ref_reinit(&ctx
->refs
);
10055 reinit_completion(&ctx
->ref_comp
);
10060 SYSCALL_DEFINE4(io_uring_register
, unsigned int, fd
, unsigned int, opcode
,
10061 void __user
*, arg
, unsigned int, nr_args
)
10063 struct io_ring_ctx
*ctx
;
10072 if (f
.file
->f_op
!= &io_uring_fops
)
10075 ctx
= f
.file
->private_data
;
10077 mutex_lock(&ctx
->uring_lock
);
10078 ret
= __io_uring_register(ctx
, opcode
, arg
, nr_args
);
10079 mutex_unlock(&ctx
->uring_lock
);
10080 trace_io_uring_register(ctx
, opcode
, ctx
->nr_user_files
, ctx
->nr_user_bufs
,
10081 ctx
->cq_ev_fd
!= NULL
, ret
);
10087 static int __init
io_uring_init(void)
10089 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10090 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10091 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10094 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10095 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10096 BUILD_BUG_ON(sizeof(struct io_uring_sqe
) != 64);
10097 BUILD_BUG_SQE_ELEM(0, __u8
, opcode
);
10098 BUILD_BUG_SQE_ELEM(1, __u8
, flags
);
10099 BUILD_BUG_SQE_ELEM(2, __u16
, ioprio
);
10100 BUILD_BUG_SQE_ELEM(4, __s32
, fd
);
10101 BUILD_BUG_SQE_ELEM(8, __u64
, off
);
10102 BUILD_BUG_SQE_ELEM(8, __u64
, addr2
);
10103 BUILD_BUG_SQE_ELEM(16, __u64
, addr
);
10104 BUILD_BUG_SQE_ELEM(16, __u64
, splice_off_in
);
10105 BUILD_BUG_SQE_ELEM(24, __u32
, len
);
10106 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t
, rw_flags
);
10107 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags
);
10108 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32
, rw_flags
);
10109 BUILD_BUG_SQE_ELEM(28, __u32
, fsync_flags
);
10110 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16
, poll_events
);
10111 BUILD_BUG_SQE_ELEM(28, __u32
, poll32_events
);
10112 BUILD_BUG_SQE_ELEM(28, __u32
, sync_range_flags
);
10113 BUILD_BUG_SQE_ELEM(28, __u32
, msg_flags
);
10114 BUILD_BUG_SQE_ELEM(28, __u32
, timeout_flags
);
10115 BUILD_BUG_SQE_ELEM(28, __u32
, accept_flags
);
10116 BUILD_BUG_SQE_ELEM(28, __u32
, cancel_flags
);
10117 BUILD_BUG_SQE_ELEM(28, __u32
, open_flags
);
10118 BUILD_BUG_SQE_ELEM(28, __u32
, statx_flags
);
10119 BUILD_BUG_SQE_ELEM(28, __u32
, fadvise_advice
);
10120 BUILD_BUG_SQE_ELEM(28, __u32
, splice_flags
);
10121 BUILD_BUG_SQE_ELEM(32, __u64
, user_data
);
10122 BUILD_BUG_SQE_ELEM(40, __u16
, buf_index
);
10123 BUILD_BUG_SQE_ELEM(42, __u16
, personality
);
10124 BUILD_BUG_SQE_ELEM(44, __s32
, splice_fd_in
);
10126 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs
) != IORING_OP_LAST
);
10127 BUILD_BUG_ON(__REQ_F_LAST_BIT
>= 8 * sizeof(int));
10128 req_cachep
= KMEM_CACHE(io_kiocb
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
10131 __initcall(io_uring_init
);