Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / net / dsa / tag_8021q.c
blob8e3e8a5b855930b3aa20d5251ff66e235562f0c8
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
4 * This module is not a complete tagger implementation. It only provides
5 * primitives for taggers that rely on 802.1Q VLAN tags to use. The
6 * dsa_8021q_netdev_ops is registered for API compliance and not used
7 * directly by callers.
8 */
9 #include <linux/if_bridge.h>
10 #include <linux/if_vlan.h>
11 #include <linux/dsa/8021q.h>
13 #include "dsa_priv.h"
15 /* Binary structure of the fake 12-bit VID field (when the TPID is
16 * ETH_P_DSA_8021Q):
18 * | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
19 * +-----------+-----+-----------------+-----------+-----------------------+
20 * | DIR | SVL | SWITCH_ID | SUBVLAN | PORT |
21 * +-----------+-----+-----------------+-----------+-----------------------+
23 * DIR - VID[11:10]:
24 * Direction flags.
25 * * 1 (0b01) for RX VLAN,
26 * * 2 (0b10) for TX VLAN.
27 * These values make the special VIDs of 0, 1 and 4095 to be left
28 * unused by this coding scheme.
30 * SVL/SUBVLAN - { VID[9], VID[5:4] }:
31 * Sub-VLAN encoding. Valid only when DIR indicates an RX VLAN.
32 * * 0 (0b000): Field does not encode a sub-VLAN, either because
33 * received traffic is untagged, PVID-tagged or because a second
34 * VLAN tag is present after this tag and not inside of it.
35 * * 1 (0b001): Received traffic is tagged with a VID value private
36 * to the host. This field encodes the index in the host's lookup
37 * table through which the value of the ingress VLAN ID can be
38 * recovered.
39 * * 2 (0b010): Field encodes a sub-VLAN.
40 * ...
41 * * 7 (0b111): Field encodes a sub-VLAN.
42 * When DIR indicates a TX VLAN, SUBVLAN must be transmitted as zero
43 * (by the host) and ignored on receive (by the switch).
45 * SWITCH_ID - VID[8:6]:
46 * Index of switch within DSA tree. Must be between 0 and 7.
48 * PORT - VID[3:0]:
49 * Index of switch port. Must be between 0 and 15.
52 #define DSA_8021Q_DIR_SHIFT 10
53 #define DSA_8021Q_DIR_MASK GENMASK(11, 10)
54 #define DSA_8021Q_DIR(x) (((x) << DSA_8021Q_DIR_SHIFT) & \
55 DSA_8021Q_DIR_MASK)
56 #define DSA_8021Q_DIR_RX DSA_8021Q_DIR(1)
57 #define DSA_8021Q_DIR_TX DSA_8021Q_DIR(2)
59 #define DSA_8021Q_SWITCH_ID_SHIFT 6
60 #define DSA_8021Q_SWITCH_ID_MASK GENMASK(8, 6)
61 #define DSA_8021Q_SWITCH_ID(x) (((x) << DSA_8021Q_SWITCH_ID_SHIFT) & \
62 DSA_8021Q_SWITCH_ID_MASK)
64 #define DSA_8021Q_SUBVLAN_HI_SHIFT 9
65 #define DSA_8021Q_SUBVLAN_HI_MASK GENMASK(9, 9)
66 #define DSA_8021Q_SUBVLAN_LO_SHIFT 4
67 #define DSA_8021Q_SUBVLAN_LO_MASK GENMASK(4, 3)
68 #define DSA_8021Q_SUBVLAN_HI(x) (((x) & GENMASK(2, 2)) >> 2)
69 #define DSA_8021Q_SUBVLAN_LO(x) ((x) & GENMASK(1, 0))
70 #define DSA_8021Q_SUBVLAN(x) \
71 (((DSA_8021Q_SUBVLAN_LO(x) << DSA_8021Q_SUBVLAN_LO_SHIFT) & \
72 DSA_8021Q_SUBVLAN_LO_MASK) | \
73 ((DSA_8021Q_SUBVLAN_HI(x) << DSA_8021Q_SUBVLAN_HI_SHIFT) & \
74 DSA_8021Q_SUBVLAN_HI_MASK))
76 #define DSA_8021Q_PORT_SHIFT 0
77 #define DSA_8021Q_PORT_MASK GENMASK(3, 0)
78 #define DSA_8021Q_PORT(x) (((x) << DSA_8021Q_PORT_SHIFT) & \
79 DSA_8021Q_PORT_MASK)
81 /* Returns the VID to be inserted into the frame from xmit for switch steering
82 * instructions on egress. Encodes switch ID and port ID.
84 u16 dsa_8021q_tx_vid(struct dsa_switch *ds, int port)
86 return DSA_8021Q_DIR_TX | DSA_8021Q_SWITCH_ID(ds->index) |
87 DSA_8021Q_PORT(port);
89 EXPORT_SYMBOL_GPL(dsa_8021q_tx_vid);
91 /* Returns the VID that will be installed as pvid for this switch port, sent as
92 * tagged egress towards the CPU port and decoded by the rcv function.
94 u16 dsa_8021q_rx_vid(struct dsa_switch *ds, int port)
96 return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
97 DSA_8021Q_PORT(port);
99 EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid);
101 u16 dsa_8021q_rx_vid_subvlan(struct dsa_switch *ds, int port, u16 subvlan)
103 return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
104 DSA_8021Q_PORT(port) | DSA_8021Q_SUBVLAN(subvlan);
106 EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid_subvlan);
108 /* Returns the decoded switch ID from the RX VID. */
109 int dsa_8021q_rx_switch_id(u16 vid)
111 return (vid & DSA_8021Q_SWITCH_ID_MASK) >> DSA_8021Q_SWITCH_ID_SHIFT;
113 EXPORT_SYMBOL_GPL(dsa_8021q_rx_switch_id);
115 /* Returns the decoded port ID from the RX VID. */
116 int dsa_8021q_rx_source_port(u16 vid)
118 return (vid & DSA_8021Q_PORT_MASK) >> DSA_8021Q_PORT_SHIFT;
120 EXPORT_SYMBOL_GPL(dsa_8021q_rx_source_port);
122 /* Returns the decoded subvlan from the RX VID. */
123 u16 dsa_8021q_rx_subvlan(u16 vid)
125 u16 svl_hi, svl_lo;
127 svl_hi = (vid & DSA_8021Q_SUBVLAN_HI_MASK) >>
128 DSA_8021Q_SUBVLAN_HI_SHIFT;
129 svl_lo = (vid & DSA_8021Q_SUBVLAN_LO_MASK) >>
130 DSA_8021Q_SUBVLAN_LO_SHIFT;
132 return (svl_hi << 2) | svl_lo;
134 EXPORT_SYMBOL_GPL(dsa_8021q_rx_subvlan);
136 bool vid_is_dsa_8021q(u16 vid)
138 return ((vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_RX ||
139 (vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_TX);
141 EXPORT_SYMBOL_GPL(vid_is_dsa_8021q);
143 /* If @enabled is true, installs @vid with @flags into the switch port's HW
144 * filter.
145 * If @enabled is false, deletes @vid (ignores @flags) from the port. Had the
146 * user explicitly configured this @vid through the bridge core, then the @vid
147 * is installed again, but this time with the flags from the bridge layer.
149 static int dsa_8021q_vid_apply(struct dsa_8021q_context *ctx, int port, u16 vid,
150 u16 flags, bool enabled)
152 struct dsa_port *dp = dsa_to_port(ctx->ds, port);
154 if (enabled)
155 return ctx->ops->vlan_add(ctx->ds, dp->index, vid, flags);
157 return ctx->ops->vlan_del(ctx->ds, dp->index, vid);
160 /* RX VLAN tagging (left) and TX VLAN tagging (right) setup shown for a single
161 * front-panel switch port (here swp0).
163 * Port identification through VLAN (802.1Q) tags has different requirements
164 * for it to work effectively:
165 * - On RX (ingress from network): each front-panel port must have a pvid
166 * that uniquely identifies it, and the egress of this pvid must be tagged
167 * towards the CPU port, so that software can recover the source port based
168 * on the VID in the frame. But this would only work for standalone ports;
169 * if bridged, this VLAN setup would break autonomous forwarding and would
170 * force all switched traffic to pass through the CPU. So we must also make
171 * the other front-panel ports members of this VID we're adding, albeit
172 * we're not making it their PVID (they'll still have their own).
173 * By the way - just because we're installing the same VID in multiple
174 * switch ports doesn't mean that they'll start to talk to one another, even
175 * while not bridged: the final forwarding decision is still an AND between
176 * the L2 forwarding information (which is limiting forwarding in this case)
177 * and the VLAN-based restrictions (of which there are none in this case,
178 * since all ports are members).
179 * - On TX (ingress from CPU and towards network) we are faced with a problem.
180 * If we were to tag traffic (from within DSA) with the port's pvid, all
181 * would be well, assuming the switch ports were standalone. Frames would
182 * have no choice but to be directed towards the correct front-panel port.
183 * But because we also want the RX VLAN to not break bridging, then
184 * inevitably that means that we have to give them a choice (of what
185 * front-panel port to go out on), and therefore we cannot steer traffic
186 * based on the RX VID. So what we do is simply install one more VID on the
187 * front-panel and CPU ports, and profit off of the fact that steering will
188 * work just by virtue of the fact that there is only one other port that's
189 * a member of the VID we're tagging the traffic with - the desired one.
191 * So at the end, each front-panel port will have one RX VID (also the PVID),
192 * the RX VID of all other front-panel ports, and one TX VID. Whereas the CPU
193 * port will have the RX and TX VIDs of all front-panel ports, and on top of
194 * that, is also tagged-input and tagged-output (VLAN trunk).
196 * CPU port CPU port
197 * +-------------+-----+-------------+ +-------------+-----+-------------+
198 * | RX VID | | | | TX VID | | |
199 * | of swp0 | | | | of swp0 | | |
200 * | +-----+ | | +-----+ |
201 * | ^ T | | | Tagged |
202 * | | | | | ingress |
203 * | +-------+---+---+-------+ | | +-----------+ |
204 * | | | | | | | | Untagged |
205 * | | U v U v U v | | v egress |
206 * | +-----+ +-----+ +-----+ +-----+ | | +-----+ +-----+ +-----+ +-----+ |
207 * | | | | | | | | | | | | | | | | | | | |
208 * | |PVID | | | | | | | | | | | | | | | | | |
209 * +-+-----+-+-----+-+-----+-+-----+-+ +-+-----+-+-----+-+-----+-+-----+-+
210 * swp0 swp1 swp2 swp3 swp0 swp1 swp2 swp3
212 static int dsa_8021q_setup_port(struct dsa_8021q_context *ctx, int port,
213 bool enabled)
215 int upstream = dsa_upstream_port(ctx->ds, port);
216 u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);
217 u16 tx_vid = dsa_8021q_tx_vid(ctx->ds, port);
218 struct net_device *master;
219 int i, err, subvlan;
221 /* The CPU port is implicitly configured by
222 * configuring the front-panel ports
224 if (!dsa_is_user_port(ctx->ds, port))
225 return 0;
227 master = dsa_to_port(ctx->ds, port)->cpu_dp->master;
229 /* Add this user port's RX VID to the membership list of all others
230 * (including itself). This is so that bridging will not be hindered.
231 * L2 forwarding rules still take precedence when there are no VLAN
232 * restrictions, so there are no concerns about leaking traffic.
234 for (i = 0; i < ctx->ds->num_ports; i++) {
235 u16 flags;
237 if (i == upstream)
238 continue;
239 else if (i == port)
240 /* The RX VID is pvid on this port */
241 flags = BRIDGE_VLAN_INFO_UNTAGGED |
242 BRIDGE_VLAN_INFO_PVID;
243 else
244 /* The RX VID is a regular VLAN on all others */
245 flags = BRIDGE_VLAN_INFO_UNTAGGED;
247 err = dsa_8021q_vid_apply(ctx, i, rx_vid, flags, enabled);
248 if (err) {
249 dev_err(ctx->ds->dev,
250 "Failed to apply RX VID %d to port %d: %d\n",
251 rx_vid, port, err);
252 return err;
256 /* CPU port needs to see this port's RX VID
257 * as tagged egress.
259 err = dsa_8021q_vid_apply(ctx, upstream, rx_vid, 0, enabled);
260 if (err) {
261 dev_err(ctx->ds->dev,
262 "Failed to apply RX VID %d to port %d: %d\n",
263 rx_vid, port, err);
264 return err;
267 /* Add to the master's RX filter not only @rx_vid, but in fact
268 * the entire subvlan range, just in case this DSA switch might
269 * want to use sub-VLANs.
271 for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++) {
272 u16 vid = dsa_8021q_rx_vid_subvlan(ctx->ds, port, subvlan);
274 if (enabled)
275 vlan_vid_add(master, ctx->proto, vid);
276 else
277 vlan_vid_del(master, ctx->proto, vid);
280 /* Finally apply the TX VID on this port and on the CPU port */
281 err = dsa_8021q_vid_apply(ctx, port, tx_vid, BRIDGE_VLAN_INFO_UNTAGGED,
282 enabled);
283 if (err) {
284 dev_err(ctx->ds->dev,
285 "Failed to apply TX VID %d on port %d: %d\n",
286 tx_vid, port, err);
287 return err;
289 err = dsa_8021q_vid_apply(ctx, upstream, tx_vid, 0, enabled);
290 if (err) {
291 dev_err(ctx->ds->dev,
292 "Failed to apply TX VID %d on port %d: %d\n",
293 tx_vid, upstream, err);
294 return err;
297 return err;
300 int dsa_8021q_setup(struct dsa_8021q_context *ctx, bool enabled)
302 int rc, port;
304 ASSERT_RTNL();
306 for (port = 0; port < ctx->ds->num_ports; port++) {
307 rc = dsa_8021q_setup_port(ctx, port, enabled);
308 if (rc < 0) {
309 dev_err(ctx->ds->dev,
310 "Failed to setup VLAN tagging for port %d: %d\n",
311 port, rc);
312 return rc;
316 return 0;
318 EXPORT_SYMBOL_GPL(dsa_8021q_setup);
320 static int dsa_8021q_crosschip_link_apply(struct dsa_8021q_context *ctx,
321 int port,
322 struct dsa_8021q_context *other_ctx,
323 int other_port, bool enabled)
325 u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);
327 /* @rx_vid of local @ds port @port goes to @other_port of
328 * @other_ds
330 return dsa_8021q_vid_apply(other_ctx, other_port, rx_vid,
331 BRIDGE_VLAN_INFO_UNTAGGED, enabled);
334 static int dsa_8021q_crosschip_link_add(struct dsa_8021q_context *ctx, int port,
335 struct dsa_8021q_context *other_ctx,
336 int other_port)
338 struct dsa_8021q_crosschip_link *c;
340 list_for_each_entry(c, &ctx->crosschip_links, list) {
341 if (c->port == port && c->other_ctx == other_ctx &&
342 c->other_port == other_port) {
343 refcount_inc(&c->refcount);
344 return 0;
348 dev_dbg(ctx->ds->dev,
349 "adding crosschip link from port %d to %s port %d\n",
350 port, dev_name(other_ctx->ds->dev), other_port);
352 c = kzalloc(sizeof(*c), GFP_KERNEL);
353 if (!c)
354 return -ENOMEM;
356 c->port = port;
357 c->other_ctx = other_ctx;
358 c->other_port = other_port;
359 refcount_set(&c->refcount, 1);
361 list_add(&c->list, &ctx->crosschip_links);
363 return 0;
366 static void dsa_8021q_crosschip_link_del(struct dsa_8021q_context *ctx,
367 struct dsa_8021q_crosschip_link *c,
368 bool *keep)
370 *keep = !refcount_dec_and_test(&c->refcount);
372 if (*keep)
373 return;
375 dev_dbg(ctx->ds->dev,
376 "deleting crosschip link from port %d to %s port %d\n",
377 c->port, dev_name(c->other_ctx->ds->dev), c->other_port);
379 list_del(&c->list);
380 kfree(c);
383 /* Make traffic from local port @port be received by remote port @other_port.
384 * This means that our @rx_vid needs to be installed on @other_ds's upstream
385 * and user ports. The user ports should be egress-untagged so that they can
386 * pop the dsa_8021q VLAN. But the @other_upstream can be either egress-tagged
387 * or untagged: it doesn't matter, since it should never egress a frame having
388 * our @rx_vid.
390 int dsa_8021q_crosschip_bridge_join(struct dsa_8021q_context *ctx, int port,
391 struct dsa_8021q_context *other_ctx,
392 int other_port)
394 /* @other_upstream is how @other_ds reaches us. If we are part
395 * of disjoint trees, then we are probably connected through
396 * our CPU ports. If we're part of the same tree though, we should
397 * probably use dsa_towards_port.
399 int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
400 int rc;
402 rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_port);
403 if (rc)
404 return rc;
406 rc = dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
407 other_port, true);
408 if (rc)
409 return rc;
411 rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_upstream);
412 if (rc)
413 return rc;
415 return dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
416 other_upstream, true);
418 EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_join);
420 int dsa_8021q_crosschip_bridge_leave(struct dsa_8021q_context *ctx, int port,
421 struct dsa_8021q_context *other_ctx,
422 int other_port)
424 int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
425 struct dsa_8021q_crosschip_link *c, *n;
427 list_for_each_entry_safe(c, n, &ctx->crosschip_links, list) {
428 if (c->port == port && c->other_ctx == other_ctx &&
429 (c->other_port == other_port ||
430 c->other_port == other_upstream)) {
431 struct dsa_8021q_context *other_ctx = c->other_ctx;
432 int other_port = c->other_port;
433 bool keep;
434 int rc;
436 dsa_8021q_crosschip_link_del(ctx, c, &keep);
437 if (keep)
438 continue;
440 rc = dsa_8021q_crosschip_link_apply(ctx, port,
441 other_ctx,
442 other_port,
443 false);
444 if (rc)
445 return rc;
449 return 0;
451 EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_leave);
453 struct sk_buff *dsa_8021q_xmit(struct sk_buff *skb, struct net_device *netdev,
454 u16 tpid, u16 tci)
456 /* skb->data points at skb_mac_header, which
457 * is fine for vlan_insert_tag.
459 return vlan_insert_tag(skb, htons(tpid), tci);
461 EXPORT_SYMBOL_GPL(dsa_8021q_xmit);
463 MODULE_LICENSE("GPL v2");