1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2007-2017 Nicira, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/skbuff.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
26 #include <net/sctp/checksum.h>
30 #include "conntrack.h"
32 #include "flow_netlink.h"
34 struct deferred_action
{
36 const struct nlattr
*actions
;
39 /* Store pkt_key clone when creating deferred action. */
40 struct sw_flow_key pkt_key
;
43 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
44 struct ovs_frag_data
{
48 __be16 inner_protocol
;
49 u16 network_offset
; /* valid only for MPLS */
54 u8 l2_data
[MAX_L2_LEN
];
57 static DEFINE_PER_CPU(struct ovs_frag_data
, ovs_frag_data_storage
);
59 #define DEFERRED_ACTION_FIFO_SIZE 10
60 #define OVS_RECURSION_LIMIT 5
61 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 /* Deferred action fifo queue storage. */
66 struct deferred_action fifo
[DEFERRED_ACTION_FIFO_SIZE
];
69 struct action_flow_keys
{
70 struct sw_flow_key key
[OVS_DEFERRED_ACTION_THRESHOLD
];
73 static struct action_fifo __percpu
*action_fifos
;
74 static struct action_flow_keys __percpu
*flow_keys
;
75 static DEFINE_PER_CPU(int, exec_actions_level
);
77 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
78 * space. Return NULL if out of key spaces.
80 static struct sw_flow_key
*clone_key(const struct sw_flow_key
*key_
)
82 struct action_flow_keys
*keys
= this_cpu_ptr(flow_keys
);
83 int level
= this_cpu_read(exec_actions_level
);
84 struct sw_flow_key
*key
= NULL
;
86 if (level
<= OVS_DEFERRED_ACTION_THRESHOLD
) {
87 key
= &keys
->key
[level
- 1];
94 static void action_fifo_init(struct action_fifo
*fifo
)
100 static bool action_fifo_is_empty(const struct action_fifo
*fifo
)
102 return (fifo
->head
== fifo
->tail
);
105 static struct deferred_action
*action_fifo_get(struct action_fifo
*fifo
)
107 if (action_fifo_is_empty(fifo
))
110 return &fifo
->fifo
[fifo
->tail
++];
113 static struct deferred_action
*action_fifo_put(struct action_fifo
*fifo
)
115 if (fifo
->head
>= DEFERRED_ACTION_FIFO_SIZE
- 1)
118 return &fifo
->fifo
[fifo
->head
++];
121 /* Return true if fifo is not full */
122 static struct deferred_action
*add_deferred_actions(struct sk_buff
*skb
,
123 const struct sw_flow_key
*key
,
124 const struct nlattr
*actions
,
125 const int actions_len
)
127 struct action_fifo
*fifo
;
128 struct deferred_action
*da
;
130 fifo
= this_cpu_ptr(action_fifos
);
131 da
= action_fifo_put(fifo
);
134 da
->actions
= actions
;
135 da
->actions_len
= actions_len
;
142 static void invalidate_flow_key(struct sw_flow_key
*key
)
144 key
->mac_proto
|= SW_FLOW_KEY_INVALID
;
147 static bool is_flow_key_valid(const struct sw_flow_key
*key
)
149 return !(key
->mac_proto
& SW_FLOW_KEY_INVALID
);
152 static int clone_execute(struct datapath
*dp
, struct sk_buff
*skb
,
153 struct sw_flow_key
*key
,
155 const struct nlattr
*actions
, int len
,
156 bool last
, bool clone_flow_key
);
158 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
159 struct sw_flow_key
*key
,
160 const struct nlattr
*attr
, int len
);
162 static int push_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
163 __be32 mpls_lse
, __be16 mpls_ethertype
, __u16 mac_len
)
167 err
= skb_mpls_push(skb
, mpls_lse
, mpls_ethertype
, mac_len
, !!mac_len
);
172 key
->mac_proto
= MAC_PROTO_NONE
;
174 invalidate_flow_key(key
);
178 static int pop_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
179 const __be16 ethertype
)
183 err
= skb_mpls_pop(skb
, ethertype
, skb
->mac_len
,
184 ovs_key_mac_proto(key
) == MAC_PROTO_ETHERNET
);
188 if (ethertype
== htons(ETH_P_TEB
))
189 key
->mac_proto
= MAC_PROTO_ETHERNET
;
191 invalidate_flow_key(key
);
195 static int set_mpls(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
196 const __be32
*mpls_lse
, const __be32
*mask
)
198 struct mpls_shim_hdr
*stack
;
202 if (!pskb_may_pull(skb
, skb_network_offset(skb
) + MPLS_HLEN
))
205 stack
= mpls_hdr(skb
);
206 lse
= OVS_MASKED(stack
->label_stack_entry
, *mpls_lse
, *mask
);
207 err
= skb_mpls_update_lse(skb
, lse
);
211 flow_key
->mpls
.lse
[0] = lse
;
215 static int pop_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
219 err
= skb_vlan_pop(skb
);
220 if (skb_vlan_tag_present(skb
)) {
221 invalidate_flow_key(key
);
223 key
->eth
.vlan
.tci
= 0;
224 key
->eth
.vlan
.tpid
= 0;
229 static int push_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
,
230 const struct ovs_action_push_vlan
*vlan
)
232 if (skb_vlan_tag_present(skb
)) {
233 invalidate_flow_key(key
);
235 key
->eth
.vlan
.tci
= vlan
->vlan_tci
;
236 key
->eth
.vlan
.tpid
= vlan
->vlan_tpid
;
238 return skb_vlan_push(skb
, vlan
->vlan_tpid
,
239 ntohs(vlan
->vlan_tci
) & ~VLAN_CFI_MASK
);
242 /* 'src' is already properly masked. */
243 static void ether_addr_copy_masked(u8
*dst_
, const u8
*src_
, const u8
*mask_
)
245 u16
*dst
= (u16
*)dst_
;
246 const u16
*src
= (const u16
*)src_
;
247 const u16
*mask
= (const u16
*)mask_
;
249 OVS_SET_MASKED(dst
[0], src
[0], mask
[0]);
250 OVS_SET_MASKED(dst
[1], src
[1], mask
[1]);
251 OVS_SET_MASKED(dst
[2], src
[2], mask
[2]);
254 static int set_eth_addr(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
255 const struct ovs_key_ethernet
*key
,
256 const struct ovs_key_ethernet
*mask
)
260 err
= skb_ensure_writable(skb
, ETH_HLEN
);
264 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
266 ether_addr_copy_masked(eth_hdr(skb
)->h_source
, key
->eth_src
,
268 ether_addr_copy_masked(eth_hdr(skb
)->h_dest
, key
->eth_dst
,
271 skb_postpush_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
273 ether_addr_copy(flow_key
->eth
.src
, eth_hdr(skb
)->h_source
);
274 ether_addr_copy(flow_key
->eth
.dst
, eth_hdr(skb
)->h_dest
);
278 /* pop_eth does not support VLAN packets as this action is never called
281 static int pop_eth(struct sk_buff
*skb
, struct sw_flow_key
*key
)
285 err
= skb_eth_pop(skb
);
289 /* safe right before invalidate_flow_key */
290 key
->mac_proto
= MAC_PROTO_NONE
;
291 invalidate_flow_key(key
);
295 static int push_eth(struct sk_buff
*skb
, struct sw_flow_key
*key
,
296 const struct ovs_action_push_eth
*ethh
)
300 err
= skb_eth_push(skb
, ethh
->addresses
.eth_dst
,
301 ethh
->addresses
.eth_src
);
305 /* safe right before invalidate_flow_key */
306 key
->mac_proto
= MAC_PROTO_ETHERNET
;
307 invalidate_flow_key(key
);
311 static int push_nsh(struct sk_buff
*skb
, struct sw_flow_key
*key
,
312 const struct nshhdr
*nh
)
316 err
= nsh_push(skb
, nh
);
320 /* safe right before invalidate_flow_key */
321 key
->mac_proto
= MAC_PROTO_NONE
;
322 invalidate_flow_key(key
);
326 static int pop_nsh(struct sk_buff
*skb
, struct sw_flow_key
*key
)
334 /* safe right before invalidate_flow_key */
335 if (skb
->protocol
== htons(ETH_P_TEB
))
336 key
->mac_proto
= MAC_PROTO_ETHERNET
;
338 key
->mac_proto
= MAC_PROTO_NONE
;
339 invalidate_flow_key(key
);
343 static void update_ip_l4_checksum(struct sk_buff
*skb
, struct iphdr
*nh
,
344 __be32 addr
, __be32 new_addr
)
346 int transport_len
= skb
->len
- skb_transport_offset(skb
);
348 if (nh
->frag_off
& htons(IP_OFFSET
))
351 if (nh
->protocol
== IPPROTO_TCP
) {
352 if (likely(transport_len
>= sizeof(struct tcphdr
)))
353 inet_proto_csum_replace4(&tcp_hdr(skb
)->check
, skb
,
354 addr
, new_addr
, true);
355 } else if (nh
->protocol
== IPPROTO_UDP
) {
356 if (likely(transport_len
>= sizeof(struct udphdr
))) {
357 struct udphdr
*uh
= udp_hdr(skb
);
359 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
360 inet_proto_csum_replace4(&uh
->check
, skb
,
361 addr
, new_addr
, true);
363 uh
->check
= CSUM_MANGLED_0
;
369 static void set_ip_addr(struct sk_buff
*skb
, struct iphdr
*nh
,
370 __be32
*addr
, __be32 new_addr
)
372 update_ip_l4_checksum(skb
, nh
, *addr
, new_addr
);
373 csum_replace4(&nh
->check
, *addr
, new_addr
);
378 static void update_ipv6_checksum(struct sk_buff
*skb
, u8 l4_proto
,
379 __be32 addr
[4], const __be32 new_addr
[4])
381 int transport_len
= skb
->len
- skb_transport_offset(skb
);
383 if (l4_proto
== NEXTHDR_TCP
) {
384 if (likely(transport_len
>= sizeof(struct tcphdr
)))
385 inet_proto_csum_replace16(&tcp_hdr(skb
)->check
, skb
,
386 addr
, new_addr
, true);
387 } else if (l4_proto
== NEXTHDR_UDP
) {
388 if (likely(transport_len
>= sizeof(struct udphdr
))) {
389 struct udphdr
*uh
= udp_hdr(skb
);
391 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
392 inet_proto_csum_replace16(&uh
->check
, skb
,
393 addr
, new_addr
, true);
395 uh
->check
= CSUM_MANGLED_0
;
398 } else if (l4_proto
== NEXTHDR_ICMP
) {
399 if (likely(transport_len
>= sizeof(struct icmp6hdr
)))
400 inet_proto_csum_replace16(&icmp6_hdr(skb
)->icmp6_cksum
,
401 skb
, addr
, new_addr
, true);
405 static void mask_ipv6_addr(const __be32 old
[4], const __be32 addr
[4],
406 const __be32 mask
[4], __be32 masked
[4])
408 masked
[0] = OVS_MASKED(old
[0], addr
[0], mask
[0]);
409 masked
[1] = OVS_MASKED(old
[1], addr
[1], mask
[1]);
410 masked
[2] = OVS_MASKED(old
[2], addr
[2], mask
[2]);
411 masked
[3] = OVS_MASKED(old
[3], addr
[3], mask
[3]);
414 static void set_ipv6_addr(struct sk_buff
*skb
, u8 l4_proto
,
415 __be32 addr
[4], const __be32 new_addr
[4],
416 bool recalculate_csum
)
418 if (recalculate_csum
)
419 update_ipv6_checksum(skb
, l4_proto
, addr
, new_addr
);
422 memcpy(addr
, new_addr
, sizeof(__be32
[4]));
425 static void set_ipv6_fl(struct ipv6hdr
*nh
, u32 fl
, u32 mask
)
427 /* Bits 21-24 are always unmasked, so this retains their values. */
428 OVS_SET_MASKED(nh
->flow_lbl
[0], (u8
)(fl
>> 16), (u8
)(mask
>> 16));
429 OVS_SET_MASKED(nh
->flow_lbl
[1], (u8
)(fl
>> 8), (u8
)(mask
>> 8));
430 OVS_SET_MASKED(nh
->flow_lbl
[2], (u8
)fl
, (u8
)mask
);
433 static void set_ip_ttl(struct sk_buff
*skb
, struct iphdr
*nh
, u8 new_ttl
,
436 new_ttl
= OVS_MASKED(nh
->ttl
, new_ttl
, mask
);
438 csum_replace2(&nh
->check
, htons(nh
->ttl
<< 8), htons(new_ttl
<< 8));
442 static int set_ipv4(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
443 const struct ovs_key_ipv4
*key
,
444 const struct ovs_key_ipv4
*mask
)
450 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
451 sizeof(struct iphdr
));
457 /* Setting an IP addresses is typically only a side effect of
458 * matching on them in the current userspace implementation, so it
459 * makes sense to check if the value actually changed.
461 if (mask
->ipv4_src
) {
462 new_addr
= OVS_MASKED(nh
->saddr
, key
->ipv4_src
, mask
->ipv4_src
);
464 if (unlikely(new_addr
!= nh
->saddr
)) {
465 set_ip_addr(skb
, nh
, &nh
->saddr
, new_addr
);
466 flow_key
->ipv4
.addr
.src
= new_addr
;
469 if (mask
->ipv4_dst
) {
470 new_addr
= OVS_MASKED(nh
->daddr
, key
->ipv4_dst
, mask
->ipv4_dst
);
472 if (unlikely(new_addr
!= nh
->daddr
)) {
473 set_ip_addr(skb
, nh
, &nh
->daddr
, new_addr
);
474 flow_key
->ipv4
.addr
.dst
= new_addr
;
477 if (mask
->ipv4_tos
) {
478 ipv4_change_dsfield(nh
, ~mask
->ipv4_tos
, key
->ipv4_tos
);
479 flow_key
->ip
.tos
= nh
->tos
;
481 if (mask
->ipv4_ttl
) {
482 set_ip_ttl(skb
, nh
, key
->ipv4_ttl
, mask
->ipv4_ttl
);
483 flow_key
->ip
.ttl
= nh
->ttl
;
489 static bool is_ipv6_mask_nonzero(const __be32 addr
[4])
491 return !!(addr
[0] | addr
[1] | addr
[2] | addr
[3]);
494 static int set_ipv6(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
495 const struct ovs_key_ipv6
*key
,
496 const struct ovs_key_ipv6
*mask
)
501 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
502 sizeof(struct ipv6hdr
));
508 /* Setting an IP addresses is typically only a side effect of
509 * matching on them in the current userspace implementation, so it
510 * makes sense to check if the value actually changed.
512 if (is_ipv6_mask_nonzero(mask
->ipv6_src
)) {
513 __be32
*saddr
= (__be32
*)&nh
->saddr
;
516 mask_ipv6_addr(saddr
, key
->ipv6_src
, mask
->ipv6_src
, masked
);
518 if (unlikely(memcmp(saddr
, masked
, sizeof(masked
)))) {
519 set_ipv6_addr(skb
, flow_key
->ip
.proto
, saddr
, masked
,
521 memcpy(&flow_key
->ipv6
.addr
.src
, masked
,
522 sizeof(flow_key
->ipv6
.addr
.src
));
525 if (is_ipv6_mask_nonzero(mask
->ipv6_dst
)) {
526 unsigned int offset
= 0;
527 int flags
= IP6_FH_F_SKIP_RH
;
528 bool recalc_csum
= true;
529 __be32
*daddr
= (__be32
*)&nh
->daddr
;
532 mask_ipv6_addr(daddr
, key
->ipv6_dst
, mask
->ipv6_dst
, masked
);
534 if (unlikely(memcmp(daddr
, masked
, sizeof(masked
)))) {
535 if (ipv6_ext_hdr(nh
->nexthdr
))
536 recalc_csum
= (ipv6_find_hdr(skb
, &offset
,
541 set_ipv6_addr(skb
, flow_key
->ip
.proto
, daddr
, masked
,
543 memcpy(&flow_key
->ipv6
.addr
.dst
, masked
,
544 sizeof(flow_key
->ipv6
.addr
.dst
));
547 if (mask
->ipv6_tclass
) {
548 ipv6_change_dsfield(nh
, ~mask
->ipv6_tclass
, key
->ipv6_tclass
);
549 flow_key
->ip
.tos
= ipv6_get_dsfield(nh
);
551 if (mask
->ipv6_label
) {
552 set_ipv6_fl(nh
, ntohl(key
->ipv6_label
),
553 ntohl(mask
->ipv6_label
));
554 flow_key
->ipv6
.label
=
555 *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
557 if (mask
->ipv6_hlimit
) {
558 OVS_SET_MASKED(nh
->hop_limit
, key
->ipv6_hlimit
,
560 flow_key
->ip
.ttl
= nh
->hop_limit
;
565 static int set_nsh(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
566 const struct nlattr
*a
)
575 struct ovs_key_nsh key
;
576 struct ovs_key_nsh mask
;
578 err
= nsh_key_from_nlattr(a
, &key
, &mask
);
582 /* Make sure the NSH base header is there */
583 if (!pskb_may_pull(skb
, skb_network_offset(skb
) + NSH_BASE_HDR_LEN
))
587 length
= nsh_hdr_len(nh
);
589 /* Make sure the whole NSH header is there */
590 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
596 skb_postpull_rcsum(skb
, nh
, length
);
597 flags
= nsh_get_flags(nh
);
598 flags
= OVS_MASKED(flags
, key
.base
.flags
, mask
.base
.flags
);
599 flow_key
->nsh
.base
.flags
= flags
;
600 ttl
= nsh_get_ttl(nh
);
601 ttl
= OVS_MASKED(ttl
, key
.base
.ttl
, mask
.base
.ttl
);
602 flow_key
->nsh
.base
.ttl
= ttl
;
603 nsh_set_flags_and_ttl(nh
, flags
, ttl
);
604 nh
->path_hdr
= OVS_MASKED(nh
->path_hdr
, key
.base
.path_hdr
,
606 flow_key
->nsh
.base
.path_hdr
= nh
->path_hdr
;
607 switch (nh
->mdtype
) {
609 for (i
= 0; i
< NSH_MD1_CONTEXT_SIZE
; i
++) {
611 OVS_MASKED(nh
->md1
.context
[i
], key
.context
[i
],
614 memcpy(flow_key
->nsh
.context
, nh
->md1
.context
,
615 sizeof(nh
->md1
.context
));
618 memset(flow_key
->nsh
.context
, 0,
619 sizeof(flow_key
->nsh
.context
));
624 skb_postpush_rcsum(skb
, nh
, length
);
628 /* Must follow skb_ensure_writable() since that can move the skb data. */
629 static void set_tp_port(struct sk_buff
*skb
, __be16
*port
,
630 __be16 new_port
, __sum16
*check
)
632 inet_proto_csum_replace2(check
, skb
, *port
, new_port
, false);
636 static int set_udp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
637 const struct ovs_key_udp
*key
,
638 const struct ovs_key_udp
*mask
)
644 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
645 sizeof(struct udphdr
));
650 /* Either of the masks is non-zero, so do not bother checking them. */
651 src
= OVS_MASKED(uh
->source
, key
->udp_src
, mask
->udp_src
);
652 dst
= OVS_MASKED(uh
->dest
, key
->udp_dst
, mask
->udp_dst
);
654 if (uh
->check
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
655 if (likely(src
!= uh
->source
)) {
656 set_tp_port(skb
, &uh
->source
, src
, &uh
->check
);
657 flow_key
->tp
.src
= src
;
659 if (likely(dst
!= uh
->dest
)) {
660 set_tp_port(skb
, &uh
->dest
, dst
, &uh
->check
);
661 flow_key
->tp
.dst
= dst
;
664 if (unlikely(!uh
->check
))
665 uh
->check
= CSUM_MANGLED_0
;
669 flow_key
->tp
.src
= src
;
670 flow_key
->tp
.dst
= dst
;
678 static int set_tcp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
679 const struct ovs_key_tcp
*key
,
680 const struct ovs_key_tcp
*mask
)
686 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
687 sizeof(struct tcphdr
));
692 src
= OVS_MASKED(th
->source
, key
->tcp_src
, mask
->tcp_src
);
693 if (likely(src
!= th
->source
)) {
694 set_tp_port(skb
, &th
->source
, src
, &th
->check
);
695 flow_key
->tp
.src
= src
;
697 dst
= OVS_MASKED(th
->dest
, key
->tcp_dst
, mask
->tcp_dst
);
698 if (likely(dst
!= th
->dest
)) {
699 set_tp_port(skb
, &th
->dest
, dst
, &th
->check
);
700 flow_key
->tp
.dst
= dst
;
707 static int set_sctp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
708 const struct ovs_key_sctp
*key
,
709 const struct ovs_key_sctp
*mask
)
711 unsigned int sctphoff
= skb_transport_offset(skb
);
713 __le32 old_correct_csum
, new_csum
, old_csum
;
716 err
= skb_ensure_writable(skb
, sctphoff
+ sizeof(struct sctphdr
));
721 old_csum
= sh
->checksum
;
722 old_correct_csum
= sctp_compute_cksum(skb
, sctphoff
);
724 sh
->source
= OVS_MASKED(sh
->source
, key
->sctp_src
, mask
->sctp_src
);
725 sh
->dest
= OVS_MASKED(sh
->dest
, key
->sctp_dst
, mask
->sctp_dst
);
727 new_csum
= sctp_compute_cksum(skb
, sctphoff
);
729 /* Carry any checksum errors through. */
730 sh
->checksum
= old_csum
^ old_correct_csum
^ new_csum
;
733 flow_key
->tp
.src
= sh
->source
;
734 flow_key
->tp
.dst
= sh
->dest
;
739 static int ovs_vport_output(struct net
*net
, struct sock
*sk
,
742 struct ovs_frag_data
*data
= this_cpu_ptr(&ovs_frag_data_storage
);
743 struct vport
*vport
= data
->vport
;
745 if (skb_cow_head(skb
, data
->l2_len
) < 0) {
750 __skb_dst_copy(skb
, data
->dst
);
751 *OVS_CB(skb
) = data
->cb
;
752 skb
->inner_protocol
= data
->inner_protocol
;
753 if (data
->vlan_tci
& VLAN_CFI_MASK
)
754 __vlan_hwaccel_put_tag(skb
, data
->vlan_proto
, data
->vlan_tci
& ~VLAN_CFI_MASK
);
756 __vlan_hwaccel_clear_tag(skb
);
758 /* Reconstruct the MAC header. */
759 skb_push(skb
, data
->l2_len
);
760 memcpy(skb
->data
, &data
->l2_data
, data
->l2_len
);
761 skb_postpush_rcsum(skb
, skb
->data
, data
->l2_len
);
762 skb_reset_mac_header(skb
);
764 if (eth_p_mpls(skb
->protocol
)) {
765 skb
->inner_network_header
= skb
->network_header
;
766 skb_set_network_header(skb
, data
->network_offset
);
767 skb_reset_mac_len(skb
);
770 ovs_vport_send(vport
, skb
, data
->mac_proto
);
775 ovs_dst_get_mtu(const struct dst_entry
*dst
)
777 return dst
->dev
->mtu
;
780 static struct dst_ops ovs_dst_ops
= {
782 .mtu
= ovs_dst_get_mtu
,
785 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
786 * ovs_vport_output(), which is called once per fragmented packet.
788 static void prepare_frag(struct vport
*vport
, struct sk_buff
*skb
,
789 u16 orig_network_offset
, u8 mac_proto
)
791 unsigned int hlen
= skb_network_offset(skb
);
792 struct ovs_frag_data
*data
;
794 data
= this_cpu_ptr(&ovs_frag_data_storage
);
795 data
->dst
= skb
->_skb_refdst
;
797 data
->cb
= *OVS_CB(skb
);
798 data
->inner_protocol
= skb
->inner_protocol
;
799 data
->network_offset
= orig_network_offset
;
800 if (skb_vlan_tag_present(skb
))
801 data
->vlan_tci
= skb_vlan_tag_get(skb
) | VLAN_CFI_MASK
;
804 data
->vlan_proto
= skb
->vlan_proto
;
805 data
->mac_proto
= mac_proto
;
807 memcpy(&data
->l2_data
, skb
->data
, hlen
);
809 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
813 static void ovs_fragment(struct net
*net
, struct vport
*vport
,
814 struct sk_buff
*skb
, u16 mru
,
815 struct sw_flow_key
*key
)
817 u16 orig_network_offset
= 0;
819 if (eth_p_mpls(skb
->protocol
)) {
820 orig_network_offset
= skb_network_offset(skb
);
821 skb
->network_header
= skb
->inner_network_header
;
824 if (skb_network_offset(skb
) > MAX_L2_LEN
) {
825 OVS_NLERR(1, "L2 header too long to fragment");
829 if (key
->eth
.type
== htons(ETH_P_IP
)) {
830 struct dst_entry ovs_dst
;
831 unsigned long orig_dst
;
833 prepare_frag(vport
, skb
, orig_network_offset
,
834 ovs_key_mac_proto(key
));
835 dst_init(&ovs_dst
, &ovs_dst_ops
, NULL
, 1,
836 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
837 ovs_dst
.dev
= vport
->dev
;
839 orig_dst
= skb
->_skb_refdst
;
840 skb_dst_set_noref(skb
, &ovs_dst
);
841 IPCB(skb
)->frag_max_size
= mru
;
843 ip_do_fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
844 refdst_drop(orig_dst
);
845 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
846 unsigned long orig_dst
;
847 struct rt6_info ovs_rt
;
849 prepare_frag(vport
, skb
, orig_network_offset
,
850 ovs_key_mac_proto(key
));
851 memset(&ovs_rt
, 0, sizeof(ovs_rt
));
852 dst_init(&ovs_rt
.dst
, &ovs_dst_ops
, NULL
, 1,
853 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
854 ovs_rt
.dst
.dev
= vport
->dev
;
856 orig_dst
= skb
->_skb_refdst
;
857 skb_dst_set_noref(skb
, &ovs_rt
.dst
);
858 IP6CB(skb
)->frag_max_size
= mru
;
860 ipv6_stub
->ipv6_fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
861 refdst_drop(orig_dst
);
863 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
864 ovs_vport_name(vport
), ntohs(key
->eth
.type
), mru
,
874 static void do_output(struct datapath
*dp
, struct sk_buff
*skb
, int out_port
,
875 struct sw_flow_key
*key
)
877 struct vport
*vport
= ovs_vport_rcu(dp
, out_port
);
880 u16 mru
= OVS_CB(skb
)->mru
;
881 u32 cutlen
= OVS_CB(skb
)->cutlen
;
883 if (unlikely(cutlen
> 0)) {
884 if (skb
->len
- cutlen
> ovs_mac_header_len(key
))
885 pskb_trim(skb
, skb
->len
- cutlen
);
887 pskb_trim(skb
, ovs_mac_header_len(key
));
891 (skb
->len
<= mru
+ vport
->dev
->hard_header_len
))) {
892 ovs_vport_send(vport
, skb
, ovs_key_mac_proto(key
));
893 } else if (mru
<= vport
->dev
->mtu
) {
894 struct net
*net
= read_pnet(&dp
->net
);
896 ovs_fragment(net
, vport
, skb
, mru
, key
);
905 static int output_userspace(struct datapath
*dp
, struct sk_buff
*skb
,
906 struct sw_flow_key
*key
, const struct nlattr
*attr
,
907 const struct nlattr
*actions
, int actions_len
,
910 struct dp_upcall_info upcall
;
911 const struct nlattr
*a
;
914 memset(&upcall
, 0, sizeof(upcall
));
915 upcall
.cmd
= OVS_PACKET_CMD_ACTION
;
916 upcall
.mru
= OVS_CB(skb
)->mru
;
918 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
919 a
= nla_next(a
, &rem
)) {
920 switch (nla_type(a
)) {
921 case OVS_USERSPACE_ATTR_USERDATA
:
925 case OVS_USERSPACE_ATTR_PID
:
926 upcall
.portid
= nla_get_u32(a
);
929 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT
: {
930 /* Get out tunnel info. */
933 vport
= ovs_vport_rcu(dp
, nla_get_u32(a
));
937 err
= dev_fill_metadata_dst(vport
->dev
, skb
);
939 upcall
.egress_tun_info
= skb_tunnel_info(skb
);
945 case OVS_USERSPACE_ATTR_ACTIONS
: {
946 /* Include actions. */
947 upcall
.actions
= actions
;
948 upcall
.actions_len
= actions_len
;
952 } /* End of switch. */
955 return ovs_dp_upcall(dp
, skb
, key
, &upcall
, cutlen
);
958 static int dec_ttl_exception_handler(struct datapath
*dp
, struct sk_buff
*skb
,
959 struct sw_flow_key
*key
,
960 const struct nlattr
*attr
, bool last
)
962 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
963 struct nlattr
*actions
= nla_data(attr
);
965 if (nla_len(actions
))
966 return clone_execute(dp
, skb
, key
, 0, nla_data(actions
),
967 nla_len(actions
), last
, false);
973 /* When 'last' is true, sample() should always consume the 'skb'.
974 * Otherwise, sample() should keep 'skb' intact regardless what
975 * actions are executed within sample().
977 static int sample(struct datapath
*dp
, struct sk_buff
*skb
,
978 struct sw_flow_key
*key
, const struct nlattr
*attr
,
981 struct nlattr
*actions
;
982 struct nlattr
*sample_arg
;
983 int rem
= nla_len(attr
);
984 const struct sample_arg
*arg
;
987 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
988 sample_arg
= nla_data(attr
);
989 arg
= nla_data(sample_arg
);
990 actions
= nla_next(sample_arg
, &rem
);
992 if ((arg
->probability
!= U32_MAX
) &&
993 (!arg
->probability
|| prandom_u32() > arg
->probability
)) {
999 clone_flow_key
= !arg
->exec
;
1000 return clone_execute(dp
, skb
, key
, 0, actions
, rem
, last
,
1004 /* When 'last' is true, clone() should always consume the 'skb'.
1005 * Otherwise, clone() should keep 'skb' intact regardless what
1006 * actions are executed within clone().
1008 static int clone(struct datapath
*dp
, struct sk_buff
*skb
,
1009 struct sw_flow_key
*key
, const struct nlattr
*attr
,
1012 struct nlattr
*actions
;
1013 struct nlattr
*clone_arg
;
1014 int rem
= nla_len(attr
);
1015 bool dont_clone_flow_key
;
1017 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1018 clone_arg
= nla_data(attr
);
1019 dont_clone_flow_key
= nla_get_u32(clone_arg
);
1020 actions
= nla_next(clone_arg
, &rem
);
1022 return clone_execute(dp
, skb
, key
, 0, actions
, rem
, last
,
1023 !dont_clone_flow_key
);
1026 static void execute_hash(struct sk_buff
*skb
, struct sw_flow_key
*key
,
1027 const struct nlattr
*attr
)
1029 struct ovs_action_hash
*hash_act
= nla_data(attr
);
1032 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1033 hash
= skb_get_hash(skb
);
1034 hash
= jhash_1word(hash
, hash_act
->hash_basis
);
1038 key
->ovs_flow_hash
= hash
;
1041 static int execute_set_action(struct sk_buff
*skb
,
1042 struct sw_flow_key
*flow_key
,
1043 const struct nlattr
*a
)
1045 /* Only tunnel set execution is supported without a mask. */
1046 if (nla_type(a
) == OVS_KEY_ATTR_TUNNEL_INFO
) {
1047 struct ovs_tunnel_info
*tun
= nla_data(a
);
1050 dst_hold((struct dst_entry
*)tun
->tun_dst
);
1051 skb_dst_set(skb
, (struct dst_entry
*)tun
->tun_dst
);
1058 /* Mask is at the midpoint of the data. */
1059 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1061 static int execute_masked_set_action(struct sk_buff
*skb
,
1062 struct sw_flow_key
*flow_key
,
1063 const struct nlattr
*a
)
1067 switch (nla_type(a
)) {
1068 case OVS_KEY_ATTR_PRIORITY
:
1069 OVS_SET_MASKED(skb
->priority
, nla_get_u32(a
),
1070 *get_mask(a
, u32
*));
1071 flow_key
->phy
.priority
= skb
->priority
;
1074 case OVS_KEY_ATTR_SKB_MARK
:
1075 OVS_SET_MASKED(skb
->mark
, nla_get_u32(a
), *get_mask(a
, u32
*));
1076 flow_key
->phy
.skb_mark
= skb
->mark
;
1079 case OVS_KEY_ATTR_TUNNEL_INFO
:
1080 /* Masked data not supported for tunnel. */
1084 case OVS_KEY_ATTR_ETHERNET
:
1085 err
= set_eth_addr(skb
, flow_key
, nla_data(a
),
1086 get_mask(a
, struct ovs_key_ethernet
*));
1089 case OVS_KEY_ATTR_NSH
:
1090 err
= set_nsh(skb
, flow_key
, a
);
1093 case OVS_KEY_ATTR_IPV4
:
1094 err
= set_ipv4(skb
, flow_key
, nla_data(a
),
1095 get_mask(a
, struct ovs_key_ipv4
*));
1098 case OVS_KEY_ATTR_IPV6
:
1099 err
= set_ipv6(skb
, flow_key
, nla_data(a
),
1100 get_mask(a
, struct ovs_key_ipv6
*));
1103 case OVS_KEY_ATTR_TCP
:
1104 err
= set_tcp(skb
, flow_key
, nla_data(a
),
1105 get_mask(a
, struct ovs_key_tcp
*));
1108 case OVS_KEY_ATTR_UDP
:
1109 err
= set_udp(skb
, flow_key
, nla_data(a
),
1110 get_mask(a
, struct ovs_key_udp
*));
1113 case OVS_KEY_ATTR_SCTP
:
1114 err
= set_sctp(skb
, flow_key
, nla_data(a
),
1115 get_mask(a
, struct ovs_key_sctp
*));
1118 case OVS_KEY_ATTR_MPLS
:
1119 err
= set_mpls(skb
, flow_key
, nla_data(a
), get_mask(a
,
1123 case OVS_KEY_ATTR_CT_STATE
:
1124 case OVS_KEY_ATTR_CT_ZONE
:
1125 case OVS_KEY_ATTR_CT_MARK
:
1126 case OVS_KEY_ATTR_CT_LABELS
:
1127 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4
:
1128 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6
:
1136 static int execute_recirc(struct datapath
*dp
, struct sk_buff
*skb
,
1137 struct sw_flow_key
*key
,
1138 const struct nlattr
*a
, bool last
)
1142 if (!is_flow_key_valid(key
)) {
1145 err
= ovs_flow_key_update(skb
, key
);
1149 BUG_ON(!is_flow_key_valid(key
));
1151 recirc_id
= nla_get_u32(a
);
1152 return clone_execute(dp
, skb
, key
, recirc_id
, NULL
, 0, last
, true);
1155 static int execute_check_pkt_len(struct datapath
*dp
, struct sk_buff
*skb
,
1156 struct sw_flow_key
*key
,
1157 const struct nlattr
*attr
, bool last
)
1159 struct ovs_skb_cb
*ovs_cb
= OVS_CB(skb
);
1160 const struct nlattr
*actions
, *cpl_arg
;
1161 int len
, max_len
, rem
= nla_len(attr
);
1162 const struct check_pkt_len_arg
*arg
;
1163 bool clone_flow_key
;
1165 /* The first netlink attribute in 'attr' is always
1166 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1168 cpl_arg
= nla_data(attr
);
1169 arg
= nla_data(cpl_arg
);
1171 len
= ovs_cb
->mru
? ovs_cb
->mru
+ skb
->mac_len
: skb
->len
;
1172 max_len
= arg
->pkt_len
;
1174 if ((skb_is_gso(skb
) && skb_gso_validate_mac_len(skb
, max_len
)) ||
1176 /* Second netlink attribute in 'attr' is always
1177 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1179 actions
= nla_next(cpl_arg
, &rem
);
1180 clone_flow_key
= !arg
->exec_for_lesser_equal
;
1182 /* Third netlink attribute in 'attr' is always
1183 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1185 actions
= nla_next(cpl_arg
, &rem
);
1186 actions
= nla_next(actions
, &rem
);
1187 clone_flow_key
= !arg
->exec_for_greater
;
1190 return clone_execute(dp
, skb
, key
, 0, nla_data(actions
),
1191 nla_len(actions
), last
, clone_flow_key
);
1194 static int execute_dec_ttl(struct sk_buff
*skb
, struct sw_flow_key
*key
)
1198 if (skb
->protocol
== htons(ETH_P_IPV6
)) {
1201 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
1208 if (nh
->hop_limit
<= 1)
1209 return -EHOSTUNREACH
;
1211 key
->ip
.ttl
= --nh
->hop_limit
;
1212 } else if (skb
->protocol
== htons(ETH_P_IP
)) {
1216 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
1223 return -EHOSTUNREACH
;
1225 old_ttl
= nh
->ttl
--;
1226 csum_replace2(&nh
->check
, htons(old_ttl
<< 8),
1227 htons(nh
->ttl
<< 8));
1228 key
->ip
.ttl
= nh
->ttl
;
1233 /* Execute a list of actions against 'skb'. */
1234 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1235 struct sw_flow_key
*key
,
1236 const struct nlattr
*attr
, int len
)
1238 const struct nlattr
*a
;
1241 for (a
= attr
, rem
= len
; rem
> 0;
1242 a
= nla_next(a
, &rem
)) {
1245 switch (nla_type(a
)) {
1246 case OVS_ACTION_ATTR_OUTPUT
: {
1247 int port
= nla_get_u32(a
);
1248 struct sk_buff
*clone
;
1250 /* Every output action needs a separate clone
1251 * of 'skb', In case the output action is the
1252 * last action, cloning can be avoided.
1254 if (nla_is_last(a
, rem
)) {
1255 do_output(dp
, skb
, port
, key
);
1256 /* 'skb' has been used for output.
1261 clone
= skb_clone(skb
, GFP_ATOMIC
);
1263 do_output(dp
, clone
, port
, key
);
1264 OVS_CB(skb
)->cutlen
= 0;
1268 case OVS_ACTION_ATTR_TRUNC
: {
1269 struct ovs_action_trunc
*trunc
= nla_data(a
);
1271 if (skb
->len
> trunc
->max_len
)
1272 OVS_CB(skb
)->cutlen
= skb
->len
- trunc
->max_len
;
1276 case OVS_ACTION_ATTR_USERSPACE
:
1277 output_userspace(dp
, skb
, key
, a
, attr
,
1278 len
, OVS_CB(skb
)->cutlen
);
1279 OVS_CB(skb
)->cutlen
= 0;
1282 case OVS_ACTION_ATTR_HASH
:
1283 execute_hash(skb
, key
, a
);
1286 case OVS_ACTION_ATTR_PUSH_MPLS
: {
1287 struct ovs_action_push_mpls
*mpls
= nla_data(a
);
1289 err
= push_mpls(skb
, key
, mpls
->mpls_lse
,
1290 mpls
->mpls_ethertype
, skb
->mac_len
);
1293 case OVS_ACTION_ATTR_ADD_MPLS
: {
1294 struct ovs_action_add_mpls
*mpls
= nla_data(a
);
1297 if (mpls
->tun_flags
& OVS_MPLS_L3_TUNNEL_FLAG_MASK
)
1298 mac_len
= skb
->mac_len
;
1300 err
= push_mpls(skb
, key
, mpls
->mpls_lse
,
1301 mpls
->mpls_ethertype
, mac_len
);
1304 case OVS_ACTION_ATTR_POP_MPLS
:
1305 err
= pop_mpls(skb
, key
, nla_get_be16(a
));
1308 case OVS_ACTION_ATTR_PUSH_VLAN
:
1309 err
= push_vlan(skb
, key
, nla_data(a
));
1312 case OVS_ACTION_ATTR_POP_VLAN
:
1313 err
= pop_vlan(skb
, key
);
1316 case OVS_ACTION_ATTR_RECIRC
: {
1317 bool last
= nla_is_last(a
, rem
);
1319 err
= execute_recirc(dp
, skb
, key
, a
, last
);
1321 /* If this is the last action, the skb has
1322 * been consumed or freed.
1323 * Return immediately.
1330 case OVS_ACTION_ATTR_SET
:
1331 err
= execute_set_action(skb
, key
, nla_data(a
));
1334 case OVS_ACTION_ATTR_SET_MASKED
:
1335 case OVS_ACTION_ATTR_SET_TO_MASKED
:
1336 err
= execute_masked_set_action(skb
, key
, nla_data(a
));
1339 case OVS_ACTION_ATTR_SAMPLE
: {
1340 bool last
= nla_is_last(a
, rem
);
1342 err
= sample(dp
, skb
, key
, a
, last
);
1349 case OVS_ACTION_ATTR_CT
:
1350 if (!is_flow_key_valid(key
)) {
1351 err
= ovs_flow_key_update(skb
, key
);
1356 err
= ovs_ct_execute(ovs_dp_get_net(dp
), skb
, key
,
1359 /* Hide stolen IP fragments from user space. */
1361 return err
== -EINPROGRESS
? 0 : err
;
1364 case OVS_ACTION_ATTR_CT_CLEAR
:
1365 err
= ovs_ct_clear(skb
, key
);
1368 case OVS_ACTION_ATTR_PUSH_ETH
:
1369 err
= push_eth(skb
, key
, nla_data(a
));
1372 case OVS_ACTION_ATTR_POP_ETH
:
1373 err
= pop_eth(skb
, key
);
1376 case OVS_ACTION_ATTR_PUSH_NSH
: {
1377 u8 buffer
[NSH_HDR_MAX_LEN
];
1378 struct nshhdr
*nh
= (struct nshhdr
*)buffer
;
1380 err
= nsh_hdr_from_nlattr(nla_data(a
), nh
,
1384 err
= push_nsh(skb
, key
, nh
);
1388 case OVS_ACTION_ATTR_POP_NSH
:
1389 err
= pop_nsh(skb
, key
);
1392 case OVS_ACTION_ATTR_METER
:
1393 if (ovs_meter_execute(dp
, skb
, key
, nla_get_u32(a
))) {
1399 case OVS_ACTION_ATTR_CLONE
: {
1400 bool last
= nla_is_last(a
, rem
);
1402 err
= clone(dp
, skb
, key
, a
, last
);
1409 case OVS_ACTION_ATTR_CHECK_PKT_LEN
: {
1410 bool last
= nla_is_last(a
, rem
);
1412 err
= execute_check_pkt_len(dp
, skb
, key
, a
, last
);
1419 case OVS_ACTION_ATTR_DEC_TTL
:
1420 err
= execute_dec_ttl(skb
, key
);
1421 if (err
== -EHOSTUNREACH
) {
1422 err
= dec_ttl_exception_handler(dp
, skb
, key
,
1429 if (unlikely(err
)) {
1439 /* Execute the actions on the clone of the packet. The effect of the
1440 * execution does not affect the original 'skb' nor the original 'key'.
1442 * The execution may be deferred in case the actions can not be executed
1445 static int clone_execute(struct datapath
*dp
, struct sk_buff
*skb
,
1446 struct sw_flow_key
*key
, u32 recirc_id
,
1447 const struct nlattr
*actions
, int len
,
1448 bool last
, bool clone_flow_key
)
1450 struct deferred_action
*da
;
1451 struct sw_flow_key
*clone
;
1453 skb
= last
? skb
: skb_clone(skb
, GFP_ATOMIC
);
1455 /* Out of memory, skip this action.
1460 /* When clone_flow_key is false, the 'key' will not be change
1461 * by the actions, then the 'key' can be used directly.
1462 * Otherwise, try to clone key from the next recursion level of
1463 * 'flow_keys'. If clone is successful, execute the actions
1464 * without deferring.
1466 clone
= clone_flow_key
? clone_key(key
) : key
;
1470 if (actions
) { /* Sample action */
1472 __this_cpu_inc(exec_actions_level
);
1474 err
= do_execute_actions(dp
, skb
, clone
,
1478 __this_cpu_dec(exec_actions_level
);
1479 } else { /* Recirc action */
1480 clone
->recirc_id
= recirc_id
;
1481 ovs_dp_process_packet(skb
, clone
);
1486 /* Out of 'flow_keys' space. Defer actions */
1487 da
= add_deferred_actions(skb
, key
, actions
, len
);
1489 if (!actions
) { /* Recirc action */
1491 key
->recirc_id
= recirc_id
;
1494 /* Out of per CPU action FIFO space. Drop the 'skb' and
1499 if (net_ratelimit()) {
1500 if (actions
) { /* Sample action */
1501 pr_warn("%s: deferred action limit reached, drop sample action\n",
1503 } else { /* Recirc action */
1504 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1512 static void process_deferred_actions(struct datapath
*dp
)
1514 struct action_fifo
*fifo
= this_cpu_ptr(action_fifos
);
1516 /* Do not touch the FIFO in case there is no deferred actions. */
1517 if (action_fifo_is_empty(fifo
))
1520 /* Finishing executing all deferred actions. */
1522 struct deferred_action
*da
= action_fifo_get(fifo
);
1523 struct sk_buff
*skb
= da
->skb
;
1524 struct sw_flow_key
*key
= &da
->pkt_key
;
1525 const struct nlattr
*actions
= da
->actions
;
1526 int actions_len
= da
->actions_len
;
1529 do_execute_actions(dp
, skb
, key
, actions
, actions_len
);
1531 ovs_dp_process_packet(skb
, key
);
1532 } while (!action_fifo_is_empty(fifo
));
1534 /* Reset FIFO for the next packet. */
1535 action_fifo_init(fifo
);
1538 /* Execute a list of actions against 'skb'. */
1539 int ovs_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1540 const struct sw_flow_actions
*acts
,
1541 struct sw_flow_key
*key
)
1545 level
= __this_cpu_inc_return(exec_actions_level
);
1546 if (unlikely(level
> OVS_RECURSION_LIMIT
)) {
1547 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1554 OVS_CB(skb
)->acts_origlen
= acts
->orig_len
;
1555 err
= do_execute_actions(dp
, skb
, key
,
1556 acts
->actions
, acts
->actions_len
);
1559 process_deferred_actions(dp
);
1562 __this_cpu_dec(exec_actions_level
);
1566 int action_fifos_init(void)
1568 action_fifos
= alloc_percpu(struct action_fifo
);
1572 flow_keys
= alloc_percpu(struct action_flow_keys
);
1574 free_percpu(action_fifos
);
1581 void action_fifos_exit(void)
1583 free_percpu(action_fifos
);
1584 free_percpu(flow_keys
);