Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / net / openvswitch / conntrack.c
blob5eddfe7bd3910a0f4cc47d3daa01bbabd6bbe32e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015 Nicira, Inc.
4 */
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
33 struct ovs_ct_len_tbl {
34 int maxlen;
35 int minlen;
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 u32 value;
41 u32 mask;
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 struct ovs_key_ct_labels value;
47 struct ovs_key_ct_labels mask;
50 enum ovs_ct_nat {
51 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
52 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 struct nf_conntrack_helper *helper;
59 struct nf_conntrack_zone zone;
60 struct nf_conn *ct;
61 u8 commit : 1;
62 u8 nat : 3; /* enum ovs_ct_nat */
63 u8 force : 1;
64 u8 have_eventmask : 1;
65 u16 family;
66 u32 eventmask; /* Mask of 1 << IPCT_*. */
67 struct md_mark mark;
68 struct md_labels labels;
69 char timeout[CTNL_TIMEOUT_NAME_MAX];
70 struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
73 #endif
76 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED 0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
82 struct ovs_ct_limit {
83 /* Elements in ovs_ct_limit_info->limits hash table */
84 struct hlist_node hlist_node;
85 struct rcu_head rcu;
86 u16 zone;
87 u32 limit;
90 struct ovs_ct_limit_info {
91 u32 default_limit;
92 struct hlist_head *limits;
93 struct nf_conncount_data *data;
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
99 #endif
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
105 static u16 key_to_nfproto(const struct sw_flow_key *key)
107 switch (ntohs(key->eth.type)) {
108 case ETH_P_IP:
109 return NFPROTO_IPV4;
110 case ETH_P_IPV6:
111 return NFPROTO_IPV6;
112 default:
113 return NFPROTO_UNSPEC;
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
120 u8 ct_state = OVS_CS_F_TRACKED;
122 switch (ctinfo) {
123 case IP_CT_ESTABLISHED_REPLY:
124 case IP_CT_RELATED_REPLY:
125 ct_state |= OVS_CS_F_REPLY_DIR;
126 break;
127 default:
128 break;
131 switch (ctinfo) {
132 case IP_CT_ESTABLISHED:
133 case IP_CT_ESTABLISHED_REPLY:
134 ct_state |= OVS_CS_F_ESTABLISHED;
135 break;
136 case IP_CT_RELATED:
137 case IP_CT_RELATED_REPLY:
138 ct_state |= OVS_CS_F_RELATED;
139 break;
140 case IP_CT_NEW:
141 ct_state |= OVS_CS_F_NEW;
142 break;
143 default:
144 break;
147 return ct_state;
150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 return ct ? ct->mark : 0;
154 #else
155 return 0;
156 #endif
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 struct ovs_key_ct_labels *labels)
167 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
169 if (cl)
170 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 else
172 memset(labels, 0, OVS_CT_LABELS_LEN);
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 const struct nf_conntrack_tuple *orig,
177 u8 icmp_proto)
179 key->ct_orig_proto = orig->dst.protonum;
180 if (orig->dst.protonum == icmp_proto) {
181 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 } else {
184 key->ct.orig_tp.src = orig->src.u.all;
185 key->ct.orig_tp.dst = orig->dst.u.all;
189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 const struct nf_conntrack_zone *zone,
191 const struct nf_conn *ct)
193 key->ct_state = state;
194 key->ct_zone = zone->id;
195 key->ct.mark = ovs_ct_get_mark(ct);
196 ovs_ct_get_labels(ct, &key->ct.labels);
198 if (ct) {
199 const struct nf_conntrack_tuple *orig;
201 /* Use the master if we have one. */
202 if (ct->master)
203 ct = ct->master;
204 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
206 /* IP version must match with the master connection. */
207 if (key->eth.type == htons(ETH_P_IP) &&
208 nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 key->ipv4.ct_orig.src = orig->src.u3.ip;
210 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 return;
213 } else if (key->eth.type == htons(ETH_P_IPV6) &&
214 !sw_flow_key_is_nd(key) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 key->ipv6.ct_orig.src = orig->src.u3.in6;
217 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 return;
222 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 * original direction key fields.
225 key->ct_orig_proto = 0;
228 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
229 * previously sent the packet to conntrack via the ct action. If
230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231 * initialized from the connection status.
233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 const struct ovs_conntrack_info *info,
235 struct sw_flow_key *key, bool post_ct,
236 bool keep_nat_flags)
238 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 enum ip_conntrack_info ctinfo;
240 struct nf_conn *ct;
241 u8 state = 0;
243 ct = nf_ct_get(skb, &ctinfo);
244 if (ct) {
245 state = ovs_ct_get_state(ctinfo);
246 /* All unconfirmed entries are NEW connections. */
247 if (!nf_ct_is_confirmed(ct))
248 state |= OVS_CS_F_NEW;
249 /* OVS persists the related flag for the duration of the
250 * connection.
252 if (ct->master)
253 state |= OVS_CS_F_RELATED;
254 if (keep_nat_flags) {
255 state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 } else {
257 if (ct->status & IPS_SRC_NAT)
258 state |= OVS_CS_F_SRC_NAT;
259 if (ct->status & IPS_DST_NAT)
260 state |= OVS_CS_F_DST_NAT;
262 zone = nf_ct_zone(ct);
263 } else if (post_ct) {
264 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 if (info)
266 zone = &info->zone;
268 __ovs_ct_update_key(key, state, zone, ct);
271 /* This is called to initialize CT key fields possibly coming in from the local
272 * stack.
274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
276 ovs_ct_update_key(skb, NULL, key, false, false);
279 int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 const struct sw_flow_key *output, struct sk_buff *skb)
282 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 return -EMSGSIZE;
285 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 return -EMSGSIZE;
289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 return -EMSGSIZE;
293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 &output->ct.labels))
296 return -EMSGSIZE;
298 if (swkey->ct_orig_proto) {
299 if (swkey->eth.type == htons(ETH_P_IP)) {
300 struct ovs_key_ct_tuple_ipv4 orig;
302 memset(&orig, 0, sizeof(orig));
303 orig.ipv4_src = output->ipv4.ct_orig.src;
304 orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 orig.src_port = output->ct.orig_tp.src;
306 orig.dst_port = output->ct.orig_tp.dst;
307 orig.ipv4_proto = output->ct_orig_proto;
309 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 sizeof(orig), &orig))
311 return -EMSGSIZE;
312 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 struct ovs_key_ct_tuple_ipv6 orig;
315 memset(&orig, 0, sizeof(orig));
316 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 sizeof(orig.ipv6_src));
318 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 sizeof(orig.ipv6_dst));
320 orig.src_port = output->ct.orig_tp.src;
321 orig.dst_port = output->ct.orig_tp.dst;
322 orig.ipv6_proto = output->ct_orig_proto;
324 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 sizeof(orig), &orig))
326 return -EMSGSIZE;
330 return 0;
333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 u32 ct_mark, u32 mask)
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 u32 new_mark;
339 new_mark = ct_mark | (ct->mark & ~(mask));
340 if (ct->mark != new_mark) {
341 ct->mark = new_mark;
342 if (nf_ct_is_confirmed(ct))
343 nf_conntrack_event_cache(IPCT_MARK, ct);
344 key->ct.mark = new_mark;
347 return 0;
348 #else
349 return -ENOTSUPP;
350 #endif
353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
355 struct nf_conn_labels *cl;
357 cl = nf_ct_labels_find(ct);
358 if (!cl) {
359 nf_ct_labels_ext_add(ct);
360 cl = nf_ct_labels_find(ct);
363 return cl;
366 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
367 * since the new connection is not yet confirmed, and thus no-one else has
368 * access to it's labels, we simply write them over.
370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 const struct ovs_key_ct_labels *labels,
372 const struct ovs_key_ct_labels *mask)
374 struct nf_conn_labels *cl, *master_cl;
375 bool have_mask = labels_nonzero(mask);
377 /* Inherit master's labels to the related connection? */
378 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
380 if (!master_cl && !have_mask)
381 return 0; /* Nothing to do. */
383 cl = ovs_ct_get_conn_labels(ct);
384 if (!cl)
385 return -ENOSPC;
387 /* Inherit the master's labels, if any. */
388 if (master_cl)
389 *cl = *master_cl;
391 if (have_mask) {
392 u32 *dst = (u32 *)cl->bits;
393 int i;
395 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 (labels->ct_labels_32[i]
398 & mask->ct_labels_32[i]);
401 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 * IPCT_LABEL bit is set in the event cache.
404 nf_conntrack_event_cache(IPCT_LABEL, ct);
406 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
408 return 0;
411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 const struct ovs_key_ct_labels *labels,
413 const struct ovs_key_ct_labels *mask)
415 struct nf_conn_labels *cl;
416 int err;
418 cl = ovs_ct_get_conn_labels(ct);
419 if (!cl)
420 return -ENOSPC;
422 err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 mask->ct_labels_32,
424 OVS_CT_LABELS_LEN_32);
425 if (err)
426 return err;
428 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
430 return 0;
433 /* 'skb' should already be pulled to nh_ofs. */
434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
436 const struct nf_conntrack_helper *helper;
437 const struct nf_conn_help *help;
438 enum ip_conntrack_info ctinfo;
439 unsigned int protoff;
440 struct nf_conn *ct;
441 int err;
443 ct = nf_ct_get(skb, &ctinfo);
444 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 return NF_ACCEPT;
447 help = nfct_help(ct);
448 if (!help)
449 return NF_ACCEPT;
451 helper = rcu_dereference(help->helper);
452 if (!helper)
453 return NF_ACCEPT;
455 switch (proto) {
456 case NFPROTO_IPV4:
457 protoff = ip_hdrlen(skb);
458 break;
459 case NFPROTO_IPV6: {
460 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 __be16 frag_off;
462 int ofs;
464 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 &frag_off);
466 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 pr_debug("proto header not found\n");
468 return NF_ACCEPT;
470 protoff = ofs;
471 break;
473 default:
474 WARN_ONCE(1, "helper invoked on non-IP family!");
475 return NF_DROP;
478 err = helper->help(skb, protoff, ct, ctinfo);
479 if (err != NF_ACCEPT)
480 return err;
482 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
483 * FTP with NAT) adusting the TCP payload size when mangling IP
484 * addresses and/or port numbers in the text-based control connection.
486 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 return NF_DROP;
489 return NF_ACCEPT;
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493 * value if 'skb' is freed.
495 static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 u16 zone, struct sk_buff *skb)
498 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 int err;
501 if (key->eth.type == htons(ETH_P_IP)) {
502 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
504 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 err = ip_defrag(net, skb, user);
506 if (err)
507 return err;
509 ovs_cb.mru = IPCB(skb)->frag_max_size;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 } else if (key->eth.type == htons(ETH_P_IPV6)) {
512 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
514 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 err = nf_ct_frag6_gather(net, skb, user);
516 if (err) {
517 if (err != -EINPROGRESS)
518 kfree_skb(skb);
519 return err;
522 key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 ovs_cb.mru = IP6CB(skb)->frag_max_size;
524 #endif
525 } else {
526 kfree_skb(skb);
527 return -EPFNOSUPPORT;
530 /* The key extracted from the fragment that completed this datagram
531 * likely didn't have an L4 header, so regenerate it.
533 ovs_flow_key_update_l3l4(skb, key);
535 key->ip.frag = OVS_FRAG_TYPE_NONE;
536 skb_clear_hash(skb);
537 skb->ignore_df = 1;
538 *OVS_CB(skb) = ovs_cb;
540 return 0;
543 static struct nf_conntrack_expect *
544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 u16 proto, const struct sk_buff *skb)
547 struct nf_conntrack_tuple tuple;
548 struct nf_conntrack_expect *exp;
550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 return NULL;
553 exp = __nf_ct_expect_find(net, zone, &tuple);
554 if (exp) {
555 struct nf_conntrack_tuple_hash *h;
557 /* Delete existing conntrack entry, if it clashes with the
558 * expectation. This can happen since conntrack ALGs do not
559 * check for clashes between (new) expectations and existing
560 * conntrack entries. nf_conntrack_in() will check the
561 * expectations only if a conntrack entry can not be found,
562 * which can lead to OVS finding the expectation (here) in the
563 * init direction, but which will not be removed by the
564 * nf_conntrack_in() call, if a matching conntrack entry is
565 * found instead. In this case all init direction packets
566 * would be reported as new related packets, while reply
567 * direction packets would be reported as un-related
568 * established packets.
570 h = nf_conntrack_find_get(net, zone, &tuple);
571 if (h) {
572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
574 nf_ct_delete(ct, 0, 0);
575 nf_conntrack_put(&ct->ct_general);
579 return exp;
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 return IP_CT_ESTABLISHED_REPLY;
590 /* Once we've had two way comms, always ESTABLISHED. */
591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 return IP_CT_ESTABLISHED;
593 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 return IP_CT_RELATED;
595 return IP_CT_NEW;
598 /* Find an existing connection which this packet belongs to without
599 * re-attributing statistics or modifying the connection state. This allows an
600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
602 * Must be called with rcu_read_lock.
604 * On success, populates skb->_nfct and returns the connection. Returns NULL
605 * if there is no existing entry.
607 static struct nf_conn *
608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 u8 l3num, struct sk_buff *skb, bool natted)
611 struct nf_conntrack_tuple tuple;
612 struct nf_conntrack_tuple_hash *h;
613 struct nf_conn *ct;
615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 net, &tuple)) {
617 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 return NULL;
621 /* Must invert the tuple if skb has been transformed by NAT. */
622 if (natted) {
623 struct nf_conntrack_tuple inverse;
625 if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 return NULL;
629 tuple = inverse;
632 /* look for tuple match */
633 h = nf_conntrack_find_get(net, zone, &tuple);
634 if (!h)
635 return NULL; /* Not found. */
637 ct = nf_ct_tuplehash_to_ctrack(h);
639 /* Inverted packet tuple matches the reverse direction conntrack tuple,
640 * select the other tuplehash to get the right 'ctinfo' bits for this
641 * packet.
643 if (natted)
644 h = &ct->tuplehash[!h->tuple.dst.dir];
646 nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 return ct;
650 static
651 struct nf_conn *ovs_ct_executed(struct net *net,
652 const struct sw_flow_key *key,
653 const struct ovs_conntrack_info *info,
654 struct sk_buff *skb,
655 bool *ct_executed)
657 struct nf_conn *ct = NULL;
659 /* If no ct, check if we have evidence that an existing conntrack entry
660 * might be found for this skb. This happens when we lose a skb->_nfct
661 * due to an upcall, or if the direction is being forced. If the
662 * connection was not confirmed, it is not cached and needs to be run
663 * through conntrack again.
665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 !(key->ct_state & OVS_CS_F_INVALID) &&
667 (key->ct_zone == info->zone.id);
669 if (*ct_executed || (!key->ct_state && info->force)) {
670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 !!(key->ct_state &
672 OVS_CS_F_NAT_MASK));
675 return ct;
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679 static bool skb_nfct_cached(struct net *net,
680 const struct sw_flow_key *key,
681 const struct ovs_conntrack_info *info,
682 struct sk_buff *skb)
684 enum ip_conntrack_info ctinfo;
685 struct nf_conn *ct;
686 bool ct_executed = true;
688 ct = nf_ct_get(skb, &ctinfo);
689 if (!ct)
690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
692 if (ct)
693 nf_ct_get(skb, &ctinfo);
694 else
695 return false;
697 if (!net_eq(net, read_pnet(&ct->ct_net)))
698 return false;
699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 return false;
701 if (info->helper) {
702 struct nf_conn_help *help;
704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 if (help && rcu_access_pointer(help->helper) != info->helper)
706 return false;
708 if (info->nf_ct_timeout) {
709 struct nf_conn_timeout *timeout_ext;
711 timeout_ext = nf_ct_timeout_find(ct);
712 if (!timeout_ext || info->nf_ct_timeout !=
713 rcu_dereference(timeout_ext->timeout))
714 return false;
716 /* Force conntrack entry direction to the current packet? */
717 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 /* Delete the conntrack entry if confirmed, else just release
719 * the reference.
721 if (nf_ct_is_confirmed(ct))
722 nf_ct_delete(ct, 0, 0);
724 nf_conntrack_put(&ct->ct_general);
725 nf_ct_set(skb, NULL, 0);
726 return false;
729 return ct_executed;
732 #if IS_ENABLED(CONFIG_NF_NAT)
733 /* Modelled after nf_nat_ipv[46]_fn().
734 * range is only used for new, uninitialized NAT state.
735 * Returns either NF_ACCEPT or NF_DROP.
737 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
738 enum ip_conntrack_info ctinfo,
739 const struct nf_nat_range2 *range,
740 enum nf_nat_manip_type maniptype)
742 int hooknum, nh_off, err = NF_ACCEPT;
744 nh_off = skb_network_offset(skb);
745 skb_pull_rcsum(skb, nh_off);
747 /* See HOOK2MANIP(). */
748 if (maniptype == NF_NAT_MANIP_SRC)
749 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
750 else
751 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
753 switch (ctinfo) {
754 case IP_CT_RELATED:
755 case IP_CT_RELATED_REPLY:
756 if (IS_ENABLED(CONFIG_NF_NAT) &&
757 skb->protocol == htons(ETH_P_IP) &&
758 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
759 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
760 hooknum))
761 err = NF_DROP;
762 goto push;
763 } else if (IS_ENABLED(CONFIG_IPV6) &&
764 skb->protocol == htons(ETH_P_IPV6)) {
765 __be16 frag_off;
766 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
767 int hdrlen = ipv6_skip_exthdr(skb,
768 sizeof(struct ipv6hdr),
769 &nexthdr, &frag_off);
771 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
772 if (!nf_nat_icmpv6_reply_translation(skb, ct,
773 ctinfo,
774 hooknum,
775 hdrlen))
776 err = NF_DROP;
777 goto push;
780 /* Non-ICMP, fall thru to initialize if needed. */
781 fallthrough;
782 case IP_CT_NEW:
783 /* Seen it before? This can happen for loopback, retrans,
784 * or local packets.
786 if (!nf_nat_initialized(ct, maniptype)) {
787 /* Initialize according to the NAT action. */
788 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
789 /* Action is set up to establish a new
790 * mapping.
792 ? nf_nat_setup_info(ct, range, maniptype)
793 : nf_nat_alloc_null_binding(ct, hooknum);
794 if (err != NF_ACCEPT)
795 goto push;
797 break;
799 case IP_CT_ESTABLISHED:
800 case IP_CT_ESTABLISHED_REPLY:
801 break;
803 default:
804 err = NF_DROP;
805 goto push;
808 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
809 push:
810 skb_push(skb, nh_off);
811 skb_postpush_rcsum(skb, skb->data, nh_off);
813 return err;
816 static void ovs_nat_update_key(struct sw_flow_key *key,
817 const struct sk_buff *skb,
818 enum nf_nat_manip_type maniptype)
820 if (maniptype == NF_NAT_MANIP_SRC) {
821 __be16 src;
823 key->ct_state |= OVS_CS_F_SRC_NAT;
824 if (key->eth.type == htons(ETH_P_IP))
825 key->ipv4.addr.src = ip_hdr(skb)->saddr;
826 else if (key->eth.type == htons(ETH_P_IPV6))
827 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
828 sizeof(key->ipv6.addr.src));
829 else
830 return;
832 if (key->ip.proto == IPPROTO_UDP)
833 src = udp_hdr(skb)->source;
834 else if (key->ip.proto == IPPROTO_TCP)
835 src = tcp_hdr(skb)->source;
836 else if (key->ip.proto == IPPROTO_SCTP)
837 src = sctp_hdr(skb)->source;
838 else
839 return;
841 key->tp.src = src;
842 } else {
843 __be16 dst;
845 key->ct_state |= OVS_CS_F_DST_NAT;
846 if (key->eth.type == htons(ETH_P_IP))
847 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
848 else if (key->eth.type == htons(ETH_P_IPV6))
849 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
850 sizeof(key->ipv6.addr.dst));
851 else
852 return;
854 if (key->ip.proto == IPPROTO_UDP)
855 dst = udp_hdr(skb)->dest;
856 else if (key->ip.proto == IPPROTO_TCP)
857 dst = tcp_hdr(skb)->dest;
858 else if (key->ip.proto == IPPROTO_SCTP)
859 dst = sctp_hdr(skb)->dest;
860 else
861 return;
863 key->tp.dst = dst;
867 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
868 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
869 const struct ovs_conntrack_info *info,
870 struct sk_buff *skb, struct nf_conn *ct,
871 enum ip_conntrack_info ctinfo)
873 enum nf_nat_manip_type maniptype;
874 int err;
876 /* Add NAT extension if not confirmed yet. */
877 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
878 return NF_ACCEPT; /* Can't NAT. */
880 /* Determine NAT type.
881 * Check if the NAT type can be deduced from the tracked connection.
882 * Make sure new expected connections (IP_CT_RELATED) are NATted only
883 * when committing.
885 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
886 ct->status & IPS_NAT_MASK &&
887 (ctinfo != IP_CT_RELATED || info->commit)) {
888 /* NAT an established or related connection like before. */
889 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
890 /* This is the REPLY direction for a connection
891 * for which NAT was applied in the forward
892 * direction. Do the reverse NAT.
894 maniptype = ct->status & IPS_SRC_NAT
895 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
896 else
897 maniptype = ct->status & IPS_SRC_NAT
898 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
899 } else if (info->nat & OVS_CT_SRC_NAT) {
900 maniptype = NF_NAT_MANIP_SRC;
901 } else if (info->nat & OVS_CT_DST_NAT) {
902 maniptype = NF_NAT_MANIP_DST;
903 } else {
904 return NF_ACCEPT; /* Connection is not NATed. */
906 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
908 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
909 if (ct->status & IPS_SRC_NAT) {
910 if (maniptype == NF_NAT_MANIP_SRC)
911 maniptype = NF_NAT_MANIP_DST;
912 else
913 maniptype = NF_NAT_MANIP_SRC;
915 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
916 maniptype);
917 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
918 err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
919 NF_NAT_MANIP_SRC);
923 /* Mark NAT done if successful and update the flow key. */
924 if (err == NF_ACCEPT)
925 ovs_nat_update_key(key, skb, maniptype);
927 return err;
929 #else /* !CONFIG_NF_NAT */
930 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
931 const struct ovs_conntrack_info *info,
932 struct sk_buff *skb, struct nf_conn *ct,
933 enum ip_conntrack_info ctinfo)
935 return NF_ACCEPT;
937 #endif
939 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
940 * not done already. Update key with new CT state after passing the packet
941 * through conntrack.
942 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
943 * set to NULL and 0 will be returned.
945 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
946 const struct ovs_conntrack_info *info,
947 struct sk_buff *skb)
949 /* If we are recirculating packets to match on conntrack fields and
950 * committing with a separate conntrack action, then we don't need to
951 * actually run the packet through conntrack twice unless it's for a
952 * different zone.
954 bool cached = skb_nfct_cached(net, key, info, skb);
955 enum ip_conntrack_info ctinfo;
956 struct nf_conn *ct;
958 if (!cached) {
959 struct nf_hook_state state = {
960 .hook = NF_INET_PRE_ROUTING,
961 .pf = info->family,
962 .net = net,
964 struct nf_conn *tmpl = info->ct;
965 int err;
967 /* Associate skb with specified zone. */
968 if (tmpl) {
969 if (skb_nfct(skb))
970 nf_conntrack_put(skb_nfct(skb));
971 nf_conntrack_get(&tmpl->ct_general);
972 nf_ct_set(skb, tmpl, IP_CT_NEW);
975 err = nf_conntrack_in(skb, &state);
976 if (err != NF_ACCEPT)
977 return -ENOENT;
979 /* Clear CT state NAT flags to mark that we have not yet done
980 * NAT after the nf_conntrack_in() call. We can actually clear
981 * the whole state, as it will be re-initialized below.
983 key->ct_state = 0;
985 /* Update the key, but keep the NAT flags. */
986 ovs_ct_update_key(skb, info, key, true, true);
989 ct = nf_ct_get(skb, &ctinfo);
990 if (ct) {
991 bool add_helper = false;
993 /* Packets starting a new connection must be NATted before the
994 * helper, so that the helper knows about the NAT. We enforce
995 * this by delaying both NAT and helper calls for unconfirmed
996 * connections until the committing CT action. For later
997 * packets NAT and Helper may be called in either order.
999 * NAT will be done only if the CT action has NAT, and only
1000 * once per packet (per zone), as guarded by the NAT bits in
1001 * the key->ct_state.
1003 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1004 (nf_ct_is_confirmed(ct) || info->commit) &&
1005 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1006 return -EINVAL;
1009 /* Userspace may decide to perform a ct lookup without a helper
1010 * specified followed by a (recirculate and) commit with one,
1011 * or attach a helper in a later commit. Therefore, for
1012 * connections which we will commit, we may need to attach
1013 * the helper here.
1015 if (info->commit && info->helper && !nfct_help(ct)) {
1016 int err = __nf_ct_try_assign_helper(ct, info->ct,
1017 GFP_ATOMIC);
1018 if (err)
1019 return err;
1020 add_helper = true;
1022 /* helper installed, add seqadj if NAT is required */
1023 if (info->nat && !nfct_seqadj(ct)) {
1024 if (!nfct_seqadj_ext_add(ct))
1025 return -EINVAL;
1029 /* Call the helper only if:
1030 * - nf_conntrack_in() was executed above ("!cached") or a
1031 * helper was just attached ("add_helper") for a confirmed
1032 * connection, or
1033 * - When committing an unconfirmed connection.
1035 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1036 info->commit) &&
1037 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1038 return -EINVAL;
1041 if (nf_ct_protonum(ct) == IPPROTO_TCP &&
1042 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) {
1043 /* Be liberal for tcp packets so that out-of-window
1044 * packets are not marked invalid.
1046 nf_ct_set_tcp_be_liberal(ct);
1050 return 0;
1053 /* Lookup connection and read fields into key. */
1054 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1055 const struct ovs_conntrack_info *info,
1056 struct sk_buff *skb)
1058 struct nf_conntrack_expect *exp;
1060 /* If we pass an expected packet through nf_conntrack_in() the
1061 * expectation is typically removed, but the packet could still be
1062 * lost in upcall processing. To prevent this from happening we
1063 * perform an explicit expectation lookup. Expected connections are
1064 * always new, and will be passed through conntrack only when they are
1065 * committed, as it is OK to remove the expectation at that time.
1067 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1068 if (exp) {
1069 u8 state;
1071 /* NOTE: New connections are NATted and Helped only when
1072 * committed, so we are not calling into NAT here.
1074 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1075 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1076 } else {
1077 struct nf_conn *ct;
1078 int err;
1080 err = __ovs_ct_lookup(net, key, info, skb);
1081 if (err)
1082 return err;
1084 ct = (struct nf_conn *)skb_nfct(skb);
1085 if (ct)
1086 nf_ct_deliver_cached_events(ct);
1089 return 0;
1092 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1094 size_t i;
1096 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1097 if (labels->ct_labels_32[i])
1098 return true;
1100 return false;
1103 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1104 static struct hlist_head *ct_limit_hash_bucket(
1105 const struct ovs_ct_limit_info *info, u16 zone)
1107 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1110 /* Call with ovs_mutex */
1111 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1112 struct ovs_ct_limit *new_ct_limit)
1114 struct ovs_ct_limit *ct_limit;
1115 struct hlist_head *head;
1117 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1118 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1119 if (ct_limit->zone == new_ct_limit->zone) {
1120 hlist_replace_rcu(&ct_limit->hlist_node,
1121 &new_ct_limit->hlist_node);
1122 kfree_rcu(ct_limit, rcu);
1123 return;
1127 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1130 /* Call with ovs_mutex */
1131 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1133 struct ovs_ct_limit *ct_limit;
1134 struct hlist_head *head;
1135 struct hlist_node *n;
1137 head = ct_limit_hash_bucket(info, zone);
1138 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1139 if (ct_limit->zone == zone) {
1140 hlist_del_rcu(&ct_limit->hlist_node);
1141 kfree_rcu(ct_limit, rcu);
1142 return;
1147 /* Call with RCU read lock */
1148 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1150 struct ovs_ct_limit *ct_limit;
1151 struct hlist_head *head;
1153 head = ct_limit_hash_bucket(info, zone);
1154 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1155 if (ct_limit->zone == zone)
1156 return ct_limit->limit;
1159 return info->default_limit;
1162 static int ovs_ct_check_limit(struct net *net,
1163 const struct ovs_conntrack_info *info,
1164 const struct nf_conntrack_tuple *tuple)
1166 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1167 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1168 u32 per_zone_limit, connections;
1169 u32 conncount_key;
1171 conncount_key = info->zone.id;
1173 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1174 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1175 return 0;
1177 connections = nf_conncount_count(net, ct_limit_info->data,
1178 &conncount_key, tuple, &info->zone);
1179 if (connections > per_zone_limit)
1180 return -ENOMEM;
1182 return 0;
1184 #endif
1186 /* Lookup connection and confirm if unconfirmed. */
1187 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1188 const struct ovs_conntrack_info *info,
1189 struct sk_buff *skb)
1191 enum ip_conntrack_info ctinfo;
1192 struct nf_conn *ct;
1193 int err;
1195 err = __ovs_ct_lookup(net, key, info, skb);
1196 if (err)
1197 return err;
1199 /* The connection could be invalid, in which case this is a no-op.*/
1200 ct = nf_ct_get(skb, &ctinfo);
1201 if (!ct)
1202 return 0;
1204 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1205 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1206 if (!nf_ct_is_confirmed(ct)) {
1207 err = ovs_ct_check_limit(net, info,
1208 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1209 if (err) {
1210 net_warn_ratelimited("openvswitch: zone: %u "
1211 "exceeds conntrack limit\n",
1212 info->zone.id);
1213 return err;
1217 #endif
1219 /* Set the conntrack event mask if given. NEW and DELETE events have
1220 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1221 * typically would receive many kinds of updates. Setting the event
1222 * mask allows those events to be filtered. The set event mask will
1223 * remain in effect for the lifetime of the connection unless changed
1224 * by a further CT action with both the commit flag and the eventmask
1225 * option. */
1226 if (info->have_eventmask) {
1227 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1229 if (cache)
1230 cache->ctmask = info->eventmask;
1233 /* Apply changes before confirming the connection so that the initial
1234 * conntrack NEW netlink event carries the values given in the CT
1235 * action.
1237 if (info->mark.mask) {
1238 err = ovs_ct_set_mark(ct, key, info->mark.value,
1239 info->mark.mask);
1240 if (err)
1241 return err;
1243 if (!nf_ct_is_confirmed(ct)) {
1244 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1245 &info->labels.mask);
1246 if (err)
1247 return err;
1248 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1249 labels_nonzero(&info->labels.mask)) {
1250 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1251 &info->labels.mask);
1252 if (err)
1253 return err;
1255 /* This will take care of sending queued events even if the connection
1256 * is already confirmed.
1258 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1259 return -EINVAL;
1261 return 0;
1264 /* Trim the skb to the length specified by the IP/IPv6 header,
1265 * removing any trailing lower-layer padding. This prepares the skb
1266 * for higher-layer processing that assumes skb->len excludes padding
1267 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1268 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1270 static int ovs_skb_network_trim(struct sk_buff *skb)
1272 unsigned int len;
1273 int err;
1275 switch (skb->protocol) {
1276 case htons(ETH_P_IP):
1277 len = ntohs(ip_hdr(skb)->tot_len);
1278 break;
1279 case htons(ETH_P_IPV6):
1280 len = sizeof(struct ipv6hdr)
1281 + ntohs(ipv6_hdr(skb)->payload_len);
1282 break;
1283 default:
1284 len = skb->len;
1287 err = pskb_trim_rcsum(skb, len);
1288 if (err)
1289 kfree_skb(skb);
1291 return err;
1294 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1295 * value if 'skb' is freed.
1297 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1298 struct sw_flow_key *key,
1299 const struct ovs_conntrack_info *info)
1301 int nh_ofs;
1302 int err;
1304 /* The conntrack module expects to be working at L3. */
1305 nh_ofs = skb_network_offset(skb);
1306 skb_pull_rcsum(skb, nh_ofs);
1308 err = ovs_skb_network_trim(skb);
1309 if (err)
1310 return err;
1312 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1313 err = handle_fragments(net, key, info->zone.id, skb);
1314 if (err)
1315 return err;
1318 if (info->commit)
1319 err = ovs_ct_commit(net, key, info, skb);
1320 else
1321 err = ovs_ct_lookup(net, key, info, skb);
1323 skb_push(skb, nh_ofs);
1324 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1325 if (err)
1326 kfree_skb(skb);
1327 return err;
1330 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1332 if (skb_nfct(skb)) {
1333 nf_conntrack_put(skb_nfct(skb));
1334 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1335 ovs_ct_fill_key(skb, key);
1338 return 0;
1341 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1342 const struct sw_flow_key *key, bool log)
1344 struct nf_conntrack_helper *helper;
1345 struct nf_conn_help *help;
1346 int ret = 0;
1348 helper = nf_conntrack_helper_try_module_get(name, info->family,
1349 key->ip.proto);
1350 if (!helper) {
1351 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1352 return -EINVAL;
1355 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1356 if (!help) {
1357 nf_conntrack_helper_put(helper);
1358 return -ENOMEM;
1361 #if IS_ENABLED(CONFIG_NF_NAT)
1362 if (info->nat) {
1363 ret = nf_nat_helper_try_module_get(name, info->family,
1364 key->ip.proto);
1365 if (ret) {
1366 nf_conntrack_helper_put(helper);
1367 OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1368 name, ret);
1369 return ret;
1372 #endif
1373 rcu_assign_pointer(help->helper, helper);
1374 info->helper = helper;
1375 return ret;
1378 #if IS_ENABLED(CONFIG_NF_NAT)
1379 static int parse_nat(const struct nlattr *attr,
1380 struct ovs_conntrack_info *info, bool log)
1382 struct nlattr *a;
1383 int rem;
1384 bool have_ip_max = false;
1385 bool have_proto_max = false;
1386 bool ip_vers = (info->family == NFPROTO_IPV6);
1388 nla_for_each_nested(a, attr, rem) {
1389 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1390 [OVS_NAT_ATTR_SRC] = {0, 0},
1391 [OVS_NAT_ATTR_DST] = {0, 0},
1392 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1393 sizeof(struct in6_addr)},
1394 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1395 sizeof(struct in6_addr)},
1396 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1397 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1398 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1399 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1400 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1402 int type = nla_type(a);
1404 if (type > OVS_NAT_ATTR_MAX) {
1405 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1406 type, OVS_NAT_ATTR_MAX);
1407 return -EINVAL;
1410 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1411 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1412 type, nla_len(a),
1413 ovs_nat_attr_lens[type][ip_vers]);
1414 return -EINVAL;
1417 switch (type) {
1418 case OVS_NAT_ATTR_SRC:
1419 case OVS_NAT_ATTR_DST:
1420 if (info->nat) {
1421 OVS_NLERR(log, "Only one type of NAT may be specified");
1422 return -ERANGE;
1424 info->nat |= OVS_CT_NAT;
1425 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1426 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1427 break;
1429 case OVS_NAT_ATTR_IP_MIN:
1430 nla_memcpy(&info->range.min_addr, a,
1431 sizeof(info->range.min_addr));
1432 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1433 break;
1435 case OVS_NAT_ATTR_IP_MAX:
1436 have_ip_max = true;
1437 nla_memcpy(&info->range.max_addr, a,
1438 sizeof(info->range.max_addr));
1439 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1440 break;
1442 case OVS_NAT_ATTR_PROTO_MIN:
1443 info->range.min_proto.all = htons(nla_get_u16(a));
1444 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1445 break;
1447 case OVS_NAT_ATTR_PROTO_MAX:
1448 have_proto_max = true;
1449 info->range.max_proto.all = htons(nla_get_u16(a));
1450 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1451 break;
1453 case OVS_NAT_ATTR_PERSISTENT:
1454 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1455 break;
1457 case OVS_NAT_ATTR_PROTO_HASH:
1458 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1459 break;
1461 case OVS_NAT_ATTR_PROTO_RANDOM:
1462 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1463 break;
1465 default:
1466 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1467 return -EINVAL;
1471 if (rem > 0) {
1472 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1473 return -EINVAL;
1475 if (!info->nat) {
1476 /* Do not allow flags if no type is given. */
1477 if (info->range.flags) {
1478 OVS_NLERR(log,
1479 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1481 return -EINVAL;
1483 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1484 } else if (!info->commit) {
1485 OVS_NLERR(log,
1486 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1488 return -EINVAL;
1490 /* Allow missing IP_MAX. */
1491 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1492 memcpy(&info->range.max_addr, &info->range.min_addr,
1493 sizeof(info->range.max_addr));
1495 /* Allow missing PROTO_MAX. */
1496 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1497 !have_proto_max) {
1498 info->range.max_proto.all = info->range.min_proto.all;
1500 return 0;
1502 #endif
1504 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1505 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1506 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1507 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1508 .maxlen = sizeof(u16) },
1509 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1510 .maxlen = sizeof(struct md_mark) },
1511 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1512 .maxlen = sizeof(struct md_labels) },
1513 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1514 .maxlen = NF_CT_HELPER_NAME_LEN },
1515 #if IS_ENABLED(CONFIG_NF_NAT)
1516 /* NAT length is checked when parsing the nested attributes. */
1517 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1518 #endif
1519 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1520 .maxlen = sizeof(u32) },
1521 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1522 .maxlen = CTNL_TIMEOUT_NAME_MAX },
1525 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1526 const char **helper, bool log)
1528 struct nlattr *a;
1529 int rem;
1531 nla_for_each_nested(a, attr, rem) {
1532 int type = nla_type(a);
1533 int maxlen;
1534 int minlen;
1536 if (type > OVS_CT_ATTR_MAX) {
1537 OVS_NLERR(log,
1538 "Unknown conntrack attr (type=%d, max=%d)",
1539 type, OVS_CT_ATTR_MAX);
1540 return -EINVAL;
1543 maxlen = ovs_ct_attr_lens[type].maxlen;
1544 minlen = ovs_ct_attr_lens[type].minlen;
1545 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1546 OVS_NLERR(log,
1547 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1548 type, nla_len(a), maxlen);
1549 return -EINVAL;
1552 switch (type) {
1553 case OVS_CT_ATTR_FORCE_COMMIT:
1554 info->force = true;
1555 fallthrough;
1556 case OVS_CT_ATTR_COMMIT:
1557 info->commit = true;
1558 break;
1559 #ifdef CONFIG_NF_CONNTRACK_ZONES
1560 case OVS_CT_ATTR_ZONE:
1561 info->zone.id = nla_get_u16(a);
1562 break;
1563 #endif
1564 #ifdef CONFIG_NF_CONNTRACK_MARK
1565 case OVS_CT_ATTR_MARK: {
1566 struct md_mark *mark = nla_data(a);
1568 if (!mark->mask) {
1569 OVS_NLERR(log, "ct_mark mask cannot be 0");
1570 return -EINVAL;
1572 info->mark = *mark;
1573 break;
1575 #endif
1576 #ifdef CONFIG_NF_CONNTRACK_LABELS
1577 case OVS_CT_ATTR_LABELS: {
1578 struct md_labels *labels = nla_data(a);
1580 if (!labels_nonzero(&labels->mask)) {
1581 OVS_NLERR(log, "ct_labels mask cannot be 0");
1582 return -EINVAL;
1584 info->labels = *labels;
1585 break;
1587 #endif
1588 case OVS_CT_ATTR_HELPER:
1589 *helper = nla_data(a);
1590 if (!memchr(*helper, '\0', nla_len(a))) {
1591 OVS_NLERR(log, "Invalid conntrack helper");
1592 return -EINVAL;
1594 break;
1595 #if IS_ENABLED(CONFIG_NF_NAT)
1596 case OVS_CT_ATTR_NAT: {
1597 int err = parse_nat(a, info, log);
1599 if (err)
1600 return err;
1601 break;
1603 #endif
1604 case OVS_CT_ATTR_EVENTMASK:
1605 info->have_eventmask = true;
1606 info->eventmask = nla_get_u32(a);
1607 break;
1608 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1609 case OVS_CT_ATTR_TIMEOUT:
1610 memcpy(info->timeout, nla_data(a), nla_len(a));
1611 if (!memchr(info->timeout, '\0', nla_len(a))) {
1612 OVS_NLERR(log, "Invalid conntrack timeout");
1613 return -EINVAL;
1615 break;
1616 #endif
1618 default:
1619 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1620 type);
1621 return -EINVAL;
1625 #ifdef CONFIG_NF_CONNTRACK_MARK
1626 if (!info->commit && info->mark.mask) {
1627 OVS_NLERR(log,
1628 "Setting conntrack mark requires 'commit' flag.");
1629 return -EINVAL;
1631 #endif
1632 #ifdef CONFIG_NF_CONNTRACK_LABELS
1633 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1634 OVS_NLERR(log,
1635 "Setting conntrack labels requires 'commit' flag.");
1636 return -EINVAL;
1638 #endif
1639 if (rem > 0) {
1640 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1641 return -EINVAL;
1644 return 0;
1647 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1649 if (attr == OVS_KEY_ATTR_CT_STATE)
1650 return true;
1651 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1652 attr == OVS_KEY_ATTR_CT_ZONE)
1653 return true;
1654 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1655 attr == OVS_KEY_ATTR_CT_MARK)
1656 return true;
1657 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1658 attr == OVS_KEY_ATTR_CT_LABELS) {
1659 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1661 return ovs_net->xt_label;
1664 return false;
1667 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1668 const struct sw_flow_key *key,
1669 struct sw_flow_actions **sfa, bool log)
1671 struct ovs_conntrack_info ct_info;
1672 const char *helper = NULL;
1673 u16 family;
1674 int err;
1676 family = key_to_nfproto(key);
1677 if (family == NFPROTO_UNSPEC) {
1678 OVS_NLERR(log, "ct family unspecified");
1679 return -EINVAL;
1682 memset(&ct_info, 0, sizeof(ct_info));
1683 ct_info.family = family;
1685 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1686 NF_CT_DEFAULT_ZONE_DIR, 0);
1688 err = parse_ct(attr, &ct_info, &helper, log);
1689 if (err)
1690 return err;
1692 /* Set up template for tracking connections in specific zones. */
1693 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1694 if (!ct_info.ct) {
1695 OVS_NLERR(log, "Failed to allocate conntrack template");
1696 return -ENOMEM;
1699 if (ct_info.timeout[0]) {
1700 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1701 ct_info.timeout))
1702 pr_info_ratelimited("Failed to associated timeout "
1703 "policy `%s'\n", ct_info.timeout);
1704 else
1705 ct_info.nf_ct_timeout = rcu_dereference(
1706 nf_ct_timeout_find(ct_info.ct)->timeout);
1710 if (helper) {
1711 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1712 if (err)
1713 goto err_free_ct;
1716 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1717 sizeof(ct_info), log);
1718 if (err)
1719 goto err_free_ct;
1721 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1722 nf_conntrack_get(&ct_info.ct->ct_general);
1723 return 0;
1724 err_free_ct:
1725 __ovs_ct_free_action(&ct_info);
1726 return err;
1729 #if IS_ENABLED(CONFIG_NF_NAT)
1730 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1731 struct sk_buff *skb)
1733 struct nlattr *start;
1735 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1736 if (!start)
1737 return false;
1739 if (info->nat & OVS_CT_SRC_NAT) {
1740 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1741 return false;
1742 } else if (info->nat & OVS_CT_DST_NAT) {
1743 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1744 return false;
1745 } else {
1746 goto out;
1749 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1750 if (IS_ENABLED(CONFIG_NF_NAT) &&
1751 info->family == NFPROTO_IPV4) {
1752 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1753 info->range.min_addr.ip) ||
1754 (info->range.max_addr.ip
1755 != info->range.min_addr.ip &&
1756 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1757 info->range.max_addr.ip))))
1758 return false;
1759 } else if (IS_ENABLED(CONFIG_IPV6) &&
1760 info->family == NFPROTO_IPV6) {
1761 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1762 &info->range.min_addr.in6) ||
1763 (memcmp(&info->range.max_addr.in6,
1764 &info->range.min_addr.in6,
1765 sizeof(info->range.max_addr.in6)) &&
1766 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1767 &info->range.max_addr.in6))))
1768 return false;
1769 } else {
1770 return false;
1773 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1774 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1775 ntohs(info->range.min_proto.all)) ||
1776 (info->range.max_proto.all != info->range.min_proto.all &&
1777 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1778 ntohs(info->range.max_proto.all)))))
1779 return false;
1781 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1782 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1783 return false;
1784 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1785 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1786 return false;
1787 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1788 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1789 return false;
1790 out:
1791 nla_nest_end(skb, start);
1793 return true;
1795 #endif
1797 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1798 struct sk_buff *skb)
1800 struct nlattr *start;
1802 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1803 if (!start)
1804 return -EMSGSIZE;
1806 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1807 ? OVS_CT_ATTR_FORCE_COMMIT
1808 : OVS_CT_ATTR_COMMIT))
1809 return -EMSGSIZE;
1810 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1811 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1812 return -EMSGSIZE;
1813 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1814 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1815 &ct_info->mark))
1816 return -EMSGSIZE;
1817 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1818 labels_nonzero(&ct_info->labels.mask) &&
1819 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1820 &ct_info->labels))
1821 return -EMSGSIZE;
1822 if (ct_info->helper) {
1823 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1824 ct_info->helper->name))
1825 return -EMSGSIZE;
1827 if (ct_info->have_eventmask &&
1828 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1829 return -EMSGSIZE;
1830 if (ct_info->timeout[0]) {
1831 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1832 return -EMSGSIZE;
1835 #if IS_ENABLED(CONFIG_NF_NAT)
1836 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1837 return -EMSGSIZE;
1838 #endif
1839 nla_nest_end(skb, start);
1841 return 0;
1844 void ovs_ct_free_action(const struct nlattr *a)
1846 struct ovs_conntrack_info *ct_info = nla_data(a);
1848 __ovs_ct_free_action(ct_info);
1851 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1853 if (ct_info->helper) {
1854 #if IS_ENABLED(CONFIG_NF_NAT)
1855 if (ct_info->nat)
1856 nf_nat_helper_put(ct_info->helper);
1857 #endif
1858 nf_conntrack_helper_put(ct_info->helper);
1860 if (ct_info->ct) {
1861 if (ct_info->timeout[0])
1862 nf_ct_destroy_timeout(ct_info->ct);
1863 nf_ct_tmpl_free(ct_info->ct);
1867 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1868 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1870 int i, err;
1872 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1873 GFP_KERNEL);
1874 if (!ovs_net->ct_limit_info)
1875 return -ENOMEM;
1877 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1878 ovs_net->ct_limit_info->limits =
1879 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1880 GFP_KERNEL);
1881 if (!ovs_net->ct_limit_info->limits) {
1882 kfree(ovs_net->ct_limit_info);
1883 return -ENOMEM;
1886 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1887 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1889 ovs_net->ct_limit_info->data =
1890 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1892 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1893 err = PTR_ERR(ovs_net->ct_limit_info->data);
1894 kfree(ovs_net->ct_limit_info->limits);
1895 kfree(ovs_net->ct_limit_info);
1896 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1897 return err;
1899 return 0;
1902 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1904 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1905 int i;
1907 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1908 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1909 struct hlist_head *head = &info->limits[i];
1910 struct ovs_ct_limit *ct_limit;
1912 hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1913 lockdep_ovsl_is_held())
1914 kfree_rcu(ct_limit, rcu);
1916 kfree(info->limits);
1917 kfree(info);
1920 static struct sk_buff *
1921 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1922 struct ovs_header **ovs_reply_header)
1924 struct ovs_header *ovs_header = info->userhdr;
1925 struct sk_buff *skb;
1927 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1928 if (!skb)
1929 return ERR_PTR(-ENOMEM);
1931 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1932 info->snd_seq,
1933 &dp_ct_limit_genl_family, 0, cmd);
1935 if (!*ovs_reply_header) {
1936 nlmsg_free(skb);
1937 return ERR_PTR(-EMSGSIZE);
1939 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1941 return skb;
1944 static bool check_zone_id(int zone_id, u16 *pzone)
1946 if (zone_id >= 0 && zone_id <= 65535) {
1947 *pzone = (u16)zone_id;
1948 return true;
1950 return false;
1953 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1954 struct ovs_ct_limit_info *info)
1956 struct ovs_zone_limit *zone_limit;
1957 int rem;
1958 u16 zone;
1960 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1961 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1963 while (rem >= sizeof(*zone_limit)) {
1964 if (unlikely(zone_limit->zone_id ==
1965 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1966 ovs_lock();
1967 info->default_limit = zone_limit->limit;
1968 ovs_unlock();
1969 } else if (unlikely(!check_zone_id(
1970 zone_limit->zone_id, &zone))) {
1971 OVS_NLERR(true, "zone id is out of range");
1972 } else {
1973 struct ovs_ct_limit *ct_limit;
1975 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1976 if (!ct_limit)
1977 return -ENOMEM;
1979 ct_limit->zone = zone;
1980 ct_limit->limit = zone_limit->limit;
1982 ovs_lock();
1983 ct_limit_set(info, ct_limit);
1984 ovs_unlock();
1986 rem -= NLA_ALIGN(sizeof(*zone_limit));
1987 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1988 NLA_ALIGN(sizeof(*zone_limit)));
1991 if (rem)
1992 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1994 return 0;
1997 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1998 struct ovs_ct_limit_info *info)
2000 struct ovs_zone_limit *zone_limit;
2001 int rem;
2002 u16 zone;
2004 rem = NLA_ALIGN(nla_len(nla_zone_limit));
2005 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2007 while (rem >= sizeof(*zone_limit)) {
2008 if (unlikely(zone_limit->zone_id ==
2009 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2010 ovs_lock();
2011 info->default_limit = OVS_CT_LIMIT_DEFAULT;
2012 ovs_unlock();
2013 } else if (unlikely(!check_zone_id(
2014 zone_limit->zone_id, &zone))) {
2015 OVS_NLERR(true, "zone id is out of range");
2016 } else {
2017 ovs_lock();
2018 ct_limit_del(info, zone);
2019 ovs_unlock();
2021 rem -= NLA_ALIGN(sizeof(*zone_limit));
2022 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2023 NLA_ALIGN(sizeof(*zone_limit)));
2026 if (rem)
2027 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2029 return 0;
2032 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2033 struct sk_buff *reply)
2035 struct ovs_zone_limit zone_limit;
2037 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
2038 zone_limit.limit = info->default_limit;
2040 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2043 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2044 struct nf_conncount_data *data,
2045 u16 zone_id, u32 limit,
2046 struct sk_buff *reply)
2048 struct nf_conntrack_zone ct_zone;
2049 struct ovs_zone_limit zone_limit;
2050 u32 conncount_key = zone_id;
2052 zone_limit.zone_id = zone_id;
2053 zone_limit.limit = limit;
2054 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2056 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2057 &ct_zone);
2058 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2061 static int ovs_ct_limit_get_zone_limit(struct net *net,
2062 struct nlattr *nla_zone_limit,
2063 struct ovs_ct_limit_info *info,
2064 struct sk_buff *reply)
2066 struct ovs_zone_limit *zone_limit;
2067 int rem, err;
2068 u32 limit;
2069 u16 zone;
2071 rem = NLA_ALIGN(nla_len(nla_zone_limit));
2072 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2074 while (rem >= sizeof(*zone_limit)) {
2075 if (unlikely(zone_limit->zone_id ==
2076 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2077 err = ovs_ct_limit_get_default_limit(info, reply);
2078 if (err)
2079 return err;
2080 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2081 &zone))) {
2082 OVS_NLERR(true, "zone id is out of range");
2083 } else {
2084 rcu_read_lock();
2085 limit = ct_limit_get(info, zone);
2086 rcu_read_unlock();
2088 err = __ovs_ct_limit_get_zone_limit(
2089 net, info->data, zone, limit, reply);
2090 if (err)
2091 return err;
2093 rem -= NLA_ALIGN(sizeof(*zone_limit));
2094 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2095 NLA_ALIGN(sizeof(*zone_limit)));
2098 if (rem)
2099 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2101 return 0;
2104 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2105 struct ovs_ct_limit_info *info,
2106 struct sk_buff *reply)
2108 struct ovs_ct_limit *ct_limit;
2109 struct hlist_head *head;
2110 int i, err = 0;
2112 err = ovs_ct_limit_get_default_limit(info, reply);
2113 if (err)
2114 return err;
2116 rcu_read_lock();
2117 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2118 head = &info->limits[i];
2119 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2120 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2121 ct_limit->zone, ct_limit->limit, reply);
2122 if (err)
2123 goto exit_err;
2127 exit_err:
2128 rcu_read_unlock();
2129 return err;
2132 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2134 struct nlattr **a = info->attrs;
2135 struct sk_buff *reply;
2136 struct ovs_header *ovs_reply_header;
2137 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2138 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2139 int err;
2141 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2142 &ovs_reply_header);
2143 if (IS_ERR(reply))
2144 return PTR_ERR(reply);
2146 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2147 err = -EINVAL;
2148 goto exit_err;
2151 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2152 ct_limit_info);
2153 if (err)
2154 goto exit_err;
2156 static_branch_enable(&ovs_ct_limit_enabled);
2158 genlmsg_end(reply, ovs_reply_header);
2159 return genlmsg_reply(reply, info);
2161 exit_err:
2162 nlmsg_free(reply);
2163 return err;
2166 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2168 struct nlattr **a = info->attrs;
2169 struct sk_buff *reply;
2170 struct ovs_header *ovs_reply_header;
2171 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2172 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2173 int err;
2175 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2176 &ovs_reply_header);
2177 if (IS_ERR(reply))
2178 return PTR_ERR(reply);
2180 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2181 err = -EINVAL;
2182 goto exit_err;
2185 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2186 ct_limit_info);
2187 if (err)
2188 goto exit_err;
2190 genlmsg_end(reply, ovs_reply_header);
2191 return genlmsg_reply(reply, info);
2193 exit_err:
2194 nlmsg_free(reply);
2195 return err;
2198 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2200 struct nlattr **a = info->attrs;
2201 struct nlattr *nla_reply;
2202 struct sk_buff *reply;
2203 struct ovs_header *ovs_reply_header;
2204 struct net *net = sock_net(skb->sk);
2205 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2206 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2207 int err;
2209 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2210 &ovs_reply_header);
2211 if (IS_ERR(reply))
2212 return PTR_ERR(reply);
2214 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2215 if (!nla_reply) {
2216 err = -EMSGSIZE;
2217 goto exit_err;
2220 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2221 err = ovs_ct_limit_get_zone_limit(
2222 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2223 reply);
2224 if (err)
2225 goto exit_err;
2226 } else {
2227 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2228 reply);
2229 if (err)
2230 goto exit_err;
2233 nla_nest_end(reply, nla_reply);
2234 genlmsg_end(reply, ovs_reply_header);
2235 return genlmsg_reply(reply, info);
2237 exit_err:
2238 nlmsg_free(reply);
2239 return err;
2242 static const struct genl_small_ops ct_limit_genl_ops[] = {
2243 { .cmd = OVS_CT_LIMIT_CMD_SET,
2244 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2245 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2246 * privilege. */
2247 .doit = ovs_ct_limit_cmd_set,
2249 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2250 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2251 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2252 * privilege. */
2253 .doit = ovs_ct_limit_cmd_del,
2255 { .cmd = OVS_CT_LIMIT_CMD_GET,
2256 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2257 .flags = 0, /* OK for unprivileged users. */
2258 .doit = ovs_ct_limit_cmd_get,
2262 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2263 .name = OVS_CT_LIMIT_MCGROUP,
2266 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2267 .hdrsize = sizeof(struct ovs_header),
2268 .name = OVS_CT_LIMIT_FAMILY,
2269 .version = OVS_CT_LIMIT_VERSION,
2270 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2271 .policy = ct_limit_policy,
2272 .netnsok = true,
2273 .parallel_ops = true,
2274 .small_ops = ct_limit_genl_ops,
2275 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2276 .mcgrps = &ovs_ct_limit_multicast_group,
2277 .n_mcgrps = 1,
2278 .module = THIS_MODULE,
2280 #endif
2282 int ovs_ct_init(struct net *net)
2284 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2285 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2287 if (nf_connlabels_get(net, n_bits - 1)) {
2288 ovs_net->xt_label = false;
2289 OVS_NLERR(true, "Failed to set connlabel length");
2290 } else {
2291 ovs_net->xt_label = true;
2294 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2295 return ovs_ct_limit_init(net, ovs_net);
2296 #else
2297 return 0;
2298 #endif
2301 void ovs_ct_exit(struct net *net)
2303 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2305 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2306 ovs_ct_limit_exit(net, ovs_net);
2307 #endif
2309 if (ovs_net->xt_label)
2310 nf_connlabels_put(net);