2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec
*vec
)
57 if ((vec
->addr
+ vec
->bytes
<= vec
->addr
) ||
58 (vec
->bytes
> (u64
)UINT_MAX
))
61 return ((vec
->addr
+ vec
->bytes
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) -
62 (vec
->addr
>> PAGE_SHIFT
);
65 static struct rds_mr
*rds_mr_tree_walk(struct rb_root
*root
, u64 key
,
66 struct rds_mr
*insert
)
68 struct rb_node
**p
= &root
->rb_node
;
69 struct rb_node
*parent
= NULL
;
74 mr
= rb_entry(parent
, struct rds_mr
, r_rb_node
);
78 else if (key
> mr
->r_key
)
85 rb_link_node(&insert
->r_rb_node
, parent
, p
);
86 rb_insert_color(&insert
->r_rb_node
, root
);
87 kref_get(&insert
->r_kref
);
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr
*mr
)
97 struct rds_sock
*rs
= mr
->r_sock
;
98 void *trans_private
= NULL
;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr
->r_key
, kref_read(&mr
->r_kref
));
104 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
105 if (!RB_EMPTY_NODE(&mr
->r_rb_node
))
106 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
107 trans_private
= mr
->r_trans_private
;
108 mr
->r_trans_private
= NULL
;
109 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
112 mr
->r_trans
->free_mr(trans_private
, mr
->r_invalidate
);
115 void __rds_put_mr_final(struct kref
*kref
)
117 struct rds_mr
*mr
= container_of(kref
, struct rds_mr
, r_kref
);
124 * By the time this is called we can't have any more ioctls called on
125 * the socket so we don't need to worry about racing with others.
127 void rds_rdma_drop_keys(struct rds_sock
*rs
)
130 struct rb_node
*node
;
133 /* Release any MRs associated with this socket */
134 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
135 while ((node
= rb_first(&rs
->rs_rdma_keys
))) {
136 mr
= rb_entry(node
, struct rds_mr
, r_rb_node
);
137 if (mr
->r_trans
== rs
->rs_transport
)
138 mr
->r_invalidate
= 0;
139 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
140 RB_CLEAR_NODE(&mr
->r_rb_node
);
141 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
142 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
143 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
145 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
147 if (rs
->rs_transport
&& rs
->rs_transport
->flush_mrs
)
148 rs
->rs_transport
->flush_mrs();
152 * Helper function to pin user pages.
154 static int rds_pin_pages(unsigned long user_addr
, unsigned int nr_pages
,
155 struct page
**pages
, int write
)
157 unsigned int gup_flags
= FOLL_LONGTERM
;
161 gup_flags
|= FOLL_WRITE
;
163 ret
= pin_user_pages_fast(user_addr
, nr_pages
, gup_flags
, pages
);
164 if (ret
>= 0 && ret
< nr_pages
) {
165 unpin_user_pages(pages
, ret
);
172 static int __rds_rdma_map(struct rds_sock
*rs
, struct rds_get_mr_args
*args
,
173 u64
*cookie_ret
, struct rds_mr
**mr_ret
,
174 struct rds_conn_path
*cp
)
176 struct rds_mr
*mr
= NULL
, *found
;
177 struct scatterlist
*sg
= NULL
;
178 unsigned int nr_pages
;
179 struct page
**pages
= NULL
;
182 rds_rdma_cookie_t cookie
;
183 unsigned int nents
= 0;
188 if (ipv6_addr_any(&rs
->rs_bound_addr
) || !rs
->rs_transport
) {
189 ret
= -ENOTCONN
; /* XXX not a great errno */
193 if (!rs
->rs_transport
->get_mr
) {
198 /* If the combination of the addr and size requested for this memory
199 * region causes an integer overflow, return error.
201 if (((args
->vec
.addr
+ args
->vec
.bytes
) < args
->vec
.addr
) ||
202 PAGE_ALIGN(args
->vec
.addr
+ args
->vec
.bytes
) <
203 (args
->vec
.addr
+ args
->vec
.bytes
)) {
208 if (!can_do_mlock()) {
213 nr_pages
= rds_pages_in_vec(&args
->vec
);
219 /* Restrict the size of mr irrespective of underlying transport
220 * To account for unaligned mr regions, subtract one from nr_pages
222 if ((nr_pages
- 1) > (RDS_MAX_MSG_SIZE
>> PAGE_SHIFT
)) {
227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228 args
->vec
.addr
, args
->vec
.bytes
, nr_pages
);
230 /* XXX clamp nr_pages to limit the size of this alloc? */
231 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
237 mr
= kzalloc(sizeof(struct rds_mr
), GFP_KERNEL
);
243 kref_init(&mr
->r_kref
);
244 RB_CLEAR_NODE(&mr
->r_rb_node
);
245 mr
->r_trans
= rs
->rs_transport
;
248 if (args
->flags
& RDS_RDMA_USE_ONCE
)
250 if (args
->flags
& RDS_RDMA_INVALIDATE
)
251 mr
->r_invalidate
= 1;
252 if (args
->flags
& RDS_RDMA_READWRITE
)
256 * Pin the pages that make up the user buffer and transfer the page
257 * pointers to the mr's sg array. We check to see if we've mapped
258 * the whole region after transferring the partial page references
259 * to the sg array so that we can have one page ref cleanup path.
261 * For now we have no flag that tells us whether the mapping is
262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
265 ret
= rds_pin_pages(args
->vec
.addr
, nr_pages
, pages
, 1);
266 if (ret
== -EOPNOTSUPP
) {
268 } else if (ret
<= 0) {
272 sg
= kmalloc_array(nents
, sizeof(*sg
), GFP_KERNEL
);
278 sg_init_table(sg
, nents
);
280 /* Stick all pages into the scatterlist */
281 for (i
= 0 ; i
< nents
; i
++)
282 sg_set_page(&sg
[i
], pages
[i
], PAGE_SIZE
, 0);
284 rdsdebug("RDS: trans_private nents is %u\n", nents
);
286 /* Obtain a transport specific MR. If this succeeds, the
287 * s/g list is now owned by the MR.
288 * Note that dma_map() implies that pending writes are
289 * flushed to RAM, so no dma_sync is needed here. */
290 trans_private
= rs
->rs_transport
->get_mr(
291 sg
, nents
, rs
, &mr
->r_key
, cp
? cp
->cp_conn
: NULL
,
292 args
->vec
.addr
, args
->vec
.bytes
,
293 need_odp
? ODP_ZEROBASED
: ODP_NOT_NEEDED
);
295 if (IS_ERR(trans_private
)) {
296 /* In ODP case, we don't GUP pages, so don't need
297 * to release anything.
300 unpin_user_pages(pages
, nr_pages
);
303 ret
= PTR_ERR(trans_private
);
307 mr
->r_trans_private
= trans_private
;
309 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
310 mr
->r_key
, (void *)(unsigned long) args
->cookie_addr
);
312 /* The user may pass us an unaligned address, but we can only
313 * map page aligned regions. So we keep the offset, and build
314 * a 64bit cookie containing <R_Key, offset> and pass that
317 cookie
= rds_rdma_make_cookie(mr
->r_key
, 0);
319 cookie
= rds_rdma_make_cookie(mr
->r_key
,
320 args
->vec
.addr
& ~PAGE_MASK
);
322 *cookie_ret
= cookie
;
324 if (args
->cookie_addr
&&
325 put_user(cookie
, (u64 __user
*)(unsigned long)args
->cookie_addr
)) {
327 unpin_user_pages(pages
, nr_pages
);
334 /* Inserting the new MR into the rbtree bumps its
335 * reference count. */
336 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
337 found
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, mr
->r_key
, mr
);
338 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
340 BUG_ON(found
&& found
!= mr
);
342 rdsdebug("RDS: get_mr key is %x\n", mr
->r_key
);
344 kref_get(&mr
->r_kref
);
352 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
356 int rds_get_mr(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
358 struct rds_get_mr_args args
;
360 if (optlen
!= sizeof(struct rds_get_mr_args
))
363 if (copy_from_sockptr(&args
, optval
, sizeof(struct rds_get_mr_args
)))
366 return __rds_rdma_map(rs
, &args
, NULL
, NULL
, NULL
);
369 int rds_get_mr_for_dest(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
371 struct rds_get_mr_for_dest_args args
;
372 struct rds_get_mr_args new_args
;
374 if (optlen
!= sizeof(struct rds_get_mr_for_dest_args
))
377 if (copy_from_sockptr(&args
, optval
,
378 sizeof(struct rds_get_mr_for_dest_args
)))
382 * Initially, just behave like get_mr().
383 * TODO: Implement get_mr as wrapper around this
386 new_args
.vec
= args
.vec
;
387 new_args
.cookie_addr
= args
.cookie_addr
;
388 new_args
.flags
= args
.flags
;
390 return __rds_rdma_map(rs
, &new_args
, NULL
, NULL
, NULL
);
394 * Free the MR indicated by the given R_Key
396 int rds_free_mr(struct rds_sock
*rs
, sockptr_t optval
, int optlen
)
398 struct rds_free_mr_args args
;
402 if (optlen
!= sizeof(struct rds_free_mr_args
))
405 if (copy_from_sockptr(&args
, optval
, sizeof(struct rds_free_mr_args
)))
408 /* Special case - a null cookie means flush all unused MRs */
409 if (args
.cookie
== 0) {
410 if (!rs
->rs_transport
|| !rs
->rs_transport
->flush_mrs
)
412 rs
->rs_transport
->flush_mrs();
416 /* Look up the MR given its R_key and remove it from the rbtree
417 * so nobody else finds it.
418 * This should also prevent races with rds_rdma_unuse.
420 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
421 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, rds_rdma_cookie_key(args
.cookie
), NULL
);
423 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
424 RB_CLEAR_NODE(&mr
->r_rb_node
);
425 if (args
.flags
& RDS_RDMA_INVALIDATE
)
426 mr
->r_invalidate
= 1;
428 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
433 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
438 * This is called when we receive an extension header that
439 * tells us this MR was used. It allows us to implement
442 void rds_rdma_unuse(struct rds_sock
*rs
, u32 r_key
, int force
)
448 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
449 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
451 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
453 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
457 /* Get a reference so that the MR won't go away before calling
460 kref_get(&mr
->r_kref
);
462 /* If it is going to be freed, remove it from the tree now so
463 * that no other thread can find it and free it.
465 if (mr
->r_use_once
|| force
) {
466 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
467 RB_CLEAR_NODE(&mr
->r_rb_node
);
470 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
472 /* May have to issue a dma_sync on this memory region.
473 * Note we could avoid this if the operation was a RDMA READ,
474 * but at this point we can't tell. */
475 if (mr
->r_trans
->sync_mr
)
476 mr
->r_trans
->sync_mr(mr
->r_trans_private
, DMA_FROM_DEVICE
);
478 /* Release the reference held above. */
479 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
481 /* If the MR was marked as invalidate, this will
482 * trigger an async flush. */
484 kref_put(&mr
->r_kref
, __rds_put_mr_final
);
487 void rds_rdma_free_op(struct rm_rdma_op
*ro
)
492 kref_put(&ro
->op_odp_mr
->r_kref
, __rds_put_mr_final
);
494 for (i
= 0; i
< ro
->op_nents
; i
++) {
495 struct page
*page
= sg_page(&ro
->op_sg
[i
]);
497 /* Mark page dirty if it was possibly modified, which
498 * is the case for a RDMA_READ which copies from remote
501 unpin_user_pages_dirty_lock(&page
, 1, !ro
->op_write
);
505 kfree(ro
->op_notifier
);
506 ro
->op_notifier
= NULL
;
508 ro
->op_odp_mr
= NULL
;
511 void rds_atomic_free_op(struct rm_atomic_op
*ao
)
513 struct page
*page
= sg_page(ao
->op_sg
);
515 /* Mark page dirty if it was possibly modified, which
516 * is the case for a RDMA_READ which copies from remote
518 unpin_user_pages_dirty_lock(&page
, 1, true);
520 kfree(ao
->op_notifier
);
521 ao
->op_notifier
= NULL
;
527 * Count the number of pages needed to describe an incoming iovec array.
529 static int rds_rdma_pages(struct rds_iovec iov
[], int nr_iovecs
)
532 unsigned int nr_pages
;
535 /* figure out the number of pages in the vector */
536 for (i
= 0; i
< nr_iovecs
; i
++) {
537 nr_pages
= rds_pages_in_vec(&iov
[i
]);
541 tot_pages
+= nr_pages
;
544 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
545 * so tot_pages cannot overflow without first going negative.
554 int rds_rdma_extra_size(struct rds_rdma_args
*args
,
555 struct rds_iov_vector
*iov
)
557 struct rds_iovec
*vec
;
558 struct rds_iovec __user
*local_vec
;
560 unsigned int nr_pages
;
563 local_vec
= (struct rds_iovec __user
*)(unsigned long) args
->local_vec_addr
;
565 if (args
->nr_local
== 0)
568 iov
->iov
= kcalloc(args
->nr_local
,
569 sizeof(struct rds_iovec
),
576 if (copy_from_user(vec
, local_vec
, args
->nr_local
*
577 sizeof(struct rds_iovec
)))
579 iov
->len
= args
->nr_local
;
581 /* figure out the number of pages in the vector */
582 for (i
= 0; i
< args
->nr_local
; i
++, vec
++) {
584 nr_pages
= rds_pages_in_vec(vec
);
588 tot_pages
+= nr_pages
;
591 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
592 * so tot_pages cannot overflow without first going negative.
598 return tot_pages
* sizeof(struct scatterlist
);
602 * The application asks for a RDMA transfer.
603 * Extract all arguments and set up the rdma_op
605 int rds_cmsg_rdma_args(struct rds_sock
*rs
, struct rds_message
*rm
,
606 struct cmsghdr
*cmsg
,
607 struct rds_iov_vector
*vec
)
609 struct rds_rdma_args
*args
;
610 struct rm_rdma_op
*op
= &rm
->rdma
;
612 unsigned int nr_bytes
;
613 struct page
**pages
= NULL
;
614 struct rds_iovec
*iovs
;
617 bool odp_supported
= true;
619 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_rdma_args
))
620 || rm
->rdma
.op_active
)
623 args
= CMSG_DATA(cmsg
);
625 if (ipv6_addr_any(&rs
->rs_bound_addr
)) {
626 ret
= -ENOTCONN
; /* XXX not a great errno */
630 if (args
->nr_local
> UIO_MAXIOV
) {
635 if (vec
->len
!= args
->nr_local
) {
639 /* odp-mr is not supported for multiple requests within one message */
640 if (args
->nr_local
!= 1)
641 odp_supported
= false;
645 nr_pages
= rds_rdma_pages(iovs
, args
->nr_local
);
651 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
657 op
->op_write
= !!(args
->flags
& RDS_RDMA_READWRITE
);
658 op
->op_fence
= !!(args
->flags
& RDS_RDMA_FENCE
);
659 op
->op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
660 op
->op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
662 op
->op_recverr
= rs
->rs_recverr
;
663 op
->op_odp_mr
= NULL
;
666 op
->op_sg
= rds_message_alloc_sgs(rm
, nr_pages
);
667 if (IS_ERR(op
->op_sg
)) {
668 ret
= PTR_ERR(op
->op_sg
);
672 if (op
->op_notify
|| op
->op_recverr
) {
673 /* We allocate an uninitialized notifier here, because
674 * we don't want to do that in the completion handler. We
675 * would have to use GFP_ATOMIC there, and don't want to deal
676 * with failed allocations.
678 op
->op_notifier
= kmalloc(sizeof(struct rds_notifier
), GFP_KERNEL
);
679 if (!op
->op_notifier
) {
683 op
->op_notifier
->n_user_token
= args
->user_token
;
684 op
->op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
687 /* The cookie contains the R_Key of the remote memory region, and
688 * optionally an offset into it. This is how we implement RDMA into
690 * When setting up the RDMA, we need to add that offset to the
691 * destination address (which is really an offset into the MR)
692 * FIXME: We may want to move this into ib_rdma.c
694 op
->op_rkey
= rds_rdma_cookie_key(args
->cookie
);
695 op
->op_remote_addr
= args
->remote_vec
.addr
+ rds_rdma_cookie_offset(args
->cookie
);
699 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
700 (unsigned long long)args
->nr_local
,
701 (unsigned long long)args
->remote_vec
.addr
,
704 for (i
= 0; i
< args
->nr_local
; i
++) {
705 struct rds_iovec
*iov
= &iovs
[i
];
706 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
707 unsigned int nr
= rds_pages_in_vec(iov
);
709 rs
->rs_user_addr
= iov
->addr
;
710 rs
->rs_user_bytes
= iov
->bytes
;
712 /* If it's a WRITE operation, we want to pin the pages for reading.
713 * If it's a READ operation, we need to pin the pages for writing.
715 ret
= rds_pin_pages(iov
->addr
, nr
, pages
, !op
->op_write
);
716 if ((!odp_supported
&& ret
<= 0) ||
717 (odp_supported
&& ret
<= 0 && ret
!= -EOPNOTSUPP
))
720 if (ret
== -EOPNOTSUPP
) {
721 struct rds_mr
*local_odp_mr
;
723 if (!rs
->rs_transport
->get_mr
) {
728 kzalloc(sizeof(*local_odp_mr
), GFP_KERNEL
);
733 RB_CLEAR_NODE(&local_odp_mr
->r_rb_node
);
734 kref_init(&local_odp_mr
->r_kref
);
735 local_odp_mr
->r_trans
= rs
->rs_transport
;
736 local_odp_mr
->r_sock
= rs
;
737 local_odp_mr
->r_trans_private
=
738 rs
->rs_transport
->get_mr(
739 NULL
, 0, rs
, &local_odp_mr
->r_key
, NULL
,
740 iov
->addr
, iov
->bytes
, ODP_VIRTUAL
);
741 if (IS_ERR(local_odp_mr
->r_trans_private
)) {
742 ret
= IS_ERR(local_odp_mr
->r_trans_private
);
743 rdsdebug("get_mr ret %d %p\"", ret
,
744 local_odp_mr
->r_trans_private
);
749 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
750 local_odp_mr
, local_odp_mr
->r_trans_private
);
751 op
->op_odp_mr
= local_odp_mr
;
752 op
->op_odp_addr
= iov
->addr
;
755 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
756 nr_bytes
, nr
, iov
->bytes
, iov
->addr
);
758 nr_bytes
+= iov
->bytes
;
760 for (j
= 0; j
< nr
; j
++) {
761 unsigned int offset
= iov
->addr
& ~PAGE_MASK
;
762 struct scatterlist
*sg
;
764 sg
= &op
->op_sg
[op
->op_nents
+ j
];
765 sg_set_page(sg
, pages
[j
],
766 min_t(unsigned int, iov
->bytes
, PAGE_SIZE
- offset
),
769 sg_dma_len(sg
) = sg
->length
;
770 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
771 sg
->offset
, sg
->length
, iov
->addr
, iov
->bytes
);
773 iov
->addr
+= sg
->length
;
774 iov
->bytes
-= sg
->length
;
780 if (nr_bytes
> args
->remote_vec
.bytes
) {
781 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
783 (unsigned int) args
->remote_vec
.bytes
);
787 op
->op_bytes
= nr_bytes
;
794 rds_rdma_free_op(op
);
796 rds_stats_inc(s_send_rdma
);
802 * The application wants us to pass an RDMA destination (aka MR)
805 int rds_cmsg_rdma_dest(struct rds_sock
*rs
, struct rds_message
*rm
,
806 struct cmsghdr
*cmsg
)
813 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(rds_rdma_cookie_t
)) ||
814 rm
->m_rdma_cookie
!= 0)
817 memcpy(&rm
->m_rdma_cookie
, CMSG_DATA(cmsg
), sizeof(rm
->m_rdma_cookie
));
819 /* We are reusing a previously mapped MR here. Most likely, the
820 * application has written to the buffer, so we need to explicitly
821 * flush those writes to RAM. Otherwise the HCA may not see them
822 * when doing a DMA from that buffer.
824 r_key
= rds_rdma_cookie_key(rm
->m_rdma_cookie
);
826 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
827 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
829 err
= -EINVAL
; /* invalid r_key */
831 kref_get(&mr
->r_kref
);
832 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
835 mr
->r_trans
->sync_mr(mr
->r_trans_private
,
837 rm
->rdma
.op_rdma_mr
= mr
;
843 * The application passes us an address range it wants to enable RDMA
844 * to/from. We map the area, and save the <R_Key,offset> pair
845 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
846 * in an extension header.
848 int rds_cmsg_rdma_map(struct rds_sock
*rs
, struct rds_message
*rm
,
849 struct cmsghdr
*cmsg
)
851 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_get_mr_args
)) ||
852 rm
->m_rdma_cookie
!= 0)
855 return __rds_rdma_map(rs
, CMSG_DATA(cmsg
), &rm
->m_rdma_cookie
,
856 &rm
->rdma
.op_rdma_mr
, rm
->m_conn_path
);
860 * Fill in rds_message for an atomic request.
862 int rds_cmsg_atomic(struct rds_sock
*rs
, struct rds_message
*rm
,
863 struct cmsghdr
*cmsg
)
865 struct page
*page
= NULL
;
866 struct rds_atomic_args
*args
;
869 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_atomic_args
))
870 || rm
->atomic
.op_active
)
873 args
= CMSG_DATA(cmsg
);
875 /* Nonmasked & masked cmsg ops converted to masked hw ops */
876 switch (cmsg
->cmsg_type
) {
877 case RDS_CMSG_ATOMIC_FADD
:
878 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
879 rm
->atomic
.op_m_fadd
.add
= args
->fadd
.add
;
880 rm
->atomic
.op_m_fadd
.nocarry_mask
= 0;
882 case RDS_CMSG_MASKED_ATOMIC_FADD
:
883 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
884 rm
->atomic
.op_m_fadd
.add
= args
->m_fadd
.add
;
885 rm
->atomic
.op_m_fadd
.nocarry_mask
= args
->m_fadd
.nocarry_mask
;
887 case RDS_CMSG_ATOMIC_CSWP
:
888 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
889 rm
->atomic
.op_m_cswp
.compare
= args
->cswp
.compare
;
890 rm
->atomic
.op_m_cswp
.swap
= args
->cswp
.swap
;
891 rm
->atomic
.op_m_cswp
.compare_mask
= ~0;
892 rm
->atomic
.op_m_cswp
.swap_mask
= ~0;
894 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
895 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
896 rm
->atomic
.op_m_cswp
.compare
= args
->m_cswp
.compare
;
897 rm
->atomic
.op_m_cswp
.swap
= args
->m_cswp
.swap
;
898 rm
->atomic
.op_m_cswp
.compare_mask
= args
->m_cswp
.compare_mask
;
899 rm
->atomic
.op_m_cswp
.swap_mask
= args
->m_cswp
.swap_mask
;
902 BUG(); /* should never happen */
905 rm
->atomic
.op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
906 rm
->atomic
.op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
907 rm
->atomic
.op_active
= 1;
908 rm
->atomic
.op_recverr
= rs
->rs_recverr
;
909 rm
->atomic
.op_sg
= rds_message_alloc_sgs(rm
, 1);
910 if (IS_ERR(rm
->atomic
.op_sg
)) {
911 ret
= PTR_ERR(rm
->atomic
.op_sg
);
915 /* verify 8 byte-aligned */
916 if (args
->local_addr
& 0x7) {
921 ret
= rds_pin_pages(args
->local_addr
, 1, &page
, 1);
926 sg_set_page(rm
->atomic
.op_sg
, page
, 8, offset_in_page(args
->local_addr
));
928 if (rm
->atomic
.op_notify
|| rm
->atomic
.op_recverr
) {
929 /* We allocate an uninitialized notifier here, because
930 * we don't want to do that in the completion handler. We
931 * would have to use GFP_ATOMIC there, and don't want to deal
932 * with failed allocations.
934 rm
->atomic
.op_notifier
= kmalloc(sizeof(*rm
->atomic
.op_notifier
), GFP_KERNEL
);
935 if (!rm
->atomic
.op_notifier
) {
940 rm
->atomic
.op_notifier
->n_user_token
= args
->user_token
;
941 rm
->atomic
.op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
944 rm
->atomic
.op_rkey
= rds_rdma_cookie_key(args
->cookie
);
945 rm
->atomic
.op_remote_addr
= args
->remote_addr
+ rds_rdma_cookie_offset(args
->cookie
);
950 unpin_user_page(page
);
951 rm
->atomic
.op_active
= 0;
952 kfree(rm
->atomic
.op_notifier
);