1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
12 #include <sys/utsname.h>
13 #include <sys/param.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
22 #include "libbpf_internal.h"
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 static struct btf_type btf_void
;
31 /* raw BTF data in native endianness */
33 /* raw BTF data in non-native endianness */
34 void *raw_data_swapped
;
36 /* whether target endianness differs from the native one */
40 * When BTF is loaded from an ELF or raw memory it is stored
41 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 * point inside that memory region to their respective parts of BTF
45 * +--------------------------------+
46 * | Header | Types | Strings |
47 * +--------------------------------+
52 * strs_data------------+
54 * If BTF data is later modified, e.g., due to types added or
55 * removed, BTF deduplication performed, etc, this contiguous
56 * representation is broken up into three independently allocated
57 * memory regions to be able to modify them independently.
58 * raw_data is nulled out at that point, but can be later allocated
59 * and cached again if user calls btf__get_raw_data(), at which point
60 * raw_data will contain a contiguous copy of header, types, and
63 * +----------+ +---------+ +-----------+
64 * | Header | | Types | | Strings |
65 * +----------+ +---------+ +-----------+
70 * strs_data------------------+
72 * +----------+---------+-----------+
73 * | Header | Types | Strings |
74 * raw_data----->+----------+---------+-----------+
76 struct btf_header
*hdr
;
79 size_t types_data_cap
; /* used size stored in hdr->type_len */
81 /* type ID to `struct btf_type *` lookup index
82 * type_offs[0] corresponds to the first non-VOID type:
83 * - for base BTF it's type [1];
84 * - for split BTF it's the first non-base BTF type.
88 /* number of types in this BTF instance:
89 * - doesn't include special [0] void type;
90 * - for split BTF counts number of types added on top of base BTF.
93 /* if not NULL, points to the base BTF on top of which the current
97 /* BTF type ID of the first type in this BTF instance:
98 * - for base BTF it's equal to 1;
99 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
102 /* logical string offset of this BTF instance:
103 * - for base BTF it's equal to 0;
104 * - for split BTF it's equal to total size of base BTF's string section size.
109 size_t strs_data_cap
; /* used size stored in hdr->str_len */
111 /* lookup index for each unique string in strings section */
112 struct hashmap
*strs_hash
;
113 /* whether strings are already deduplicated */
115 /* extra indirection layer to make strings hashmap work with stable
116 * string offsets and ability to transparently choose between
117 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 * This is used for BTF strings dedup to transfer deduplicated strings
119 * data back to struct btf without re-building strings index.
121 void **strs_data_ptr
;
123 /* BTF object FD, if loaded into kernel */
126 /* Pointer size (in bytes) for a target architecture of this BTF */
130 static inline __u64
ptr_to_u64(const void *ptr
)
132 return (__u64
) (unsigned long) ptr
;
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138 * are already used. At most *max_cnt* elements can be ever allocated.
139 * If necessary, memory is reallocated and all existing data is copied over,
140 * new pointer to the memory region is stored at *data, new memory region
141 * capacity (in number of elements) is stored in *cap.
142 * On success, memory pointer to the beginning of unused memory is returned.
143 * On error, NULL is returned.
145 void *btf_add_mem(void **data
, size_t *cap_cnt
, size_t elem_sz
,
146 size_t cur_cnt
, size_t max_cnt
, size_t add_cnt
)
151 if (cur_cnt
+ add_cnt
<= *cap_cnt
)
152 return *data
+ cur_cnt
* elem_sz
;
154 /* requested more than the set limit */
155 if (cur_cnt
+ add_cnt
> max_cnt
)
159 new_cnt
+= new_cnt
/ 4; /* expand by 25% */
160 if (new_cnt
< 16) /* but at least 16 elements */
162 if (new_cnt
> max_cnt
) /* but not exceeding a set limit */
164 if (new_cnt
< cur_cnt
+ add_cnt
) /* also ensure we have enough memory */
165 new_cnt
= cur_cnt
+ add_cnt
;
167 new_data
= libbpf_reallocarray(*data
, new_cnt
, elem_sz
);
171 /* zero out newly allocated portion of memory */
172 memset(new_data
+ (*cap_cnt
) * elem_sz
, 0, (new_cnt
- *cap_cnt
) * elem_sz
);
176 return new_data
+ cur_cnt
* elem_sz
;
179 /* Ensure given dynamically allocated memory region has enough allocated space
180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
182 int btf_ensure_mem(void **data
, size_t *cap_cnt
, size_t elem_sz
, size_t need_cnt
)
186 if (need_cnt
<= *cap_cnt
)
189 p
= btf_add_mem(data
, cap_cnt
, elem_sz
, *cap_cnt
, SIZE_MAX
, need_cnt
- *cap_cnt
);
196 static int btf_add_type_idx_entry(struct btf
*btf
, __u32 type_off
)
200 p
= btf_add_mem((void **)&btf
->type_offs
, &btf
->type_offs_cap
, sizeof(__u32
),
201 btf
->nr_types
, BTF_MAX_NR_TYPES
, 1);
209 static void btf_bswap_hdr(struct btf_header
*h
)
211 h
->magic
= bswap_16(h
->magic
);
212 h
->hdr_len
= bswap_32(h
->hdr_len
);
213 h
->type_off
= bswap_32(h
->type_off
);
214 h
->type_len
= bswap_32(h
->type_len
);
215 h
->str_off
= bswap_32(h
->str_off
);
216 h
->str_len
= bswap_32(h
->str_len
);
219 static int btf_parse_hdr(struct btf
*btf
)
221 struct btf_header
*hdr
= btf
->hdr
;
224 if (btf
->raw_size
< sizeof(struct btf_header
)) {
225 pr_debug("BTF header not found\n");
229 if (hdr
->magic
== bswap_16(BTF_MAGIC
)) {
230 btf
->swapped_endian
= true;
231 if (bswap_32(hdr
->hdr_len
) != sizeof(struct btf_header
)) {
232 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 bswap_32(hdr
->hdr_len
));
237 } else if (hdr
->magic
!= BTF_MAGIC
) {
238 pr_debug("Invalid BTF magic:%x\n", hdr
->magic
);
242 meta_left
= btf
->raw_size
- sizeof(*hdr
);
244 pr_debug("BTF has no data\n");
248 if (meta_left
< hdr
->str_off
+ hdr
->str_len
) {
249 pr_debug("Invalid BTF total size:%u\n", btf
->raw_size
);
253 if (hdr
->type_off
+ hdr
->type_len
> hdr
->str_off
) {
254 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
255 hdr
->type_off
, hdr
->type_len
, hdr
->str_off
, hdr
->str_len
);
259 if (hdr
->type_off
% 4) {
260 pr_debug("BTF type section is not aligned to 4 bytes\n");
267 static int btf_parse_str_sec(struct btf
*btf
)
269 const struct btf_header
*hdr
= btf
->hdr
;
270 const char *start
= btf
->strs_data
;
271 const char *end
= start
+ btf
->hdr
->str_len
;
273 if (btf
->base_btf
&& hdr
->str_len
== 0)
275 if (!hdr
->str_len
|| hdr
->str_len
- 1 > BTF_MAX_STR_OFFSET
|| end
[-1]) {
276 pr_debug("Invalid BTF string section\n");
279 if (!btf
->base_btf
&& start
[0]) {
280 pr_debug("Invalid BTF string section\n");
286 static int btf_type_size(const struct btf_type
*t
)
288 const int base_size
= sizeof(struct btf_type
);
289 __u16 vlen
= btf_vlen(t
);
291 switch (btf_kind(t
)) {
294 case BTF_KIND_VOLATILE
:
295 case BTF_KIND_RESTRICT
:
297 case BTF_KIND_TYPEDEF
:
301 return base_size
+ sizeof(__u32
);
303 return base_size
+ vlen
* sizeof(struct btf_enum
);
305 return base_size
+ sizeof(struct btf_array
);
306 case BTF_KIND_STRUCT
:
308 return base_size
+ vlen
* sizeof(struct btf_member
);
309 case BTF_KIND_FUNC_PROTO
:
310 return base_size
+ vlen
* sizeof(struct btf_param
);
312 return base_size
+ sizeof(struct btf_var
);
313 case BTF_KIND_DATASEC
:
314 return base_size
+ vlen
* sizeof(struct btf_var_secinfo
);
316 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t
));
321 static void btf_bswap_type_base(struct btf_type
*t
)
323 t
->name_off
= bswap_32(t
->name_off
);
324 t
->info
= bswap_32(t
->info
);
325 t
->type
= bswap_32(t
->type
);
328 static int btf_bswap_type_rest(struct btf_type
*t
)
330 struct btf_var_secinfo
*v
;
331 struct btf_member
*m
;
335 __u16 vlen
= btf_vlen(t
);
338 switch (btf_kind(t
)) {
341 case BTF_KIND_VOLATILE
:
342 case BTF_KIND_RESTRICT
:
344 case BTF_KIND_TYPEDEF
:
348 *(__u32
*)(t
+ 1) = bswap_32(*(__u32
*)(t
+ 1));
351 for (i
= 0, e
= btf_enum(t
); i
< vlen
; i
++, e
++) {
352 e
->name_off
= bswap_32(e
->name_off
);
353 e
->val
= bswap_32(e
->val
);
358 a
->type
= bswap_32(a
->type
);
359 a
->index_type
= bswap_32(a
->index_type
);
360 a
->nelems
= bswap_32(a
->nelems
);
362 case BTF_KIND_STRUCT
:
364 for (i
= 0, m
= btf_members(t
); i
< vlen
; i
++, m
++) {
365 m
->name_off
= bswap_32(m
->name_off
);
366 m
->type
= bswap_32(m
->type
);
367 m
->offset
= bswap_32(m
->offset
);
370 case BTF_KIND_FUNC_PROTO
:
371 for (i
= 0, p
= btf_params(t
); i
< vlen
; i
++, p
++) {
372 p
->name_off
= bswap_32(p
->name_off
);
373 p
->type
= bswap_32(p
->type
);
377 btf_var(t
)->linkage
= bswap_32(btf_var(t
)->linkage
);
379 case BTF_KIND_DATASEC
:
380 for (i
= 0, v
= btf_var_secinfos(t
); i
< vlen
; i
++, v
++) {
381 v
->type
= bswap_32(v
->type
);
382 v
->offset
= bswap_32(v
->offset
);
383 v
->size
= bswap_32(v
->size
);
387 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t
));
392 static int btf_parse_type_sec(struct btf
*btf
)
394 struct btf_header
*hdr
= btf
->hdr
;
395 void *next_type
= btf
->types_data
;
396 void *end_type
= next_type
+ hdr
->type_len
;
399 while (next_type
+ sizeof(struct btf_type
) <= end_type
) {
400 if (btf
->swapped_endian
)
401 btf_bswap_type_base(next_type
);
403 type_size
= btf_type_size(next_type
);
406 if (next_type
+ type_size
> end_type
) {
407 pr_warn("BTF type [%d] is malformed\n", btf
->start_id
+ btf
->nr_types
);
411 if (btf
->swapped_endian
&& btf_bswap_type_rest(next_type
))
414 err
= btf_add_type_idx_entry(btf
, next_type
- btf
->types_data
);
418 next_type
+= type_size
;
422 if (next_type
!= end_type
) {
423 pr_warn("BTF types data is malformed\n");
430 __u32
btf__get_nr_types(const struct btf
*btf
)
432 return btf
->start_id
+ btf
->nr_types
- 1;
435 const struct btf
*btf__base_btf(const struct btf
*btf
)
437 return btf
->base_btf
;
440 /* internal helper returning non-const pointer to a type */
441 static struct btf_type
*btf_type_by_id(struct btf
*btf
, __u32 type_id
)
445 if (type_id
< btf
->start_id
)
446 return btf_type_by_id(btf
->base_btf
, type_id
);
447 return btf
->types_data
+ btf
->type_offs
[type_id
- btf
->start_id
];
450 const struct btf_type
*btf__type_by_id(const struct btf
*btf
, __u32 type_id
)
452 if (type_id
>= btf
->start_id
+ btf
->nr_types
)
454 return btf_type_by_id((struct btf
*)btf
, type_id
);
457 static int determine_ptr_size(const struct btf
*btf
)
459 const struct btf_type
*t
;
463 if (btf
->base_btf
&& btf
->base_btf
->ptr_sz
> 0)
464 return btf
->base_btf
->ptr_sz
;
466 n
= btf__get_nr_types(btf
);
467 for (i
= 1; i
<= n
; i
++) {
468 t
= btf__type_by_id(btf
, i
);
472 name
= btf__name_by_offset(btf
, t
->name_off
);
476 if (strcmp(name
, "long int") == 0 ||
477 strcmp(name
, "long unsigned int") == 0) {
478 if (t
->size
!= 4 && t
->size
!= 8)
487 static size_t btf_ptr_sz(const struct btf
*btf
)
490 ((struct btf
*)btf
)->ptr_sz
= determine_ptr_size(btf
);
491 return btf
->ptr_sz
< 0 ? sizeof(void *) : btf
->ptr_sz
;
494 /* Return pointer size this BTF instance assumes. The size is heuristically
495 * determined by looking for 'long' or 'unsigned long' integer type and
496 * recording its size in bytes. If BTF type information doesn't have any such
497 * type, this function returns 0. In the latter case, native architecture's
498 * pointer size is assumed, so will be either 4 or 8, depending on
499 * architecture that libbpf was compiled for. It's possible to override
500 * guessed value by using btf__set_pointer_size() API.
502 size_t btf__pointer_size(const struct btf
*btf
)
505 ((struct btf
*)btf
)->ptr_sz
= determine_ptr_size(btf
);
508 /* not enough BTF type info to guess */
514 /* Override or set pointer size in bytes. Only values of 4 and 8 are
517 int btf__set_pointer_size(struct btf
*btf
, size_t ptr_sz
)
519 if (ptr_sz
!= 4 && ptr_sz
!= 8)
521 btf
->ptr_sz
= ptr_sz
;
525 static bool is_host_big_endian(void)
527 #if __BYTE_ORDER == __LITTLE_ENDIAN
529 #elif __BYTE_ORDER == __BIG_ENDIAN
532 # error "Unrecognized __BYTE_ORDER__"
536 enum btf_endianness
btf__endianness(const struct btf
*btf
)
538 if (is_host_big_endian())
539 return btf
->swapped_endian
? BTF_LITTLE_ENDIAN
: BTF_BIG_ENDIAN
;
541 return btf
->swapped_endian
? BTF_BIG_ENDIAN
: BTF_LITTLE_ENDIAN
;
544 int btf__set_endianness(struct btf
*btf
, enum btf_endianness endian
)
546 if (endian
!= BTF_LITTLE_ENDIAN
&& endian
!= BTF_BIG_ENDIAN
)
549 btf
->swapped_endian
= is_host_big_endian() != (endian
== BTF_BIG_ENDIAN
);
550 if (!btf
->swapped_endian
) {
551 free(btf
->raw_data_swapped
);
552 btf
->raw_data_swapped
= NULL
;
557 static bool btf_type_is_void(const struct btf_type
*t
)
559 return t
== &btf_void
|| btf_is_fwd(t
);
562 static bool btf_type_is_void_or_null(const struct btf_type
*t
)
564 return !t
|| btf_type_is_void(t
);
567 #define MAX_RESOLVE_DEPTH 32
569 __s64
btf__resolve_size(const struct btf
*btf
, __u32 type_id
)
571 const struct btf_array
*array
;
572 const struct btf_type
*t
;
577 t
= btf__type_by_id(btf
, type_id
);
578 for (i
= 0; i
< MAX_RESOLVE_DEPTH
&& !btf_type_is_void_or_null(t
);
580 switch (btf_kind(t
)) {
582 case BTF_KIND_STRUCT
:
585 case BTF_KIND_DATASEC
:
589 size
= btf_ptr_sz(btf
);
591 case BTF_KIND_TYPEDEF
:
592 case BTF_KIND_VOLATILE
:
594 case BTF_KIND_RESTRICT
:
599 array
= btf_array(t
);
600 if (nelems
&& array
->nelems
> UINT32_MAX
/ nelems
)
602 nelems
*= array
->nelems
;
603 type_id
= array
->type
;
609 t
= btf__type_by_id(btf
, type_id
);
615 if (nelems
&& size
> UINT32_MAX
/ nelems
)
618 return nelems
* size
;
621 int btf__align_of(const struct btf
*btf
, __u32 id
)
623 const struct btf_type
*t
= btf__type_by_id(btf
, id
);
624 __u16 kind
= btf_kind(t
);
629 return min(btf_ptr_sz(btf
), (size_t)t
->size
);
631 return btf_ptr_sz(btf
);
632 case BTF_KIND_TYPEDEF
:
633 case BTF_KIND_VOLATILE
:
635 case BTF_KIND_RESTRICT
:
636 return btf__align_of(btf
, t
->type
);
638 return btf__align_of(btf
, btf_array(t
)->type
);
639 case BTF_KIND_STRUCT
:
640 case BTF_KIND_UNION
: {
641 const struct btf_member
*m
= btf_members(t
);
642 __u16 vlen
= btf_vlen(t
);
643 int i
, max_align
= 1, align
;
645 for (i
= 0; i
< vlen
; i
++, m
++) {
646 align
= btf__align_of(btf
, m
->type
);
649 max_align
= max(max_align
, align
);
655 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t
));
660 int btf__resolve_type(const struct btf
*btf
, __u32 type_id
)
662 const struct btf_type
*t
;
665 t
= btf__type_by_id(btf
, type_id
);
666 while (depth
< MAX_RESOLVE_DEPTH
&&
667 !btf_type_is_void_or_null(t
) &&
668 (btf_is_mod(t
) || btf_is_typedef(t
) || btf_is_var(t
))) {
670 t
= btf__type_by_id(btf
, type_id
);
674 if (depth
== MAX_RESOLVE_DEPTH
|| btf_type_is_void_or_null(t
))
680 __s32
btf__find_by_name(const struct btf
*btf
, const char *type_name
)
682 __u32 i
, nr_types
= btf__get_nr_types(btf
);
684 if (!strcmp(type_name
, "void"))
687 for (i
= 1; i
<= nr_types
; i
++) {
688 const struct btf_type
*t
= btf__type_by_id(btf
, i
);
689 const char *name
= btf__name_by_offset(btf
, t
->name_off
);
691 if (name
&& !strcmp(type_name
, name
))
698 __s32
btf__find_by_name_kind(const struct btf
*btf
, const char *type_name
,
701 __u32 i
, nr_types
= btf__get_nr_types(btf
);
703 if (kind
== BTF_KIND_UNKN
|| !strcmp(type_name
, "void"))
706 for (i
= 1; i
<= nr_types
; i
++) {
707 const struct btf_type
*t
= btf__type_by_id(btf
, i
);
710 if (btf_kind(t
) != kind
)
712 name
= btf__name_by_offset(btf
, t
->name_off
);
713 if (name
&& !strcmp(type_name
, name
))
720 static bool btf_is_modifiable(const struct btf
*btf
)
722 return (void *)btf
->hdr
!= btf
->raw_data
;
725 void btf__free(struct btf
*btf
)
727 if (IS_ERR_OR_NULL(btf
))
733 if (btf_is_modifiable(btf
)) {
734 /* if BTF was modified after loading, it will have a split
735 * in-memory representation for header, types, and strings
736 * sections, so we need to free all of them individually. It
737 * might still have a cached contiguous raw data present,
738 * which will be unconditionally freed below.
741 free(btf
->types_data
);
742 free(btf
->strs_data
);
745 free(btf
->raw_data_swapped
);
746 free(btf
->type_offs
);
750 static struct btf
*btf_new_empty(struct btf
*base_btf
)
754 btf
= calloc(1, sizeof(*btf
));
756 return ERR_PTR(-ENOMEM
);
760 btf
->start_str_off
= 0;
762 btf
->ptr_sz
= sizeof(void *);
763 btf
->swapped_endian
= false;
766 btf
->base_btf
= base_btf
;
767 btf
->start_id
= btf__get_nr_types(base_btf
) + 1;
768 btf
->start_str_off
= base_btf
->hdr
->str_len
;
771 /* +1 for empty string at offset 0 */
772 btf
->raw_size
= sizeof(struct btf_header
) + (base_btf
? 0 : 1);
773 btf
->raw_data
= calloc(1, btf
->raw_size
);
774 if (!btf
->raw_data
) {
776 return ERR_PTR(-ENOMEM
);
779 btf
->hdr
= btf
->raw_data
;
780 btf
->hdr
->hdr_len
= sizeof(struct btf_header
);
781 btf
->hdr
->magic
= BTF_MAGIC
;
782 btf
->hdr
->version
= BTF_VERSION
;
784 btf
->types_data
= btf
->raw_data
+ btf
->hdr
->hdr_len
;
785 btf
->strs_data
= btf
->raw_data
+ btf
->hdr
->hdr_len
;
786 btf
->hdr
->str_len
= base_btf
? 0 : 1; /* empty string at offset 0 */
791 struct btf
*btf__new_empty(void)
793 return btf_new_empty(NULL
);
796 struct btf
*btf__new_empty_split(struct btf
*base_btf
)
798 return btf_new_empty(base_btf
);
801 static struct btf
*btf_new(const void *data
, __u32 size
, struct btf
*base_btf
)
806 btf
= calloc(1, sizeof(struct btf
));
808 return ERR_PTR(-ENOMEM
);
812 btf
->start_str_off
= 0;
815 btf
->base_btf
= base_btf
;
816 btf
->start_id
= btf__get_nr_types(base_btf
) + 1;
817 btf
->start_str_off
= base_btf
->hdr
->str_len
;
820 btf
->raw_data
= malloc(size
);
821 if (!btf
->raw_data
) {
825 memcpy(btf
->raw_data
, data
, size
);
826 btf
->raw_size
= size
;
828 btf
->hdr
= btf
->raw_data
;
829 err
= btf_parse_hdr(btf
);
833 btf
->strs_data
= btf
->raw_data
+ btf
->hdr
->hdr_len
+ btf
->hdr
->str_off
;
834 btf
->types_data
= btf
->raw_data
+ btf
->hdr
->hdr_len
+ btf
->hdr
->type_off
;
836 err
= btf_parse_str_sec(btf
);
837 err
= err
?: btf_parse_type_sec(btf
);
852 struct btf
*btf__new(const void *data
, __u32 size
)
854 return btf_new(data
, size
, NULL
);
857 static struct btf
*btf_parse_elf(const char *path
, struct btf
*base_btf
,
858 struct btf_ext
**btf_ext
)
860 Elf_Data
*btf_data
= NULL
, *btf_ext_data
= NULL
;
861 int err
= 0, fd
= -1, idx
= 0;
862 struct btf
*btf
= NULL
;
867 if (elf_version(EV_CURRENT
) == EV_NONE
) {
868 pr_warn("failed to init libelf for %s\n", path
);
869 return ERR_PTR(-LIBBPF_ERRNO__LIBELF
);
872 fd
= open(path
, O_RDONLY
);
875 pr_warn("failed to open %s: %s\n", path
, strerror(errno
));
879 err
= -LIBBPF_ERRNO__FORMAT
;
881 elf
= elf_begin(fd
, ELF_C_READ
, NULL
);
883 pr_warn("failed to open %s as ELF file\n", path
);
886 if (!gelf_getehdr(elf
, &ehdr
)) {
887 pr_warn("failed to get EHDR from %s\n", path
);
890 if (!elf_rawdata(elf_getscn(elf
, ehdr
.e_shstrndx
), NULL
)) {
891 pr_warn("failed to get e_shstrndx from %s\n", path
);
895 while ((scn
= elf_nextscn(elf
, scn
)) != NULL
) {
900 if (gelf_getshdr(scn
, &sh
) != &sh
) {
901 pr_warn("failed to get section(%d) header from %s\n",
905 name
= elf_strptr(elf
, ehdr
.e_shstrndx
, sh
.sh_name
);
907 pr_warn("failed to get section(%d) name from %s\n",
911 if (strcmp(name
, BTF_ELF_SEC
) == 0) {
912 btf_data
= elf_getdata(scn
, 0);
914 pr_warn("failed to get section(%d, %s) data from %s\n",
919 } else if (btf_ext
&& strcmp(name
, BTF_EXT_ELF_SEC
) == 0) {
920 btf_ext_data
= elf_getdata(scn
, 0);
922 pr_warn("failed to get section(%d, %s) data from %s\n",
936 btf
= btf_new(btf_data
->d_buf
, btf_data
->d_size
, base_btf
);
940 switch (gelf_getclass(elf
)) {
942 btf__set_pointer_size(btf
, 4);
945 btf__set_pointer_size(btf
, 8);
948 pr_warn("failed to get ELF class (bitness) for %s\n", path
);
952 if (btf_ext
&& btf_ext_data
) {
953 *btf_ext
= btf_ext__new(btf_ext_data
->d_buf
,
954 btf_ext_data
->d_size
);
955 if (IS_ERR(*btf_ext
))
957 } else if (btf_ext
) {
968 * btf is always parsed before btf_ext, so no need to clean up
969 * btf_ext, if btf loading failed
973 if (btf_ext
&& IS_ERR(*btf_ext
)) {
975 err
= PTR_ERR(*btf_ext
);
981 struct btf
*btf__parse_elf(const char *path
, struct btf_ext
**btf_ext
)
983 return btf_parse_elf(path
, NULL
, btf_ext
);
986 struct btf
*btf__parse_elf_split(const char *path
, struct btf
*base_btf
)
988 return btf_parse_elf(path
, base_btf
, NULL
);
991 static struct btf
*btf_parse_raw(const char *path
, struct btf
*base_btf
)
993 struct btf
*btf
= NULL
;
1000 f
= fopen(path
, "rb");
1006 /* check BTF magic */
1007 if (fread(&magic
, 1, sizeof(magic
), f
) < sizeof(magic
)) {
1011 if (magic
!= BTF_MAGIC
&& magic
!= bswap_16(BTF_MAGIC
)) {
1012 /* definitely not a raw BTF */
1018 if (fseek(f
, 0, SEEK_END
)) {
1027 /* rewind to the start */
1028 if (fseek(f
, 0, SEEK_SET
)) {
1033 /* pre-alloc memory and read all of BTF data */
1039 if (fread(data
, 1, sz
, f
) < sz
) {
1044 /* finally parse BTF data */
1045 btf
= btf_new(data
, sz
, base_btf
);
1051 return err
? ERR_PTR(err
) : btf
;
1054 struct btf
*btf__parse_raw(const char *path
)
1056 return btf_parse_raw(path
, NULL
);
1059 struct btf
*btf__parse_raw_split(const char *path
, struct btf
*base_btf
)
1061 return btf_parse_raw(path
, base_btf
);
1064 static struct btf
*btf_parse(const char *path
, struct btf
*base_btf
, struct btf_ext
**btf_ext
)
1071 btf
= btf_parse_raw(path
, base_btf
);
1072 if (!IS_ERR(btf
) || PTR_ERR(btf
) != -EPROTO
)
1075 return btf_parse_elf(path
, base_btf
, btf_ext
);
1078 struct btf
*btf__parse(const char *path
, struct btf_ext
**btf_ext
)
1080 return btf_parse(path
, NULL
, btf_ext
);
1083 struct btf
*btf__parse_split(const char *path
, struct btf
*base_btf
)
1085 return btf_parse(path
, base_btf
, NULL
);
1088 static int compare_vsi_off(const void *_a
, const void *_b
)
1090 const struct btf_var_secinfo
*a
= _a
;
1091 const struct btf_var_secinfo
*b
= _b
;
1093 return a
->offset
- b
->offset
;
1096 static int btf_fixup_datasec(struct bpf_object
*obj
, struct btf
*btf
,
1099 __u32 size
= 0, off
= 0, i
, vars
= btf_vlen(t
);
1100 const char *name
= btf__name_by_offset(btf
, t
->name_off
);
1101 const struct btf_type
*t_var
;
1102 struct btf_var_secinfo
*vsi
;
1103 const struct btf_var
*var
;
1107 pr_debug("No name found in string section for DATASEC kind.\n");
1111 /* .extern datasec size and var offsets were set correctly during
1112 * extern collection step, so just skip straight to sorting variables
1117 ret
= bpf_object__section_size(obj
, name
, &size
);
1118 if (ret
|| !size
|| (t
->size
&& t
->size
!= size
)) {
1119 pr_debug("Invalid size for section %s: %u bytes\n", name
, size
);
1125 for (i
= 0, vsi
= btf_var_secinfos(t
); i
< vars
; i
++, vsi
++) {
1126 t_var
= btf__type_by_id(btf
, vsi
->type
);
1127 var
= btf_var(t_var
);
1129 if (!btf_is_var(t_var
)) {
1130 pr_debug("Non-VAR type seen in section %s\n", name
);
1134 if (var
->linkage
== BTF_VAR_STATIC
)
1137 name
= btf__name_by_offset(btf
, t_var
->name_off
);
1139 pr_debug("No name found in string section for VAR kind\n");
1143 ret
= bpf_object__variable_offset(obj
, name
, &off
);
1145 pr_debug("No offset found in symbol table for VAR %s\n",
1154 qsort(btf_var_secinfos(t
), vars
, sizeof(*vsi
), compare_vsi_off
);
1158 int btf__finalize_data(struct bpf_object
*obj
, struct btf
*btf
)
1163 for (i
= 1; i
<= btf
->nr_types
; i
++) {
1164 struct btf_type
*t
= btf_type_by_id(btf
, i
);
1166 /* Loader needs to fix up some of the things compiler
1167 * couldn't get its hands on while emitting BTF. This
1168 * is section size and global variable offset. We use
1169 * the info from the ELF itself for this purpose.
1171 if (btf_is_datasec(t
)) {
1172 err
= btf_fixup_datasec(obj
, btf
, t
);
1181 static void *btf_get_raw_data(const struct btf
*btf
, __u32
*size
, bool swap_endian
);
1183 int btf__load(struct btf
*btf
)
1185 __u32 log_buf_size
= 0, raw_size
;
1186 char *log_buf
= NULL
;
1195 log_buf
= malloc(log_buf_size
);
1202 raw_data
= btf_get_raw_data(btf
, &raw_size
, false);
1207 /* cache native raw data representation */
1208 btf
->raw_size
= raw_size
;
1209 btf
->raw_data
= raw_data
;
1211 btf
->fd
= bpf_load_btf(raw_data
, raw_size
, log_buf
, log_buf_size
, false);
1213 if (!log_buf
|| errno
== ENOSPC
) {
1214 log_buf_size
= max((__u32
)BPF_LOG_BUF_SIZE
,
1221 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno
), errno
);
1223 pr_warn("%s\n", log_buf
);
1232 int btf__fd(const struct btf
*btf
)
1237 void btf__set_fd(struct btf
*btf
, int fd
)
1242 static void *btf_get_raw_data(const struct btf
*btf
, __u32
*size
, bool swap_endian
)
1244 struct btf_header
*hdr
= btf
->hdr
;
1250 data
= swap_endian
? btf
->raw_data_swapped
: btf
->raw_data
;
1252 *size
= btf
->raw_size
;
1256 data_sz
= hdr
->hdr_len
+ hdr
->type_len
+ hdr
->str_len
;
1257 data
= calloc(1, data_sz
);
1262 memcpy(p
, hdr
, hdr
->hdr_len
);
1267 memcpy(p
, btf
->types_data
, hdr
->type_len
);
1269 for (i
= 0; i
< btf
->nr_types
; i
++) {
1270 t
= p
+ btf
->type_offs
[i
];
1271 /* btf_bswap_type_rest() relies on native t->info, so
1272 * we swap base type info after we swapped all the
1273 * additional information
1275 if (btf_bswap_type_rest(t
))
1277 btf_bswap_type_base(t
);
1282 memcpy(p
, btf
->strs_data
, hdr
->str_len
);
1292 const void *btf__get_raw_data(const struct btf
*btf_ro
, __u32
*size
)
1294 struct btf
*btf
= (struct btf
*)btf_ro
;
1298 data
= btf_get_raw_data(btf
, &data_sz
, btf
->swapped_endian
);
1302 btf
->raw_size
= data_sz
;
1303 if (btf
->swapped_endian
)
1304 btf
->raw_data_swapped
= data
;
1306 btf
->raw_data
= data
;
1311 const char *btf__str_by_offset(const struct btf
*btf
, __u32 offset
)
1313 if (offset
< btf
->start_str_off
)
1314 return btf__str_by_offset(btf
->base_btf
, offset
);
1315 else if (offset
- btf
->start_str_off
< btf
->hdr
->str_len
)
1316 return btf
->strs_data
+ (offset
- btf
->start_str_off
);
1321 const char *btf__name_by_offset(const struct btf
*btf
, __u32 offset
)
1323 return btf__str_by_offset(btf
, offset
);
1326 struct btf
*btf_get_from_fd(int btf_fd
, struct btf
*base_btf
)
1328 struct bpf_btf_info btf_info
;
1329 __u32 len
= sizeof(btf_info
);
1335 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1336 * let's start with a sane default - 4KiB here - and resize it only if
1337 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1340 ptr
= malloc(last_size
);
1342 return ERR_PTR(-ENOMEM
);
1344 memset(&btf_info
, 0, sizeof(btf_info
));
1345 btf_info
.btf
= ptr_to_u64(ptr
);
1346 btf_info
.btf_size
= last_size
;
1347 err
= bpf_obj_get_info_by_fd(btf_fd
, &btf_info
, &len
);
1349 if (!err
&& btf_info
.btf_size
> last_size
) {
1352 last_size
= btf_info
.btf_size
;
1353 temp_ptr
= realloc(ptr
, last_size
);
1355 btf
= ERR_PTR(-ENOMEM
);
1360 len
= sizeof(btf_info
);
1361 memset(&btf_info
, 0, sizeof(btf_info
));
1362 btf_info
.btf
= ptr_to_u64(ptr
);
1363 btf_info
.btf_size
= last_size
;
1365 err
= bpf_obj_get_info_by_fd(btf_fd
, &btf_info
, &len
);
1368 if (err
|| btf_info
.btf_size
> last_size
) {
1369 btf
= err
? ERR_PTR(-errno
) : ERR_PTR(-E2BIG
);
1373 btf
= btf_new(ptr
, btf_info
.btf_size
, base_btf
);
1380 int btf__get_from_id(__u32 id
, struct btf
**btf
)
1386 btf_fd
= bpf_btf_get_fd_by_id(id
);
1390 res
= btf_get_from_fd(btf_fd
, NULL
);
1393 return PTR_ERR(res
);
1399 int btf__get_map_kv_tids(const struct btf
*btf
, const char *map_name
,
1400 __u32 expected_key_size
, __u32 expected_value_size
,
1401 __u32
*key_type_id
, __u32
*value_type_id
)
1403 const struct btf_type
*container_type
;
1404 const struct btf_member
*key
, *value
;
1405 const size_t max_name
= 256;
1406 char container_name
[max_name
];
1407 __s64 key_size
, value_size
;
1410 if (snprintf(container_name
, max_name
, "____btf_map_%s", map_name
) ==
1412 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1413 map_name
, map_name
);
1417 container_id
= btf__find_by_name(btf
, container_name
);
1418 if (container_id
< 0) {
1419 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1420 map_name
, container_name
);
1421 return container_id
;
1424 container_type
= btf__type_by_id(btf
, container_id
);
1425 if (!container_type
) {
1426 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1427 map_name
, container_id
);
1431 if (!btf_is_struct(container_type
) || btf_vlen(container_type
) < 2) {
1432 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1433 map_name
, container_name
);
1437 key
= btf_members(container_type
);
1440 key_size
= btf__resolve_size(btf
, key
->type
);
1442 pr_warn("map:%s invalid BTF key_type_size\n", map_name
);
1446 if (expected_key_size
!= key_size
) {
1447 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1448 map_name
, (__u32
)key_size
, expected_key_size
);
1452 value_size
= btf__resolve_size(btf
, value
->type
);
1453 if (value_size
< 0) {
1454 pr_warn("map:%s invalid BTF value_type_size\n", map_name
);
1458 if (expected_value_size
!= value_size
) {
1459 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1460 map_name
, (__u32
)value_size
, expected_value_size
);
1464 *key_type_id
= key
->type
;
1465 *value_type_id
= value
->type
;
1470 static size_t strs_hash_fn(const void *key
, void *ctx
)
1472 const struct btf
*btf
= ctx
;
1473 const char *strs
= *btf
->strs_data_ptr
;
1474 const char *str
= strs
+ (long)key
;
1476 return str_hash(str
);
1479 static bool strs_hash_equal_fn(const void *key1
, const void *key2
, void *ctx
)
1481 const struct btf
*btf
= ctx
;
1482 const char *strs
= *btf
->strs_data_ptr
;
1483 const char *str1
= strs
+ (long)key1
;
1484 const char *str2
= strs
+ (long)key2
;
1486 return strcmp(str1
, str2
) == 0;
1489 static void btf_invalidate_raw_data(struct btf
*btf
)
1491 if (btf
->raw_data
) {
1492 free(btf
->raw_data
);
1493 btf
->raw_data
= NULL
;
1495 if (btf
->raw_data_swapped
) {
1496 free(btf
->raw_data_swapped
);
1497 btf
->raw_data_swapped
= NULL
;
1501 /* Ensure BTF is ready to be modified (by splitting into a three memory
1502 * regions for header, types, and strings). Also invalidate cached
1505 static int btf_ensure_modifiable(struct btf
*btf
)
1507 void *hdr
, *types
, *strs
, *strs_end
, *s
;
1508 struct hashmap
*hash
= NULL
;
1512 if (btf_is_modifiable(btf
)) {
1513 /* any BTF modification invalidates raw_data */
1514 btf_invalidate_raw_data(btf
);
1518 /* split raw data into three memory regions */
1519 hdr
= malloc(btf
->hdr
->hdr_len
);
1520 types
= malloc(btf
->hdr
->type_len
);
1521 strs
= malloc(btf
->hdr
->str_len
);
1522 if (!hdr
|| !types
|| !strs
)
1525 memcpy(hdr
, btf
->hdr
, btf
->hdr
->hdr_len
);
1526 memcpy(types
, btf
->types_data
, btf
->hdr
->type_len
);
1527 memcpy(strs
, btf
->strs_data
, btf
->hdr
->str_len
);
1529 /* make hashmap below use btf->strs_data as a source of strings */
1530 btf
->strs_data_ptr
= &btf
->strs_data
;
1532 /* build lookup index for all strings */
1533 hash
= hashmap__new(strs_hash_fn
, strs_hash_equal_fn
, btf
);
1535 err
= PTR_ERR(hash
);
1540 strs_end
= strs
+ btf
->hdr
->str_len
;
1541 for (off
= 0, s
= strs
; s
< strs_end
; off
+= strlen(s
) + 1, s
= strs
+ off
) {
1542 /* hashmap__add() returns EEXIST if string with the same
1543 * content already is in the hash map
1545 err
= hashmap__add(hash
, (void *)off
, (void *)off
);
1547 continue; /* duplicate */
1552 /* only when everything was successful, update internal state */
1554 btf
->types_data
= types
;
1555 btf
->types_data_cap
= btf
->hdr
->type_len
;
1556 btf
->strs_data
= strs
;
1557 btf
->strs_data_cap
= btf
->hdr
->str_len
;
1558 btf
->strs_hash
= hash
;
1559 /* if BTF was created from scratch, all strings are guaranteed to be
1560 * unique and deduplicated
1562 if (btf
->hdr
->str_len
== 0)
1563 btf
->strs_deduped
= true;
1564 if (!btf
->base_btf
&& btf
->hdr
->str_len
== 1)
1565 btf
->strs_deduped
= true;
1567 /* invalidate raw_data representation */
1568 btf_invalidate_raw_data(btf
);
1573 hashmap__free(hash
);
1580 static void *btf_add_str_mem(struct btf
*btf
, size_t add_sz
)
1582 return btf_add_mem(&btf
->strs_data
, &btf
->strs_data_cap
, 1,
1583 btf
->hdr
->str_len
, BTF_MAX_STR_OFFSET
, add_sz
);
1586 /* Find an offset in BTF string section that corresponds to a given string *s*.
1588 * - >0 offset into string section, if string is found;
1589 * - -ENOENT, if string is not in the string section;
1590 * - <0, on any other error.
1592 int btf__find_str(struct btf
*btf
, const char *s
)
1594 long old_off
, new_off
, len
;
1597 if (btf
->base_btf
) {
1600 ret
= btf__find_str(btf
->base_btf
, s
);
1605 /* BTF needs to be in a modifiable state to build string lookup index */
1606 if (btf_ensure_modifiable(btf
))
1609 /* see btf__add_str() for why we do this */
1610 len
= strlen(s
) + 1;
1611 p
= btf_add_str_mem(btf
, len
);
1615 new_off
= btf
->hdr
->str_len
;
1618 if (hashmap__find(btf
->strs_hash
, (void *)new_off
, (void **)&old_off
))
1619 return btf
->start_str_off
+ old_off
;
1624 /* Add a string s to the BTF string section.
1626 * - > 0 offset into string section, on success;
1629 int btf__add_str(struct btf
*btf
, const char *s
)
1631 long old_off
, new_off
, len
;
1635 if (btf
->base_btf
) {
1638 ret
= btf__find_str(btf
->base_btf
, s
);
1643 if (btf_ensure_modifiable(btf
))
1646 /* Hashmap keys are always offsets within btf->strs_data, so to even
1647 * look up some string from the "outside", we need to first append it
1648 * at the end, so that it can be addressed with an offset. Luckily,
1649 * until btf->hdr->str_len is incremented, that string is just a piece
1650 * of garbage for the rest of BTF code, so no harm, no foul. On the
1651 * other hand, if the string is unique, it's already appended and
1652 * ready to be used, only a simple btf->hdr->str_len increment away.
1654 len
= strlen(s
) + 1;
1655 p
= btf_add_str_mem(btf
, len
);
1659 new_off
= btf
->hdr
->str_len
;
1662 /* Now attempt to add the string, but only if the string with the same
1663 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1664 * string exists, we'll get its offset in old_off (that's old_key).
1666 err
= hashmap__insert(btf
->strs_hash
, (void *)new_off
, (void *)new_off
,
1667 HASHMAP_ADD
, (const void **)&old_off
, NULL
);
1669 return btf
->start_str_off
+ old_off
; /* duplicated string, return existing offset */
1673 btf
->hdr
->str_len
+= len
; /* new unique string, adjust data length */
1674 return btf
->start_str_off
+ new_off
;
1677 static void *btf_add_type_mem(struct btf
*btf
, size_t add_sz
)
1679 return btf_add_mem(&btf
->types_data
, &btf
->types_data_cap
, 1,
1680 btf
->hdr
->type_len
, UINT_MAX
, add_sz
);
1683 static __u32
btf_type_info(int kind
, int vlen
, int kflag
)
1685 return (kflag
<< 31) | (kind
<< 24) | vlen
;
1688 static void btf_type_inc_vlen(struct btf_type
*t
)
1690 t
->info
= btf_type_info(btf_kind(t
), btf_vlen(t
) + 1, btf_kflag(t
));
1693 static int btf_commit_type(struct btf
*btf
, int data_sz
)
1697 err
= btf_add_type_idx_entry(btf
, btf
->hdr
->type_len
);
1701 btf
->hdr
->type_len
+= data_sz
;
1702 btf
->hdr
->str_off
+= data_sz
;
1704 return btf
->start_id
+ btf
->nr_types
- 1;
1708 * Append new BTF_KIND_INT type with:
1709 * - *name* - non-empty, non-NULL type name;
1710 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1711 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1713 * - >0, type ID of newly added BTF type;
1716 int btf__add_int(struct btf
*btf
, const char *name
, size_t byte_sz
, int encoding
)
1721 /* non-empty name */
1722 if (!name
|| !name
[0])
1724 /* byte_sz must be power of 2 */
1725 if (!byte_sz
|| (byte_sz
& (byte_sz
- 1)) || byte_sz
> 16)
1727 if (encoding
& ~(BTF_INT_SIGNED
| BTF_INT_CHAR
| BTF_INT_BOOL
))
1730 /* deconstruct BTF, if necessary, and invalidate raw_data */
1731 if (btf_ensure_modifiable(btf
))
1734 sz
= sizeof(struct btf_type
) + sizeof(int);
1735 t
= btf_add_type_mem(btf
, sz
);
1739 /* if something goes wrong later, we might end up with an extra string,
1740 * but that shouldn't be a problem, because BTF can't be constructed
1741 * completely anyway and will most probably be just discarded
1743 name_off
= btf__add_str(btf
, name
);
1747 t
->name_off
= name_off
;
1748 t
->info
= btf_type_info(BTF_KIND_INT
, 0, 0);
1750 /* set INT info, we don't allow setting legacy bit offset/size */
1751 *(__u32
*)(t
+ 1) = (encoding
<< 24) | (byte_sz
* 8);
1753 return btf_commit_type(btf
, sz
);
1756 /* it's completely legal to append BTF types with type IDs pointing forward to
1757 * types that haven't been appended yet, so we only make sure that id looks
1758 * sane, we can't guarantee that ID will always be valid
1760 static int validate_type_id(int id
)
1762 if (id
< 0 || id
> BTF_MAX_NR_TYPES
)
1767 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1768 static int btf_add_ref_kind(struct btf
*btf
, int kind
, const char *name
, int ref_type_id
)
1771 int sz
, name_off
= 0;
1773 if (validate_type_id(ref_type_id
))
1776 if (btf_ensure_modifiable(btf
))
1779 sz
= sizeof(struct btf_type
);
1780 t
= btf_add_type_mem(btf
, sz
);
1784 if (name
&& name
[0]) {
1785 name_off
= btf__add_str(btf
, name
);
1790 t
->name_off
= name_off
;
1791 t
->info
= btf_type_info(kind
, 0, 0);
1792 t
->type
= ref_type_id
;
1794 return btf_commit_type(btf
, sz
);
1798 * Append new BTF_KIND_PTR type with:
1799 * - *ref_type_id* - referenced type ID, it might not exist yet;
1801 * - >0, type ID of newly added BTF type;
1804 int btf__add_ptr(struct btf
*btf
, int ref_type_id
)
1806 return btf_add_ref_kind(btf
, BTF_KIND_PTR
, NULL
, ref_type_id
);
1810 * Append new BTF_KIND_ARRAY type with:
1811 * - *index_type_id* - type ID of the type describing array index;
1812 * - *elem_type_id* - type ID of the type describing array element;
1813 * - *nr_elems* - the size of the array;
1815 * - >0, type ID of newly added BTF type;
1818 int btf__add_array(struct btf
*btf
, int index_type_id
, int elem_type_id
, __u32 nr_elems
)
1821 struct btf_array
*a
;
1824 if (validate_type_id(index_type_id
) || validate_type_id(elem_type_id
))
1827 if (btf_ensure_modifiable(btf
))
1830 sz
= sizeof(struct btf_type
) + sizeof(struct btf_array
);
1831 t
= btf_add_type_mem(btf
, sz
);
1836 t
->info
= btf_type_info(BTF_KIND_ARRAY
, 0, 0);
1840 a
->type
= elem_type_id
;
1841 a
->index_type
= index_type_id
;
1842 a
->nelems
= nr_elems
;
1844 return btf_commit_type(btf
, sz
);
1847 /* generic STRUCT/UNION append function */
1848 static int btf_add_composite(struct btf
*btf
, int kind
, const char *name
, __u32 bytes_sz
)
1851 int sz
, name_off
= 0;
1853 if (btf_ensure_modifiable(btf
))
1856 sz
= sizeof(struct btf_type
);
1857 t
= btf_add_type_mem(btf
, sz
);
1861 if (name
&& name
[0]) {
1862 name_off
= btf__add_str(btf
, name
);
1867 /* start out with vlen=0 and no kflag; this will be adjusted when
1868 * adding each member
1870 t
->name_off
= name_off
;
1871 t
->info
= btf_type_info(kind
, 0, 0);
1874 return btf_commit_type(btf
, sz
);
1878 * Append new BTF_KIND_STRUCT type with:
1879 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1880 * - *byte_sz* - size of the struct, in bytes;
1882 * Struct initially has no fields in it. Fields can be added by
1883 * btf__add_field() right after btf__add_struct() succeeds.
1886 * - >0, type ID of newly added BTF type;
1889 int btf__add_struct(struct btf
*btf
, const char *name
, __u32 byte_sz
)
1891 return btf_add_composite(btf
, BTF_KIND_STRUCT
, name
, byte_sz
);
1895 * Append new BTF_KIND_UNION type with:
1896 * - *name* - name of the union, can be NULL or empty for anonymous union;
1897 * - *byte_sz* - size of the union, in bytes;
1899 * Union initially has no fields in it. Fields can be added by
1900 * btf__add_field() right after btf__add_union() succeeds. All fields
1901 * should have *bit_offset* of 0.
1904 * - >0, type ID of newly added BTF type;
1907 int btf__add_union(struct btf
*btf
, const char *name
, __u32 byte_sz
)
1909 return btf_add_composite(btf
, BTF_KIND_UNION
, name
, byte_sz
);
1912 static struct btf_type
*btf_last_type(struct btf
*btf
)
1914 return btf_type_by_id(btf
, btf__get_nr_types(btf
));
1918 * Append new field for the current STRUCT/UNION type with:
1919 * - *name* - name of the field, can be NULL or empty for anonymous field;
1920 * - *type_id* - type ID for the type describing field type;
1921 * - *bit_offset* - bit offset of the start of the field within struct/union;
1922 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1927 int btf__add_field(struct btf
*btf
, const char *name
, int type_id
,
1928 __u32 bit_offset
, __u32 bit_size
)
1931 struct btf_member
*m
;
1933 int sz
, name_off
= 0;
1935 /* last type should be union/struct */
1936 if (btf
->nr_types
== 0)
1938 t
= btf_last_type(btf
);
1939 if (!btf_is_composite(t
))
1942 if (validate_type_id(type_id
))
1944 /* best-effort bit field offset/size enforcement */
1945 is_bitfield
= bit_size
|| (bit_offset
% 8 != 0);
1946 if (is_bitfield
&& (bit_size
== 0 || bit_size
> 255 || bit_offset
> 0xffffff))
1949 /* only offset 0 is allowed for unions */
1950 if (btf_is_union(t
) && bit_offset
)
1953 /* decompose and invalidate raw data */
1954 if (btf_ensure_modifiable(btf
))
1957 sz
= sizeof(struct btf_member
);
1958 m
= btf_add_type_mem(btf
, sz
);
1962 if (name
&& name
[0]) {
1963 name_off
= btf__add_str(btf
, name
);
1968 m
->name_off
= name_off
;
1970 m
->offset
= bit_offset
| (bit_size
<< 24);
1972 /* btf_add_type_mem can invalidate t pointer */
1973 t
= btf_last_type(btf
);
1974 /* update parent type's vlen and kflag */
1975 t
->info
= btf_type_info(btf_kind(t
), btf_vlen(t
) + 1, is_bitfield
|| btf_kflag(t
));
1977 btf
->hdr
->type_len
+= sz
;
1978 btf
->hdr
->str_off
+= sz
;
1983 * Append new BTF_KIND_ENUM type with:
1984 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
1985 * - *byte_sz* - size of the enum, in bytes.
1987 * Enum initially has no enum values in it (and corresponds to enum forward
1988 * declaration). Enumerator values can be added by btf__add_enum_value()
1989 * immediately after btf__add_enum() succeeds.
1992 * - >0, type ID of newly added BTF type;
1995 int btf__add_enum(struct btf
*btf
, const char *name
, __u32 byte_sz
)
1998 int sz
, name_off
= 0;
2000 /* byte_sz must be power of 2 */
2001 if (!byte_sz
|| (byte_sz
& (byte_sz
- 1)) || byte_sz
> 8)
2004 if (btf_ensure_modifiable(btf
))
2007 sz
= sizeof(struct btf_type
);
2008 t
= btf_add_type_mem(btf
, sz
);
2012 if (name
&& name
[0]) {
2013 name_off
= btf__add_str(btf
, name
);
2018 /* start out with vlen=0; it will be adjusted when adding enum values */
2019 t
->name_off
= name_off
;
2020 t
->info
= btf_type_info(BTF_KIND_ENUM
, 0, 0);
2023 return btf_commit_type(btf
, sz
);
2027 * Append new enum value for the current ENUM type with:
2028 * - *name* - name of the enumerator value, can't be NULL or empty;
2029 * - *value* - integer value corresponding to enum value *name*;
2034 int btf__add_enum_value(struct btf
*btf
, const char *name
, __s64 value
)
2040 /* last type should be BTF_KIND_ENUM */
2041 if (btf
->nr_types
== 0)
2043 t
= btf_last_type(btf
);
2044 if (!btf_is_enum(t
))
2047 /* non-empty name */
2048 if (!name
|| !name
[0])
2050 if (value
< INT_MIN
|| value
> UINT_MAX
)
2053 /* decompose and invalidate raw data */
2054 if (btf_ensure_modifiable(btf
))
2057 sz
= sizeof(struct btf_enum
);
2058 v
= btf_add_type_mem(btf
, sz
);
2062 name_off
= btf__add_str(btf
, name
);
2066 v
->name_off
= name_off
;
2069 /* update parent type's vlen */
2070 t
= btf_last_type(btf
);
2071 btf_type_inc_vlen(t
);
2073 btf
->hdr
->type_len
+= sz
;
2074 btf
->hdr
->str_off
+= sz
;
2079 * Append new BTF_KIND_FWD type with:
2080 * - *name*, non-empty/non-NULL name;
2081 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2082 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2084 * - >0, type ID of newly added BTF type;
2087 int btf__add_fwd(struct btf
*btf
, const char *name
, enum btf_fwd_kind fwd_kind
)
2089 if (!name
|| !name
[0])
2093 case BTF_FWD_STRUCT
:
2094 case BTF_FWD_UNION
: {
2098 id
= btf_add_ref_kind(btf
, BTF_KIND_FWD
, name
, 0);
2101 t
= btf_type_by_id(btf
, id
);
2102 t
->info
= btf_type_info(BTF_KIND_FWD
, 0, fwd_kind
== BTF_FWD_UNION
);
2106 /* enum forward in BTF currently is just an enum with no enum
2107 * values; we also assume a standard 4-byte size for it
2109 return btf__add_enum(btf
, name
, sizeof(int));
2116 * Append new BTF_KING_TYPEDEF type with:
2117 * - *name*, non-empty/non-NULL name;
2118 * - *ref_type_id* - referenced type ID, it might not exist yet;
2120 * - >0, type ID of newly added BTF type;
2123 int btf__add_typedef(struct btf
*btf
, const char *name
, int ref_type_id
)
2125 if (!name
|| !name
[0])
2128 return btf_add_ref_kind(btf
, BTF_KIND_TYPEDEF
, name
, ref_type_id
);
2132 * Append new BTF_KIND_VOLATILE type with:
2133 * - *ref_type_id* - referenced type ID, it might not exist yet;
2135 * - >0, type ID of newly added BTF type;
2138 int btf__add_volatile(struct btf
*btf
, int ref_type_id
)
2140 return btf_add_ref_kind(btf
, BTF_KIND_VOLATILE
, NULL
, ref_type_id
);
2144 * Append new BTF_KIND_CONST type with:
2145 * - *ref_type_id* - referenced type ID, it might not exist yet;
2147 * - >0, type ID of newly added BTF type;
2150 int btf__add_const(struct btf
*btf
, int ref_type_id
)
2152 return btf_add_ref_kind(btf
, BTF_KIND_CONST
, NULL
, ref_type_id
);
2156 * Append new BTF_KIND_RESTRICT type with:
2157 * - *ref_type_id* - referenced type ID, it might not exist yet;
2159 * - >0, type ID of newly added BTF type;
2162 int btf__add_restrict(struct btf
*btf
, int ref_type_id
)
2164 return btf_add_ref_kind(btf
, BTF_KIND_RESTRICT
, NULL
, ref_type_id
);
2168 * Append new BTF_KIND_FUNC type with:
2169 * - *name*, non-empty/non-NULL name;
2170 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2172 * - >0, type ID of newly added BTF type;
2175 int btf__add_func(struct btf
*btf
, const char *name
,
2176 enum btf_func_linkage linkage
, int proto_type_id
)
2180 if (!name
|| !name
[0])
2182 if (linkage
!= BTF_FUNC_STATIC
&& linkage
!= BTF_FUNC_GLOBAL
&&
2183 linkage
!= BTF_FUNC_EXTERN
)
2186 id
= btf_add_ref_kind(btf
, BTF_KIND_FUNC
, name
, proto_type_id
);
2188 struct btf_type
*t
= btf_type_by_id(btf
, id
);
2190 t
->info
= btf_type_info(BTF_KIND_FUNC
, linkage
, 0);
2196 * Append new BTF_KIND_FUNC_PROTO with:
2197 * - *ret_type_id* - type ID for return result of a function.
2199 * Function prototype initially has no arguments, but they can be added by
2200 * btf__add_func_param() one by one, immediately after
2201 * btf__add_func_proto() succeeded.
2204 * - >0, type ID of newly added BTF type;
2207 int btf__add_func_proto(struct btf
*btf
, int ret_type_id
)
2212 if (validate_type_id(ret_type_id
))
2215 if (btf_ensure_modifiable(btf
))
2218 sz
= sizeof(struct btf_type
);
2219 t
= btf_add_type_mem(btf
, sz
);
2223 /* start out with vlen=0; this will be adjusted when adding enum
2224 * values, if necessary
2227 t
->info
= btf_type_info(BTF_KIND_FUNC_PROTO
, 0, 0);
2228 t
->type
= ret_type_id
;
2230 return btf_commit_type(btf
, sz
);
2234 * Append new function parameter for current FUNC_PROTO type with:
2235 * - *name* - parameter name, can be NULL or empty;
2236 * - *type_id* - type ID describing the type of the parameter.
2241 int btf__add_func_param(struct btf
*btf
, const char *name
, int type_id
)
2244 struct btf_param
*p
;
2245 int sz
, name_off
= 0;
2247 if (validate_type_id(type_id
))
2250 /* last type should be BTF_KIND_FUNC_PROTO */
2251 if (btf
->nr_types
== 0)
2253 t
= btf_last_type(btf
);
2254 if (!btf_is_func_proto(t
))
2257 /* decompose and invalidate raw data */
2258 if (btf_ensure_modifiable(btf
))
2261 sz
= sizeof(struct btf_param
);
2262 p
= btf_add_type_mem(btf
, sz
);
2266 if (name
&& name
[0]) {
2267 name_off
= btf__add_str(btf
, name
);
2272 p
->name_off
= name_off
;
2275 /* update parent type's vlen */
2276 t
= btf_last_type(btf
);
2277 btf_type_inc_vlen(t
);
2279 btf
->hdr
->type_len
+= sz
;
2280 btf
->hdr
->str_off
+= sz
;
2285 * Append new BTF_KIND_VAR type with:
2286 * - *name* - non-empty/non-NULL name;
2287 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2288 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2289 * - *type_id* - type ID of the type describing the type of the variable.
2291 * - >0, type ID of newly added BTF type;
2294 int btf__add_var(struct btf
*btf
, const char *name
, int linkage
, int type_id
)
2300 /* non-empty name */
2301 if (!name
|| !name
[0])
2303 if (linkage
!= BTF_VAR_STATIC
&& linkage
!= BTF_VAR_GLOBAL_ALLOCATED
&&
2304 linkage
!= BTF_VAR_GLOBAL_EXTERN
)
2306 if (validate_type_id(type_id
))
2309 /* deconstruct BTF, if necessary, and invalidate raw_data */
2310 if (btf_ensure_modifiable(btf
))
2313 sz
= sizeof(struct btf_type
) + sizeof(struct btf_var
);
2314 t
= btf_add_type_mem(btf
, sz
);
2318 name_off
= btf__add_str(btf
, name
);
2322 t
->name_off
= name_off
;
2323 t
->info
= btf_type_info(BTF_KIND_VAR
, 0, 0);
2327 v
->linkage
= linkage
;
2329 return btf_commit_type(btf
, sz
);
2333 * Append new BTF_KIND_DATASEC type with:
2334 * - *name* - non-empty/non-NULL name;
2335 * - *byte_sz* - data section size, in bytes.
2337 * Data section is initially empty. Variables info can be added with
2338 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2341 * - >0, type ID of newly added BTF type;
2344 int btf__add_datasec(struct btf
*btf
, const char *name
, __u32 byte_sz
)
2349 /* non-empty name */
2350 if (!name
|| !name
[0])
2353 if (btf_ensure_modifiable(btf
))
2356 sz
= sizeof(struct btf_type
);
2357 t
= btf_add_type_mem(btf
, sz
);
2361 name_off
= btf__add_str(btf
, name
);
2365 /* start with vlen=0, which will be update as var_secinfos are added */
2366 t
->name_off
= name_off
;
2367 t
->info
= btf_type_info(BTF_KIND_DATASEC
, 0, 0);
2370 return btf_commit_type(btf
, sz
);
2374 * Append new data section variable information entry for current DATASEC type:
2375 * - *var_type_id* - type ID, describing type of the variable;
2376 * - *offset* - variable offset within data section, in bytes;
2377 * - *byte_sz* - variable size, in bytes.
2383 int btf__add_datasec_var_info(struct btf
*btf
, int var_type_id
, __u32 offset
, __u32 byte_sz
)
2386 struct btf_var_secinfo
*v
;
2389 /* last type should be BTF_KIND_DATASEC */
2390 if (btf
->nr_types
== 0)
2392 t
= btf_last_type(btf
);
2393 if (!btf_is_datasec(t
))
2396 if (validate_type_id(var_type_id
))
2399 /* decompose and invalidate raw data */
2400 if (btf_ensure_modifiable(btf
))
2403 sz
= sizeof(struct btf_var_secinfo
);
2404 v
= btf_add_type_mem(btf
, sz
);
2408 v
->type
= var_type_id
;
2412 /* update parent type's vlen */
2413 t
= btf_last_type(btf
);
2414 btf_type_inc_vlen(t
);
2416 btf
->hdr
->type_len
+= sz
;
2417 btf
->hdr
->str_off
+= sz
;
2421 struct btf_ext_sec_setup_param
{
2425 struct btf_ext_info
*ext_info
;
2429 static int btf_ext_setup_info(struct btf_ext
*btf_ext
,
2430 struct btf_ext_sec_setup_param
*ext_sec
)
2432 const struct btf_ext_info_sec
*sinfo
;
2433 struct btf_ext_info
*ext_info
;
2434 __u32 info_left
, record_size
;
2435 /* The start of the info sec (including the __u32 record_size). */
2438 if (ext_sec
->len
== 0)
2441 if (ext_sec
->off
& 0x03) {
2442 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2447 info
= btf_ext
->data
+ btf_ext
->hdr
->hdr_len
+ ext_sec
->off
;
2448 info_left
= ext_sec
->len
;
2450 if (btf_ext
->data
+ btf_ext
->data_size
< info
+ ext_sec
->len
) {
2451 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2452 ext_sec
->desc
, ext_sec
->off
, ext_sec
->len
);
2456 /* At least a record size */
2457 if (info_left
< sizeof(__u32
)) {
2458 pr_debug(".BTF.ext %s record size not found\n", ext_sec
->desc
);
2462 /* The record size needs to meet the minimum standard */
2463 record_size
= *(__u32
*)info
;
2464 if (record_size
< ext_sec
->min_rec_size
||
2465 record_size
& 0x03) {
2466 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2467 ext_sec
->desc
, record_size
);
2471 sinfo
= info
+ sizeof(__u32
);
2472 info_left
-= sizeof(__u32
);
2474 /* If no records, return failure now so .BTF.ext won't be used. */
2476 pr_debug("%s section in .BTF.ext has no records", ext_sec
->desc
);
2481 unsigned int sec_hdrlen
= sizeof(struct btf_ext_info_sec
);
2482 __u64 total_record_size
;
2485 if (info_left
< sec_hdrlen
) {
2486 pr_debug("%s section header is not found in .BTF.ext\n",
2491 num_records
= sinfo
->num_info
;
2492 if (num_records
== 0) {
2493 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2498 total_record_size
= sec_hdrlen
+
2499 (__u64
)num_records
* record_size
;
2500 if (info_left
< total_record_size
) {
2501 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2506 info_left
-= total_record_size
;
2507 sinfo
= (void *)sinfo
+ total_record_size
;
2510 ext_info
= ext_sec
->ext_info
;
2511 ext_info
->len
= ext_sec
->len
- sizeof(__u32
);
2512 ext_info
->rec_size
= record_size
;
2513 ext_info
->info
= info
+ sizeof(__u32
);
2518 static int btf_ext_setup_func_info(struct btf_ext
*btf_ext
)
2520 struct btf_ext_sec_setup_param param
= {
2521 .off
= btf_ext
->hdr
->func_info_off
,
2522 .len
= btf_ext
->hdr
->func_info_len
,
2523 .min_rec_size
= sizeof(struct bpf_func_info_min
),
2524 .ext_info
= &btf_ext
->func_info
,
2528 return btf_ext_setup_info(btf_ext
, ¶m
);
2531 static int btf_ext_setup_line_info(struct btf_ext
*btf_ext
)
2533 struct btf_ext_sec_setup_param param
= {
2534 .off
= btf_ext
->hdr
->line_info_off
,
2535 .len
= btf_ext
->hdr
->line_info_len
,
2536 .min_rec_size
= sizeof(struct bpf_line_info_min
),
2537 .ext_info
= &btf_ext
->line_info
,
2538 .desc
= "line_info",
2541 return btf_ext_setup_info(btf_ext
, ¶m
);
2544 static int btf_ext_setup_core_relos(struct btf_ext
*btf_ext
)
2546 struct btf_ext_sec_setup_param param
= {
2547 .off
= btf_ext
->hdr
->core_relo_off
,
2548 .len
= btf_ext
->hdr
->core_relo_len
,
2549 .min_rec_size
= sizeof(struct bpf_core_relo
),
2550 .ext_info
= &btf_ext
->core_relo_info
,
2551 .desc
= "core_relo",
2554 return btf_ext_setup_info(btf_ext
, ¶m
);
2557 static int btf_ext_parse_hdr(__u8
*data
, __u32 data_size
)
2559 const struct btf_ext_header
*hdr
= (struct btf_ext_header
*)data
;
2561 if (data_size
< offsetofend(struct btf_ext_header
, hdr_len
) ||
2562 data_size
< hdr
->hdr_len
) {
2563 pr_debug("BTF.ext header not found");
2567 if (hdr
->magic
== bswap_16(BTF_MAGIC
)) {
2568 pr_warn("BTF.ext in non-native endianness is not supported\n");
2570 } else if (hdr
->magic
!= BTF_MAGIC
) {
2571 pr_debug("Invalid BTF.ext magic:%x\n", hdr
->magic
);
2575 if (hdr
->version
!= BTF_VERSION
) {
2576 pr_debug("Unsupported BTF.ext version:%u\n", hdr
->version
);
2581 pr_debug("Unsupported BTF.ext flags:%x\n", hdr
->flags
);
2585 if (data_size
== hdr
->hdr_len
) {
2586 pr_debug("BTF.ext has no data\n");
2593 void btf_ext__free(struct btf_ext
*btf_ext
)
2595 if (IS_ERR_OR_NULL(btf_ext
))
2597 free(btf_ext
->data
);
2601 struct btf_ext
*btf_ext__new(__u8
*data
, __u32 size
)
2603 struct btf_ext
*btf_ext
;
2606 err
= btf_ext_parse_hdr(data
, size
);
2608 return ERR_PTR(err
);
2610 btf_ext
= calloc(1, sizeof(struct btf_ext
));
2612 return ERR_PTR(-ENOMEM
);
2614 btf_ext
->data_size
= size
;
2615 btf_ext
->data
= malloc(size
);
2616 if (!btf_ext
->data
) {
2620 memcpy(btf_ext
->data
, data
, size
);
2622 if (btf_ext
->hdr
->hdr_len
<
2623 offsetofend(struct btf_ext_header
, line_info_len
))
2625 err
= btf_ext_setup_func_info(btf_ext
);
2629 err
= btf_ext_setup_line_info(btf_ext
);
2633 if (btf_ext
->hdr
->hdr_len
< offsetofend(struct btf_ext_header
, core_relo_len
))
2635 err
= btf_ext_setup_core_relos(btf_ext
);
2641 btf_ext__free(btf_ext
);
2642 return ERR_PTR(err
);
2648 const void *btf_ext__get_raw_data(const struct btf_ext
*btf_ext
, __u32
*size
)
2650 *size
= btf_ext
->data_size
;
2651 return btf_ext
->data
;
2654 static int btf_ext_reloc_info(const struct btf
*btf
,
2655 const struct btf_ext_info
*ext_info
,
2656 const char *sec_name
, __u32 insns_cnt
,
2657 void **info
, __u32
*cnt
)
2659 __u32 sec_hdrlen
= sizeof(struct btf_ext_info_sec
);
2660 __u32 i
, record_size
, existing_len
, records_len
;
2661 struct btf_ext_info_sec
*sinfo
;
2662 const char *info_sec_name
;
2666 record_size
= ext_info
->rec_size
;
2667 sinfo
= ext_info
->info
;
2668 remain_len
= ext_info
->len
;
2669 while (remain_len
> 0) {
2670 records_len
= sinfo
->num_info
* record_size
;
2671 info_sec_name
= btf__name_by_offset(btf
, sinfo
->sec_name_off
);
2672 if (strcmp(info_sec_name
, sec_name
)) {
2673 remain_len
-= sec_hdrlen
+ records_len
;
2674 sinfo
= (void *)sinfo
+ sec_hdrlen
+ records_len
;
2678 existing_len
= (*cnt
) * record_size
;
2679 data
= realloc(*info
, existing_len
+ records_len
);
2683 memcpy(data
+ existing_len
, sinfo
->data
, records_len
);
2684 /* adjust insn_off only, the rest data will be passed
2687 for (i
= 0; i
< sinfo
->num_info
; i
++) {
2690 insn_off
= data
+ existing_len
+ (i
* record_size
);
2691 *insn_off
= *insn_off
/ sizeof(struct bpf_insn
) +
2695 *cnt
+= sinfo
->num_info
;
2702 int btf_ext__reloc_func_info(const struct btf
*btf
,
2703 const struct btf_ext
*btf_ext
,
2704 const char *sec_name
, __u32 insns_cnt
,
2705 void **func_info
, __u32
*cnt
)
2707 return btf_ext_reloc_info(btf
, &btf_ext
->func_info
, sec_name
,
2708 insns_cnt
, func_info
, cnt
);
2711 int btf_ext__reloc_line_info(const struct btf
*btf
,
2712 const struct btf_ext
*btf_ext
,
2713 const char *sec_name
, __u32 insns_cnt
,
2714 void **line_info
, __u32
*cnt
)
2716 return btf_ext_reloc_info(btf
, &btf_ext
->line_info
, sec_name
,
2717 insns_cnt
, line_info
, cnt
);
2720 __u32
btf_ext__func_info_rec_size(const struct btf_ext
*btf_ext
)
2722 return btf_ext
->func_info
.rec_size
;
2725 __u32
btf_ext__line_info_rec_size(const struct btf_ext
*btf_ext
)
2727 return btf_ext
->line_info
.rec_size
;
2732 static struct btf_dedup
*btf_dedup_new(struct btf
*btf
, struct btf_ext
*btf_ext
,
2733 const struct btf_dedup_opts
*opts
);
2734 static void btf_dedup_free(struct btf_dedup
*d
);
2735 static int btf_dedup_prep(struct btf_dedup
*d
);
2736 static int btf_dedup_strings(struct btf_dedup
*d
);
2737 static int btf_dedup_prim_types(struct btf_dedup
*d
);
2738 static int btf_dedup_struct_types(struct btf_dedup
*d
);
2739 static int btf_dedup_ref_types(struct btf_dedup
*d
);
2740 static int btf_dedup_compact_types(struct btf_dedup
*d
);
2741 static int btf_dedup_remap_types(struct btf_dedup
*d
);
2744 * Deduplicate BTF types and strings.
2746 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2747 * section with all BTF type descriptors and string data. It overwrites that
2748 * memory in-place with deduplicated types and strings without any loss of
2749 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2750 * is provided, all the strings referenced from .BTF.ext section are honored
2751 * and updated to point to the right offsets after deduplication.
2753 * If function returns with error, type/string data might be garbled and should
2756 * More verbose and detailed description of both problem btf_dedup is solving,
2757 * as well as solution could be found at:
2758 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2760 * Problem description and justification
2761 * =====================================
2763 * BTF type information is typically emitted either as a result of conversion
2764 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2765 * unit contains information about a subset of all the types that are used
2766 * in an application. These subsets are frequently overlapping and contain a lot
2767 * of duplicated information when later concatenated together into a single
2768 * binary. This algorithm ensures that each unique type is represented by single
2769 * BTF type descriptor, greatly reducing resulting size of BTF data.
2771 * Compilation unit isolation and subsequent duplication of data is not the only
2772 * problem. The same type hierarchy (e.g., struct and all the type that struct
2773 * references) in different compilation units can be represented in BTF to
2774 * various degrees of completeness (or, rather, incompleteness) due to
2775 * struct/union forward declarations.
2777 * Let's take a look at an example, that we'll use to better understand the
2778 * problem (and solution). Suppose we have two compilation units, each using
2779 * same `struct S`, but each of them having incomplete type information about
2808 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2809 * more), but will know the complete type information about `struct A`. While
2810 * for CU #2, it will know full type information about `struct B`, but will
2811 * only know about forward declaration of `struct A` (in BTF terms, it will
2812 * have `BTF_KIND_FWD` type descriptor with name `B`).
2814 * This compilation unit isolation means that it's possible that there is no
2815 * single CU with complete type information describing structs `S`, `A`, and
2816 * `B`. Also, we might get tons of duplicated and redundant type information.
2818 * Additional complication we need to keep in mind comes from the fact that
2819 * types, in general, can form graphs containing cycles, not just DAGs.
2821 * While algorithm does deduplication, it also merges and resolves type
2822 * information (unless disabled throught `struct btf_opts`), whenever possible.
2823 * E.g., in the example above with two compilation units having partial type
2824 * information for structs `A` and `B`, the output of algorithm will emit
2825 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2826 * (as well as type information for `int` and pointers), as if they were defined
2827 * in a single compilation unit as:
2847 * Algorithm completes its work in 6 separate passes:
2849 * 1. Strings deduplication.
2850 * 2. Primitive types deduplication (int, enum, fwd).
2851 * 3. Struct/union types deduplication.
2852 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2853 * protos, and const/volatile/restrict modifiers).
2854 * 5. Types compaction.
2855 * 6. Types remapping.
2857 * Algorithm determines canonical type descriptor, which is a single
2858 * representative type for each truly unique type. This canonical type is the
2859 * one that will go into final deduplicated BTF type information. For
2860 * struct/unions, it is also the type that algorithm will merge additional type
2861 * information into (while resolving FWDs), as it discovers it from data in
2862 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2863 * that type is canonical, or to some other type, if that type is equivalent
2864 * and was chosen as canonical representative. This mapping is stored in
2865 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2866 * FWD type got resolved to.
2868 * To facilitate fast discovery of canonical types, we also maintain canonical
2869 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2870 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2871 * that match that signature. With sufficiently good choice of type signature
2872 * hashing function, we can limit number of canonical types for each unique type
2873 * signature to a very small number, allowing to find canonical type for any
2874 * duplicated type very quickly.
2876 * Struct/union deduplication is the most critical part and algorithm for
2877 * deduplicating structs/unions is described in greater details in comments for
2878 * `btf_dedup_is_equiv` function.
2880 int btf__dedup(struct btf
*btf
, struct btf_ext
*btf_ext
,
2881 const struct btf_dedup_opts
*opts
)
2883 struct btf_dedup
*d
= btf_dedup_new(btf
, btf_ext
, opts
);
2887 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d
));
2891 if (btf_ensure_modifiable(btf
))
2894 err
= btf_dedup_prep(d
);
2896 pr_debug("btf_dedup_prep failed:%d\n", err
);
2899 err
= btf_dedup_strings(d
);
2901 pr_debug("btf_dedup_strings failed:%d\n", err
);
2904 err
= btf_dedup_prim_types(d
);
2906 pr_debug("btf_dedup_prim_types failed:%d\n", err
);
2909 err
= btf_dedup_struct_types(d
);
2911 pr_debug("btf_dedup_struct_types failed:%d\n", err
);
2914 err
= btf_dedup_ref_types(d
);
2916 pr_debug("btf_dedup_ref_types failed:%d\n", err
);
2919 err
= btf_dedup_compact_types(d
);
2921 pr_debug("btf_dedup_compact_types failed:%d\n", err
);
2924 err
= btf_dedup_remap_types(d
);
2926 pr_debug("btf_dedup_remap_types failed:%d\n", err
);
2935 #define BTF_UNPROCESSED_ID ((__u32)-1)
2936 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2939 /* .BTF section to be deduped in-place */
2942 * Optional .BTF.ext section. When provided, any strings referenced
2943 * from it will be taken into account when deduping strings
2945 struct btf_ext
*btf_ext
;
2947 * This is a map from any type's signature hash to a list of possible
2948 * canonical representative type candidates. Hash collisions are
2949 * ignored, so even types of various kinds can share same list of
2950 * candidates, which is fine because we rely on subsequent
2951 * btf_xxx_equal() checks to authoritatively verify type equality.
2953 struct hashmap
*dedup_table
;
2954 /* Canonical types map */
2956 /* Hypothetical mapping, used during type graph equivalence checks */
2961 /* Whether hypothetical mapping, if successful, would need to adjust
2962 * already canonicalized types (due to a new forward declaration to
2963 * concrete type resolution). In such case, during split BTF dedup
2964 * candidate type would still be considered as different, because base
2965 * BTF is considered to be immutable.
2967 bool hypot_adjust_canon
;
2968 /* Various option modifying behavior of algorithm */
2969 struct btf_dedup_opts opts
;
2970 /* temporary strings deduplication state */
2974 struct hashmap
* strs_hash
;
2977 static long hash_combine(long h
, long value
)
2979 return h
* 31 + value
;
2982 #define for_each_dedup_cand(d, node, hash) \
2983 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2985 static int btf_dedup_table_add(struct btf_dedup
*d
, long hash
, __u32 type_id
)
2987 return hashmap__append(d
->dedup_table
,
2988 (void *)hash
, (void *)(long)type_id
);
2991 static int btf_dedup_hypot_map_add(struct btf_dedup
*d
,
2992 __u32 from_id
, __u32 to_id
)
2994 if (d
->hypot_cnt
== d
->hypot_cap
) {
2997 d
->hypot_cap
+= max((size_t)16, d
->hypot_cap
/ 2);
2998 new_list
= libbpf_reallocarray(d
->hypot_list
, d
->hypot_cap
, sizeof(__u32
));
3001 d
->hypot_list
= new_list
;
3003 d
->hypot_list
[d
->hypot_cnt
++] = from_id
;
3004 d
->hypot_map
[from_id
] = to_id
;
3008 static void btf_dedup_clear_hypot_map(struct btf_dedup
*d
)
3012 for (i
= 0; i
< d
->hypot_cnt
; i
++)
3013 d
->hypot_map
[d
->hypot_list
[i
]] = BTF_UNPROCESSED_ID
;
3015 d
->hypot_adjust_canon
= false;
3018 static void btf_dedup_free(struct btf_dedup
*d
)
3020 hashmap__free(d
->dedup_table
);
3021 d
->dedup_table
= NULL
;
3027 d
->hypot_map
= NULL
;
3029 free(d
->hypot_list
);
3030 d
->hypot_list
= NULL
;
3035 static size_t btf_dedup_identity_hash_fn(const void *key
, void *ctx
)
3040 static size_t btf_dedup_collision_hash_fn(const void *key
, void *ctx
)
3045 static bool btf_dedup_equal_fn(const void *k1
, const void *k2
, void *ctx
)
3050 static struct btf_dedup
*btf_dedup_new(struct btf
*btf
, struct btf_ext
*btf_ext
,
3051 const struct btf_dedup_opts
*opts
)
3053 struct btf_dedup
*d
= calloc(1, sizeof(struct btf_dedup
));
3054 hashmap_hash_fn hash_fn
= btf_dedup_identity_hash_fn
;
3055 int i
, err
= 0, type_cnt
;
3058 return ERR_PTR(-ENOMEM
);
3060 d
->opts
.dont_resolve_fwds
= opts
&& opts
->dont_resolve_fwds
;
3061 /* dedup_table_size is now used only to force collisions in tests */
3062 if (opts
&& opts
->dedup_table_size
== 1)
3063 hash_fn
= btf_dedup_collision_hash_fn
;
3066 d
->btf_ext
= btf_ext
;
3068 d
->dedup_table
= hashmap__new(hash_fn
, btf_dedup_equal_fn
, NULL
);
3069 if (IS_ERR(d
->dedup_table
)) {
3070 err
= PTR_ERR(d
->dedup_table
);
3071 d
->dedup_table
= NULL
;
3075 type_cnt
= btf__get_nr_types(btf
) + 1;
3076 d
->map
= malloc(sizeof(__u32
) * type_cnt
);
3081 /* special BTF "void" type is made canonical immediately */
3083 for (i
= 1; i
< type_cnt
; i
++) {
3084 struct btf_type
*t
= btf_type_by_id(d
->btf
, i
);
3086 /* VAR and DATASEC are never deduped and are self-canonical */
3087 if (btf_is_var(t
) || btf_is_datasec(t
))
3090 d
->map
[i
] = BTF_UNPROCESSED_ID
;
3093 d
->hypot_map
= malloc(sizeof(__u32
) * type_cnt
);
3094 if (!d
->hypot_map
) {
3098 for (i
= 0; i
< type_cnt
; i
++)
3099 d
->hypot_map
[i
] = BTF_UNPROCESSED_ID
;
3104 return ERR_PTR(err
);
3110 typedef int (*str_off_fn_t
)(__u32
*str_off_ptr
, void *ctx
);
3113 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3114 * string and pass pointer to it to a provided callback `fn`.
3116 static int btf_for_each_str_off(struct btf_dedup
*d
, str_off_fn_t fn
, void *ctx
)
3118 void *line_data_cur
, *line_data_end
;
3119 int i
, j
, r
, rec_size
;
3122 for (i
= 0; i
< d
->btf
->nr_types
; i
++) {
3123 t
= btf_type_by_id(d
->btf
, d
->btf
->start_id
+ i
);
3124 r
= fn(&t
->name_off
, ctx
);
3128 switch (btf_kind(t
)) {
3129 case BTF_KIND_STRUCT
:
3130 case BTF_KIND_UNION
: {
3131 struct btf_member
*m
= btf_members(t
);
3132 __u16 vlen
= btf_vlen(t
);
3134 for (j
= 0; j
< vlen
; j
++) {
3135 r
= fn(&m
->name_off
, ctx
);
3142 case BTF_KIND_ENUM
: {
3143 struct btf_enum
*m
= btf_enum(t
);
3144 __u16 vlen
= btf_vlen(t
);
3146 for (j
= 0; j
< vlen
; j
++) {
3147 r
= fn(&m
->name_off
, ctx
);
3154 case BTF_KIND_FUNC_PROTO
: {
3155 struct btf_param
*m
= btf_params(t
);
3156 __u16 vlen
= btf_vlen(t
);
3158 for (j
= 0; j
< vlen
; j
++) {
3159 r
= fn(&m
->name_off
, ctx
);
3174 line_data_cur
= d
->btf_ext
->line_info
.info
;
3175 line_data_end
= d
->btf_ext
->line_info
.info
+ d
->btf_ext
->line_info
.len
;
3176 rec_size
= d
->btf_ext
->line_info
.rec_size
;
3178 while (line_data_cur
< line_data_end
) {
3179 struct btf_ext_info_sec
*sec
= line_data_cur
;
3180 struct bpf_line_info_min
*line_info
;
3181 __u32 num_info
= sec
->num_info
;
3183 r
= fn(&sec
->sec_name_off
, ctx
);
3187 line_data_cur
+= sizeof(struct btf_ext_info_sec
);
3188 for (i
= 0; i
< num_info
; i
++) {
3189 line_info
= line_data_cur
;
3190 r
= fn(&line_info
->file_name_off
, ctx
);
3193 r
= fn(&line_info
->line_off
, ctx
);
3196 line_data_cur
+= rec_size
;
3203 static int strs_dedup_remap_str_off(__u32
*str_off_ptr
, void *ctx
)
3205 struct btf_dedup
*d
= ctx
;
3206 __u32 str_off
= *str_off_ptr
;
3207 long old_off
, new_off
, len
;
3212 /* don't touch empty string or string in main BTF */
3213 if (str_off
== 0 || str_off
< d
->btf
->start_str_off
)
3216 s
= btf__str_by_offset(d
->btf
, str_off
);
3217 if (d
->btf
->base_btf
) {
3218 err
= btf__find_str(d
->btf
->base_btf
, s
);
3227 len
= strlen(s
) + 1;
3229 new_off
= d
->strs_len
;
3230 p
= btf_add_mem(&d
->strs_data
, &d
->strs_cap
, 1, new_off
, BTF_MAX_STR_OFFSET
, len
);
3236 /* Now attempt to add the string, but only if the string with the same
3237 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3238 * string exists, we'll get its offset in old_off (that's old_key).
3240 err
= hashmap__insert(d
->strs_hash
, (void *)new_off
, (void *)new_off
,
3241 HASHMAP_ADD
, (const void **)&old_off
, NULL
);
3242 if (err
== -EEXIST
) {
3243 *str_off_ptr
= d
->btf
->start_str_off
+ old_off
;
3247 *str_off_ptr
= d
->btf
->start_str_off
+ new_off
;
3254 * Dedup string and filter out those that are not referenced from either .BTF
3255 * or .BTF.ext (if provided) sections.
3257 * This is done by building index of all strings in BTF's string section,
3258 * then iterating over all entities that can reference strings (e.g., type
3259 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3260 * strings as used. After that all used strings are deduped and compacted into
3261 * sequential blob of memory and new offsets are calculated. Then all the string
3262 * references are iterated again and rewritten using new offsets.
3264 static int btf_dedup_strings(struct btf_dedup
*d
)
3269 if (d
->btf
->strs_deduped
)
3272 /* temporarily switch to use btf_dedup's strs_data for strings for hash
3273 * functions; later we'll just transfer hashmap to struct btf as is,
3274 * along the strs_data
3276 d
->btf
->strs_data_ptr
= &d
->strs_data
;
3278 d
->strs_hash
= hashmap__new(strs_hash_fn
, strs_hash_equal_fn
, d
->btf
);
3279 if (IS_ERR(d
->strs_hash
)) {
3280 err
= PTR_ERR(d
->strs_hash
);
3281 d
->strs_hash
= NULL
;
3285 if (!d
->btf
->base_btf
) {
3286 s
= btf_add_mem(&d
->strs_data
, &d
->strs_cap
, 1, d
->strs_len
, BTF_MAX_STR_OFFSET
, 1);
3289 /* initial empty string */
3293 /* insert empty string; we won't be looking it up during strings
3294 * dedup, but it's good to have it for generic BTF string lookups
3296 err
= hashmap__insert(d
->strs_hash
, (void *)0, (void *)0,
3297 HASHMAP_ADD
, NULL
, NULL
);
3302 /* remap string offsets */
3303 err
= btf_for_each_str_off(d
, strs_dedup_remap_str_off
, d
);
3307 /* replace BTF string data and hash with deduped ones */
3308 free(d
->btf
->strs_data
);
3309 hashmap__free(d
->btf
->strs_hash
);
3310 d
->btf
->strs_data
= d
->strs_data
;
3311 d
->btf
->strs_data_cap
= d
->strs_cap
;
3312 d
->btf
->hdr
->str_len
= d
->strs_len
;
3313 d
->btf
->strs_hash
= d
->strs_hash
;
3314 /* now point strs_data_ptr back to btf->strs_data */
3315 d
->btf
->strs_data_ptr
= &d
->btf
->strs_data
;
3317 d
->strs_data
= d
->strs_hash
= NULL
;
3318 d
->strs_len
= d
->strs_cap
= 0;
3319 d
->btf
->strs_deduped
= true;
3324 hashmap__free(d
->strs_hash
);
3325 d
->strs_data
= d
->strs_hash
= NULL
;
3326 d
->strs_len
= d
->strs_cap
= 0;
3328 /* restore strings pointer for existing d->btf->strs_hash back */
3329 d
->btf
->strs_data_ptr
= &d
->strs_data
;
3334 static long btf_hash_common(struct btf_type
*t
)
3338 h
= hash_combine(0, t
->name_off
);
3339 h
= hash_combine(h
, t
->info
);
3340 h
= hash_combine(h
, t
->size
);
3344 static bool btf_equal_common(struct btf_type
*t1
, struct btf_type
*t2
)
3346 return t1
->name_off
== t2
->name_off
&&
3347 t1
->info
== t2
->info
&&
3348 t1
->size
== t2
->size
;
3351 /* Calculate type signature hash of INT. */
3352 static long btf_hash_int(struct btf_type
*t
)
3354 __u32 info
= *(__u32
*)(t
+ 1);
3357 h
= btf_hash_common(t
);
3358 h
= hash_combine(h
, info
);
3362 /* Check structural equality of two INTs. */
3363 static bool btf_equal_int(struct btf_type
*t1
, struct btf_type
*t2
)
3367 if (!btf_equal_common(t1
, t2
))
3369 info1
= *(__u32
*)(t1
+ 1);
3370 info2
= *(__u32
*)(t2
+ 1);
3371 return info1
== info2
;
3374 /* Calculate type signature hash of ENUM. */
3375 static long btf_hash_enum(struct btf_type
*t
)
3379 /* don't hash vlen and enum members to support enum fwd resolving */
3380 h
= hash_combine(0, t
->name_off
);
3381 h
= hash_combine(h
, t
->info
& ~0xffff);
3382 h
= hash_combine(h
, t
->size
);
3386 /* Check structural equality of two ENUMs. */
3387 static bool btf_equal_enum(struct btf_type
*t1
, struct btf_type
*t2
)
3389 const struct btf_enum
*m1
, *m2
;
3393 if (!btf_equal_common(t1
, t2
))
3396 vlen
= btf_vlen(t1
);
3399 for (i
= 0; i
< vlen
; i
++) {
3400 if (m1
->name_off
!= m2
->name_off
|| m1
->val
!= m2
->val
)
3408 static inline bool btf_is_enum_fwd(struct btf_type
*t
)
3410 return btf_is_enum(t
) && btf_vlen(t
) == 0;
3413 static bool btf_compat_enum(struct btf_type
*t1
, struct btf_type
*t2
)
3415 if (!btf_is_enum_fwd(t1
) && !btf_is_enum_fwd(t2
))
3416 return btf_equal_enum(t1
, t2
);
3417 /* ignore vlen when comparing */
3418 return t1
->name_off
== t2
->name_off
&&
3419 (t1
->info
& ~0xffff) == (t2
->info
& ~0xffff) &&
3420 t1
->size
== t2
->size
;
3424 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3425 * as referenced type IDs equivalence is established separately during type
3426 * graph equivalence check algorithm.
3428 static long btf_hash_struct(struct btf_type
*t
)
3430 const struct btf_member
*member
= btf_members(t
);
3431 __u32 vlen
= btf_vlen(t
);
3432 long h
= btf_hash_common(t
);
3435 for (i
= 0; i
< vlen
; i
++) {
3436 h
= hash_combine(h
, member
->name_off
);
3437 h
= hash_combine(h
, member
->offset
);
3438 /* no hashing of referenced type ID, it can be unresolved yet */
3445 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3446 * IDs. This check is performed during type graph equivalence check and
3447 * referenced types equivalence is checked separately.
3449 static bool btf_shallow_equal_struct(struct btf_type
*t1
, struct btf_type
*t2
)
3451 const struct btf_member
*m1
, *m2
;
3455 if (!btf_equal_common(t1
, t2
))
3458 vlen
= btf_vlen(t1
);
3459 m1
= btf_members(t1
);
3460 m2
= btf_members(t2
);
3461 for (i
= 0; i
< vlen
; i
++) {
3462 if (m1
->name_off
!= m2
->name_off
|| m1
->offset
!= m2
->offset
)
3471 * Calculate type signature hash of ARRAY, including referenced type IDs,
3472 * under assumption that they were already resolved to canonical type IDs and
3473 * are not going to change.
3475 static long btf_hash_array(struct btf_type
*t
)
3477 const struct btf_array
*info
= btf_array(t
);
3478 long h
= btf_hash_common(t
);
3480 h
= hash_combine(h
, info
->type
);
3481 h
= hash_combine(h
, info
->index_type
);
3482 h
= hash_combine(h
, info
->nelems
);
3487 * Check exact equality of two ARRAYs, taking into account referenced
3488 * type IDs, under assumption that they were already resolved to canonical
3489 * type IDs and are not going to change.
3490 * This function is called during reference types deduplication to compare
3491 * ARRAY to potential canonical representative.
3493 static bool btf_equal_array(struct btf_type
*t1
, struct btf_type
*t2
)
3495 const struct btf_array
*info1
, *info2
;
3497 if (!btf_equal_common(t1
, t2
))
3500 info1
= btf_array(t1
);
3501 info2
= btf_array(t2
);
3502 return info1
->type
== info2
->type
&&
3503 info1
->index_type
== info2
->index_type
&&
3504 info1
->nelems
== info2
->nelems
;
3508 * Check structural compatibility of two ARRAYs, ignoring referenced type
3509 * IDs. This check is performed during type graph equivalence check and
3510 * referenced types equivalence is checked separately.
3512 static bool btf_compat_array(struct btf_type
*t1
, struct btf_type
*t2
)
3514 if (!btf_equal_common(t1
, t2
))
3517 return btf_array(t1
)->nelems
== btf_array(t2
)->nelems
;
3521 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3522 * under assumption that they were already resolved to canonical type IDs and
3523 * are not going to change.
3525 static long btf_hash_fnproto(struct btf_type
*t
)
3527 const struct btf_param
*member
= btf_params(t
);
3528 __u16 vlen
= btf_vlen(t
);
3529 long h
= btf_hash_common(t
);
3532 for (i
= 0; i
< vlen
; i
++) {
3533 h
= hash_combine(h
, member
->name_off
);
3534 h
= hash_combine(h
, member
->type
);
3541 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3542 * type IDs, under assumption that they were already resolved to canonical
3543 * type IDs and are not going to change.
3544 * This function is called during reference types deduplication to compare
3545 * FUNC_PROTO to potential canonical representative.
3547 static bool btf_equal_fnproto(struct btf_type
*t1
, struct btf_type
*t2
)
3549 const struct btf_param
*m1
, *m2
;
3553 if (!btf_equal_common(t1
, t2
))
3556 vlen
= btf_vlen(t1
);
3557 m1
= btf_params(t1
);
3558 m2
= btf_params(t2
);
3559 for (i
= 0; i
< vlen
; i
++) {
3560 if (m1
->name_off
!= m2
->name_off
|| m1
->type
!= m2
->type
)
3569 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3570 * IDs. This check is performed during type graph equivalence check and
3571 * referenced types equivalence is checked separately.
3573 static bool btf_compat_fnproto(struct btf_type
*t1
, struct btf_type
*t2
)
3575 const struct btf_param
*m1
, *m2
;
3579 /* skip return type ID */
3580 if (t1
->name_off
!= t2
->name_off
|| t1
->info
!= t2
->info
)
3583 vlen
= btf_vlen(t1
);
3584 m1
= btf_params(t1
);
3585 m2
= btf_params(t2
);
3586 for (i
= 0; i
< vlen
; i
++) {
3587 if (m1
->name_off
!= m2
->name_off
)
3595 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3596 * types and initializing the rest of the state (canonical type mapping) for
3597 * the fixed base BTF part.
3599 static int btf_dedup_prep(struct btf_dedup
*d
)
3605 if (!d
->btf
->base_btf
)
3608 for (type_id
= 1; type_id
< d
->btf
->start_id
; type_id
++) {
3609 t
= btf_type_by_id(d
->btf
, type_id
);
3611 /* all base BTF types are self-canonical by definition */
3612 d
->map
[type_id
] = type_id
;
3614 switch (btf_kind(t
)) {
3616 case BTF_KIND_DATASEC
:
3617 /* VAR and DATASEC are never hash/deduplicated */
3619 case BTF_KIND_CONST
:
3620 case BTF_KIND_VOLATILE
:
3621 case BTF_KIND_RESTRICT
:
3624 case BTF_KIND_TYPEDEF
:
3626 h
= btf_hash_common(t
);
3629 h
= btf_hash_int(t
);
3632 h
= btf_hash_enum(t
);
3634 case BTF_KIND_STRUCT
:
3635 case BTF_KIND_UNION
:
3636 h
= btf_hash_struct(t
);
3638 case BTF_KIND_ARRAY
:
3639 h
= btf_hash_array(t
);
3641 case BTF_KIND_FUNC_PROTO
:
3642 h
= btf_hash_fnproto(t
);
3645 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t
), type_id
);
3648 if (btf_dedup_table_add(d
, h
, type_id
))
3656 * Deduplicate primitive types, that can't reference other types, by calculating
3657 * their type signature hash and comparing them with any possible canonical
3658 * candidate. If no canonical candidate matches, type itself is marked as
3659 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3661 static int btf_dedup_prim_type(struct btf_dedup
*d
, __u32 type_id
)
3663 struct btf_type
*t
= btf_type_by_id(d
->btf
, type_id
);
3664 struct hashmap_entry
*hash_entry
;
3665 struct btf_type
*cand
;
3666 /* if we don't find equivalent type, then we are canonical */
3667 __u32 new_id
= type_id
;
3671 switch (btf_kind(t
)) {
3672 case BTF_KIND_CONST
:
3673 case BTF_KIND_VOLATILE
:
3674 case BTF_KIND_RESTRICT
:
3676 case BTF_KIND_TYPEDEF
:
3677 case BTF_KIND_ARRAY
:
3678 case BTF_KIND_STRUCT
:
3679 case BTF_KIND_UNION
:
3681 case BTF_KIND_FUNC_PROTO
:
3683 case BTF_KIND_DATASEC
:
3687 h
= btf_hash_int(t
);
3688 for_each_dedup_cand(d
, hash_entry
, h
) {
3689 cand_id
= (__u32
)(long)hash_entry
->value
;
3690 cand
= btf_type_by_id(d
->btf
, cand_id
);
3691 if (btf_equal_int(t
, cand
)) {
3699 h
= btf_hash_enum(t
);
3700 for_each_dedup_cand(d
, hash_entry
, h
) {
3701 cand_id
= (__u32
)(long)hash_entry
->value
;
3702 cand
= btf_type_by_id(d
->btf
, cand_id
);
3703 if (btf_equal_enum(t
, cand
)) {
3707 if (d
->opts
.dont_resolve_fwds
)
3709 if (btf_compat_enum(t
, cand
)) {
3710 if (btf_is_enum_fwd(t
)) {
3711 /* resolve fwd to full enum */
3715 /* resolve canonical enum fwd to full enum */
3716 d
->map
[cand_id
] = type_id
;
3722 h
= btf_hash_common(t
);
3723 for_each_dedup_cand(d
, hash_entry
, h
) {
3724 cand_id
= (__u32
)(long)hash_entry
->value
;
3725 cand
= btf_type_by_id(d
->btf
, cand_id
);
3726 if (btf_equal_common(t
, cand
)) {
3737 d
->map
[type_id
] = new_id
;
3738 if (type_id
== new_id
&& btf_dedup_table_add(d
, h
, type_id
))
3744 static int btf_dedup_prim_types(struct btf_dedup
*d
)
3748 for (i
= 0; i
< d
->btf
->nr_types
; i
++) {
3749 err
= btf_dedup_prim_type(d
, d
->btf
->start_id
+ i
);
3757 * Check whether type is already mapped into canonical one (could be to itself).
3759 static inline bool is_type_mapped(struct btf_dedup
*d
, uint32_t type_id
)
3761 return d
->map
[type_id
] <= BTF_MAX_NR_TYPES
;
3765 * Resolve type ID into its canonical type ID, if any; otherwise return original
3766 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3767 * STRUCT/UNION link and resolve it into canonical type ID as well.
3769 static inline __u32
resolve_type_id(struct btf_dedup
*d
, __u32 type_id
)
3771 while (is_type_mapped(d
, type_id
) && d
->map
[type_id
] != type_id
)
3772 type_id
= d
->map
[type_id
];
3777 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3780 static uint32_t resolve_fwd_id(struct btf_dedup
*d
, uint32_t type_id
)
3782 __u32 orig_type_id
= type_id
;
3784 if (!btf_is_fwd(btf__type_by_id(d
->btf
, type_id
)))
3787 while (is_type_mapped(d
, type_id
) && d
->map
[type_id
] != type_id
)
3788 type_id
= d
->map
[type_id
];
3790 if (!btf_is_fwd(btf__type_by_id(d
->btf
, type_id
)))
3793 return orig_type_id
;
3797 static inline __u16
btf_fwd_kind(struct btf_type
*t
)
3799 return btf_kflag(t
) ? BTF_KIND_UNION
: BTF_KIND_STRUCT
;
3802 /* Check if given two types are identical ARRAY definitions */
3803 static int btf_dedup_identical_arrays(struct btf_dedup
*d
, __u32 id1
, __u32 id2
)
3805 struct btf_type
*t1
, *t2
;
3807 t1
= btf_type_by_id(d
->btf
, id1
);
3808 t2
= btf_type_by_id(d
->btf
, id2
);
3809 if (!btf_is_array(t1
) || !btf_is_array(t2
))
3812 return btf_equal_array(t1
, t2
);
3816 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3817 * call it "candidate graph" in this description for brevity) to a type graph
3818 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3819 * here, though keep in mind that not all types in canonical graph are
3820 * necessarily canonical representatives themselves, some of them might be
3821 * duplicates or its uniqueness might not have been established yet).
3823 * - >0, if type graphs are equivalent;
3824 * - 0, if not equivalent;
3827 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3828 * equivalence of BTF types at each step. If at any point BTF types in candidate
3829 * and canonical graphs are not compatible structurally, whole graphs are
3830 * incompatible. If types are structurally equivalent (i.e., all information
3831 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3832 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3833 * If a type references other types, then those referenced types are checked
3834 * for equivalence recursively.
3836 * During DFS traversal, if we find that for current `canon_id` type we
3837 * already have some mapping in hypothetical map, we check for two possible
3839 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3840 * happen when type graphs have cycles. In this case we assume those two
3841 * types are equivalent.
3842 * - `canon_id` is mapped to different type. This is contradiction in our
3843 * hypothetical mapping, because same graph in canonical graph corresponds
3844 * to two different types in candidate graph, which for equivalent type
3845 * graphs shouldn't happen. This condition terminates equivalence check
3846 * with negative result.
3848 * If type graphs traversal exhausts types to check and find no contradiction,
3849 * then type graphs are equivalent.
3851 * When checking types for equivalence, there is one special case: FWD types.
3852 * If FWD type resolution is allowed and one of the types (either from canonical
3853 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3854 * flag) and their names match, hypothetical mapping is updated to point from
3855 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3856 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3858 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3859 * if there are two exactly named (or anonymous) structs/unions that are
3860 * compatible structurally, one of which has FWD field, while other is concrete
3861 * STRUCT/UNION, but according to C sources they are different structs/unions
3862 * that are referencing different types with the same name. This is extremely
3863 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3864 * this logic is causing problems.
3866 * Doing FWD resolution means that both candidate and/or canonical graphs can
3867 * consists of portions of the graph that come from multiple compilation units.
3868 * This is due to the fact that types within single compilation unit are always
3869 * deduplicated and FWDs are already resolved, if referenced struct/union
3870 * definiton is available. So, if we had unresolved FWD and found corresponding
3871 * STRUCT/UNION, they will be from different compilation units. This
3872 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3873 * type graph will likely have at least two different BTF types that describe
3874 * same type (e.g., most probably there will be two different BTF types for the
3875 * same 'int' primitive type) and could even have "overlapping" parts of type
3876 * graph that describe same subset of types.
3878 * This in turn means that our assumption that each type in canonical graph
3879 * must correspond to exactly one type in candidate graph might not hold
3880 * anymore and will make it harder to detect contradictions using hypothetical
3881 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3882 * resolution only in canonical graph. FWDs in candidate graphs are never
3883 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3885 * - Both types in canonical and candidate graphs are FWDs. If they are
3886 * structurally equivalent, then they can either be both resolved to the
3887 * same STRUCT/UNION or not resolved at all. In both cases they are
3888 * equivalent and there is no need to resolve FWD on candidate side.
3889 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3890 * so nothing to resolve as well, algorithm will check equivalence anyway.
3891 * - Type in canonical graph is FWD, while type in candidate is concrete
3892 * STRUCT/UNION. In this case candidate graph comes from single compilation
3893 * unit, so there is exactly one BTF type for each unique C type. After
3894 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
3895 * in canonical graph mapping to single BTF type in candidate graph, but
3896 * because hypothetical mapping maps from canonical to candidate types, it's
3897 * alright, and we still maintain the property of having single `canon_id`
3898 * mapping to single `cand_id` (there could be two different `canon_id`
3899 * mapped to the same `cand_id`, but it's not contradictory).
3900 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3901 * graph is FWD. In this case we are just going to check compatibility of
3902 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3903 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3904 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3905 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3908 static int btf_dedup_is_equiv(struct btf_dedup
*d
, __u32 cand_id
,
3911 struct btf_type
*cand_type
;
3912 struct btf_type
*canon_type
;
3913 __u32 hypot_type_id
;
3918 /* if both resolve to the same canonical, they must be equivalent */
3919 if (resolve_type_id(d
, cand_id
) == resolve_type_id(d
, canon_id
))
3922 canon_id
= resolve_fwd_id(d
, canon_id
);
3924 hypot_type_id
= d
->hypot_map
[canon_id
];
3925 if (hypot_type_id
<= BTF_MAX_NR_TYPES
) {
3926 /* In some cases compiler will generate different DWARF types
3927 * for *identical* array type definitions and use them for
3928 * different fields within the *same* struct. This breaks type
3929 * equivalence check, which makes an assumption that candidate
3930 * types sub-graph has a consistent and deduped-by-compiler
3931 * types within a single CU. So work around that by explicitly
3932 * allowing identical array types here.
3934 return hypot_type_id
== cand_id
||
3935 btf_dedup_identical_arrays(d
, hypot_type_id
, cand_id
);
3938 if (btf_dedup_hypot_map_add(d
, canon_id
, cand_id
))
3941 cand_type
= btf_type_by_id(d
->btf
, cand_id
);
3942 canon_type
= btf_type_by_id(d
->btf
, canon_id
);
3943 cand_kind
= btf_kind(cand_type
);
3944 canon_kind
= btf_kind(canon_type
);
3946 if (cand_type
->name_off
!= canon_type
->name_off
)
3949 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
3950 if (!d
->opts
.dont_resolve_fwds
3951 && (cand_kind
== BTF_KIND_FWD
|| canon_kind
== BTF_KIND_FWD
)
3952 && cand_kind
!= canon_kind
) {
3956 if (cand_kind
== BTF_KIND_FWD
) {
3957 real_kind
= canon_kind
;
3958 fwd_kind
= btf_fwd_kind(cand_type
);
3960 real_kind
= cand_kind
;
3961 fwd_kind
= btf_fwd_kind(canon_type
);
3962 /* we'd need to resolve base FWD to STRUCT/UNION */
3963 if (fwd_kind
== real_kind
&& canon_id
< d
->btf
->start_id
)
3964 d
->hypot_adjust_canon
= true;
3966 return fwd_kind
== real_kind
;
3969 if (cand_kind
!= canon_kind
)
3972 switch (cand_kind
) {
3974 return btf_equal_int(cand_type
, canon_type
);
3977 if (d
->opts
.dont_resolve_fwds
)
3978 return btf_equal_enum(cand_type
, canon_type
);
3980 return btf_compat_enum(cand_type
, canon_type
);
3983 return btf_equal_common(cand_type
, canon_type
);
3985 case BTF_KIND_CONST
:
3986 case BTF_KIND_VOLATILE
:
3987 case BTF_KIND_RESTRICT
:
3989 case BTF_KIND_TYPEDEF
:
3991 if (cand_type
->info
!= canon_type
->info
)
3993 return btf_dedup_is_equiv(d
, cand_type
->type
, canon_type
->type
);
3995 case BTF_KIND_ARRAY
: {
3996 const struct btf_array
*cand_arr
, *canon_arr
;
3998 if (!btf_compat_array(cand_type
, canon_type
))
4000 cand_arr
= btf_array(cand_type
);
4001 canon_arr
= btf_array(canon_type
);
4002 eq
= btf_dedup_is_equiv(d
, cand_arr
->index_type
, canon_arr
->index_type
);
4005 return btf_dedup_is_equiv(d
, cand_arr
->type
, canon_arr
->type
);
4008 case BTF_KIND_STRUCT
:
4009 case BTF_KIND_UNION
: {
4010 const struct btf_member
*cand_m
, *canon_m
;
4013 if (!btf_shallow_equal_struct(cand_type
, canon_type
))
4015 vlen
= btf_vlen(cand_type
);
4016 cand_m
= btf_members(cand_type
);
4017 canon_m
= btf_members(canon_type
);
4018 for (i
= 0; i
< vlen
; i
++) {
4019 eq
= btf_dedup_is_equiv(d
, cand_m
->type
, canon_m
->type
);
4029 case BTF_KIND_FUNC_PROTO
: {
4030 const struct btf_param
*cand_p
, *canon_p
;
4033 if (!btf_compat_fnproto(cand_type
, canon_type
))
4035 eq
= btf_dedup_is_equiv(d
, cand_type
->type
, canon_type
->type
);
4038 vlen
= btf_vlen(cand_type
);
4039 cand_p
= btf_params(cand_type
);
4040 canon_p
= btf_params(canon_type
);
4041 for (i
= 0; i
< vlen
; i
++) {
4042 eq
= btf_dedup_is_equiv(d
, cand_p
->type
, canon_p
->type
);
4058 * Use hypothetical mapping, produced by successful type graph equivalence
4059 * check, to augment existing struct/union canonical mapping, where possible.
4061 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4062 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4063 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4064 * we are recording the mapping anyway. As opposed to carefulness required
4065 * for struct/union correspondence mapping (described below), for FWD resolution
4066 * it's not important, as by the time that FWD type (reference type) will be
4067 * deduplicated all structs/unions will be deduped already anyway.
4069 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4070 * not required for correctness. It needs to be done carefully to ensure that
4071 * struct/union from candidate's type graph is not mapped into corresponding
4072 * struct/union from canonical type graph that itself hasn't been resolved into
4073 * canonical representative. The only guarantee we have is that canonical
4074 * struct/union was determined as canonical and that won't change. But any
4075 * types referenced through that struct/union fields could have been not yet
4076 * resolved, so in case like that it's too early to establish any kind of
4077 * correspondence between structs/unions.
4079 * No canonical correspondence is derived for primitive types (they are already
4080 * deduplicated completely already anyway) or reference types (they rely on
4081 * stability of struct/union canonical relationship for equivalence checks).
4083 static void btf_dedup_merge_hypot_map(struct btf_dedup
*d
)
4085 __u32 canon_type_id
, targ_type_id
;
4086 __u16 t_kind
, c_kind
;
4090 for (i
= 0; i
< d
->hypot_cnt
; i
++) {
4091 canon_type_id
= d
->hypot_list
[i
];
4092 targ_type_id
= d
->hypot_map
[canon_type_id
];
4093 t_id
= resolve_type_id(d
, targ_type_id
);
4094 c_id
= resolve_type_id(d
, canon_type_id
);
4095 t_kind
= btf_kind(btf__type_by_id(d
->btf
, t_id
));
4096 c_kind
= btf_kind(btf__type_by_id(d
->btf
, c_id
));
4098 * Resolve FWD into STRUCT/UNION.
4099 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4100 * mapped to canonical representative (as opposed to
4101 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4102 * eventually that struct is going to be mapped and all resolved
4103 * FWDs will automatically resolve to correct canonical
4104 * representative. This will happen before ref type deduping,
4105 * which critically depends on stability of these mapping. This
4106 * stability is not a requirement for STRUCT/UNION equivalence
4110 /* if it's the split BTF case, we still need to point base FWD
4111 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4112 * will be resolved against base FWD. If we don't point base
4113 * canonical FWD to the resolved STRUCT/UNION, then all the
4114 * FWDs in split BTF won't be correctly resolved to a proper
4117 if (t_kind
!= BTF_KIND_FWD
&& c_kind
== BTF_KIND_FWD
)
4118 d
->map
[c_id
] = t_id
;
4120 /* if graph equivalence determined that we'd need to adjust
4121 * base canonical types, then we need to only point base FWDs
4122 * to STRUCTs/UNIONs and do no more modifications. For all
4123 * other purposes the type graphs were not equivalent.
4125 if (d
->hypot_adjust_canon
)
4128 if (t_kind
== BTF_KIND_FWD
&& c_kind
!= BTF_KIND_FWD
)
4129 d
->map
[t_id
] = c_id
;
4131 if ((t_kind
== BTF_KIND_STRUCT
|| t_kind
== BTF_KIND_UNION
) &&
4132 c_kind
!= BTF_KIND_FWD
&&
4133 is_type_mapped(d
, c_id
) &&
4134 !is_type_mapped(d
, t_id
)) {
4136 * as a perf optimization, we can map struct/union
4137 * that's part of type graph we just verified for
4138 * equivalence. We can do that for struct/union that has
4139 * canonical representative only, though.
4141 d
->map
[t_id
] = c_id
;
4147 * Deduplicate struct/union types.
4149 * For each struct/union type its type signature hash is calculated, taking
4150 * into account type's name, size, number, order and names of fields, but
4151 * ignoring type ID's referenced from fields, because they might not be deduped
4152 * completely until after reference types deduplication phase. This type hash
4153 * is used to iterate over all potential canonical types, sharing same hash.
4154 * For each canonical candidate we check whether type graphs that they form
4155 * (through referenced types in fields and so on) are equivalent using algorithm
4156 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4157 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4158 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4159 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4160 * potentially map other structs/unions to their canonical representatives,
4161 * if such relationship hasn't yet been established. This speeds up algorithm
4162 * by eliminating some of the duplicate work.
4164 * If no matching canonical representative was found, struct/union is marked
4165 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4166 * for further look ups.
4168 static int btf_dedup_struct_type(struct btf_dedup
*d
, __u32 type_id
)
4170 struct btf_type
*cand_type
, *t
;
4171 struct hashmap_entry
*hash_entry
;
4172 /* if we don't find equivalent type, then we are canonical */
4173 __u32 new_id
= type_id
;
4177 /* already deduped or is in process of deduping (loop detected) */
4178 if (d
->map
[type_id
] <= BTF_MAX_NR_TYPES
)
4181 t
= btf_type_by_id(d
->btf
, type_id
);
4184 if (kind
!= BTF_KIND_STRUCT
&& kind
!= BTF_KIND_UNION
)
4187 h
= btf_hash_struct(t
);
4188 for_each_dedup_cand(d
, hash_entry
, h
) {
4189 __u32 cand_id
= (__u32
)(long)hash_entry
->value
;
4193 * Even though btf_dedup_is_equiv() checks for
4194 * btf_shallow_equal_struct() internally when checking two
4195 * structs (unions) for equivalence, we need to guard here
4196 * from picking matching FWD type as a dedup candidate.
4197 * This can happen due to hash collision. In such case just
4198 * relying on btf_dedup_is_equiv() would lead to potentially
4199 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4200 * FWD and compatible STRUCT/UNION are considered equivalent.
4202 cand_type
= btf_type_by_id(d
->btf
, cand_id
);
4203 if (!btf_shallow_equal_struct(t
, cand_type
))
4206 btf_dedup_clear_hypot_map(d
);
4207 eq
= btf_dedup_is_equiv(d
, type_id
, cand_id
);
4212 btf_dedup_merge_hypot_map(d
);
4213 if (d
->hypot_adjust_canon
) /* not really equivalent */
4219 d
->map
[type_id
] = new_id
;
4220 if (type_id
== new_id
&& btf_dedup_table_add(d
, h
, type_id
))
4226 static int btf_dedup_struct_types(struct btf_dedup
*d
)
4230 for (i
= 0; i
< d
->btf
->nr_types
; i
++) {
4231 err
= btf_dedup_struct_type(d
, d
->btf
->start_id
+ i
);
4239 * Deduplicate reference type.
4241 * Once all primitive and struct/union types got deduplicated, we can easily
4242 * deduplicate all other (reference) BTF types. This is done in two steps:
4244 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4245 * resolution can be done either immediately for primitive or struct/union types
4246 * (because they were deduped in previous two phases) or recursively for
4247 * reference types. Recursion will always terminate at either primitive or
4248 * struct/union type, at which point we can "unwind" chain of reference types
4249 * one by one. There is no danger of encountering cycles because in C type
4250 * system the only way to form type cycle is through struct/union, so any chain
4251 * of reference types, even those taking part in a type cycle, will inevitably
4252 * reach struct/union at some point.
4254 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4255 * becomes "stable", in the sense that no further deduplication will cause
4256 * any changes to it. With that, it's now possible to calculate type's signature
4257 * hash (this time taking into account referenced type IDs) and loop over all
4258 * potential canonical representatives. If no match was found, current type
4259 * will become canonical representative of itself and will be added into
4260 * btf_dedup->dedup_table as another possible canonical representative.
4262 static int btf_dedup_ref_type(struct btf_dedup
*d
, __u32 type_id
)
4264 struct hashmap_entry
*hash_entry
;
4265 __u32 new_id
= type_id
, cand_id
;
4266 struct btf_type
*t
, *cand
;
4267 /* if we don't find equivalent type, then we are representative type */
4271 if (d
->map
[type_id
] == BTF_IN_PROGRESS_ID
)
4273 if (d
->map
[type_id
] <= BTF_MAX_NR_TYPES
)
4274 return resolve_type_id(d
, type_id
);
4276 t
= btf_type_by_id(d
->btf
, type_id
);
4277 d
->map
[type_id
] = BTF_IN_PROGRESS_ID
;
4279 switch (btf_kind(t
)) {
4280 case BTF_KIND_CONST
:
4281 case BTF_KIND_VOLATILE
:
4282 case BTF_KIND_RESTRICT
:
4284 case BTF_KIND_TYPEDEF
:
4286 ref_type_id
= btf_dedup_ref_type(d
, t
->type
);
4287 if (ref_type_id
< 0)
4289 t
->type
= ref_type_id
;
4291 h
= btf_hash_common(t
);
4292 for_each_dedup_cand(d
, hash_entry
, h
) {
4293 cand_id
= (__u32
)(long)hash_entry
->value
;
4294 cand
= btf_type_by_id(d
->btf
, cand_id
);
4295 if (btf_equal_common(t
, cand
)) {
4302 case BTF_KIND_ARRAY
: {
4303 struct btf_array
*info
= btf_array(t
);
4305 ref_type_id
= btf_dedup_ref_type(d
, info
->type
);
4306 if (ref_type_id
< 0)
4308 info
->type
= ref_type_id
;
4310 ref_type_id
= btf_dedup_ref_type(d
, info
->index_type
);
4311 if (ref_type_id
< 0)
4313 info
->index_type
= ref_type_id
;
4315 h
= btf_hash_array(t
);
4316 for_each_dedup_cand(d
, hash_entry
, h
) {
4317 cand_id
= (__u32
)(long)hash_entry
->value
;
4318 cand
= btf_type_by_id(d
->btf
, cand_id
);
4319 if (btf_equal_array(t
, cand
)) {
4327 case BTF_KIND_FUNC_PROTO
: {
4328 struct btf_param
*param
;
4332 ref_type_id
= btf_dedup_ref_type(d
, t
->type
);
4333 if (ref_type_id
< 0)
4335 t
->type
= ref_type_id
;
4338 param
= btf_params(t
);
4339 for (i
= 0; i
< vlen
; i
++) {
4340 ref_type_id
= btf_dedup_ref_type(d
, param
->type
);
4341 if (ref_type_id
< 0)
4343 param
->type
= ref_type_id
;
4347 h
= btf_hash_fnproto(t
);
4348 for_each_dedup_cand(d
, hash_entry
, h
) {
4349 cand_id
= (__u32
)(long)hash_entry
->value
;
4350 cand
= btf_type_by_id(d
->btf
, cand_id
);
4351 if (btf_equal_fnproto(t
, cand
)) {
4363 d
->map
[type_id
] = new_id
;
4364 if (type_id
== new_id
&& btf_dedup_table_add(d
, h
, type_id
))
4370 static int btf_dedup_ref_types(struct btf_dedup
*d
)
4374 for (i
= 0; i
< d
->btf
->nr_types
; i
++) {
4375 err
= btf_dedup_ref_type(d
, d
->btf
->start_id
+ i
);
4379 /* we won't need d->dedup_table anymore */
4380 hashmap__free(d
->dedup_table
);
4381 d
->dedup_table
= NULL
;
4388 * After we established for each type its corresponding canonical representative
4389 * type, we now can eliminate types that are not canonical and leave only
4390 * canonical ones layed out sequentially in memory by copying them over
4391 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4392 * a map from original type ID to a new compacted type ID, which will be used
4393 * during next phase to "fix up" type IDs, referenced from struct/union and
4396 static int btf_dedup_compact_types(struct btf_dedup
*d
)
4399 __u32 next_type_id
= d
->btf
->start_id
;
4400 const struct btf_type
*t
;
4404 /* we are going to reuse hypot_map to store compaction remapping */
4405 d
->hypot_map
[0] = 0;
4406 /* base BTF types are not renumbered */
4407 for (id
= 1; id
< d
->btf
->start_id
; id
++)
4408 d
->hypot_map
[id
] = id
;
4409 for (i
= 0, id
= d
->btf
->start_id
; i
< d
->btf
->nr_types
; i
++, id
++)
4410 d
->hypot_map
[id
] = BTF_UNPROCESSED_ID
;
4412 p
= d
->btf
->types_data
;
4414 for (i
= 0, id
= d
->btf
->start_id
; i
< d
->btf
->nr_types
; i
++, id
++) {
4415 if (d
->map
[id
] != id
)
4418 t
= btf__type_by_id(d
->btf
, id
);
4419 len
= btf_type_size(t
);
4424 d
->hypot_map
[id
] = next_type_id
;
4425 d
->btf
->type_offs
[next_type_id
- d
->btf
->start_id
] = p
- d
->btf
->types_data
;
4430 /* shrink struct btf's internal types index and update btf_header */
4431 d
->btf
->nr_types
= next_type_id
- d
->btf
->start_id
;
4432 d
->btf
->type_offs_cap
= d
->btf
->nr_types
;
4433 d
->btf
->hdr
->type_len
= p
- d
->btf
->types_data
;
4434 new_offs
= libbpf_reallocarray(d
->btf
->type_offs
, d
->btf
->type_offs_cap
,
4436 if (d
->btf
->type_offs_cap
&& !new_offs
)
4438 d
->btf
->type_offs
= new_offs
;
4439 d
->btf
->hdr
->str_off
= d
->btf
->hdr
->type_len
;
4440 d
->btf
->raw_size
= d
->btf
->hdr
->hdr_len
+ d
->btf
->hdr
->type_len
+ d
->btf
->hdr
->str_len
;
4445 * Figure out final (deduplicated and compacted) type ID for provided original
4446 * `type_id` by first resolving it into corresponding canonical type ID and
4447 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4448 * which is populated during compaction phase.
4450 static int btf_dedup_remap_type_id(struct btf_dedup
*d
, __u32 type_id
)
4452 __u32 resolved_type_id
, new_type_id
;
4454 resolved_type_id
= resolve_type_id(d
, type_id
);
4455 new_type_id
= d
->hypot_map
[resolved_type_id
];
4456 if (new_type_id
> BTF_MAX_NR_TYPES
)
4462 * Remap referenced type IDs into deduped type IDs.
4464 * After BTF types are deduplicated and compacted, their final type IDs may
4465 * differ from original ones. The map from original to a corresponding
4466 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4467 * compaction phase. During remapping phase we are rewriting all type IDs
4468 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4469 * their final deduped type IDs.
4471 static int btf_dedup_remap_type(struct btf_dedup
*d
, __u32 type_id
)
4473 struct btf_type
*t
= btf_type_by_id(d
->btf
, type_id
);
4476 switch (btf_kind(t
)) {
4482 case BTF_KIND_CONST
:
4483 case BTF_KIND_VOLATILE
:
4484 case BTF_KIND_RESTRICT
:
4486 case BTF_KIND_TYPEDEF
:
4489 r
= btf_dedup_remap_type_id(d
, t
->type
);
4495 case BTF_KIND_ARRAY
: {
4496 struct btf_array
*arr_info
= btf_array(t
);
4498 r
= btf_dedup_remap_type_id(d
, arr_info
->type
);
4502 r
= btf_dedup_remap_type_id(d
, arr_info
->index_type
);
4505 arr_info
->index_type
= r
;
4509 case BTF_KIND_STRUCT
:
4510 case BTF_KIND_UNION
: {
4511 struct btf_member
*member
= btf_members(t
);
4512 __u16 vlen
= btf_vlen(t
);
4514 for (i
= 0; i
< vlen
; i
++) {
4515 r
= btf_dedup_remap_type_id(d
, member
->type
);
4524 case BTF_KIND_FUNC_PROTO
: {
4525 struct btf_param
*param
= btf_params(t
);
4526 __u16 vlen
= btf_vlen(t
);
4528 r
= btf_dedup_remap_type_id(d
, t
->type
);
4533 for (i
= 0; i
< vlen
; i
++) {
4534 r
= btf_dedup_remap_type_id(d
, param
->type
);
4543 case BTF_KIND_DATASEC
: {
4544 struct btf_var_secinfo
*var
= btf_var_secinfos(t
);
4545 __u16 vlen
= btf_vlen(t
);
4547 for (i
= 0; i
< vlen
; i
++) {
4548 r
= btf_dedup_remap_type_id(d
, var
->type
);
4564 static int btf_dedup_remap_types(struct btf_dedup
*d
)
4568 for (i
= 0; i
< d
->btf
->nr_types
; i
++) {
4569 r
= btf_dedup_remap_type(d
, d
->btf
->start_id
+ i
);
4577 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4578 * data out of it to use for target BTF.
4580 struct btf
*libbpf_find_kernel_btf(void)
4583 const char *path_fmt
;
4586 /* try canonical vmlinux BTF through sysfs first */
4587 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4588 /* fall back to trying to find vmlinux ELF on disk otherwise */
4589 { "/boot/vmlinux-%1$s" },
4590 { "/lib/modules/%1$s/vmlinux-%1$s" },
4591 { "/lib/modules/%1$s/build/vmlinux" },
4592 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4593 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4594 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4595 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4597 char path
[PATH_MAX
+ 1];
4604 for (i
= 0; i
< ARRAY_SIZE(locations
); i
++) {
4605 snprintf(path
, PATH_MAX
, locations
[i
].path_fmt
, buf
.release
);
4607 if (access(path
, R_OK
))
4610 if (locations
[i
].raw_btf
)
4611 btf
= btf__parse_raw(path
);
4613 btf
= btf__parse_elf(path
, NULL
);
4615 pr_debug("loading kernel BTF '%s': %ld\n",
4616 path
, IS_ERR(btf
) ? PTR_ERR(btf
) : 0);
4623 pr_warn("failed to find valid kernel BTF\n");
4624 return ERR_PTR(-ESRCH
);