sparc64: Kill error_mask from hypervisor_xcall_deliver().
[linux/fpc-iii.git] / drivers / net / fs_enet / fs_enet-main.c
blob9a51ec8293cc953e0ea32a8df6d7c08a9a7204f3
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of_platform.h>
40 #include <linux/of_gpio.h>
42 #include <linux/vmalloc.h>
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/uaccess.h>
47 #include "fs_enet.h"
49 /*************************************************/
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Freescale Ethernet Driver");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_MODULE_VERSION);
56 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57 module_param(fs_enet_debug, int, 0);
58 MODULE_PARM_DESC(fs_enet_debug,
59 "Freescale bitmapped debugging message enable value");
61 #ifdef CONFIG_NET_POLL_CONTROLLER
62 static void fs_enet_netpoll(struct net_device *dev);
63 #endif
65 static void fs_set_multicast_list(struct net_device *dev)
67 struct fs_enet_private *fep = netdev_priv(dev);
69 (*fep->ops->set_multicast_list)(dev);
72 static void skb_align(struct sk_buff *skb, int align)
74 int off = ((unsigned long)skb->data) & (align - 1);
76 if (off)
77 skb_reserve(skb, align - off);
80 /* NAPI receive function */
81 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
83 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
84 struct net_device *dev = fep->ndev;
85 const struct fs_platform_info *fpi = fep->fpi;
86 cbd_t __iomem *bdp;
87 struct sk_buff *skb, *skbn, *skbt;
88 int received = 0;
89 u16 pkt_len, sc;
90 int curidx;
93 * First, grab all of the stats for the incoming packet.
94 * These get messed up if we get called due to a busy condition.
96 bdp = fep->cur_rx;
98 /* clear RX status bits for napi*/
99 (*fep->ops->napi_clear_rx_event)(dev);
101 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
102 curidx = bdp - fep->rx_bd_base;
105 * Since we have allocated space to hold a complete frame,
106 * the last indicator should be set.
108 if ((sc & BD_ENET_RX_LAST) == 0)
109 printk(KERN_WARNING DRV_MODULE_NAME
110 ": %s rcv is not +last\n",
111 dev->name);
114 * Check for errors.
116 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
117 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
118 fep->stats.rx_errors++;
119 /* Frame too long or too short. */
120 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
121 fep->stats.rx_length_errors++;
122 /* Frame alignment */
123 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
124 fep->stats.rx_frame_errors++;
125 /* CRC Error */
126 if (sc & BD_ENET_RX_CR)
127 fep->stats.rx_crc_errors++;
128 /* FIFO overrun */
129 if (sc & BD_ENET_RX_OV)
130 fep->stats.rx_crc_errors++;
132 skb = fep->rx_skbuff[curidx];
134 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
135 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
136 DMA_FROM_DEVICE);
138 skbn = skb;
140 } else {
141 skb = fep->rx_skbuff[curidx];
143 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
144 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
145 DMA_FROM_DEVICE);
148 * Process the incoming frame.
150 fep->stats.rx_packets++;
151 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
152 fep->stats.rx_bytes += pkt_len + 4;
154 if (pkt_len <= fpi->rx_copybreak) {
155 /* +2 to make IP header L1 cache aligned */
156 skbn = dev_alloc_skb(pkt_len + 2);
157 if (skbn != NULL) {
158 skb_reserve(skbn, 2); /* align IP header */
159 skb_copy_from_linear_data(skb,
160 skbn->data, pkt_len);
161 /* swap */
162 skbt = skb;
163 skb = skbn;
164 skbn = skbt;
166 } else {
167 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
169 if (skbn)
170 skb_align(skbn, ENET_RX_ALIGN);
173 if (skbn != NULL) {
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
181 dev->name);
182 fep->stats.rx_dropped++;
183 skbn = skb;
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195 * Update BD pointer to next entry.
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
202 (*fep->ops->rx_bd_done)(dev);
204 if (received >= budget)
205 break;
208 fep->cur_rx = bdp;
210 if (received < budget) {
211 /* done */
212 netif_rx_complete(dev, napi);
213 (*fep->ops->napi_enable_rx)(dev);
215 return received;
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
221 struct fs_enet_private *fep = netdev_priv(dev);
222 const struct fs_platform_info *fpi = fep->fpi;
223 cbd_t __iomem *bdp;
224 struct sk_buff *skb, *skbn, *skbt;
225 int received = 0;
226 u16 pkt_len, sc;
227 int curidx;
229 * First, grab all of the stats for the incoming packet.
230 * These get messed up if we get called due to a busy condition.
232 bdp = fep->cur_rx;
234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
236 curidx = bdp - fep->rx_bd_base;
239 * Since we have allocated space to hold a complete frame,
240 * the last indicator should be set.
242 if ((sc & BD_ENET_RX_LAST) == 0)
243 printk(KERN_WARNING DRV_MODULE_NAME
244 ": %s rcv is not +last\n",
245 dev->name);
248 * Check for errors.
250 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
251 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
252 fep->stats.rx_errors++;
253 /* Frame too long or too short. */
254 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
255 fep->stats.rx_length_errors++;
256 /* Frame alignment */
257 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
258 fep->stats.rx_frame_errors++;
259 /* CRC Error */
260 if (sc & BD_ENET_RX_CR)
261 fep->stats.rx_crc_errors++;
262 /* FIFO overrun */
263 if (sc & BD_ENET_RX_OV)
264 fep->stats.rx_crc_errors++;
266 skb = fep->rx_skbuff[curidx];
268 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
269 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
270 DMA_FROM_DEVICE);
272 skbn = skb;
274 } else {
276 skb = fep->rx_skbuff[curidx];
278 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
279 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
280 DMA_FROM_DEVICE);
283 * Process the incoming frame.
285 fep->stats.rx_packets++;
286 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
287 fep->stats.rx_bytes += pkt_len + 4;
289 if (pkt_len <= fpi->rx_copybreak) {
290 /* +2 to make IP header L1 cache aligned */
291 skbn = dev_alloc_skb(pkt_len + 2);
292 if (skbn != NULL) {
293 skb_reserve(skbn, 2); /* align IP header */
294 skb_copy_from_linear_data(skb,
295 skbn->data, pkt_len);
296 /* swap */
297 skbt = skb;
298 skb = skbn;
299 skbn = skbt;
301 } else {
302 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
304 if (skbn)
305 skb_align(skbn, ENET_RX_ALIGN);
308 if (skbn != NULL) {
309 skb_put(skb, pkt_len); /* Make room */
310 skb->protocol = eth_type_trans(skb, dev);
311 received++;
312 netif_rx(skb);
313 } else {
314 printk(KERN_WARNING DRV_MODULE_NAME
315 ": %s Memory squeeze, dropping packet.\n",
316 dev->name);
317 fep->stats.rx_dropped++;
318 skbn = skb;
322 fep->rx_skbuff[curidx] = skbn;
323 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
324 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
325 DMA_FROM_DEVICE));
326 CBDW_DATLEN(bdp, 0);
327 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
330 * Update BD pointer to next entry.
332 if ((sc & BD_ENET_RX_WRAP) == 0)
333 bdp++;
334 else
335 bdp = fep->rx_bd_base;
337 (*fep->ops->rx_bd_done)(dev);
340 fep->cur_rx = bdp;
342 return 0;
345 static void fs_enet_tx(struct net_device *dev)
347 struct fs_enet_private *fep = netdev_priv(dev);
348 cbd_t __iomem *bdp;
349 struct sk_buff *skb;
350 int dirtyidx, do_wake, do_restart;
351 u16 sc;
353 spin_lock(&fep->tx_lock);
354 bdp = fep->dirty_tx;
356 do_wake = do_restart = 0;
357 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
358 dirtyidx = bdp - fep->tx_bd_base;
360 if (fep->tx_free == fep->tx_ring)
361 break;
363 skb = fep->tx_skbuff[dirtyidx];
366 * Check for errors.
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
384 do_restart = 1;
386 } else
387 fep->stats.tx_packets++;
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392 dev->name);
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
401 /* unmap */
402 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403 skb->len, DMA_TO_DEVICE);
406 * Free the sk buffer associated with this last transmit.
408 dev_kfree_skb_irq(skb);
409 fep->tx_skbuff[dirtyidx] = NULL;
412 * Update pointer to next buffer descriptor to be transmitted.
414 if ((sc & BD_ENET_TX_WRAP) == 0)
415 bdp++;
416 else
417 bdp = fep->tx_bd_base;
420 * Since we have freed up a buffer, the ring is no longer
421 * full.
423 if (!fep->tx_free++)
424 do_wake = 1;
427 fep->dirty_tx = bdp;
429 if (do_restart)
430 (*fep->ops->tx_restart)(dev);
432 spin_unlock(&fep->tx_lock);
434 if (do_wake)
435 netif_wake_queue(dev);
439 * The interrupt handler.
440 * This is called from the MPC core interrupt.
442 static irqreturn_t
443 fs_enet_interrupt(int irq, void *dev_id)
445 struct net_device *dev = dev_id;
446 struct fs_enet_private *fep;
447 const struct fs_platform_info *fpi;
448 u32 int_events;
449 u32 int_clr_events;
450 int nr, napi_ok;
451 int handled;
453 fep = netdev_priv(dev);
454 fpi = fep->fpi;
456 nr = 0;
457 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
458 nr++;
460 int_clr_events = int_events;
461 if (fpi->use_napi)
462 int_clr_events &= ~fep->ev_napi_rx;
464 (*fep->ops->clear_int_events)(dev, int_clr_events);
466 if (int_events & fep->ev_err)
467 (*fep->ops->ev_error)(dev, int_events);
469 if (int_events & fep->ev_rx) {
470 if (!fpi->use_napi)
471 fs_enet_rx_non_napi(dev);
472 else {
473 napi_ok = napi_schedule_prep(&fep->napi);
475 (*fep->ops->napi_disable_rx)(dev);
476 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
478 /* NOTE: it is possible for FCCs in NAPI mode */
479 /* to submit a spurious interrupt while in poll */
480 if (napi_ok)
481 __netif_rx_schedule(dev, &fep->napi);
485 if (int_events & fep->ev_tx)
486 fs_enet_tx(dev);
489 handled = nr > 0;
490 return IRQ_RETVAL(handled);
493 void fs_init_bds(struct net_device *dev)
495 struct fs_enet_private *fep = netdev_priv(dev);
496 cbd_t __iomem *bdp;
497 struct sk_buff *skb;
498 int i;
500 fs_cleanup_bds(dev);
502 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
503 fep->tx_free = fep->tx_ring;
504 fep->cur_rx = fep->rx_bd_base;
507 * Initialize the receive buffer descriptors.
509 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
510 skb = dev_alloc_skb(ENET_RX_FRSIZE);
511 if (skb == NULL) {
512 printk(KERN_WARNING DRV_MODULE_NAME
513 ": %s Memory squeeze, unable to allocate skb\n",
514 dev->name);
515 break;
517 skb_align(skb, ENET_RX_ALIGN);
518 fep->rx_skbuff[i] = skb;
519 CBDW_BUFADDR(bdp,
520 dma_map_single(fep->dev, skb->data,
521 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
522 DMA_FROM_DEVICE));
523 CBDW_DATLEN(bdp, 0); /* zero */
524 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
525 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
528 * if we failed, fillup remainder
530 for (; i < fep->rx_ring; i++, bdp++) {
531 fep->rx_skbuff[i] = NULL;
532 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
536 * ...and the same for transmit.
538 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
539 fep->tx_skbuff[i] = NULL;
540 CBDW_BUFADDR(bdp, 0);
541 CBDW_DATLEN(bdp, 0);
542 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
546 void fs_cleanup_bds(struct net_device *dev)
548 struct fs_enet_private *fep = netdev_priv(dev);
549 struct sk_buff *skb;
550 cbd_t __iomem *bdp;
551 int i;
554 * Reset SKB transmit buffers.
556 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
557 if ((skb = fep->tx_skbuff[i]) == NULL)
558 continue;
560 /* unmap */
561 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
562 skb->len, DMA_TO_DEVICE);
564 fep->tx_skbuff[i] = NULL;
565 dev_kfree_skb(skb);
569 * Reset SKB receive buffers
571 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
572 if ((skb = fep->rx_skbuff[i]) == NULL)
573 continue;
575 /* unmap */
576 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
577 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
578 DMA_FROM_DEVICE);
580 fep->rx_skbuff[i] = NULL;
582 dev_kfree_skb(skb);
586 /**********************************************************************************/
588 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
590 struct fs_enet_private *fep = netdev_priv(dev);
591 cbd_t __iomem *bdp;
592 int curidx;
593 u16 sc;
594 unsigned long flags;
596 spin_lock_irqsave(&fep->tx_lock, flags);
599 * Fill in a Tx ring entry
601 bdp = fep->cur_tx;
603 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
604 netif_stop_queue(dev);
605 spin_unlock_irqrestore(&fep->tx_lock, flags);
608 * Ooops. All transmit buffers are full. Bail out.
609 * This should not happen, since the tx queue should be stopped.
611 printk(KERN_WARNING DRV_MODULE_NAME
612 ": %s tx queue full!.\n", dev->name);
613 return NETDEV_TX_BUSY;
616 curidx = bdp - fep->tx_bd_base;
618 * Clear all of the status flags.
620 CBDC_SC(bdp, BD_ENET_TX_STATS);
623 * Save skb pointer.
625 fep->tx_skbuff[curidx] = skb;
627 fep->stats.tx_bytes += skb->len;
630 * Push the data cache so the CPM does not get stale memory data.
632 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
633 skb->data, skb->len, DMA_TO_DEVICE));
634 CBDW_DATLEN(bdp, skb->len);
636 dev->trans_start = jiffies;
639 * If this was the last BD in the ring, start at the beginning again.
641 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
642 fep->cur_tx++;
643 else
644 fep->cur_tx = fep->tx_bd_base;
646 if (!--fep->tx_free)
647 netif_stop_queue(dev);
649 /* Trigger transmission start */
650 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
651 BD_ENET_TX_LAST | BD_ENET_TX_TC;
653 /* note that while FEC does not have this bit
654 * it marks it as available for software use
655 * yay for hw reuse :) */
656 if (skb->len <= 60)
657 sc |= BD_ENET_TX_PAD;
658 CBDS_SC(bdp, sc);
660 (*fep->ops->tx_kickstart)(dev);
662 spin_unlock_irqrestore(&fep->tx_lock, flags);
664 return NETDEV_TX_OK;
667 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
668 irq_handler_t irqf)
670 struct fs_enet_private *fep = netdev_priv(dev);
672 (*fep->ops->pre_request_irq)(dev, irq);
673 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
676 static void fs_free_irq(struct net_device *dev, int irq)
678 struct fs_enet_private *fep = netdev_priv(dev);
680 free_irq(irq, dev);
681 (*fep->ops->post_free_irq)(dev, irq);
684 static void fs_timeout(struct net_device *dev)
686 struct fs_enet_private *fep = netdev_priv(dev);
687 unsigned long flags;
688 int wake = 0;
690 fep->stats.tx_errors++;
692 spin_lock_irqsave(&fep->lock, flags);
694 if (dev->flags & IFF_UP) {
695 phy_stop(fep->phydev);
696 (*fep->ops->stop)(dev);
697 (*fep->ops->restart)(dev);
698 phy_start(fep->phydev);
701 phy_start(fep->phydev);
702 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
703 spin_unlock_irqrestore(&fep->lock, flags);
705 if (wake)
706 netif_wake_queue(dev);
709 /*-----------------------------------------------------------------------------
710 * generic link-change handler - should be sufficient for most cases
711 *-----------------------------------------------------------------------------*/
712 static void generic_adjust_link(struct net_device *dev)
714 struct fs_enet_private *fep = netdev_priv(dev);
715 struct phy_device *phydev = fep->phydev;
716 int new_state = 0;
718 if (phydev->link) {
719 /* adjust to duplex mode */
720 if (phydev->duplex != fep->oldduplex) {
721 new_state = 1;
722 fep->oldduplex = phydev->duplex;
725 if (phydev->speed != fep->oldspeed) {
726 new_state = 1;
727 fep->oldspeed = phydev->speed;
730 if (!fep->oldlink) {
731 new_state = 1;
732 fep->oldlink = 1;
735 if (new_state)
736 fep->ops->restart(dev);
737 } else if (fep->oldlink) {
738 new_state = 1;
739 fep->oldlink = 0;
740 fep->oldspeed = 0;
741 fep->oldduplex = -1;
744 if (new_state && netif_msg_link(fep))
745 phy_print_status(phydev);
749 static void fs_adjust_link(struct net_device *dev)
751 struct fs_enet_private *fep = netdev_priv(dev);
752 unsigned long flags;
754 spin_lock_irqsave(&fep->lock, flags);
756 if(fep->ops->adjust_link)
757 fep->ops->adjust_link(dev);
758 else
759 generic_adjust_link(dev);
761 spin_unlock_irqrestore(&fep->lock, flags);
764 static int fs_init_phy(struct net_device *dev)
766 struct fs_enet_private *fep = netdev_priv(dev);
767 struct phy_device *phydev;
769 fep->oldlink = 0;
770 fep->oldspeed = 0;
771 fep->oldduplex = -1;
772 if(fep->fpi->bus_id)
773 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
774 PHY_INTERFACE_MODE_MII);
775 else {
776 printk("No phy bus ID specified in BSP code\n");
777 return -EINVAL;
779 if (IS_ERR(phydev)) {
780 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
781 return PTR_ERR(phydev);
784 fep->phydev = phydev;
786 return 0;
789 static int fs_enet_open(struct net_device *dev)
791 struct fs_enet_private *fep = netdev_priv(dev);
792 int r;
793 int err;
795 if (fep->fpi->use_napi)
796 napi_enable(&fep->napi);
798 /* Install our interrupt handler. */
799 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
800 if (r != 0) {
801 printk(KERN_ERR DRV_MODULE_NAME
802 ": %s Could not allocate FS_ENET IRQ!", dev->name);
803 if (fep->fpi->use_napi)
804 napi_disable(&fep->napi);
805 return -EINVAL;
808 err = fs_init_phy(dev);
809 if (err) {
810 if (fep->fpi->use_napi)
811 napi_disable(&fep->napi);
812 return err;
814 phy_start(fep->phydev);
816 netif_start_queue(dev);
818 return 0;
821 static int fs_enet_close(struct net_device *dev)
823 struct fs_enet_private *fep = netdev_priv(dev);
824 unsigned long flags;
826 netif_stop_queue(dev);
827 netif_carrier_off(dev);
828 if (fep->fpi->use_napi)
829 napi_disable(&fep->napi);
830 phy_stop(fep->phydev);
832 spin_lock_irqsave(&fep->lock, flags);
833 spin_lock(&fep->tx_lock);
834 (*fep->ops->stop)(dev);
835 spin_unlock(&fep->tx_lock);
836 spin_unlock_irqrestore(&fep->lock, flags);
838 /* release any irqs */
839 phy_disconnect(fep->phydev);
840 fep->phydev = NULL;
841 fs_free_irq(dev, fep->interrupt);
843 return 0;
846 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
848 struct fs_enet_private *fep = netdev_priv(dev);
849 return &fep->stats;
852 /*************************************************************************/
854 static void fs_get_drvinfo(struct net_device *dev,
855 struct ethtool_drvinfo *info)
857 strcpy(info->driver, DRV_MODULE_NAME);
858 strcpy(info->version, DRV_MODULE_VERSION);
861 static int fs_get_regs_len(struct net_device *dev)
863 struct fs_enet_private *fep = netdev_priv(dev);
865 return (*fep->ops->get_regs_len)(dev);
868 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
869 void *p)
871 struct fs_enet_private *fep = netdev_priv(dev);
872 unsigned long flags;
873 int r, len;
875 len = regs->len;
877 spin_lock_irqsave(&fep->lock, flags);
878 r = (*fep->ops->get_regs)(dev, p, &len);
879 spin_unlock_irqrestore(&fep->lock, flags);
881 if (r == 0)
882 regs->version = 0;
885 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
887 struct fs_enet_private *fep = netdev_priv(dev);
889 if (!fep->phydev)
890 return -ENODEV;
892 return phy_ethtool_gset(fep->phydev, cmd);
895 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
897 struct fs_enet_private *fep = netdev_priv(dev);
899 if (!fep->phydev)
900 return -ENODEV;
902 return phy_ethtool_sset(fep->phydev, cmd);
905 static int fs_nway_reset(struct net_device *dev)
907 return 0;
910 static u32 fs_get_msglevel(struct net_device *dev)
912 struct fs_enet_private *fep = netdev_priv(dev);
913 return fep->msg_enable;
916 static void fs_set_msglevel(struct net_device *dev, u32 value)
918 struct fs_enet_private *fep = netdev_priv(dev);
919 fep->msg_enable = value;
922 static const struct ethtool_ops fs_ethtool_ops = {
923 .get_drvinfo = fs_get_drvinfo,
924 .get_regs_len = fs_get_regs_len,
925 .get_settings = fs_get_settings,
926 .set_settings = fs_set_settings,
927 .nway_reset = fs_nway_reset,
928 .get_link = ethtool_op_get_link,
929 .get_msglevel = fs_get_msglevel,
930 .set_msglevel = fs_set_msglevel,
931 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
932 .set_sg = ethtool_op_set_sg,
933 .get_regs = fs_get_regs,
936 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
938 struct fs_enet_private *fep = netdev_priv(dev);
939 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
941 if (!netif_running(dev))
942 return -EINVAL;
944 return phy_mii_ioctl(fep->phydev, mii, cmd);
947 extern int fs_mii_connect(struct net_device *dev);
948 extern void fs_mii_disconnect(struct net_device *dev);
950 /**************************************************************************************/
952 /* handy pointer to the immap */
953 void __iomem *fs_enet_immap = NULL;
955 static int setup_immap(void)
957 #ifdef CONFIG_CPM1
958 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
959 WARN_ON(!fs_enet_immap);
960 #elif defined(CONFIG_CPM2)
961 fs_enet_immap = cpm2_immr;
962 #endif
964 return 0;
967 static void cleanup_immap(void)
969 #if defined(CONFIG_CPM1)
970 iounmap(fs_enet_immap);
971 #endif
974 /**************************************************************************************/
976 static int __devinit find_phy(struct device_node *np,
977 struct fs_platform_info *fpi)
979 struct device_node *phynode, *mdionode;
980 int ret = 0, len, bus_id;
981 const u32 *data;
983 data = of_get_property(np, "fixed-link", NULL);
984 if (data) {
985 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
986 return 0;
989 data = of_get_property(np, "phy-handle", &len);
990 if (!data || len != 4)
991 return -EINVAL;
993 phynode = of_find_node_by_phandle(*data);
994 if (!phynode)
995 return -EINVAL;
997 data = of_get_property(phynode, "reg", &len);
998 if (!data || len != 4) {
999 ret = -EINVAL;
1000 goto out_put_phy;
1003 mdionode = of_get_parent(phynode);
1004 if (!mdionode) {
1005 ret = -EINVAL;
1006 goto out_put_phy;
1009 bus_id = of_get_gpio(mdionode, 0);
1010 if (bus_id < 0) {
1011 struct resource res;
1012 ret = of_address_to_resource(mdionode, 0, &res);
1013 if (ret)
1014 goto out_put_mdio;
1015 bus_id = res.start;
1018 snprintf(fpi->bus_id, 16, "%x:%02x", bus_id, *data);
1020 out_put_mdio:
1021 of_node_put(mdionode);
1022 out_put_phy:
1023 of_node_put(phynode);
1024 return ret;
1027 #ifdef CONFIG_FS_ENET_HAS_FEC
1028 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1029 #else
1030 #define IS_FEC(match) 0
1031 #endif
1033 static int __devinit fs_enet_probe(struct of_device *ofdev,
1034 const struct of_device_id *match)
1036 struct net_device *ndev;
1037 struct fs_enet_private *fep;
1038 struct fs_platform_info *fpi;
1039 const u32 *data;
1040 const u8 *mac_addr;
1041 int privsize, len, ret = -ENODEV;
1043 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1044 if (!fpi)
1045 return -ENOMEM;
1047 if (!IS_FEC(match)) {
1048 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1049 if (!data || len != 4)
1050 goto out_free_fpi;
1052 fpi->cp_command = *data;
1055 fpi->rx_ring = 32;
1056 fpi->tx_ring = 32;
1057 fpi->rx_copybreak = 240;
1058 fpi->use_napi = 1;
1059 fpi->napi_weight = 17;
1061 ret = find_phy(ofdev->node, fpi);
1062 if (ret)
1063 goto out_free_fpi;
1065 privsize = sizeof(*fep) +
1066 sizeof(struct sk_buff **) *
1067 (fpi->rx_ring + fpi->tx_ring);
1069 ndev = alloc_etherdev(privsize);
1070 if (!ndev) {
1071 ret = -ENOMEM;
1072 goto out_free_fpi;
1075 dev_set_drvdata(&ofdev->dev, ndev);
1077 fep = netdev_priv(ndev);
1078 fep->dev = &ofdev->dev;
1079 fep->ndev = ndev;
1080 fep->fpi = fpi;
1081 fep->ops = match->data;
1083 ret = fep->ops->setup_data(ndev);
1084 if (ret)
1085 goto out_free_dev;
1087 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1088 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1090 spin_lock_init(&fep->lock);
1091 spin_lock_init(&fep->tx_lock);
1093 mac_addr = of_get_mac_address(ofdev->node);
1094 if (mac_addr)
1095 memcpy(ndev->dev_addr, mac_addr, 6);
1097 ret = fep->ops->allocate_bd(ndev);
1098 if (ret)
1099 goto out_cleanup_data;
1101 fep->rx_bd_base = fep->ring_base;
1102 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1104 fep->tx_ring = fpi->tx_ring;
1105 fep->rx_ring = fpi->rx_ring;
1107 ndev->open = fs_enet_open;
1108 ndev->hard_start_xmit = fs_enet_start_xmit;
1109 ndev->tx_timeout = fs_timeout;
1110 ndev->watchdog_timeo = 2 * HZ;
1111 ndev->stop = fs_enet_close;
1112 ndev->get_stats = fs_enet_get_stats;
1113 ndev->set_multicast_list = fs_set_multicast_list;
1115 if (fpi->use_napi)
1116 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1117 fpi->napi_weight);
1119 ndev->ethtool_ops = &fs_ethtool_ops;
1120 ndev->do_ioctl = fs_ioctl;
1122 init_timer(&fep->phy_timer_list);
1124 netif_carrier_off(ndev);
1126 ret = register_netdev(ndev);
1127 if (ret)
1128 goto out_free_bd;
1130 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1131 ndev->name,
1132 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1133 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1135 return 0;
1137 out_free_bd:
1138 fep->ops->free_bd(ndev);
1139 out_cleanup_data:
1140 fep->ops->cleanup_data(ndev);
1141 out_free_dev:
1142 free_netdev(ndev);
1143 dev_set_drvdata(&ofdev->dev, NULL);
1144 out_free_fpi:
1145 kfree(fpi);
1146 return ret;
1149 static int fs_enet_remove(struct of_device *ofdev)
1151 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1152 struct fs_enet_private *fep = netdev_priv(ndev);
1154 unregister_netdev(ndev);
1156 fep->ops->free_bd(ndev);
1157 fep->ops->cleanup_data(ndev);
1158 dev_set_drvdata(fep->dev, NULL);
1160 free_netdev(ndev);
1161 return 0;
1164 static struct of_device_id fs_enet_match[] = {
1165 #ifdef CONFIG_FS_ENET_HAS_SCC
1167 .compatible = "fsl,cpm1-scc-enet",
1168 .data = (void *)&fs_scc_ops,
1170 #endif
1171 #ifdef CONFIG_FS_ENET_HAS_FCC
1173 .compatible = "fsl,cpm2-fcc-enet",
1174 .data = (void *)&fs_fcc_ops,
1176 #endif
1177 #ifdef CONFIG_FS_ENET_HAS_FEC
1179 .compatible = "fsl,pq1-fec-enet",
1180 .data = (void *)&fs_fec_ops,
1182 #endif
1186 static struct of_platform_driver fs_enet_driver = {
1187 .name = "fs_enet",
1188 .match_table = fs_enet_match,
1189 .probe = fs_enet_probe,
1190 .remove = fs_enet_remove,
1193 static int __init fs_init(void)
1195 int r = setup_immap();
1196 if (r != 0)
1197 return r;
1199 r = of_register_platform_driver(&fs_enet_driver);
1200 if (r != 0)
1201 goto out;
1203 return 0;
1205 out:
1206 cleanup_immap();
1207 return r;
1210 static void __exit fs_cleanup(void)
1212 of_unregister_platform_driver(&fs_enet_driver);
1213 cleanup_immap();
1216 #ifdef CONFIG_NET_POLL_CONTROLLER
1217 static void fs_enet_netpoll(struct net_device *dev)
1219 disable_irq(dev->irq);
1220 fs_enet_interrupt(dev->irq, dev, NULL);
1221 enable_irq(dev->irq);
1223 #endif
1225 /**************************************************************************************/
1227 module_init(fs_init);
1228 module_exit(fs_cleanup);