1 Device Power Management
3 Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
4 Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
5 Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 Most of the code in Linux is device drivers, so most of the Linux power
9 management (PM) code is also driver-specific. Most drivers will do very
10 little; others, especially for platforms with small batteries (like cell
11 phones), will do a lot.
13 This writeup gives an overview of how drivers interact with system-wide
14 power management goals, emphasizing the models and interfaces that are
15 shared by everything that hooks up to the driver model core. Read it as
16 background for the domain-specific work you'd do with any specific driver.
19 Two Models for Device Power Management
20 ======================================
21 Drivers will use one or both of these models to put devices into low-power
25 Drivers can enter low-power states as part of entering system-wide
26 low-power states like "suspend" (also known as "suspend-to-RAM"), or
27 (mostly for systems with disks) "hibernation" (also known as
30 This is something that device, bus, and class drivers collaborate on
31 by implementing various role-specific suspend and resume methods to
32 cleanly power down hardware and software subsystems, then reactivate
33 them without loss of data.
35 Some drivers can manage hardware wakeup events, which make the system
36 leave the low-power state. This feature may be enabled or disabled
37 using the relevant /sys/devices/.../power/wakeup file (for Ethernet
38 drivers the ioctl interface used by ethtool may also be used for this
39 purpose); enabling it may cost some power usage, but let the whole
40 system enter low-power states more often.
42 Runtime Power Management model:
43 Devices may also be put into low-power states while the system is
44 running, independently of other power management activity in principle.
45 However, devices are not generally independent of each other (for
46 example, a parent device cannot be suspended unless all of its child
47 devices have been suspended). Moreover, depending on the bus type the
48 device is on, it may be necessary to carry out some bus-specific
49 operations on the device for this purpose. Devices put into low power
50 states at run time may require special handling during system-wide power
51 transitions (suspend or hibernation).
53 For these reasons not only the device driver itself, but also the
54 appropriate subsystem (bus type, device type or device class) driver and
55 the PM core are involved in runtime power management. As in the system
56 sleep power management case, they need to collaborate by implementing
57 various role-specific suspend and resume methods, so that the hardware
58 is cleanly powered down and reactivated without data or service loss.
60 There's not a lot to be said about those low-power states except that they are
61 very system-specific, and often device-specific. Also, that if enough devices
62 have been put into low-power states (at runtime), the effect may be very similar
63 to entering some system-wide low-power state (system sleep) ... and that
64 synergies exist, so that several drivers using runtime PM might put the system
65 into a state where even deeper power saving options are available.
67 Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except
68 for wakeup events), no more data read or written, and requests from upstream
69 drivers are no longer accepted. A given bus or platform may have different
72 Examples of hardware wakeup events include an alarm from a real time clock,
73 network wake-on-LAN packets, keyboard or mouse activity, and media insertion
74 or removal (for PCMCIA, MMC/SD, USB, and so on).
77 Interfaces for Entering System Sleep States
78 ===========================================
79 There are programming interfaces provided for subsystems (bus type, device type,
80 device class) and device drivers to allow them to participate in the power
81 management of devices they are concerned with. These interfaces cover both
82 system sleep and runtime power management.
85 Device Power Management Operations
86 ----------------------------------
87 Device power management operations, at the subsystem level as well as at the
88 device driver level, are implemented by defining and populating objects of type
92 int (*prepare)(struct device *dev);
93 void (*complete)(struct device *dev);
94 int (*suspend)(struct device *dev);
95 int (*resume)(struct device *dev);
96 int (*freeze)(struct device *dev);
97 int (*thaw)(struct device *dev);
98 int (*poweroff)(struct device *dev);
99 int (*restore)(struct device *dev);
100 int (*suspend_late)(struct device *dev);
101 int (*resume_early)(struct device *dev);
102 int (*freeze_late)(struct device *dev);
103 int (*thaw_early)(struct device *dev);
104 int (*poweroff_late)(struct device *dev);
105 int (*restore_early)(struct device *dev);
106 int (*suspend_noirq)(struct device *dev);
107 int (*resume_noirq)(struct device *dev);
108 int (*freeze_noirq)(struct device *dev);
109 int (*thaw_noirq)(struct device *dev);
110 int (*poweroff_noirq)(struct device *dev);
111 int (*restore_noirq)(struct device *dev);
112 int (*runtime_suspend)(struct device *dev);
113 int (*runtime_resume)(struct device *dev);
114 int (*runtime_idle)(struct device *dev);
117 This structure is defined in include/linux/pm.h and the methods included in it
118 are also described in that file. Their roles will be explained in what follows.
119 For now, it should be sufficient to remember that the last three methods are
120 specific to runtime power management while the remaining ones are used during
121 system-wide power transitions.
123 There also is a deprecated "old" or "legacy" interface for power management
124 operations available at least for some subsystems. This approach does not use
125 struct dev_pm_ops objects and it is suitable only for implementing system sleep
126 power management methods. Therefore it is not described in this document, so
127 please refer directly to the source code for more information about it.
130 Subsystem-Level Methods
131 -----------------------
132 The core methods to suspend and resume devices reside in struct dev_pm_ops
133 pointed to by the ops member of struct dev_pm_domain, or by the pm member of
134 struct bus_type, struct device_type and struct class. They are mostly of
135 interest to the people writing infrastructure for platforms and buses, like PCI
136 or USB, or device type and device class drivers. They also are relevant to the
137 writers of device drivers whose subsystems (PM domains, device types, device
138 classes and bus types) don't provide all power management methods.
140 Bus drivers implement these methods as appropriate for the hardware and the
141 drivers using it; PCI works differently from USB, and so on. Not many people
142 write subsystem-level drivers; most driver code is a "device driver" that builds
143 on top of bus-specific framework code.
145 For more information on these driver calls, see the description later;
146 they are called in phases for every device, respecting the parent-child
147 sequencing in the driver model tree.
150 /sys/devices/.../power/wakeup files
151 -----------------------------------
152 All device objects in the driver model contain fields that control the handling
153 of system wakeup events (hardware signals that can force the system out of a
154 sleep state). These fields are initialized by bus or device driver code using
155 device_set_wakeup_capable() and device_set_wakeup_enable(), defined in
156 include/linux/pm_wakeup.h.
158 The "power.can_wakeup" flag just records whether the device (and its driver) can
159 physically support wakeup events. The device_set_wakeup_capable() routine
160 affects this flag. The "power.wakeup" field is a pointer to an object of type
161 struct wakeup_source used for controlling whether or not the device should use
162 its system wakeup mechanism and for notifying the PM core of system wakeup
163 events signaled by the device. This object is only present for wakeup-capable
164 devices (i.e. devices whose "can_wakeup" flags are set) and is created (or
165 removed) by device_set_wakeup_capable().
167 Whether or not a device is capable of issuing wakeup events is a hardware
168 matter, and the kernel is responsible for keeping track of it. By contrast,
169 whether or not a wakeup-capable device should issue wakeup events is a policy
170 decision, and it is managed by user space through a sysfs attribute: the
171 "power/wakeup" file. User space can write the strings "enabled" or "disabled"
172 to it to indicate whether or not, respectively, the device is supposed to signal
173 system wakeup. This file is only present if the "power.wakeup" object exists
174 for the given device and is created (or removed) along with that object, by
175 device_set_wakeup_capable(). Reads from the file will return the corresponding
178 The "power/wakeup" file is supposed to contain the "disabled" string initially
179 for the majority of devices; the major exceptions are power buttons, keyboards,
180 and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with
181 ethtool. It should also default to "enabled" for devices that don't generate
182 wakeup requests on their own but merely forward wakeup requests from one bus to
183 another (like PCI Express ports).
185 The device_may_wakeup() routine returns true only if the "power.wakeup" object
186 exists and the corresponding "power/wakeup" file contains the string "enabled".
187 This information is used by subsystems, like the PCI bus type code, to see
188 whether or not to enable the devices' wakeup mechanisms. If device wakeup
189 mechanisms are enabled or disabled directly by drivers, they also should use
190 device_may_wakeup() to decide what to do during a system sleep transition.
191 Device drivers, however, are not supposed to call device_set_wakeup_enable()
192 directly in any case.
194 It ought to be noted that system wakeup is conceptually different from "remote
195 wakeup" used by runtime power management, although it may be supported by the
196 same physical mechanism. Remote wakeup is a feature allowing devices in
197 low-power states to trigger specific interrupts to signal conditions in which
198 they should be put into the full-power state. Those interrupts may or may not
199 be used to signal system wakeup events, depending on the hardware design. On
200 some systems it is impossible to trigger them from system sleep states. In any
201 case, remote wakeup should always be enabled for runtime power management for
202 all devices and drivers that support it.
204 /sys/devices/.../power/control files
205 ------------------------------------
206 Each device in the driver model has a flag to control whether it is subject to
207 runtime power management. This flag, called runtime_auto, is initialized by the
208 bus type (or generally subsystem) code using pm_runtime_allow() or
209 pm_runtime_forbid(); the default is to allow runtime power management.
211 The setting can be adjusted by user space by writing either "on" or "auto" to
212 the device's power/control sysfs file. Writing "auto" calls pm_runtime_allow(),
213 setting the flag and allowing the device to be runtime power-managed by its
214 driver. Writing "on" calls pm_runtime_forbid(), clearing the flag, returning
215 the device to full power if it was in a low-power state, and preventing the
216 device from being runtime power-managed. User space can check the current value
217 of the runtime_auto flag by reading the file.
219 The device's runtime_auto flag has no effect on the handling of system-wide
220 power transitions. In particular, the device can (and in the majority of cases
221 should and will) be put into a low-power state during a system-wide transition
222 to a sleep state even though its runtime_auto flag is clear.
224 For more information about the runtime power management framework, refer to
225 Documentation/power/runtime_pm.txt.
228 Calling Drivers to Enter and Leave System Sleep States
229 ======================================================
230 When the system goes into a sleep state, each device's driver is asked to
231 suspend the device by putting it into a state compatible with the target
232 system state. That's usually some version of "off", but the details are
233 system-specific. Also, wakeup-enabled devices will usually stay partly
234 functional in order to wake the system.
236 When the system leaves that low-power state, the device's driver is asked to
237 resume it by returning it to full power. The suspend and resume operations
238 always go together, and both are multi-phase operations.
240 For simple drivers, suspend might quiesce the device using class code
241 and then turn its hardware as "off" as possible during suspend_noirq. The
242 matching resume calls would then completely reinitialize the hardware
243 before reactivating its class I/O queues.
245 More power-aware drivers might prepare the devices for triggering system wakeup
249 Call Sequence Guarantees
250 ------------------------
251 To ensure that bridges and similar links needing to talk to a device are
252 available when the device is suspended or resumed, the device tree is
253 walked in a bottom-up order to suspend devices. A top-down order is
254 used to resume those devices.
256 The ordering of the device tree is defined by the order in which devices
257 get registered: a child can never be registered, probed or resumed before
258 its parent; and can't be removed or suspended after that parent.
260 The policy is that the device tree should match hardware bus topology.
261 (Or at least the control bus, for devices which use multiple busses.)
262 In particular, this means that a device registration may fail if the parent of
263 the device is suspending (i.e. has been chosen by the PM core as the next
264 device to suspend) or has already suspended, as well as after all of the other
265 devices have been suspended. Device drivers must be prepared to cope with such
269 System Power Management Phases
270 ------------------------------
271 Suspending or resuming the system is done in several phases. Different phases
272 are used for freeze, standby, and memory sleep states ("suspend-to-RAM") and the
273 hibernation state ("suspend-to-disk"). Each phase involves executing callbacks
274 for every device before the next phase begins. Not all busses or classes
275 support all these callbacks and not all drivers use all the callbacks. The
276 various phases always run after tasks have been frozen and before they are
277 unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have
278 been disabled (except for those marked with the IRQF_NO_SUSPEND flag).
280 All phases use PM domain, bus, type, class or driver callbacks (that is, methods
281 defined in dev->pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm or
282 dev->driver->pm). These callbacks are regarded by the PM core as mutually
283 exclusive. Moreover, PM domain callbacks always take precedence over all of the
284 other callbacks and, for example, type callbacks take precedence over bus, class
285 and driver callbacks. To be precise, the following rules are used to determine
286 which callback to execute in the given phase:
288 1. If dev->pm_domain is present, the PM core will choose the callback
289 included in dev->pm_domain->ops for execution
291 2. Otherwise, if both dev->type and dev->type->pm are present, the callback
292 included in dev->type->pm will be chosen for execution.
294 3. Otherwise, if both dev->class and dev->class->pm are present, the
295 callback included in dev->class->pm will be chosen for execution.
297 4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback
298 included in dev->bus->pm will be chosen for execution.
300 This allows PM domains and device types to override callbacks provided by bus
301 types or device classes if necessary.
303 The PM domain, type, class and bus callbacks may in turn invoke device- or
304 driver-specific methods stored in dev->driver->pm, but they don't have to do
307 If the subsystem callback chosen for execution is not present, the PM core will
308 execute the corresponding method from dev->driver->pm instead if there is one.
311 Entering System Suspend
312 -----------------------
313 When the system goes into the freeze, standby or memory sleep state,
316 prepare, suspend, suspend_late, suspend_noirq.
318 1. The prepare phase is meant to prevent races by preventing new devices
319 from being registered; the PM core would never know that all the
320 children of a device had been suspended if new children could be
321 registered at will. (By contrast, devices may be unregistered at any
322 time.) Unlike the other suspend-related phases, during the prepare
323 phase the device tree is traversed top-down.
325 After the prepare callback method returns, no new children may be
326 registered below the device. The method may also prepare the device or
327 driver in some way for the upcoming system power transition, but it
328 should not put the device into a low-power state.
330 For devices supporting runtime power management, the return value of the
331 prepare callback can be used to indicate to the PM core that it may
332 safely leave the device in runtime suspend (if runtime-suspended
333 already), provided that all of the device's descendants are also left in
334 runtime suspend. Namely, if the prepare callback returns a positive
335 number and that happens for all of the descendants of the device too,
336 and all of them (including the device itself) are runtime-suspended, the
337 PM core will skip the suspend, suspend_late and suspend_noirq suspend
338 phases as well as the resume_noirq, resume_early and resume phases of
339 the following system resume for all of these devices. In that case,
340 the complete callback will be called directly after the prepare callback
341 and is entirely responsible for bringing the device back to the
342 functional state as appropriate.
344 Note that this direct-complete procedure applies even if the device is
345 disabled for runtime PM; only the runtime-PM status matters. It follows
346 that if a device has system-sleep callbacks but does not support runtime
347 PM, then its prepare callback must never return a positive value. This
348 is because all devices are initially set to runtime-suspended with
351 2. The suspend methods should quiesce the device to stop it from performing
352 I/O. They also may save the device registers and put it into the
353 appropriate low-power state, depending on the bus type the device is on,
354 and they may enable wakeup events.
356 3 For a number of devices it is convenient to split suspend into the
357 "quiesce device" and "save device state" phases, in which cases
358 suspend_late is meant to do the latter. It is always executed after
359 runtime power management has been disabled for all devices.
361 4. The suspend_noirq phase occurs after IRQ handlers have been disabled,
362 which means that the driver's interrupt handler will not be called while
363 the callback method is running. The methods should save the values of
364 the device's registers that weren't saved previously and finally put the
365 device into the appropriate low-power state.
367 The majority of subsystems and device drivers need not implement this
368 callback. However, bus types allowing devices to share interrupt
369 vectors, like PCI, generally need it; otherwise a driver might encounter
370 an error during the suspend phase by fielding a shared interrupt
371 generated by some other device after its own device had been set to low
374 At the end of these phases, drivers should have stopped all I/O transactions
375 (DMA, IRQs), saved enough state that they can re-initialize or restore previous
376 state (as needed by the hardware), and placed the device into a low-power state.
377 On many platforms they will gate off one or more clock sources; sometimes they
378 will also switch off power supplies or reduce voltages. (Drivers supporting
379 runtime PM may already have performed some or all of these steps.)
381 If device_may_wakeup(dev) returns true, the device should be prepared for
382 generating hardware wakeup signals to trigger a system wakeup event when the
383 system is in the sleep state. For example, enable_irq_wake() might identify
384 GPIO signals hooked up to a switch or other external hardware, and
385 pci_enable_wake() does something similar for the PCI PME signal.
387 If any of these callbacks returns an error, the system won't enter the desired
388 low-power state. Instead the PM core will unwind its actions by resuming all
389 the devices that were suspended.
392 Leaving System Suspend
393 ----------------------
394 When resuming from freeze, standby or memory sleep, the phases are:
396 resume_noirq, resume_early, resume, complete.
398 1. The resume_noirq callback methods should perform any actions needed
399 before the driver's interrupt handlers are invoked. This generally
400 means undoing the actions of the suspend_noirq phase. If the bus type
401 permits devices to share interrupt vectors, like PCI, the method should
402 bring the device and its driver into a state in which the driver can
403 recognize if the device is the source of incoming interrupts, if any,
404 and handle them correctly.
406 For example, the PCI bus type's ->pm.resume_noirq() puts the device into
407 the full-power state (D0 in the PCI terminology) and restores the
408 standard configuration registers of the device. Then it calls the
409 device driver's ->pm.resume_noirq() method to perform device-specific
412 2. The resume_early methods should prepare devices for the execution of
413 the resume methods. This generally involves undoing the actions of the
414 preceding suspend_late phase.
416 3 The resume methods should bring the device back to its operating
417 state, so that it can perform normal I/O. This generally involves
418 undoing the actions of the suspend phase.
420 4. The complete phase should undo the actions of the prepare phase. Note,
421 however, that new children may be registered below the device as soon as
422 the resume callbacks occur; it's not necessary to wait until the
425 Moreover, if the preceding prepare callback returned a positive number,
426 the device may have been left in runtime suspend throughout the whole
427 system suspend and resume (the suspend, suspend_late, suspend_noirq
428 phases of system suspend and the resume_noirq, resume_early, resume
429 phases of system resume may have been skipped for it). In that case,
430 the complete callback is entirely responsible for bringing the device
431 back to the functional state after system suspend if necessary. [For
432 example, it may need to queue up a runtime resume request for the device
433 for this purpose.] To check if that is the case, the complete callback
434 can consult the device's power.direct_complete flag. Namely, if that
435 flag is set when the complete callback is being run, it has been called
436 directly after the preceding prepare and special action may be required
437 to make the device work correctly afterward.
439 At the end of these phases, drivers should be as functional as they were before
440 suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
443 However, the details here may again be platform-specific. For example,
444 some systems support multiple "run" states, and the mode in effect at
445 the end of resume might not be the one which preceded suspension.
446 That means availability of certain clocks or power supplies changed,
447 which could easily affect how a driver works.
449 Drivers need to be able to handle hardware which has been reset since the
450 suspend methods were called, for example by complete reinitialization.
451 This may be the hardest part, and the one most protected by NDA'd documents
452 and chip errata. It's simplest if the hardware state hasn't changed since
453 the suspend was carried out, but that can't be guaranteed (in fact, it usually
456 Drivers must also be prepared to notice that the device has been removed
457 while the system was powered down, whenever that's physically possible.
458 PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses
459 where common Linux platforms will see such removal. Details of how drivers
460 will notice and handle such removals are currently bus-specific, and often
461 involve a separate thread.
463 These callbacks may return an error value, but the PM core will ignore such
464 errors since there's nothing it can do about them other than printing them in
470 Hibernating the system is more complicated than putting it into the other
471 sleep states, because it involves creating and saving a system image.
472 Therefore there are more phases for hibernation, with a different set of
473 callbacks. These phases always run after tasks have been frozen and memory has
476 The general procedure for hibernation is to quiesce all devices (freeze), create
477 an image of the system memory while everything is stable, reactivate all
478 devices (thaw), write the image to permanent storage, and finally shut down the
479 system (poweroff). The phases used to accomplish this are:
481 prepare, freeze, freeze_late, freeze_noirq, thaw_noirq, thaw_early,
482 thaw, complete, prepare, poweroff, poweroff_late, poweroff_noirq
484 1. The prepare phase is discussed in the "Entering System Suspend" section
487 2. The freeze methods should quiesce the device so that it doesn't generate
488 IRQs or DMA, and they may need to save the values of device registers.
489 However the device does not have to be put in a low-power state, and to
490 save time it's best not to do so. Also, the device should not be
491 prepared to generate wakeup events.
493 3. The freeze_late phase is analogous to the suspend_late phase described
494 above, except that the device should not be put in a low-power state and
495 should not be allowed to generate wakeup events by it.
497 4. The freeze_noirq phase is analogous to the suspend_noirq phase discussed
498 above, except again that the device should not be put in a low-power
499 state and should not be allowed to generate wakeup events.
501 At this point the system image is created. All devices should be inactive and
502 the contents of memory should remain undisturbed while this happens, so that the
503 image forms an atomic snapshot of the system state.
505 5. The thaw_noirq phase is analogous to the resume_noirq phase discussed
506 above. The main difference is that its methods can assume the device is
507 in the same state as at the end of the freeze_noirq phase.
509 6. The thaw_early phase is analogous to the resume_early phase described
510 above. Its methods should undo the actions of the preceding
511 freeze_late, if necessary.
513 7. The thaw phase is analogous to the resume phase discussed above. Its
514 methods should bring the device back to an operating state, so that it
515 can be used for saving the image if necessary.
517 8. The complete phase is discussed in the "Leaving System Suspend" section
520 At this point the system image is saved, and the devices then need to be
521 prepared for the upcoming system shutdown. This is much like suspending them
522 before putting the system into the freeze, standby or memory sleep state,
523 and the phases are similar.
525 9. The prepare phase is discussed above.
527 10. The poweroff phase is analogous to the suspend phase.
529 11. The poweroff_late phase is analogous to the suspend_late phase.
531 12. The poweroff_noirq phase is analogous to the suspend_noirq phase.
533 The poweroff, poweroff_late and poweroff_noirq callbacks should do essentially
534 the same things as the suspend, suspend_late and suspend_noirq callbacks,
535 respectively. The only notable difference is that they need not store the
536 device register values, because the registers should already have been stored
537 during the freeze, freeze_late or freeze_noirq phases.
542 Resuming from hibernation is, again, more complicated than resuming from a sleep
543 state in which the contents of main memory are preserved, because it requires
544 a system image to be loaded into memory and the pre-hibernation memory contents
545 to be restored before control can be passed back to the image kernel.
547 Although in principle, the image might be loaded into memory and the
548 pre-hibernation memory contents restored by the boot loader, in practice this
549 can't be done because boot loaders aren't smart enough and there is no
550 established protocol for passing the necessary information. So instead, the
551 boot loader loads a fresh instance of the kernel, called the boot kernel, into
552 memory and passes control to it in the usual way. Then the boot kernel reads
553 the system image, restores the pre-hibernation memory contents, and passes
554 control to the image kernel. Thus two different kernels are involved in
555 resuming from hibernation. In fact, the boot kernel may be completely different
556 from the image kernel: a different configuration and even a different version.
557 This has important consequences for device drivers and their subsystems.
559 To be able to load the system image into memory, the boot kernel needs to
560 include at least a subset of device drivers allowing it to access the storage
561 medium containing the image, although it doesn't need to include all of the
562 drivers present in the image kernel. After the image has been loaded, the
563 devices managed by the boot kernel need to be prepared for passing control back
564 to the image kernel. This is very similar to the initial steps involved in
565 creating a system image, and it is accomplished in the same way, using prepare,
566 freeze, and freeze_noirq phases. However the devices affected by these phases
567 are only those having drivers in the boot kernel; other devices will still be in
568 whatever state the boot loader left them.
570 Should the restoration of the pre-hibernation memory contents fail, the boot
571 kernel would go through the "thawing" procedure described above, using the
572 thaw_noirq, thaw, and complete phases, and then continue running normally. This
573 happens only rarely. Most often the pre-hibernation memory contents are
574 restored successfully and control is passed to the image kernel, which then
575 becomes responsible for bringing the system back to the working state.
577 To achieve this, the image kernel must restore the devices' pre-hibernation
578 functionality. The operation is much like waking up from the memory sleep
579 state, although it involves different phases:
581 restore_noirq, restore_early, restore, complete
583 1. The restore_noirq phase is analogous to the resume_noirq phase.
585 2. The restore_early phase is analogous to the resume_early phase.
587 3. The restore phase is analogous to the resume phase.
589 4. The complete phase is discussed above.
591 The main difference from resume[_early|_noirq] is that restore[_early|_noirq]
592 must assume the device has been accessed and reconfigured by the boot loader or
593 the boot kernel. Consequently the state of the device may be different from the
594 state remembered from the freeze, freeze_late and freeze_noirq phases. The
595 device may even need to be reset and completely re-initialized. In many cases
596 this difference doesn't matter, so the resume[_early|_noirq] and
597 restore[_early|_norq] method pointers can be set to the same routines.
598 Nevertheless, different callback pointers are used in case there is a situation
599 where it actually does matter.
602 Device Power Management Domains
603 -------------------------------
604 Sometimes devices share reference clocks or other power resources. In those
605 cases it generally is not possible to put devices into low-power states
606 individually. Instead, a set of devices sharing a power resource can be put
607 into a low-power state together at the same time by turning off the shared
608 power resource. Of course, they also need to be put into the full-power state
609 together, by turning the shared power resource on. A set of devices with this
610 property is often referred to as a power domain.
612 Support for power domains is provided through the pm_domain field of struct
613 device. This field is a pointer to an object of type struct dev_pm_domain,
614 defined in include/linux/pm.h, providing a set of power management callbacks
615 analogous to the subsystem-level and device driver callbacks that are executed
616 for the given device during all power transitions, instead of the respective
617 subsystem-level callbacks. Specifically, if a device's pm_domain pointer is
618 not NULL, the ->suspend() callback from the object pointed to by it will be
619 executed instead of its subsystem's (e.g. bus type's) ->suspend() callback and
620 analogously for all of the remaining callbacks. In other words, power
621 management domain callbacks, if defined for the given device, always take
622 precedence over the callbacks provided by the device's subsystem (e.g. bus
625 The support for device power management domains is only relevant to platforms
626 needing to use the same device driver power management callbacks in many
627 different power domain configurations and wanting to avoid incorporating the
628 support for power domains into subsystem-level callbacks, for example by
629 modifying the platform bus type. Other platforms need not implement it or take
630 it into account in any way.
633 Device Low Power (suspend) States
634 ---------------------------------
635 Device low-power states aren't standard. One device might only handle
636 "on" and "off", while another might support a dozen different versions of
637 "on" (how many engines are active?), plus a state that gets back to "on"
638 faster than from a full "off".
640 Some busses define rules about what different suspend states mean. PCI
641 gives one example: after the suspend sequence completes, a non-legacy
642 PCI device may not perform DMA or issue IRQs, and any wakeup events it
643 issues would be issued through the PME# bus signal. Plus, there are
644 several PCI-standard device states, some of which are optional.
646 In contrast, integrated system-on-chip processors often use IRQs as the
647 wakeup event sources (so drivers would call enable_irq_wake) and might
648 be able to treat DMA completion as a wakeup event (sometimes DMA can stay
649 active too, it'd only be the CPU and some peripherals that sleep).
651 Some details here may be platform-specific. Systems may have devices that
652 can be fully active in certain sleep states, such as an LCD display that's
653 refreshed using DMA while most of the system is sleeping lightly ... and
654 its frame buffer might even be updated by a DSP or other non-Linux CPU while
655 the Linux control processor stays idle.
657 Moreover, the specific actions taken may depend on the target system state.
658 One target system state might allow a given device to be very operational;
659 another might require a hard shut down with re-initialization on resume.
660 And two different target systems might use the same device in different
661 ways; the aforementioned LCD might be active in one product's "standby",
662 but a different product using the same SOC might work differently.
665 Power Management Notifiers
666 --------------------------
667 There are some operations that cannot be carried out by the power management
668 callbacks discussed above, because the callbacks occur too late or too early.
669 To handle these cases, subsystems and device drivers may register power
670 management notifiers that are called before tasks are frozen and after they have
671 been thawed. Generally speaking, the PM notifiers are suitable for performing
672 actions that either require user space to be available, or at least won't
673 interfere with user space.
675 For details refer to Documentation/power/notifiers.txt.
678 Runtime Power Management
679 ========================
680 Many devices are able to dynamically power down while the system is still
681 running. This feature is useful for devices that are not being used, and
682 can offer significant power savings on a running system. These devices
683 often support a range of runtime power states, which might use names such
684 as "off", "sleep", "idle", "active", and so on. Those states will in some
685 cases (like PCI) be partially constrained by the bus the device uses, and will
686 usually include hardware states that are also used in system sleep states.
688 A system-wide power transition can be started while some devices are in low
689 power states due to runtime power management. The system sleep PM callbacks
690 should recognize such situations and react to them appropriately, but the
691 necessary actions are subsystem-specific.
693 In some cases the decision may be made at the subsystem level while in other
694 cases the device driver may be left to decide. In some cases it may be
695 desirable to leave a suspended device in that state during a system-wide power
696 transition, but in other cases the device must be put back into the full-power
697 state temporarily, for example so that its system wakeup capability can be
698 disabled. This all depends on the hardware and the design of the subsystem and
699 device driver in question.
701 During system-wide resume from a sleep state it's easiest to put devices into
702 the full-power state, as explained in Documentation/power/runtime_pm.txt. Refer
703 to that document for more information regarding this particular issue as well as
704 for information on the device runtime power management framework in general.